US3587110A - Corporate-network printed antenna system - Google Patents

Corporate-network printed antenna system Download PDF

Info

Publication number
US3587110A
US3587110A US838226A US3587110DA US3587110A US 3587110 A US3587110 A US 3587110A US 838226 A US838226 A US 838226A US 3587110D A US3587110D A US 3587110DA US 3587110 A US3587110 A US 3587110A
Authority
US
United States
Prior art keywords
sheet
dipole
point
feed point
dipole elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US838226A
Inventor
Oakley Mcdonald Woodward
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Application granted granted Critical
Publication of US3587110A publication Critical patent/US3587110A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas

Definitions

  • This invention relates to antenna systems and more particularly to an array of printed antennas energized from a corporate feed network.
  • Microwave antenna array systems which are lightweight, rugged, low-cost and compact find wide use in both military and commercial applications.
  • Printed antenna systems which are generally made of a plurality of dipoles formed on the surface of a low dielectric circuit board provide these desirable features.
  • the feed for the plurality of dipoles is either provided by a plurality of feed lines on both sides of the insulating board or in a different plane from that of the dipoles.
  • the dipoles are usually arranged in rows with the dipoles in each row spaced approximately one-half wavelength apart with the feed lines and dipoles arranged in transposed relation so that the dipoles are fed in equal phase. This type of system is inherently narrow in bandwidth.
  • an improved, lightweight, compact printed antenna system wherein a plurality of dipoles arranged in adjacent pairs are secured to the broad planar surfaces of a sheet of insulative material. Pairs of adjacent dipoles are connected in parallel through feeder lines disposed on the insulating material. The center point of the feeder lines is connected by another feeder line to another double group. Likewise, this is repeated whereby all of the dipoles are fed with feeder lines of equal length.
  • FIG. 1 illustrates the general layout of an antenna system in accordance with an embodiment of the present invention
  • FIG. 2 illustrates one broad surface of the sheet of insulative material having a portion of the feed line and dipoles thereon
  • FIG. 3 illustrates the opposite broad surface of the sheet of insulative material having a portion of the feed lines and dipoles thereon
  • FIG. 41 is a cross-sectional view of a portion of the antenna in accordance with an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of feed points to the antenna system
  • FIG. 6 is a circuit diagram illustrating the impedance matching network.
  • FIGS. 1, 2 and 3 there is shown the general layout of the fanlike center fed dipoles 11 and feed line 13 of a printed circuit panel antenna system in accordance with a preferred embodiment of the present invention.
  • the fanlike dipoles II and the feed lines 13 are placed on insulative sheet of a one thirty-second inch thick, low dielectric material such as low loss polyolifin dielectric having a dielectric constant of 2.32.
  • a half-portion 12 of each dipole element 11 is on one surface of the sheet 15, and the remaining half-portion 14 of each dipole element 11 is on the opposite surface of the sheet 15. That side of the sheet 15 having half-portions 14 thereon is shown in FIG. 1, with the half-portions 12 on the opposite side of sheet 15 not visible in FIG. 1 shown as dotted lines.
  • the feed lines 13 are made up of a transmission line of the character having one conductor 17 on one surface and a second conductor 19 on the opposite surface.
  • Conductors 17 on one surface, illustrated in FIG. 2 are coupled to the half-portion 12 of each dipole element 11 on that one surface, and conductors 19 on the opposite surface, illustrated in FIG. 3, are coupled to the halfportion 1-4 of each dipole II on the opposite surface.
  • FIG. I is described in detail, bearing in mind however, that in actual practice there are feed lines on both sides of the dielectric sheet 15 with the feed line on one surface coupled to the half-portion of the dipole element on that one surface and the feed line on the opposite surface of the insulative sheets coupled to the half-portion of the dipole element on the opposite surface.
  • this printed circuit panel antenna system 10 having half of the dipole on one side and half of the dipole on the opposite side may be foam supported in a shallow metal pan with the metal pan acting as a reflector for the dipoles.
  • FIG. 4 shows a cross-sectional view of a portion of such an arrangement.
  • the transmission line conductors l7 and 19 on either side of a dielectric sheet 15 are spaced from a reflector 23 by means of foam section 21.
  • another layer of foam 25 and a second dielectric sheet 27 may be provided on the opposite surface of sheet 15.
  • a coaxial line 28 may be coupled near the center of the printed circuit panel antenna system 10.
  • the outer conductor 29 of the coaxial line 28 is coupled to conductor 59 at the one or bottom surface of the printed circuit dielectric sheet panel 15 at points 35 and 36 and is also coupled to the shallow metal pan or ground plane reflector 23.
  • the center conductor 31 of the coaxial line 28 is fed through the insulative sheet 15 to the conductor 57 of the feed lines at the upper surface of the insulative sheet at point 31 as shown in FIGS. 2 and 5.
  • conductor 57 is connected to conductor l7 and conductor 59 is connected to conductor 19.
  • the individual dipole radiators 11 are made in the form of fans having a flare angle of in order to provide greater impedance bandwidth.
  • the dipoles are fed from a corporate network of balanced transmission line sections branching out from points 37 and 39 in FIG. 1.
  • the conductors 17, 19 which make up the feed lines from points 37 and 39 to the dipoles on opposite sides of the insulative sheet are of equal width to provide balanced lines from points 37,39 to the dipoles 11.
  • the width of the conductor 17 from point B to point 37, and from point B to point 39 on the surface of the insulative sheet 15 changes so that a 50 ohm balanced impedance at the points 37,39 is transformed to ohm unbalanced impedance at point B (see FIG. 2).
  • the width of the line on the opposite surface of the panel 15 does not change from point B to points 37 or 39 (see FIG. 3).
  • the two halves of the complete array when joined together, as in the example, give a 50 ohm impedance.
  • the impedance of the line at the point of the coaxial input connection across points 31 and 35,36 is also 50 ohms to match the coaxial line impedance.
  • the impedance in the line from point B to point 31 is matched by a section of microstrip line where, as shown in FIGS. 2 and 3, the conductor 57 shown in FIG. 2 is considerably narrower than that of 59 illustrated in FIG. 3 to make a microstrip transmission line.
  • a vernier impedance matching device 58 is formed by a small chip of dielectric material with a conductor such as copper on the upper surface. By changing the length of the chip 58 and its position along the microstrip line, an impedance match between the coaxial line 28 across points 31 and 35, 36 and point 35,36 is provided with low VSWR at the given frequency. Once the optimum chip position is located, one may simply glue the chip to the surface of the conductor 57.
  • each of four an tenna dipole elements 11 has a load impedance Z for example.
  • Lines 83 and 414 each represent that section of line in the array directly connected to a dipole 11.
  • line 43 terminates at a dipole 11 including halfportions 12 and 14.
  • line 44 terminates at a second dipole 11 including half-portions l2 and I4.
  • each line 43,44 represents a conductor on one side of the sheet 15 and a matching conductor on the opposite side thereof.
  • lines 43 and 44 are each arranged to provide a characteristic impedance of 2,, for example.
  • the lines 43 and 44 are identical with both being onehalf wavelength long.
  • the impedance at the junction point 45 is 2, independent of the value of the characteristic impedance Z of lines 43 and 44.
  • a line 47 having a configuration such as to provide a characteristic impedance of Z for example, is coupled perpendicular to the lines 43 and 44 at point 45 to form a T with the lines and extends a length onequarter wavelength long (M4) at approximately the mean operating frequency of the antenna system.
  • the impedance at point 49 is equal to (Z F/(Z or 2(Z /Z)
  • a second line 51 one-quarter wavelength long at approximately the mean operating frequency of the antenna system connected to the free end of line 47 at point 49 will give an impedance at point 53 (. ⁇ /4 wavelength from point 49) of Z being the characteristic impedance of line 51) divided by the impedance at point 49 resulting in (Z ZJ) (22 Since the lower half 54 of the circuit is identical to that of the upper half 41, the impedance at the junction 53 is halved and is equal to (Z ZJ )/(4Z Now if the characteristic impedance 2 of the line 51 is equal to twice that of the characteristic impedance or Z of line 47, then the impedance of point 53 is equal to that of Z, or the load.
  • the input impedance to the corporate network feed is equal to the individual antenna load impedance.
  • the characteristic impedance Z or Z may have any chosen value. The only requirement is that Z be twice Z In practice, it is desirable to choose the values of Z, and Z to minimize the standing waves throughout the network.
  • the four element array of FIG. 6 may be any one of the four element arrays such as the four element array 61 in FIG. I.
  • the antenna loads provided by dipoles 11 are, for example, 50 ohms.
  • the feed line section 62 between the dipoles 11 and the common point 63 of the array is for example, half a wavelength long with the characteristic impedance Z of the line being 50 ohms.
  • the characteristic impedance Z of the line 66 between the junction at point 63 and point 64 is 50 ohms.
  • the length of the line 66 between point 63 and point 64 is one-quarter of a wavelength.
  • the length of the line 67 between point 64 and common point 65 which is the junction point with the lower half of the circuit is likewise onequarter wavelength long.
  • the width of the conductor 67 is narrower than that of line 66, so as to provide a characteristic impedance of 100 ohms.
  • the dipole array 61 is joined with a similar corporate network to three other similar four element arrays, 71, 72 and 73 to give a 16 dipole array which 16 dipole array has a total input impedance of (in this example) 50 ohms. Impedance match is provided by the M4 stub at the junction and the 2 to 1 ratio in the 2 impedance of the two line section.
  • this process is repeated once more, where four 16 dipole arrays 75, 76, 77 and 78 are combined resulting in a 64 dipole array fed at point 37 of FIG. 2.
  • the antenna impedance is 50 ohms
  • the impedance at point 37 is also 50 ohms and the greatest theoretical VSWR throughout the system is about two-to-one.
  • the notch width is made relatively small compared to the line width, so that the characteristic impedance of the line operating in the push-pull mode would not be greatly changed.
  • An antenna system comprising:
  • feed means including two narrow conductive strips fixed in opposed relation on said broad surfaces of said dielectric sheet and extending from a common feed point to said plurality of dipole elements with a length between the common feed point and one of said dipole elements being the same as that from the common feed point to any of the other dipole elements, said dipole elements being arranged on said sheet so that said feed means extends horizontally and vertically from said common feed point to said elements, said horizontally extending feed means at the junction with said vertically extending feed means having a notch located thereat in a manner so that currents will not be introduced into the feed means which are equal in magnitude and flow in the same direction.
  • An antenna system comprising:
  • feed means including two narrow conductive strips fixed in opposed relation on said broad surfaces of said dielectric sheet and extending from a common feed point to said plurality of dipole elements with the length between the common feed point and one of said dipole elements being the same as that from the common feed point to any of the other dipole elements, said feed means being unbalanced for a given length from said common feed point and balanced from the end of said given length remote from said common feed point to said dipole elements.

Abstract

A corporate-network printed antenna system is described wherein the feed lines are located in coplanar relationship with and in the field of the antenna.

Description

United States Patent Inventor Appl. No Filed Patented Assignee Oakley McDonald Woodward Princeton. NJ.
July 1, 1969 June 22, 1971 RCA Corporation CORPORATE-NETWORK PRINTED ANTENNA SYSTEM 3 Claims, 6 Drawing Figs.
US. Cl 343/813, 343/814, 343/905, 333/84, 333/9 Int.Cl H0lq 21/06, HOlq 21/12, H01p 3/08 Field ofSearch 333/84, 84
[56] References Cited UNITED STATES PATENTS 2,633,531 3/1953 Nelson 343/816X 2,962,716 11/1960 Engelmann 343/720 3,005,986 10/1961 Reed 333/84 X OTHER REFERENCES Microwave Printed Circuits A Historical Survey,
I (Barrett), in IRE TRANSACTIONS ON MlCROWAVE THEORY AND TECHNIQUES. Volume MTT- 3. Number 2 March 1955. TK7800123. pages 1, 4-5. 8, and title Primary Examiner-Herman Karl Saalbach Assistant Examiner-Marvin Nussbaum Attorney-Edward .1. Norton ABSTRACT: A corporate-network printed antenna system is described wherein the feed lines are located in coplanar relationship with and in the field of the antenna.
626362 11 14 FAN DIPOLE -..k l. ....S --4 '2 LL! 4.: LL! 1.4-7 -a I.)
PATENTEU JUH22 I97! SHEET 1 BF 3 Oakley M. Woodward W37 47 TORIIE Y PMENIFII \IIJIIP? IE1: 3587 1 1 O SHEET 2 [IF 3 COAXIAL INPUT TERMINAL BALANCED TRANS- MICROSTRIP MISSION LINE 27 INPUT LINE ;\\\\\\w-\\\\\\ DIELECTRIC SHEETS I7 /F0AM 25 I5 FOAM GROUND PLANE Fug. 4
INVENTOR Oakley M. Woodward BY DZa/JZ&
ATTORNEY PATENTEU JUNE 2 law:
SHEET 3 BF 3 INVENTOW Qukley M. Woodward CORPORATE-NETWORK PRINTED ANTENNA SYSTEM The invention herein described was made in the course of or under a contractor subcontract thereunder with the Department of the Anny.
This invention relates to antenna systems and more particularly to an array of printed antennas energized from a corporate feed network.
Microwave antenna array systems which are lightweight, rugged, low-cost and compact find wide use in both military and commercial applications. Printed antenna systems which are generally made of a plurality of dipoles formed on the surface of a low dielectric circuit board provide these desirable features. The feed for the plurality of dipoles is either provided by a plurality of feed lines on both sides of the insulating board or in a different plane from that of the dipoles. The dipoles are usually arranged in rows with the dipoles in each row spaced approximately one-half wavelength apart with the feed lines and dipoles arranged in transposed relation so that the dipoles are fed in equal phase. This type of system is inherently narrow in bandwidth.
It is therefore an object of the present invention to provide an improved printed antenna system which is broadband.
Briefly, this and other objects of the present invention are provided by an improved, lightweight, compact printed antenna system wherein a plurality of dipoles arranged in adjacent pairs are secured to the broad planar surfaces of a sheet of insulative material. Pairs of adjacent dipoles are connected in parallel through feeder lines disposed on the insulating material. The center point of the feeder lines is connected by another feeder line to another double group. Likewise, this is repeated whereby all of the dipoles are fed with feeder lines of equal length.
Additional features and objects of the invention will be more clearly apparent as the invention is described in connection with the drawing in which:
FIG. 1 illustrates the general layout of an antenna system in accordance with an embodiment of the present invention,
FIG. 2 illustrates one broad surface of the sheet of insulative material having a portion of the feed line and dipoles thereon,
FIG. 3 illustrates the opposite broad surface of the sheet of insulative material having a portion of the feed lines and dipoles thereon,
FIG. 41 is a cross-sectional view of a portion of the antenna in accordance with an embodiment of the present invention,
FIG. 5 is a cross-sectional view of feed points to the antenna system, and
FIG. 6 is a circuit diagram illustrating the impedance matching network.
Referring to FIGS. 1, 2 and 3, there is shown the general layout of the fanlike center fed dipoles 11 and feed line 13 of a printed circuit panel antenna system in accordance with a preferred embodiment of the present invention. The fanlike dipoles II and the feed lines 13 are placed on insulative sheet of a one thirty-second inch thick, low dielectric material such as low loss polyolifin dielectric having a dielectric constant of 2.32. A half-portion 12 of each dipole element 11 is on one surface of the sheet 15, and the remaining half-portion 14 of each dipole element 11 is on the opposite surface of the sheet 15. That side of the sheet 15 having half-portions 14 thereon is shown in FIG. 1, with the half-portions 12 on the opposite side of sheet 15 not visible in FIG. 1 shown as dotted lines. As shown in FIGS. 2and 3, the feed lines 13 are made up of a transmission line of the character having one conductor 17 on one surface and a second conductor 19 on the opposite surface. Conductors 17 on one surface, illustrated in FIG. 2, are coupled to the half-portion 12 of each dipole element 11 on that one surface, and conductors 19 on the opposite surface, illustrated in FIG. 3, are coupled to the halfportion 1-4 of each dipole II on the opposite surface.
The slight offset due to the thickness of the insulative sheet between the two halves of each of the dipoles is electrically insignificant and eliminates the need for pass-through connections which would be required if both halves of the dipoles were on the same side of the sheet.
For purposes of description, FIG. I is described in detail, bearing in mind however, that in actual practice there are feed lines on both sides of the dielectric sheet 15 with the feed line on one surface coupled to the half-portion of the dipole element on that one surface and the feed line on the opposite surface of the insulative sheets coupled to the half-portion of the dipole element on the opposite surface. If unidirectivity is desired, this printed circuit panel antenna system 10 having half of the dipole on one side and half of the dipole on the opposite side may be foam supported in a shallow metal pan with the metal pan acting as a reflector for the dipoles. FIG. 4 shows a cross-sectional view of a portion of such an arrangement. The transmission line conductors l7 and 19 on either side ofa dielectric sheet 15 are spaced from a reflector 23 by means of foam section 21. To provide weather proofing and mechanical protection of the printed circuit panel network, another layer of foam 25 and a second dielectric sheet 27 may be provided on the opposite surface of sheet 15.
As shown in FIG. 5, a coaxial line 28 may be coupled near the center of the printed circuit panel antenna system 10. The outer conductor 29 of the coaxial line 28 is coupled to conductor 59 at the one or bottom surface of the printed circuit dielectric sheet panel 15 at points 35 and 36 and is also coupled to the shallow metal pan or ground plane reflector 23. The center conductor 31 of the coaxial line 28 is fed through the insulative sheet 15 to the conductor 57 of the feed lines at the upper surface of the insulative sheet at point 31 as shown in FIGS. 2 and 5. At point B conductor 57 is connected to conductor l7 and conductor 59 is connected to conductor 19. The individual dipole radiators 11 are made in the form of fans having a flare angle of in order to provide greater impedance bandwidth.
The dipoles are fed from a corporate network of balanced transmission line sections branching out from points 37 and 39 in FIG. 1. The conductors 17, 19 which make up the feed lines from points 37 and 39 to the dipoles on opposite sides of the insulative sheet are of equal width to provide balanced lines from points 37,39 to the dipoles 11. The width of the conductor 17 from point B to point 37, and from point B to point 39 on the surface of the insulative sheet 15 changes so that a 50 ohm balanced impedance at the points 37,39 is transformed to ohm unbalanced impedance at point B (see FIG. 2). The width of the line on the opposite surface of the panel 15 does not change from point B to points 37 or 39 (see FIG. 3). The two halves of the complete array, when joined together, as in the example, give a 50 ohm impedance. The impedance of the line at the point of the coaxial input connection across points 31 and 35,36 is also 50 ohms to match the coaxial line impedance.
The impedance in the line from point B to point 31 is matched by a section of microstrip line where, as shown in FIGS. 2 and 3, the conductor 57 shown in FIG. 2 is considerably narrower than that of 59 illustrated in FIG. 3 to make a microstrip transmission line. A vernier impedance matching device 58 is formed by a small chip of dielectric material with a conductor such as copper on the upper surface. By changing the length of the chip 58 and its position along the microstrip line, an impedance match between the coaxial line 28 across points 31 and 35, 36 and point 35,36 is provided with low VSWR at the given frequency. Once the optimum chip position is located, one may simply glue the chip to the surface of the conductor 57.
From points 37 or 39 on the feed lines to the dipoles 11, the feed lines on the opposite ends of the array are identical and follow from a basic building block as described further in connection with FIG. 6. Referring now to FIG. 6, each of four an tenna dipole elements 11 has a load impedance Z for example. Lines 83 and 414 each represent that section of line in the array directly connected to a dipole 11. Thus, it is to be understood that line 43 terminates at a dipole 11 including halfportions 12 and 14. Likewise, line 44 terminates at a second dipole 11 including half-portions l2 and I4. Again, it is to be remembered that each line 43,44 represents a conductor on one side of the sheet 15 and a matching conductor on the opposite side thereof. The configuration of lines 43 and 44 are each arranged to provide a characteristic impedance of 2,, for example. The lines 43 and 44 are identical with both being onehalf wavelength long. The impedance at the junction point 45 is 2, independent of the value of the characteristic impedance Z of lines 43 and 44. A line 47 having a configuration such as to provide a characteristic impedance of Z for example, is coupled perpendicular to the lines 43 and 44 at point 45 to form a T with the lines and extends a length onequarter wavelength long (M4) at approximately the mean operating frequency of the antenna system. The impedance at point 49 is equal to (Z F/(Z or 2(Z /Z A second line 51 one-quarter wavelength long at approximately the mean operating frequency of the antenna system connected to the free end of line 47 at point 49 will give an impedance at point 53 (.\/4 wavelength from point 49) of Z being the characteristic impedance of line 51) divided by the impedance at point 49 resulting in (Z ZJ) (22 Since the lower half 54 of the circuit is identical to that of the upper half 41, the impedance at the junction 53 is halved and is equal to (Z ZJ )/(4Z Now if the characteristic impedance 2 of the line 51 is equal to twice that of the characteristic impedance or Z of line 47, then the impedance of point 53 is equal to that of Z, or the load. Thus if there is no coupling between the antenna elements, the input impedance to the corporate network feed is equal to the individual antenna load impedance. The characteristic impedance Z or Z may have any chosen value. The only requirement is that Z be twice Z In practice, it is desirable to choose the values of Z, and Z to minimize the standing waves throughout the network.
Referring now to FIG. 1, the four element array of FIG. 6 may be any one of the four element arrays such as the four element array 61 in FIG. I. The antenna loads provided by dipoles 11 are, for example, 50 ohms. The feed line section 62 between the dipoles 11 and the common point 63 of the array, is for example, half a wavelength long with the characteristic impedance Z of the line being 50 ohms. The characteristic impedance Z of the line 66 between the junction at point 63 and point 64 is 50 ohms. The length of the line 66 between point 63 and point 64 is one-quarter of a wavelength. Following with the arrangement described in FIG. 6, the length of the line 67 between point 64 and common point 65 which is the junction point with the lower half of the circuit is likewise onequarter wavelength long. The width of the conductor 67 is narrower than that of line 66, so as to provide a characteristic impedance of 100 ohms. Considering the four element array 61 in FIG. 1 and FIG. 6 as one load, the dipole array 61 is joined with a similar corporate network to three other similar four element arrays, 71, 72 and 73 to give a 16 dipole array which 16 dipole array has a total input impedance of (in this example) 50 ohms. Impedance match is provided by the M4 stub at the junction and the 2 to 1 ratio in the 2 impedance of the two line section. In the present application, this process is repeated once more, where four 16 dipole arrays 75, 76, 77 and 78 are combined resulting in a 64 dipole array fed at point 37 of FIG. 2. Hence if the antenna impedance is 50 ohms, the impedance at point 37 is also 50 ohms and the greatest theoretical VSWR throughout the system is about two-to-one. Repeating the structure described at point 39 on the other end duced on the two conductor lines bfi the radiating dipoles and which are equal in magnitude and ow in the same direction.
By breaking this current flow in the same direction, the push push mode which would result in undesired transmission line radiation is prevented. The notch width is made relatively small compared to the line width, so that the characteristic impedance of the line operating in the push-pull mode would not be greatly changed.
What I claim is:
1. An antenna system comprising:
a broad sheet of dielectric material,
a plurality of planar dipole elements with a first half portion of each dipole element fixed to one of the broad surfaces of said sheet and with the second half portion of each dipole element fixed to the opposite broad surface of said sheet,
feed means including two narrow conductive strips fixed in opposed relation on said broad surfaces of said dielectric sheet and extending from a common feed point to said plurality of dipole elements with a length between the common feed point and one of said dipole elements being the same as that from the common feed point to any of the other dipole elements, said dipole elements being arranged on said sheet so that said feed means extends horizontally and vertically from said common feed point to said elements, said horizontally extending feed means at the junction with said vertically extending feed means having a notch located thereat in a manner so that currents will not be introduced into the feed means which are equal in magnitude and flow in the same direction.
2. An antenna system comprising:
a broad sheet of dielectric material,
a plurality of planar dipole elements with a first half portion of each dipole element fixed to one of the broad surfaces of said sheet and with the second half portion of each dipole element fixed to the opposite broad surface of said sheet,
feed means including two narrow conductive strips fixed in opposed relation on said broad surfaces of said dielectric sheet and extending from a common feed point to said plurality of dipole elements with the length between the common feed point and one of said dipole elements being the same as that from the common feed point to any of the other dipole elements, said feed means being unbalanced for a given length from said common feed point and balanced from the end of said given length remote from said common feed point to said dipole elements.
3. The combination as claimed in claim 2, wherein one of said conductive strips forming said given length of said feed means is of constant width and the second conductive strip forming said given length of said feed means is tapered in width to provide said unbalance, the common feed point being located at the narrowest end of said given length.

Claims (3)

1. An antenna system comprising: a broad sheet of dielectric material, a plurality of planar dipole elements with a first half portion of each dipole element fixed to one of the broad surfaces of said sheet and with the second half portion of each dipole element fixed to the opposite broad surface of said sheet, feed means including two narrow conductive strips fixed in opposed relation on said broad surfaces of said dielectric sheet and extending from a common feed point to said plurality of dipole elements with a length between the common feed point and one of said dipole elements being the same as that from the common feed point to any of the other dipole elements, said dipole elements being arranged on said sheet so that said feed means extends horizontally and vertically from said common feed point to said elements, said horizontally extending feed means at the junction with said vertically extending feed means having a notch located thereat in a manner so that currents will not be introduced into the feed means which are equal in magnitude and flow in the same direction.
2. An antenna system comprising: a broad sheet of dielectric material, a plurality of planar dipole elements with a first half portion of each dipole element fixed to one of the broad surfaces of said sheet and with the second half portion of each dipole element fixed to the opposite broad surface of said sheet, feed means including two narrow conductive strips fixed in opposed relation on said broad surfaces of said dielectric sheet and extending from a common feed point to said plurality of dipole elements with the length between the common feed point and one of said dipole elements being the same as that from the common feed point to any of the other dipole elements, said feed means being unbalanced for a given length from said common feed point and balanced from the end of said given length remote from said common feed point to said dipole elements.
3. The combination as claimed in claim 2, wherein one of said conductive strips forming said given length of said feed means is of constant width and the second conductive strip forming said given length of said feed means is tapered in width to provide said unbalance, the common feed point being located at the narrowest end of said given length.
US838226A 1969-07-01 1969-07-01 Corporate-network printed antenna system Expired - Lifetime US3587110A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83822669A 1969-07-01 1969-07-01

Publications (1)

Publication Number Publication Date
US3587110A true US3587110A (en) 1971-06-22

Family

ID=25276587

Family Applications (1)

Application Number Title Priority Date Filing Date
US838226A Expired - Lifetime US3587110A (en) 1969-07-01 1969-07-01 Corporate-network printed antenna system

Country Status (7)

Country Link
US (1) US3587110A (en)
JP (1) JPS5019027B1 (en)
DE (1) DE2014939C3 (en)
FR (1) FR2050408B1 (en)
GB (1) GB1293459A (en)
NO (1) NO129316B (en)
SE (1) SE357106B (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3681769A (en) * 1970-07-30 1972-08-01 Itt Dual polarized printed circuit dipole antenna array
US3691563A (en) * 1970-12-11 1972-09-12 Motorola Inc Dual band stripline antenna
US3750185A (en) * 1972-01-18 1973-07-31 Westinghouse Electric Corp Dipole antenna array
US3771070A (en) * 1972-12-22 1973-11-06 Us Air Force Stripline-to-two-conductor balun
US3771075A (en) * 1971-05-25 1973-11-06 Harris Intertype Corp Microstrip to microstrip transition
US3818386A (en) * 1967-04-03 1974-06-18 Texas Instruments Inc Solid-state modular microwave system
US3854140A (en) * 1973-07-25 1974-12-10 Itt Circularly polarized phased antenna array
US3887925A (en) * 1973-07-31 1975-06-03 Itt Linearly polarized phased antenna array
FR2409053A1 (en) * 1977-11-21 1979-06-15 Rca Corp APPLICATOR FOR HYPERTHERMAL THERMOTHERAPY
US4360741A (en) * 1980-10-06 1982-11-23 The Boeing Company Combined antenna-rectifier arrays for power distribution systems
EP0089084A1 (en) * 1982-03-12 1983-09-21 Laboratoires D'electronique Et De Physique Appliquee L.E.P. Flat microwave antenna structure
US4498085A (en) * 1982-09-30 1985-02-05 Rca Corporation Folded dipole radiating element
US4513292A (en) * 1982-09-30 1985-04-23 Rca Corporation Dipole radiating element
EP0255095A2 (en) * 1986-07-29 1988-02-03 Amtech Corporation Transponder antenna
US4758843A (en) * 1986-06-13 1988-07-19 General Electric Company Printed, low sidelobe, monopulse array antenna
US4816835A (en) * 1986-09-05 1989-03-28 Matsushita Electric Works, Ltd. Planar antenna with patch elements
EP0323011A2 (en) * 1987-12-18 1989-07-05 Amtech Technology Corporation Transponder antenna
US4977406A (en) * 1987-12-15 1990-12-11 Matsushita Electric Works, Ltd. Planar antenna
US4987424A (en) * 1986-11-07 1991-01-22 Yagi Antenna Co., Ltd. Film antenna apparatus
EP0409221A2 (en) * 1989-07-21 1991-01-23 SELENIA INDUSTRIE ELETTRONICHE ASSOCIATE S.p.A. Integrated structure with radiating elements and dividing networks for application to radar antenna
DE4021167A1 (en) * 1989-07-11 1991-01-24 Volkswagen Ag Doppler microwave device for speed-distance measurement - has interdigitated counter-terminating dual antenna to save space
GB2235587A (en) * 1989-07-11 1991-03-06 Volkswagen Ag Janus antenna arrangement
US5012256A (en) * 1986-06-02 1991-04-30 British Broadcasting Corporation Array antenna
US5229782A (en) * 1991-07-19 1993-07-20 Conifer Corporation Stacked dual dipole MMDS feed
US5418541A (en) * 1994-04-08 1995-05-23 Schroeder Development Planar, phased array antenna
WO1995034104A1 (en) * 1994-06-09 1995-12-14 Aktsionernoe Obschestvo Zakrytogo Tipa 'rusant' Planar antenna array and associated microstrip radiating element
US5534882A (en) * 1994-02-03 1996-07-09 Hazeltine Corporation GPS antenna systems
US5563613A (en) * 1994-04-08 1996-10-08 Schroeder Development Planar, phased array antenna
WO1997008774A2 (en) * 1995-08-23 1997-03-06 Philips Electronics N.V. Printed antenna
EP0889542A1 (en) * 1997-06-30 1999-01-07 Sony International (Europe) GmbH Wide band printed phase array antenna for microwave and mm-wave applications
EP0889543A1 (en) * 1997-06-30 1999-01-07 Sony International (Europe) GmbH Wide band printed dipole antenna for microwave and mm-wave applications
EP0973229A1 (en) * 1998-06-18 2000-01-19 Sony International (Europe) GmbH Third resonance antenna
US6037911A (en) * 1997-06-30 2000-03-14 Sony International (Europe) Gmbh Wide bank printed phase array antenna for microwave and mm-wave applications
US6356245B2 (en) * 1999-04-01 2002-03-12 Space Systems/Loral, Inc. Microwave strip transmission lines, beamforming networks and antennas and methods for preparing the same
US6480166B2 (en) * 2000-07-14 2002-11-12 Hon Hai Precision Ind. Co., Ltd. Planar printed circuit antenna
US20030218571A1 (en) * 2002-05-27 2003-11-27 Won-Sang Yoon Planar antenna having linear and circular polarization
DE112008001541T5 (en) 2007-06-13 2010-04-29 World Properties, Inc., Lincolnwood Antenna with thermally transmitted element
US20120152454A1 (en) * 2010-12-10 2012-06-21 Mass Steven J Low mass foam electrical structure
CN104393406A (en) * 2014-11-20 2015-03-04 上海无线电设备研究所 Single-pulse array antenna
CN108475844A (en) * 2017-04-21 2018-08-31 深圳市大疆创新科技有限公司 The ground control system and UAV system of antenna, unmanned plane
US10120065B2 (en) * 2015-07-17 2018-11-06 Wistron Corp. Antenna array

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233607A (en) * 1977-10-28 1980-11-11 Ball Corporation Apparatus and method for improving r.f. isolation between adjacent antennas
DE2921856C2 (en) * 1979-05-30 1985-09-12 Siemens AG, 1000 Berlin und 8000 München Directional antenna consisting of two strip conductors forming a double radiating line and a group antenna using several such directional antennas
FR2487588A1 (en) * 1980-07-23 1982-01-29 France Etat DOUBLE REPLIES IN PLATES FOR VERY HIGH FREQUENCY AND NETWORKS OF SUCH DOUBLETS
DE3427629A1 (en) * 1984-07-26 1986-01-30 Siemens AG, 1000 Berlin und 8000 München Ring antenna using printed-circuit technology
JPH0720008B2 (en) * 1986-02-25 1995-03-06 松下電工株式会社 Planar antenna
FR2662026B1 (en) * 1990-05-11 1992-07-10 Thomson Csf PLANE ORIENTABLE ANTENNA, OPERATING IN MICROWAVE.
GB0211109D0 (en) * 2002-05-15 2002-06-26 Antenova Ltd Dielectric resonator antenna array feed mechanism
RU2727348C1 (en) * 2019-04-26 2020-07-21 Акционерное общество "Всероссийский научно-исследовательский институт радиотехники" Stripline slot linear antenna array

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2762045A (en) * 1952-10-08 1956-09-04 Internat Telephone And Telepho Antenna feed system
BE542180A (en) * 1953-01-21
US2877427A (en) * 1955-10-11 1959-03-10 Sanders Associates Inc Parallel transmission line circuit
US2962716A (en) * 1957-06-21 1960-11-29 Itt Antenna array
FR1336481A (en) * 1962-09-06 1963-08-30 Rohde & Schwarz Ohg Antenna field

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818386A (en) * 1967-04-03 1974-06-18 Texas Instruments Inc Solid-state modular microwave system
US3681769A (en) * 1970-07-30 1972-08-01 Itt Dual polarized printed circuit dipole antenna array
US3691563A (en) * 1970-12-11 1972-09-12 Motorola Inc Dual band stripline antenna
US3771075A (en) * 1971-05-25 1973-11-06 Harris Intertype Corp Microstrip to microstrip transition
US3750185A (en) * 1972-01-18 1973-07-31 Westinghouse Electric Corp Dipole antenna array
US3771070A (en) * 1972-12-22 1973-11-06 Us Air Force Stripline-to-two-conductor balun
US3854140A (en) * 1973-07-25 1974-12-10 Itt Circularly polarized phased antenna array
US3887925A (en) * 1973-07-31 1975-06-03 Itt Linearly polarized phased antenna array
FR2409053A1 (en) * 1977-11-21 1979-06-15 Rca Corp APPLICATOR FOR HYPERTHERMAL THERMOTHERAPY
US4197860A (en) * 1977-11-21 1980-04-15 Rca Corporation Hyperthermia applicator
US4360741A (en) * 1980-10-06 1982-11-23 The Boeing Company Combined antenna-rectifier arrays for power distribution systems
EP0089084A1 (en) * 1982-03-12 1983-09-21 Laboratoires D'electronique Et De Physique Appliquee L.E.P. Flat microwave antenna structure
US4527165A (en) * 1982-03-12 1985-07-02 U.S. Philips Corporation Miniature horn antenna array for circular polarization
US4498085A (en) * 1982-09-30 1985-02-05 Rca Corporation Folded dipole radiating element
US4513292A (en) * 1982-09-30 1985-04-23 Rca Corporation Dipole radiating element
US5012256A (en) * 1986-06-02 1991-04-30 British Broadcasting Corporation Array antenna
US4758843A (en) * 1986-06-13 1988-07-19 General Electric Company Printed, low sidelobe, monopulse array antenna
EP0255095A2 (en) * 1986-07-29 1988-02-03 Amtech Corporation Transponder antenna
EP0255095A3 (en) * 1986-07-29 1989-11-29 Amtech Corporation Transponder antenna
US4816835A (en) * 1986-09-05 1989-03-28 Matsushita Electric Works, Ltd. Planar antenna with patch elements
US4987424A (en) * 1986-11-07 1991-01-22 Yagi Antenna Co., Ltd. Film antenna apparatus
US4977406A (en) * 1987-12-15 1990-12-11 Matsushita Electric Works, Ltd. Planar antenna
EP0323011A2 (en) * 1987-12-18 1989-07-05 Amtech Technology Corporation Transponder antenna
EP0323011A3 (en) * 1987-12-18 1989-11-15 Amtech Technology Corporation Transponder antenna
GB2235587A (en) * 1989-07-11 1991-03-06 Volkswagen Ag Janus antenna arrangement
DE4021167A1 (en) * 1989-07-11 1991-01-24 Volkswagen Ag Doppler microwave device for speed-distance measurement - has interdigitated counter-terminating dual antenna to save space
EP0409221A2 (en) * 1989-07-21 1991-01-23 SELENIA INDUSTRIE ELETTRONICHE ASSOCIATE S.p.A. Integrated structure with radiating elements and dividing networks for application to radar antenna
EP0409221A3 (en) * 1989-07-21 1991-10-30 Selenia Industrie Elettroniche Associate S.P.A. Integrated structure with radiating elements and dividing networks for application to radar antenna
US5229782A (en) * 1991-07-19 1993-07-20 Conifer Corporation Stacked dual dipole MMDS feed
US5293175A (en) * 1991-07-19 1994-03-08 Conifer Corporation Stacked dual dipole MMDS feed
US5534882A (en) * 1994-02-03 1996-07-09 Hazeltine Corporation GPS antenna systems
US5418541A (en) * 1994-04-08 1995-05-23 Schroeder Development Planar, phased array antenna
US5563613A (en) * 1994-04-08 1996-10-08 Schroeder Development Planar, phased array antenna
WO1995034104A1 (en) * 1994-06-09 1995-12-14 Aktsionernoe Obschestvo Zakrytogo Tipa 'rusant' Planar antenna array and associated microstrip radiating element
WO1997008774A2 (en) * 1995-08-23 1997-03-06 Philips Electronics N.V. Printed antenna
WO1997008774A3 (en) * 1995-08-23 1997-03-27 Philips Electronics Nv Printed antenna
EP0889543A1 (en) * 1997-06-30 1999-01-07 Sony International (Europe) GmbH Wide band printed dipole antenna for microwave and mm-wave applications
EP0889542A1 (en) * 1997-06-30 1999-01-07 Sony International (Europe) GmbH Wide band printed phase array antenna for microwave and mm-wave applications
US6037911A (en) * 1997-06-30 2000-03-14 Sony International (Europe) Gmbh Wide bank printed phase array antenna for microwave and mm-wave applications
EP0973229A1 (en) * 1998-06-18 2000-01-19 Sony International (Europe) GmbH Third resonance antenna
US6356245B2 (en) * 1999-04-01 2002-03-12 Space Systems/Loral, Inc. Microwave strip transmission lines, beamforming networks and antennas and methods for preparing the same
US6480166B2 (en) * 2000-07-14 2002-11-12 Hon Hai Precision Ind. Co., Ltd. Planar printed circuit antenna
US6844851B2 (en) * 2002-05-27 2005-01-18 Samsung Thales Co., Ltd. Planar antenna having linear and circular polarization
US20030218571A1 (en) * 2002-05-27 2003-11-27 Won-Sang Yoon Planar antenna having linear and circular polarization
DE112008001541T5 (en) 2007-06-13 2010-04-29 World Properties, Inc., Lincolnwood Antenna with thermally transmitted element
US20120152454A1 (en) * 2010-12-10 2012-06-21 Mass Steven J Low mass foam electrical structure
US9293800B2 (en) * 2010-12-10 2016-03-22 Northrop Grumman Systems Corporation RF transmission line disposed within a conductively plated cavity located in a low mass foam housing
CN104393406A (en) * 2014-11-20 2015-03-04 上海无线电设备研究所 Single-pulse array antenna
CN104393406B (en) * 2014-11-20 2017-07-14 上海无线电设备研究所 A kind of Monopulse Antenna
US10120065B2 (en) * 2015-07-17 2018-11-06 Wistron Corp. Antenna array
CN108475844A (en) * 2017-04-21 2018-08-31 深圳市大疆创新科技有限公司 The ground control system and UAV system of antenna, unmanned plane
CN108475844B (en) * 2017-04-21 2020-10-30 深圳市大疆创新科技有限公司 Antenna, unmanned aerial vehicle's ground control system and unmanned aerial vehicle system

Also Published As

Publication number Publication date
GB1293459A (en) 1972-10-18
DE2014939A1 (en) 1971-01-14
DE2014939C3 (en) 1981-09-03
FR2050408B1 (en) 1974-03-15
NO129316B (en) 1974-03-25
FR2050408A1 (en) 1971-04-02
DE2014939B2 (en) 1980-11-27
JPS5019027B1 (en) 1975-07-03
SE357106B (en) 1973-06-12

Similar Documents

Publication Publication Date Title
US3587110A (en) Corporate-network printed antenna system
US3887925A (en) Linearly polarized phased antenna array
US3681769A (en) Dual polarized printed circuit dipole antenna array
US3854140A (en) Circularly polarized phased antenna array
US4922263A (en) Plate antenna with double crossed polarizations
US3803623A (en) Microstrip antenna
US3995277A (en) Microstrip antenna
US4125837A (en) Dual notch fed electric microstrip dipole antennas
US4054874A (en) Microstrip-dipole antenna elements and arrays thereof
US4758843A (en) Printed, low sidelobe, monopulse array antenna
US5307075A (en) Directional microstrip antenna with stacked planar elements
US4843403A (en) Broadband notch antenna
US4477813A (en) Microstrip antenna system having nonconductively coupled feedline
US4162499A (en) Flush-mounted piggyback microstrip antenna
US5216430A (en) Low impedance printed circuit radiating element
US4434425A (en) Multiple ring dipole array
US4479127A (en) Bi-loop antenna system
US3987455A (en) Microstrip antenna
US3575674A (en) Microstrip iris directional coupler
KR20070007825A (en) Microstrip antenna
US5410281A (en) Microwave high power combiner/divider
US3044066A (en) Three conductor planar antenna
US4035807A (en) Integrated microwave phase shifter and radiator module
US3916349A (en) Phase shifter for linearly polarized antenna array
US3286268A (en) Log periodic antenna with parasitic elements interspersed in log periodic manner