US3590809A - Method for central venous pressure monitoring - Google Patents

Method for central venous pressure monitoring Download PDF

Info

Publication number
US3590809A
US3590809A US710485A US3590809DA US3590809A US 3590809 A US3590809 A US 3590809A US 710485 A US710485 A US 710485A US 3590809D A US3590809D A US 3590809DA US 3590809 A US3590809 A US 3590809A
Authority
US
United States
Prior art keywords
column
liquid
venous pressure
light
central venous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US710485A
Inventor
Seymour B London
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3590809A publication Critical patent/US3590809A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • A61B5/02152Measuring pressure in heart or blood vessels by means inserted into the body specially adapted for venous pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16831Monitoring, detecting, signalling or eliminating infusion flow anomalies
    • A61M5/16854Monitoring, detecting, signalling or eliminating infusion flow anomalies by monitoring line pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/13Infusion monitoring

Definitions

  • Figs ABSTRACT Method of central venous pressure monitoring [52I [1.8. CI 128/205 D, including inserting a catheter in the right atrial cardiac l28/2l4. l28/DIG. l3 chamber, supporting a vertical column of liquid above said [5
  • the veins also function as a reservoir and respond to the homeostatic needs of the body by distension or tension.
  • the pressure at any one point in the venous system reflects two factors: (I) the amount of blood contained which acts to mechanically distend the walls of the veins, and (2) the state of tension of the walls due to reflex tone. Regulatory mechanisms adjust heart rate, stroke volume, arterial tone, capillary bed size, and venous tone to maintain effective circulation of the blood.
  • CVP central venous pressure
  • a higher than normal CVP suggests that the central veins are relatively overdistended and that the heart cannot effectively keep them empty.”
  • a low CVP indicates simply that the heart is effectively maintaining a forward flow and that the veins are relatively undistended.
  • the CVP may range from 20 to I mm. of water in normal individuals. This wide variation is only partly due to differences in a common zero reference point and may also be due to subtle regulatory mechanisms.
  • a plastic catheter or tube is introduced through a brachial, subclavian, or jugular vein into the vena cava or right atrium.
  • the vertical pressure in millimeters of water within the right atrium can reasonably and consistently be measured.
  • the latter can be connected to a vertical tubing and intermit tently flushed with saline, which is then allowed to empty into the right atrium.
  • the vertical distance from the external zero reference point to the top of the stabilized saline column represents the central venous pressure in millimeters of water. These measurements are usually made periodically by a nurse or technician manually manipulating a stop cock, saline reservoir and clamp system. The attendant must first fill the vertical column with saline, then wait to allow the slowly emptying column to stabilize and finally record the level of the miniscus. After this reading the saline reservoir to the manometer catheter is opened and saline is flushed through to prevent clotting at the tip of the catheter. An electronic version of this method substitutes a strain gauge or other pressure transducer for the vertical saline gravometric column. The gauge pressure can be recorded by an oscilloscope and the data can be taped for future reference. While these methods are reasonably ac curate, both require a similar continuous manipulation of the CVPrescrvoir system as well as direct observation of the pressures.
  • None of the prior art devices have been capable of transmitting light through a vertically positioned plastic manometer tube and discriminately sensing that light which has been transmitted through the liquid and monitoring central venous pressure as a function of the liquid level in said column. None of the prior art devices have been capable of varying the sensing of light relatively to the type of liquid being supported in the vertical manometer tube and none of the prior art devices have embodied high and low level alarms or visual display capabilities of applicant's method.
  • Applicant has provided a method and device for digital readout to automatically measure and monitor directly the level of the central venous pressure.
  • the height of a column of physiologic saline solution vertical to the right atrial chamber of the heart and in direct continuity by catheter or other tubing with the lumen of the right atrium or superior vena cava is measured electronically.
  • the level of this fluid column is sensed by a vertical series of photocells, each coupled with a regulated light source on the other side of a clear plastic intravenous tube.
  • An electronically triggered and electrically connected corresponding column of indicator lamps appears as an illuminated numerical "readout of the CVP.
  • Alarms and/or a programming device are automatically initiated by the use of a selector switch that places the alarmprogramming circuits in parallel with the specific indicator lamp preselected as appropriate for alarm notification.
  • FIG. I is a perspective view of a proposed central venous pressure monitor, embodying a cardiac catheter positioned in the right atrium and a vertical manometer tube positioned within the monitor housing;
  • FIG. 2 is a fragmentary circuit diagram of the vertical manometer tube positioned in the vertical chamber defined by opposed series of exciter lamps and photocells and additionally showing the photocell lamps gated to individual SCR indicator lamps which appear on the exterior of the housing as a visual display of central venous pressure (CVP), housing; and
  • CVP central venous pressure
  • FIG. 3 is a circuit diagram, showing the high alarm, low alarm, and audio alarm switching mechanisms, as well as the leads to the high programmer solenoids and the low programmer solenoids.
  • FIG. 1 is an illustration of the function of the CVP monitor (without the valve for automatic programming).
  • the tubing connection 104 from the saline flaslt I26 (the reservoir for the slow flush and the saline filled vertical manometer column 132) and the manometer tubing I04 are joined by a Y-tube connection, 136. Termination of this connection 136, leads to the cardiac catheter tip 124. The latter enters the right atrial cardiac chamber via a large vein, the superior vena cava.
  • the zero level (shown in phantom) of the central venous pressure monitor is adjusted by moving the housing 108 vertically on an adjustable stand 138, so that the zero of the monitor scale is fixed at the right atrial level.
  • the external reference for the right atrium is considered to be about 5 centimeters below the sternum, at the second interspace of the rib cage.
  • the flow from the flask I26 containing the saline is regulated to run continuously at a rate of about l cc. per hour. This serves to maintain saline in the vertical manometer column 132 and to prevent blood from entering the catheter which might clot and plug the lumen of the cardiac catheter.
  • FIG. 2 there is illustrated a vertical column I00 of photocells 0', 2. 4', 6', 26, 28', 30' and 32', each 2 cm. apart and a matching vertical column of corresponding incandescent exciter lamps 102 are arranged directly opposite to each other, separated only by a vertical plastic intravenous tubing I32, supported in vertical chamber I06 of housing I08.
  • each exciter lamp is directly opposite its corresponding photocell, each pair of lamp and photocell forms a separate sending circuit, sensitive only to change in light transmission, since ambient light is excluded from the chamber. Increased transmission of light drops the internal resistance of the photocell and allows more current to flow.
  • Light transmission through plastic manometer tubing 132 will be varied by the content of the tubing, either increased as by a clear fluid such as saline, or decreased by any denser fluid which obstructs light transmission.
  • a clear fluid such as saline
  • any denser fluid which obstructs light transmission Normal saline is well tolerated, available, simple and since a satisfactory end point can be obtained between a filled and nonfilled column, is the fluid of choice for the suggested manometer.
  • the increased current flow through the photocells such as 32' when the column is filled, is used to close a sensitive electronic switch 116, illuminating indicator lamps such as 32" corresponding to the height of each photocell as illustrated in FIG. 3.
  • Each photocell (PC), e.g., 32' is connected by one terminal 110 to a positive voltage source H2, (l6) and by the other terminal I14 to of an indicator silic0n-contr0llcd rectifier ("SCR"), as at and a solid-state switch 116.
  • SCR silic0n-contr0llcd rectifier
  • the increased current through the photocell 32' that occurs in the presence of increased light transmission is used to trigger these switches.
  • Precise regulation in the amount of current flow in the standby" condition is further controlled by a small reverse bias of negative current applied through line I18 to the SCR and by a potentiometer 120, reducing the current optimally to the SCR.
  • the indicator lamp circuits also provide signal sources for alarm or therapy programming as illustrated in FIG. 3.
  • An alarm state can be detected for venous pressures higher or lower than desirable. Sensing of the alarm state for high venous pressures is provided by a simple circuit.
  • An NPN transistor 03 (controlling a sensitive relay, K1), is put in parallel with one of the numbered indicator lamps by high alarm selector switch 128. When the SCR indicator lamps circuit conducts and the lamp 32", for example, is illuminated, the alarm transistor 0,, whose base is biased positive by the indicator SCR "6 circuits output, conducts, closing the contacts of the three-pole relay Kl.
  • a low alarm sensing circuit is created (i.e., the absence of a positive bias).
  • the CV? should drop below a point preselected by low alarm selector switch U0, and the selected indicator lamp eg 2" is not illuminated or becomes extinguished, then the absence of positive bias causes the transistor 0 to conduct.
  • the three-pole relay K contacts are closed when 0, conducts and the low alarmprogramming circuits are activated. Therefore, the alarm condition, high or low, is made dependent on whether or not the selected indicator lamp is illuminated.
  • the venous pressure may fluctuate, the indicator lamps will correspondingly be illuminated or extinguished, and thus the alarm system similarly will be activated or turned off during periods of monitoring.
  • the venous pressure monitor can be so programmed that if an alarm condition exists, a preselected medication of fluid administration change is automatically instituted.
  • the control of flow from the saline, slow flow manometer reservoir flask 126, to an alternate emergency fluid administration, is by means of an external electronically controlled valve (not illustrated). The latter by external compression of the plastic tubing can open or close flow through the plastic tubing I32.
  • Programming as herein illustrated is designed to be manually interrupted or can be automatically interrupted. This latter is accomplished by a timing device (not illustrated) that opens the circuit to high programmer or low programmer solenoid for about I minute at intervals of 2- l minutes. This permits the monitor to revert to the standby condition and scan the CV? and to prevent overcorrection.
  • Method of central venous pressure monitoring comprising: A. Introducing the lower end of a liquid column into the venous area of the patient so that the level of liquid in said column indicates venous pressure;

Abstract

Method of central venous pressure monitoring including inserting a catheter in the right atrial cardiac chamber, supporting a vertical column of liquid above said chamber, transmitting light through the column and the liquid, discriminately sensing that light which has been transmitted through the liquid and monitoring central venous pressure as a function of liquid level in the column.

Description

I Umted States Patent 1 1 3,590,809
[72} Inventor Seymour 8. London [56] References Cited 35 East Dilido Drive, Mlllltti Bench. Flt]. UNITED STATES PATENTS 33l39 2.l49,690 3ll939 Snyder l28/21O5 gffi g g 5,105,490 l0/l963 Schoenfeld... 1. l28/2l4 d J 3,242,920 3/1966 Andersen 12812.05 Y 3.455.019 4/1969 Reynolds... l28/2.05 3.456.,648 7/1969 Lee et al. 128/205 Primary Examiner-William E Kamm 541 METHOD FOR CENTRAL venous PRESSURE MONITORING 2 Drum! Figs ABSTRACT: Method of central venous pressure monitoring [52I [1.8. CI 128/205 D, including inserting a catheter in the right atrial cardiac l28/2l4. l28/DIG. l3 chamber, supporting a vertical column of liquid above said [5| 1 Int. Cl 6. A6lb 5/02 chamber, transmitting light through the column and the liquid, [50] Field at Search 128/205 D, discriminately sensing that light which has been transmitted 2.05 F, 2.05 V, 2.05 R, 2.05. DIG. l3. 2 l4, 2.05 through the liquid and monitoring central venous pressure as a MS function of liquid level in the column.
PATENTEU L IQYI 3.590.809
sum 1 or 3 INVEN'T OR BY ,S'emmesmsemmes ATTORNEYS PATENTEUJUL mam 3590309 INVENT( )R M 553770? a how/30m BY semmesandsemmes ATTORNEYS METHOD FOR CENTRAL VENOUS PRESSURE MONITORING BACKGROUN D OF TH E INV ENTION I. Field of the Invention The veins form a large volume, low-pressure collecting system, containing about 65 percent the circulating blood volume. The pumping action of the heart provides the pressure and by emptying the large veins, creates a dropping pres' sure gradient, propelling blood centrally. The veins also function as a reservoir and respond to the homeostatic needs of the body by distension or tension. The pressure at any one point in the venous system reflects two factors: (I) the amount of blood contained which acts to mechanically distend the walls of the veins, and (2) the state of tension of the walls due to reflex tone. Regulatory mechanisms adjust heart rate, stroke volume, arterial tone, capillary bed size, and venous tone to maintain effective circulation of the blood.
The central venous pressure (CVP) measured at vena caval and at right atrial levels, is an index of the effectiveness of the heart in handling the venous blood flow presented at the right atrium. A higher than normal CVP suggests that the central veins are relatively overdistended and that the heart cannot effectively keep them empty." A low CVP indicates simply that the heart is effectively maintaining a forward flow and that the veins are relatively undistended. The CVP may range from 20 to I mm. of water in normal individuals. This wide variation is only partly due to differences in a common zero reference point and may also be due to subtle regulatory mechanisms. Clinically, however, despite this wide range of normal values, in a given individual, information as to a change in the monitored CVP is recognized as being of real value in acute problems involving massive fluid loss and replacement. Hypovolemic shock and heart ofpump" failure may be present with clinically confusing similarities, but this important distinction is simply made by CVP measurement. In other conditions such as obliguria secondary to renal shutdown and coronary occlusion with circulatory collapse, the CVP can be a diagnostic aid as well as of therapeutic importance.
While the indications for CVP monitoring are increasing, the presently available techniques, simple in principle, are time consuming and laboriously accomplished. A plastic catheter or tube is introduced through a brachial, subclavian, or jugular vein into the vena cava or right atrium. By referring the level of the miniscus within the tube to an external zero reference at right atrial level, the vertical pressure in millimeters of water within the right atrium can reasonably and consistently be measured. To prevent clotting within the catheter, the latter can be connected to a vertical tubing and intermit tently flushed with saline, which is then allowed to empty into the right atrium. The vertical distance from the external zero reference point to the top of the stabilized saline column represents the central venous pressure in millimeters of water. These measurements are usually made periodically by a nurse or technician manually manipulating a stop cock, saline reservoir and clamp system. The attendant must first fill the vertical column with saline, then wait to allow the slowly emptying column to stabilize and finally record the level of the miniscus. After this reading the saline reservoir to the manometer catheter is opened and saline is flushed through to prevent clotting at the tip of the catheter. An electronic version of this method substitutes a strain gauge or other pressure transducer for the vertical saline gravometric column. The gauge pressure can be recorded by an oscilloscope and the data can be taped for future reference. While these methods are reasonably ac curate, both require a similar continuous manipulation of the CVPrescrvoir system as well as direct observation of the pressures.
2. Description ofthe Prior Art THe prior art devices have been directed principally to the provision of blood flow meters of the type employed in heartlung pumping systems. Robicsek (U.S. Pat. No. 3,017,885) is a typical blood flow meter.
Other prior art devices have provided catheter probe devices for blood sample withdrawal (Still, U.S. Pat. No. 3,043,303). Also, one prior art device (Baehr, U.S. Pat. No. 3,287,72l has addressed itself to the gravity feeding of prescribed amounts of fluid by means of a catheter tube pinching clamp and an electronic signal circuit. Most of these devices have been extraordinarily complex, as well as expensive to manufacture and difficult to operate.
London, U.S. Pat. Nos. 3,202, 148 and 3,319,623 concern method and apparatus for measuring blood pressure by means of a sound detecting pressurized cuff, while energizing a mercury column and related blood pressure visual display panel, as Korotkow sounds are detected. In London, U.S. Pat. No. 3,3 l9,623 an aneroid manometer is used instead ofa mercury column.
None of the prior art devices have been capable of transmitting light through a vertically positioned plastic manometer tube and discriminately sensing that light which has been transmitted through the liquid and monitoring central venous pressure as a function of the liquid level in said column. None of the prior art devices have been capable of varying the sensing of light relatively to the type of liquid being supported in the vertical manometer tube and none of the prior art devices have embodied high and low level alarms or visual display capabilities of applicant's method.
SUMMARY OF THE INVENTION Applicants studies of the problem of monitoring central venous pressure have evolved a method for simplifying the obtaining of this information so that a continuous visual readout of the central venous pressure presented by means of a photocell circuit and light source positioned astride the conventional intravenous tubing, as illustrated in FIG. I. When the preselected levels have been exceeded or desirable levels are not attained, i.e., either the pressure is too high or too low, both audial and visual alarm signals are given. The recognition of an undesirable physiologic state of the CVP can be utilized optionally in automatic programming of treatment during the alarm state. By a simple external clamps arrangement coor dinated electronically with the alarm recognition system, fluids and medications can be started, stopped, or rate of flow changed automatically. When correction of the preselected alarm state has been achieved, the programming system reverts back to the monitoring state.
Applicant has provided a method and device for digital readout to automatically measure and monitor directly the level of the central venous pressure. The height of a column of physiologic saline solution vertical to the right atrial chamber of the heart and in direct continuity by catheter or other tubing with the lumen of the right atrium or superior vena cava is measured electronically. The level of this fluid column is sensed by a vertical series of photocells, each coupled with a regulated light source on the other side of a clear plastic intravenous tube. An electronically triggered and electrically connected corresponding column of indicator lamps appears as an illuminated numerical "readout of the CVP.
Alarms and/or a programming device are automatically initiated by the use of a selector switch that places the alarmprogramming circuits in parallel with the specific indicator lamp preselected as appropriate for alarm notification.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a perspective view of a proposed central venous pressure monitor, embodying a cardiac catheter positioned in the right atrium and a vertical manometer tube positioned within the monitor housing;
FIG. 2 is a fragmentary circuit diagram of the vertical manometer tube positioned in the vertical chamber defined by opposed series of exciter lamps and photocells and additionally showing the photocell lamps gated to individual SCR indicator lamps which appear on the exterior of the housing as a visual display of central venous pressure (CVP), housing; and
FIG. 3 is a circuit diagram, showing the high alarm, low alarm, and audio alarm switching mechanisms, as well as the leads to the high programmer solenoids and the low programmer solenoids.
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an illustration of the function of the CVP monitor (without the valve for automatic programming). The tubing connection 104 from the saline flaslt I26 (the reservoir for the slow flush and the saline filled vertical manometer column 132) and the manometer tubing I04 are joined by a Y-tube connection, 136. Termination of this connection 136, leads to the cardiac catheter tip 124. The latter enters the right atrial cardiac chamber via a large vein, the superior vena cava. The zero level (shown in phantom) of the central venous pressure monitor is adjusted by moving the housing 108 vertically on an adjustable stand 138, so that the zero of the monitor scale is fixed at the right atrial level. (The external reference for the right atrium is considered to be about 5 centimeters below the sternum, at the second interspace of the rib cage.) The flow from the flask I26 containing the saline is regulated to run continuously at a rate of about l cc. per hour. This serves to maintain saline in the vertical manometer column 132 and to prevent blood from entering the catheter which might clot and plug the lumen of the cardiac catheter.
In FIG. 2 there is illustrated a vertical column I00 of photocells 0', 2. 4', 6', 26, 28', 30' and 32', each 2 cm. apart and a matching vertical column of corresponding incandescent exciter lamps 102 are arranged directly opposite to each other, separated only by a vertical plastic intravenous tubing I32, supported in vertical chamber I06 of housing I08. As each exciter lamp is directly opposite its corresponding photocell, each pair of lamp and photocell forms a separate sending circuit, sensitive only to change in light transmission, since ambient light is excluded from the chamber. Increased transmission of light drops the internal resistance of the photocell and allows more current to flow. Light transmission through plastic manometer tubing 132 will be varied by the content of the tubing, either increased as by a clear fluid such as saline, or decreased by any denser fluid which obstructs light transmission. Normal saline is well tolerated, available, simple and since a satisfactory end point can be obtained between a filled and nonfilled column, is the fluid of choice for the suggested manometer. The increased current flow through the photocells such as 32' when the column is filled, is used to close a sensitive electronic switch 116, illuminating indicator lamps such as 32" corresponding to the height of each photocell as illustrated in FIG. 3.
Each photocell (PC), e.g., 32' is connected by one terminal 110 to a positive voltage source H2, (l6) and by the other terminal I14 to of an indicator silic0n-contr0llcd rectifier ("SCR"), as at and a solid-state switch 116. The increased current through the photocell 32' that occurs in the presence of increased light transmission is used to trigger these switches. Precise regulation in the amount of current flow in the standby" condition is further controlled by a small reverse bias of negative current applied through line I18 to the SCR and by a potentiometer 120, reducing the current optimally to the SCR. This ensures that each indicator lamp circuit is triggered only if the transilluminated plastic column I32 is filled by saline to the vertical height of the paired photocelbexciter lamp circuit. As the central venous pressure fluctuates, the saline column will rise and fall and, ac cordingly, the indicator lamps will be illuminated or extin guished because of this changing bias produced by the in crease or decrease in light transmission through the saline filled column.
Standard commercially available intravenous tubing I04 and venous pressure sets are used to connect to the venous catheter I22 and for the manometer transillumination chamber 106. To prevent plugging of the catheter tip I24 during continuous central venous pressure pressure monitoring, saline solution in flask 126 is slowly flushed through the catheter tip 124. A microdrip regulator (not illustrated) controls the flow from saline reservoir I26 to the manometer tubing to the vein. A flow of IO cc. per hour is adequate to prevent clotting at the tip and slow enough not to raise or al' feet the level of the saline column in the venous pressure monitor.
ALARMS The indicator lamp circuits also provide signal sources for alarm or therapy programming as illustrated in FIG. 3. An alarm state can be detected for venous pressures higher or lower than desirable. Sensing of the alarm state for high venous pressures is provided by a simple circuit. An NPN transistor 03 (controlling a sensitive relay, K1), is put in parallel with one of the numbered indicator lamps by high alarm selector switch 128. When the SCR indicator lamps circuit conducts and the lamp 32", for example, is illuminated, the alarm transistor 0,, whose base is biased positive by the indicator SCR "6 circuits output, conducts, closing the contacts of the three-pole relay Kl. On the other hand, by substituting a PNP transistor, 0 a low alarm sensing circuit is created (i.e., the absence of a positive bias). Now if the CV? should drop below a point preselected by low alarm selector switch U0, and the selected indicator lamp eg 2" is not illuminated or becomes extinguished, then the absence of positive bias causes the transistor 0 to conduct. The three-pole relay K, contacts are closed when 0, conducts and the low alarmprogramming circuits are activated. Therefore, the alarm condition, high or low, is made dependent on whether or not the selected indicator lamp is illuminated. The venous pressure may fluctuate, the indicator lamps will correspondingly be illuminated or extinguished, and thus the alarm system similarly will be activated or turned off during periods of monitoring.
Memory circuits (not illustrated) can record the height or level of pressure fluctuations for a given period by the use of parallel direct current circuits with SCR switches. A write out or tape recording for data review is also feasible.
PROGRAMMING In critical clinical situations, shock or congestive failure may be incipient and the time between discovery of this change and the institution of therapy may be reflected in the outcome of the case. The venous pressure monitor can be so programmed that if an alarm condition exists, a preselected medication of fluid administration change is automatically instituted. The control of flow from the saline, slow flow manometer reservoir flask 126, to an alternate emergency fluid administration, is by means of an external electronically controlled valve (not illustrated). The latter by external compression of the plastic tubing can open or close flow through the plastic tubing I32. A rocker arm arrangement (not illus trated ).electronically controlled, when placed in parallel with the alarm circuit, at a preselected level by means of switches 128 and 130, pinches shut one or more tubes, simultaneously opening other tubes. The level of operation for automatic programming is preselected through switches 128 and 130 by the physician for medication and/or fluid replacement on an emergency basis, depending on the venous pressure level. The programming circuits are simple. If an alarm condition exists, the circuit I44, 146 to a high programmer or a low programmer solenoid is closed, pulling in the rocker arm clamp; the slow flow from the flask I26 and the manometer column 134 is stopped; and the alternate therapy solution is opened to continuity with the right atrial chamber. Programming as herein illustrated, is designed to be manually interrupted or can be automatically interrupted. This latter is accomplished by a timing device (not illustrated) that opens the circuit to high programmer or low programmer solenoid for about I minute at intervals of 2- l minutes. This permits the monitor to revert to the standby condition and scan the CV? and to prevent overcorrection.
Manifestly, various changes in circuitry may be empioyed without departing from the scope of invention.
lclaim:
1. Method of central venous pressure monitoring compris- A. Introducing the lower end of a liquid column into the venous area of the patient so that the level of liquid in said column indicates venous pressure;
B. Supporting said liquid in vertical column by means of central venous pressure;
C. Transmitting light through said column and said liquid by a plurality of independent light sources vertically superposed adjacent one side of said column;
D. Discriminately sensing that light which has been transmitted through the liquid via a plurality of independent light sensing elements vertically superposed on the other side of said column;
B. Indexing the height of said liquid in vertical column to the right atrial cardiac chamber; and
F. Monitoring venous pressure as a function of the level of liquid in said column through which light is transmitting by electrically energizing a visual display of liquid level as a function of venous pressure, said display comprising a plurality of independent lamps superposed in vertical column corresponding to said light sources and light sensing elements.
2. Method of central venous pressure monitoring as in claim 1, including:
K. varying sensing of light relatively to the type of liquid being supported in said column.

Claims (2)

1. Method of central venous pressure monitoring comprising: A. Introducing the lower end of a liquid column into the venous area of the patient so that the level of liquid in said column indicates venous pressure; B. Supporting said liquid in vertical column by means of central venous pressure; C. Transmitting light through said column and said liquid by a plurality of independent light sources vertically superposed adjacent one side of said column; D. Discriminately sensing that light which has been transmitted through the liquid via a plurality of independent light sensing elements vertically superposed on the other side of said column; E. Indexing the height of said liquid in vertical column to the right atrial cardiac chamber; and F. Monitoring venous pressure as a function of the level of liquid in said column through which light is transmitting by electrically energizing a visual display of liquid level as a function of venous pressure, said display comprising a plurality of independent lamps superposed in vertical column corresponding to said light sources and light sensing elements.
2. Method of central venous pressure monitoring as in claim 1, including: K. varying sensing of light relatively to the type of liquid being supported in said column.
US710485A 1968-03-05 1968-03-05 Method for central venous pressure monitoring Expired - Lifetime US3590809A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US71048568A 1968-03-05 1968-03-05

Publications (1)

Publication Number Publication Date
US3590809A true US3590809A (en) 1971-07-06

Family

ID=24854229

Family Applications (1)

Application Number Title Priority Date Filing Date
US710485A Expired - Lifetime US3590809A (en) 1968-03-05 1968-03-05 Method for central venous pressure monitoring

Country Status (1)

Country Link
US (1) US3590809A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996927A (en) * 1975-06-27 1976-12-14 Hoffmann-La Roche Inc. Blood pressure monitor leveling device
US4003370A (en) * 1975-10-14 1977-01-18 American Hospital Supply Corporation Blood pressure monitor system and method
US4213454A (en) * 1977-12-02 1980-07-22 Baxter Travenol Laboratories, Inc. Control system for metering apparatus for a fluid infusion system
US4466804A (en) * 1981-09-25 1984-08-21 Tsunekazu Hino Extracorporeal circulation of blood
US4669484A (en) * 1986-09-22 1987-06-02 Masters Thomas N Automatic leveling device for hemodynamic pressure measuring system
US4809709A (en) * 1987-06-12 1989-03-07 Brooks Albert E Pressure-sensing catheter system with compensation for atmospheric and configuration variations
EP0589356A2 (en) * 1992-09-23 1994-03-30 Becton, Dickinson and Company Syringe pump having continuous pressure monitoring and display
US5395340A (en) * 1993-03-15 1995-03-07 Lee; Tzium-Shou Infusion pump and a method for infusing patients using same
US5691478A (en) * 1995-06-07 1997-11-25 Schneider/Namic Device and method for remote zeroing of a biological fluid pressure measurement device
US6050713A (en) * 1998-05-19 2000-04-18 O'donnell; Joan Intravenous drip lighting device
US20040160770A1 (en) * 2003-02-13 2004-08-19 Rodriguez Joel J. Single intraveneous drip component illumination device
US20050154320A1 (en) * 2004-01-09 2005-07-14 Froelich Michael A. Methods and devices for accurate pressure monitoring
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US8016745B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. Monitoring of a food intake restriction device
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US20120253209A1 (en) * 2011-03-30 2012-10-04 Nihon Kohden Corporation Venous pressure measurement apparatus
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
CN107485759A (en) * 2017-09-21 2017-12-19 赵永锦 A kind of clinical care intelligent nursing instrument

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2149690A (en) * 1939-03-07 G a snyder
US3105490A (en) * 1960-02-25 1963-10-01 Myron R Schoenfeld Infusion monitoring device
US3242920A (en) * 1963-06-07 1966-03-29 Andersen Prod H W Manometer and method of using same
US3435819A (en) * 1966-05-17 1969-04-01 Voys Inc Le Venous pressure monitoring apparatus
US3456648A (en) * 1967-05-03 1969-07-22 Lpt Corp Automatic venous infusion monitoring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2149690A (en) * 1939-03-07 G a snyder
US3105490A (en) * 1960-02-25 1963-10-01 Myron R Schoenfeld Infusion monitoring device
US3242920A (en) * 1963-06-07 1966-03-29 Andersen Prod H W Manometer and method of using same
US3435819A (en) * 1966-05-17 1969-04-01 Voys Inc Le Venous pressure monitoring apparatus
US3456648A (en) * 1967-05-03 1969-07-22 Lpt Corp Automatic venous infusion monitoring apparatus

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996927A (en) * 1975-06-27 1976-12-14 Hoffmann-La Roche Inc. Blood pressure monitor leveling device
US4003370A (en) * 1975-10-14 1977-01-18 American Hospital Supply Corporation Blood pressure monitor system and method
US4213454A (en) * 1977-12-02 1980-07-22 Baxter Travenol Laboratories, Inc. Control system for metering apparatus for a fluid infusion system
US4466804A (en) * 1981-09-25 1984-08-21 Tsunekazu Hino Extracorporeal circulation of blood
US4669484A (en) * 1986-09-22 1987-06-02 Masters Thomas N Automatic leveling device for hemodynamic pressure measuring system
US4809709A (en) * 1987-06-12 1989-03-07 Brooks Albert E Pressure-sensing catheter system with compensation for atmospheric and configuration variations
EP0589356A2 (en) * 1992-09-23 1994-03-30 Becton, Dickinson and Company Syringe pump having continuous pressure monitoring and display
EP0589356A3 (en) * 1992-09-23 1994-06-22 Becton Dickinson Co Syringe pump having continuous pressure monitoring and display
US5395340A (en) * 1993-03-15 1995-03-07 Lee; Tzium-Shou Infusion pump and a method for infusing patients using same
US5691478A (en) * 1995-06-07 1997-11-25 Schneider/Namic Device and method for remote zeroing of a biological fluid pressure measurement device
US6050713A (en) * 1998-05-19 2000-04-18 O'donnell; Joan Intravenous drip lighting device
US20040160770A1 (en) * 2003-02-13 2004-08-19 Rodriguez Joel J. Single intraveneous drip component illumination device
US6877877B2 (en) 2003-02-13 2005-04-12 Embo-Optics, Llc Single intraveneous drip component illumination device
US20050117335A1 (en) * 2003-02-13 2005-06-02 Rodriquez Joel J. Intravenous drip component illumination device
US7052158B2 (en) 2003-02-13 2006-05-30 Embo-Optics, Llc Intravenous drip component illumination device
US20050154320A1 (en) * 2004-01-09 2005-07-14 Froelich Michael A. Methods and devices for accurate pressure monitoring
US8016745B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. Monitoring of a food intake restriction device
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
US20120253209A1 (en) * 2011-03-30 2012-10-04 Nihon Kohden Corporation Venous pressure measurement apparatus
US9743846B2 (en) * 2011-03-30 2017-08-29 Nihon Kohden Corporation Venous pressure measurement apparatus
USRE48076E1 (en) * 2011-03-30 2020-07-07 Nihon Kohden Corporation Venous pressure measurement apparatus
USRE49055E1 (en) * 2011-03-30 2022-05-03 Nihon Kohden Corporation Venous pressure measurement apparatus
CN107485759A (en) * 2017-09-21 2017-12-19 赵永锦 A kind of clinical care intelligent nursing instrument

Similar Documents

Publication Publication Date Title
US3590809A (en) Method for central venous pressure monitoring
Reneman et al. Muscle blood flow disturbances produced by simultaneously elevated venous and total muscle tissue pressure
US3319623A (en) Blood pressure monitors
Stef et al. Intraluminal esophageal manometry: an analysis of variables affecting recording fidelity of peristaltic pressures
US5711302A (en) Disposable transducer with digital processing and readout
US5688244A (en) Apparatus for monitoring infusion
BERING Choroid plexus and arterial pulsation of cerebrospinal fluid: demonstration of the choroid plexuses as a cerebrospinal fluid pump
Wright et al. Water absorption in experimental closed segment obstruction of the ileum in man
US6010453A (en) Tonometric catheter combination
EP2832290A1 (en) System and method for monitoring bladder and abdominal pressures, and bladder function recovery system
Buñnag Facts and fallacies about measuring blood pressure in rats
Flack et al. Behaviour of standard gravity-fed administration sets used for intravenous infusion
JPS5841529A (en) Apparatus for measuring blood pressure
US5415165A (en) Tonometric catheter combination
US3242920A (en) Manometer and method of using same
Arnold et al. Tonometry to assess the adequacy of splanchnic oxygenation in the critically ill patient
JP3549262B2 (en) Peritoneal dialysis drainage monitoring device
US20050027237A1 (en) Apparatus and methods for control of intravenous fluids
BOUTROS et al. Effect of the dynamic response of transducer-tubing system on accuracy of direct blood pressure measurement in patients
Rithalia et al. The performance characteristics of an intra-arterial oxygen electrode
ELIASCH et al. The effects of work on the pulmonary circulation in mitral stenosis
Bolund et al. Blood flow cessation at external pressure in rat skinflaps isotope washout compared to vital capillary microscopy
CN205144544U (en) High accuracy can show potential measurement formula mercury sphygmomanometer
Crawford et al. Renal servocontrol of arterial blood pressure.
BR112019017398A2 (en) SYSTEM FOR MONITORING PHYSIOLOGICAL PARAMETERS IN EXTRACORPOREAL CIRCULATION