US3613170A - Spinning apparatus for sheath-core bicomponent fibers - Google Patents

Spinning apparatus for sheath-core bicomponent fibers Download PDF

Info

Publication number
US3613170A
US3613170A US32650A US3613170DA US3613170A US 3613170 A US3613170 A US 3613170A US 32650 A US32650 A US 32650A US 3613170D A US3613170D A US 3613170DA US 3613170 A US3613170 A US 3613170A
Authority
US
United States
Prior art keywords
plate
spinnerette
orifices
spin dope
orifice plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US32650A
Inventor
Keiichi Soda
Masayuki Ueki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
American Cyanamid Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Cyanamid Co filed Critical American Cyanamid Co
Application granted granted Critical
Publication of US3613170A publication Critical patent/US3613170A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/217Spinnerette forming conjugate, composite or hollow filaments

Definitions

  • An apparatus for spinning a large number of sheathcore type bicomponent fibers from a single spinnerette which comprises a spin dope distribution assembly, immediately adjacent the outlet surface of said assembly an orifice plate, and spaced therefrom, a spinnerette plate arranged in a manner wherein a first spin dope upon emerging from said orifice plate emerges through aligned orifices in said spinnerette plate and a second spin dope upon emerging from said orifice plate travels laterally in the spacing provided and emerges as a sheath around said first spin dope.
  • Composite fibers of the type formed by bonding together two fiber-forming components differing in thermal shrinkage in a side-by-side relationship throughout the entire length of the fibers are well known. Such fibers are widely used because of their high desirable crimping and dyeing characteristics. Numerous spinnerette assemblies for forming such bycomponent fibers have been de veloped.
  • sheath-forming component a polymer having excellent dyeability and esthetic appeal and as coreforming component a polymer having excellent physical properties such as strength, elongation, and rigidity
  • any spinning apparatus for forming such sheathcore type bicomponent fibers is generally so much more complicated than spinning devices for side-by-side bicomponent fibers than the number of fiber-forming orifices per unit area of spinnerette is greatly restricted, such restriction resulting in many instances in a tenfold or greater decrease in the number of fiber-forming orifices per unit area of spinnerette.
  • the present invention provides a novel apparatus for spinning a large number of sheath-core type bicomponent fibers per unit area of spinnerette, the apparatus involving Patented Oct. 19, 1971 ice SUMMARY OF THE INVENTION
  • This invention relates to an apparatus for spinning a large number of sheath-core type bicomponent fibers from a single spinnerette.
  • the invention relates to such an apparatus comprising a conventional spin dope distribution assembly having adjacent to the discharge face an orifice plate and, spaced therefrom, a spinnerette plate in an arrangement where core-forming spin dope is discharged through orifices in the spinnerette plate aligned with orifices in the orifice plate and sheathforming spin dope is forced to travel in a lateral direction upon exit from the orifice plate and unite as a sheath around the core-forming dope on discharge through the same orifices in the spinnerette plate through which coreforming spin dope is being discharged.
  • the apparatus described can be readily constructed to contain a large number of fiber-forming orifices per unit area of spinnerette for economic advantage, particularly for wet-spinning techniques, and at the same time satisfies requirements of excellent operation in continuous spinning processes and of simple construction characteristics.
  • the device has been particularized with respect to wet-spinning techniques, it is, of course, to be understood that it is equally adaptable to melt-spinning and dry-spinning techniques.
  • the apparatus may be constructed from a variety of materials conventionally employed in the construction of related devices. Suitable materials include metals and plastics that have suitable structural strength and resistance to chemicals and operating conditions encountered in the spinning processes. In some instances structural metals, such as stainless steel, are preferred, while in other instances, where low heat conductivity is desirable, use may be made of various plastic materials, such as cured epoxy resins. In still further instances, it may be desirable to employ a mixture of structural materials, fashioning some elements from one material and others from another. It is to be understood that the invention is not limited to any particular structural material but only to the particular structural arrangements indicated.
  • FIG. 1 is a partially exploded view of the apparatus of the present invention showing an arrangement of various elements used in a specific embodiment of the invention.
  • FIG. 2 is a sectional view of the apparatus showing an arrangement of dope feed chambers, orifice plate, spacing, and spinnerette plate, also showing the projection of some orifices of the orifice plate on the back of the spinnerette plate and the provision for grooves encompassing such projections.
  • FIG. 3 is a plane view of the back surface of the spinnerette plate showing a flow pattern for spin dope which emerges from orifices in the orifice plate not aligned with orifices in the spinnerette, said fiow pattern being in the spacing between the orifice plate and the spinnerette plate.
  • FIG. 4 also is a plane view of the back surface of the spinnerette plate which in this embodiment has grooves forming the sides of a rectangle and shows the flow pat tern of the spin dope in such instance.
  • FIG. is a cross-sectional view of a fiber formed by the apparatus wherein the flow pattern of spin dope is as illustrated in FIG. 3.
  • FIG. 6 is a cross-sectional view of a fiber formed by the apparatus wherein the flow pattern of spin dope is as illustrated in FIG. 4.
  • FIG. 1 that portion of the assembly which excludes parts numbered 6-10, inclusive, is similar to the vertical stack spin dope distribution assembly described in US. Pat. 3,501,805, issued Mar. 17, 1970 to Douglas et al., except that recesses in the plates of the patent corresponding to plate 4 of FIG. 1 of the present application have been eliminated, a necessary elimination due to the dilferent nature of the fiber type being spun.
  • end plate 1 is provided with four orifices 17, 18, 17, and 18 which are used to introduce spin dope into the apparatus.
  • End plate 2 is generally similar to end plate 1 except that orifices 17 and 18 are not provided therein.
  • the stack of plates is next composed of a plurality of different plates having diiferent functions arranged in a definite sequence. Each plate is provided with orifices 17, 18, 17 and 18 which, when the plates are assembled in the form of the stack, line up with the corresponding orifices 17, 18, 17 and 18 in end plate 1 to provide four spin dope passageways leading through the stack from end plate 1 to the last plate prior to end plate 2.
  • first plate 3 provides a pathway for spin dope from the first group of passageways 18, 18 through openings 12 to the surface of the stack.
  • passageways 17, 17 are isloated from openings 12 and therefore there is no communication by way of first plate 3 between the second group of passageways 17, 17 and the surface of the stack.
  • Second plate 5 which, preferably, may be the mirror image of first plate 3 and, as such, may be manufactured as a plate identical with first plate 3 but inserted into the stack in a reversed position.
  • Second plate 5 is provided with openings 11 which communicate between orifices 17, 17 and the same surface of the stack as do openings 12 in plate 3'. Note that orifices 18, 18 in plate 5 are isolated from openings 11.
  • second plate 5 provides a pathway for spin dope between the second group of passageways 17, 17 through openings 11 to the surface of the stack.
  • third plate 4 serves to separate openings 12 from openings 11 in the adjacent plates 3 and S.
  • the stack then continues with plates in the following order in a repetitive pattern: after second plate 5 comes another third plate 4, then another first plate 3, then another third plate 4, then another second plate 5, and so on for whatever number of plates may be desired before reaching end plate 2.
  • the various plates making up the stack are fastened into an integral structure by means of any suitable fastening materials.
  • additional bolt holes are pro vided at several points through the various plates of the stack and the stack is secured by bolts passing through the provided bolt holes.
  • the orifice plate 8 is of a size coinciding with the upper surface formed by the joined plates of the stack, i.e. the surface to which spin dope flow has been directed. It is provided with a plurality of orifices in rows which are aligned with the flow pathways for spin dope provided by plates 3 and 5. The spacing or orifices 10 in any one row is halfway between orifices in the adjacent row.
  • a spacing plate 7 is placed immediately above orifice plate 8 to provide clearance necessary for lateral fiow of spin dope containing the sheath-forming component of the bicomponent fiber to be spun.
  • spinnerette plate 6 contains a plurality of fiber-forming orifices 9 arranged in rows which are aligned with orifices of the orifice plate through which flows spin dope containing core-forming component of the bicomponent fiber to be spun.
  • Orifice plate 8, spacer plate 7, and spinnerette plate '6 are laminated and secured to the surface of the stack to which flow of spin dope is directed.
  • the arrangement of fiber-forming orifices 9 of the spinnerette plate 6 is such that they align only wit-h those orifices 10 of the orifice plate 8 through which flows spin dope containing core-forming component of the bicomponent fiber to be spun. Additional orifices 10 of orifice plate 8 occupy four corners of a rectangle having the aligned orifices 10 and 9 centrally located therein.
  • FIG. 3 which shows the back face of spinnerette plate 6*.
  • the aligned orifices are indicated as double circles and the single circles represent projections 10' of additional orifices 10 of orifice plate 8 upon spinnerette plate 6.
  • the arrows in FIG. 3 indicate the flow pattern of spin dope striking projections 10 under the influence of the operating pressure of the spinning apparatus, such flow occurring in the spacing between orifice plate 8 and spinnerette plate 6.
  • the sectional view in FIG. 2, left side indicates alignment of orifices 10 and fiber-forming orifices 9 and also indicates location of projections 10' on spinnerette plate 6.
  • a spin-dope containing core-forming component is introduced through the passageways of the vertical stack which flow spin dope through orifices 10 in orifice plate 8 which are aligned with fiber-forming orifices 9 in spinnerette plate 6.
  • a second spin dope containing sheath-forming component is introduced through the other passageways. As the second spin dope emerges from orifices 10 of orifice plate 8 it strikes against projections 10' on the back face of spinnerette plate 6 and is forced by operating pressure into flow patterns illustrated in FIG. 3 into the spacing between orifice plate 8 and spinnerette plate 6 to form a sheath about the core-forming component as it emerges from fiberforming orifices 9.
  • the flow patterns of spin dope strikng projectons 10 on the back face of spinnerette plate 6 is such as to cause flattening on four sides of spin dope containing core-forming component with the result that the bicomponent formed will have the cross-section shown in FIG. 5.
  • FIG. 4 An additional modification of the present invention is the invention for grooves 19 on the back face of spinnerette plate 6.
  • the positioning of grooves 19 on the back face of spinnerette is shown in FIG. 2;, right side, which shows grooves 19 as rounded depressions in the area in which the projections 10' would normally be shown.
  • the grooves are shown to form the sides of a rectangle which has as its corners the normal projections 10' of orifices 10 of orifice plate 8 on spinnerette plate 6 and the aligned orifices 10 and fiber-forming orifices 9, represented as double circles, are centrally located in said rectangle.
  • the arrows in FIG. 4 illustrate a flow pattern of spin dope entering into grooves 19.
  • grooves 19 control the flow of spin dope normally striking projections 10' to the point where spin dope from several projections meet and overflow the grooves. Accordingly, when the operation of the apparatus is carried out in the manner previously described except for the provision of grooves 19 in the arrangement shown in FIG. 4, the formed bicomponent fiber has the cross-section shown in FIG. 6.
  • spacer plate 7 to provide spacing between orifice plate 8 and spinnerette plate 16
  • spacing can be provided by projections from orifice plate 8 or from spinnerette plate 6 or from both.
  • An apparatus for spinning a large number of sheathcore type bicomponent fibers from a single spinnerette comprising a distribution assembly having stacked dope feed chamber plates defining therebetween flow passageways having outlet surfaces for two separate fiber-forming spin dopes, an orifice plate immediately adacent said outlet surfaces, and, spaced therefrom, a spinnerette plate with fiber-forming orifices, wherein said fiber-forming ori fices are disposed in rows above the flow passageway of the stack which feeds one of the two dopes, the orifices in said orifice plate are disposed in rows such that (a) one set of rows is directly above the flow passageway for one dope with each orifice aligned with a corresponding fiberforming orifice in said spinnerette plate and (b) another set of rows is directly above the flow passageway for the second dope with the orifices therein disposed halfway between orifices of said first set whereby the dope flowing through said first set of orifices of said orifice plate forms the

Abstract

AN APPARATUS FOR SPINNING A LARGE NUMBER OF SHEATHCORE TYPE BICOMPONENT FIBERS FROM A SINGLE SPINNERETTE IS DISCLOSED WHICH COMPRISES A SPIN DOPE DISTRIBUTION ASSEMBLY, IMMEDIATELY ADJACENT THE OUTLET SURFACE OF SAID ASSEMBLY AN ORIFICE PLATE, AND SPACED THEREFROM, A SPINNERETTE PLATE ARRANGED IN A MANNER WHEREIN A FIRST SPIN DOPE UPON EMERGING FROM SAID ORIFICE PLATE EMERGES THROUGH ALIGNED ORIFICES IN SAID SPINNERETTE PLATE AND A SECOND SPIN DOPE UPON EMERGING FROM SAID ORIFICE PLATE TRAVELS LATERALLY IN THE SPACING PROVIDED AND EMERGES AS A SHEATH AROUND SAID FIRST SPIN DOPE.

Description

OCL 19, 197] KEHCH] SODA ETAL 3,613,170
SPINNING APPARATUS FOR SHEATH-CORE BICOMPONENT FIBERS 2 Sheets-Sheet 1 Filed April 28, 1970 INVEN'I'URS. KEl/CH/ 500A MASAYUK/ UEK/ Oct. 19, 1971 ucl-u OD EIAL 3,613,110
SPINNING APPARATUS FOR SHEATH-CORE BICOMPONENT FIBERS 2 Sheets-Sheet 2 Filed April 28, 1970 MAS/1 YUK/ UEK/ United States Patent O 3,613,170 SPINNING APPARATUS FOR SHEATH-CORE BICOMPONENT FIBERS Keiichi Soda and Masayuki Ueki, Okayama, Japan, as-
signors to American Cyanamid Company, Stamford,
Conn.
Filed Apr. 28, 1970, Ser. No. 32,650 Claims priority, application Japan, May 27, 1969, 44/ 49,761 Int. Cl. D01d 3/00 US. C]. 1885 C 5 Claims ABSTRACT OF THE DISCLOSURE An apparatus for spinning a large number of sheathcore type bicomponent fibers from a single spinnerette is disclosed which comprises a spin dope distribution assembly, immediately adjacent the outlet surface of said assembly an orifice plate, and spaced therefrom, a spinnerette plate arranged in a manner wherein a first spin dope upon emerging from said orifice plate emerges through aligned orifices in said spinnerette plate and a second spin dope upon emerging from said orifice plate travels laterally in the spacing provided and emerges as a sheath around said first spin dope.
BACKGROUND OF THE INVENTION Composite fibers of the type formed by bonding together two fiber-forming components differing in thermal shrinkage in a side-by-side relationship throughout the entire length of the fibers are well known. Such fibers are widely used because of their high desirable crimping and dyeing characteristics. Numerous spinnerette assemblies for forming such bycomponent fibers have been de veloped.
It is also known that large differences in thermal shrinkage between the components forming side-by-side type bi-component fibers although desirable as a result of extensive crimping tendencies, tend to cause separation of the two components, thus destroying the bicomponent fiber. In an effort to avoid separation of fiber components and to achieve the desirable properties associated with large differences in thermal shrinkage between the components, it has been suggested that the components be arranged in a sheath-core relationship. Such an arrangement employing as sheath-forming component a polymer having excellent dyeability and esthetic appeal and as coreforming component a polymer having excellent physical properties such as strength, elongation, and rigidity would lead to a composite fiber improved to a greater extent in both crimping tendencies and performance characteristics than is possible with side-by-side type bicomponent fibers. However, any spinning apparatus for forming such sheathcore type bicomponent fibers is generally so much more complicated than spinning devices for side-by-side bicomponent fibers than the number of fiber-forming orifices per unit area of spinnerette is greatly restricted, such restriction resulting in many instances in a tenfold or greater decrease in the number of fiber-forming orifices per unit area of spinnerette. Such restriction causes a substantial reduction in productivity and, as a result, production of sheath-core type bicomponent fibers has not yet reached a practical stage, particularly in wet-spinning techniques which make use of large numbers of fiberforming orifices per unit area of spinnerette to commercial advantage.
The present invention provides a novel apparatus for spinning a large number of sheath-core type bicomponent fibers per unit area of spinnerette, the apparatus involving Patented Oct. 19, 1971 ice SUMMARY OF THE INVENTION This invention relates to an apparatus for spinning a large number of sheath-core type bicomponent fibers from a single spinnerette. More particularly, the invention relates to such an apparatus comprising a conventional spin dope distribution assembly having adjacent to the discharge face an orifice plate and, spaced therefrom, a spinnerette plate in an arrangement where core-forming spin dope is discharged through orifices in the spinnerette plate aligned with orifices in the orifice plate and sheathforming spin dope is forced to travel in a lateral direction upon exit from the orifice plate and unite as a sheath around the core-forming dope on discharge through the same orifices in the spinnerette plate through which coreforming spin dope is being discharged.
The apparatus described can be readily constructed to contain a large number of fiber-forming orifices per unit area of spinnerette for economic advantage, particularly for wet-spinning techniques, and at the same time satisfies requirements of excellent operation in continuous spinning processes and of simple construction characteristics. Although the device has been particularized with respect to wet-spinning techniques, it is, of course, to be understood that it is equally adaptable to melt-spinning and dry-spinning techniques.
The apparatus may be constructed from a variety of materials conventionally employed in the construction of related devices. Suitable materials include metals and plastics that have suitable structural strength and resistance to chemicals and operating conditions encountered in the spinning processes. In some instances structural metals, such as stainless steel, are preferred, while in other instances, where low heat conductivity is desirable, use may be made of various plastic materials, such as cured epoxy resins. In still further instances, it may be desirable to employ a mixture of structural materials, fashioning some elements from one material and others from another. It is to be understood that the invention is not limited to any particular structural material but only to the particular structural arrangements indicated.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially exploded view of the apparatus of the present invention showing an arrangement of various elements used in a specific embodiment of the invention.
FIG. 2 is a sectional view of the apparatus showing an arrangement of dope feed chambers, orifice plate, spacing, and spinnerette plate, also showing the projection of some orifices of the orifice plate on the back of the spinnerette plate and the provision for grooves encompassing such projections.
FIG. 3 is a plane view of the back surface of the spinnerette plate showing a flow pattern for spin dope which emerges from orifices in the orifice plate not aligned with orifices in the spinnerette, said fiow pattern being in the spacing between the orifice plate and the spinnerette plate.
FIG. 4 also is a plane view of the back surface of the spinnerette plate which in this embodiment has grooves forming the sides of a rectangle and shows the flow pat tern of the spin dope in such instance.
FIG. is a cross-sectional view of a fiber formed by the apparatus wherein the flow pattern of spin dope is as illustrated in FIG. 3.
FIG. 6 is a cross-sectional view of a fiber formed by the apparatus wherein the flow pattern of spin dope is as illustrated in FIG. 4.
DESCRIPTION OF PREFERRED EMBODIMENTS The invention will now be described with particular reference to the drawings wherein numbering of parts is consistent in the various drawings.
In FIG. 1, that portion of the assembly which excludes parts numbered 6-10, inclusive, is similar to the vertical stack spin dope distribution assembly described in US. Pat. 3,501,805, issued Mar. 17, 1970 to Douglas et al., except that recesses in the plates of the patent corresponding to plate 4 of FIG. 1 of the present application have been eliminated, a necessary elimination due to the dilferent nature of the fiber type being spun.
In FIG. 1 of the present application, end plate 1 is provided with four orifices 17, 18, 17, and 18 which are used to introduce spin dope into the apparatus. End plate 2 is generally similar to end plate 1 except that orifices 17 and 18 are not provided therein. The stack of plates is next composed of a plurality of different plates having diiferent functions arranged in a definite sequence. Each plate is provided with orifices 17, 18, 17 and 18 which, when the plates are assembled in the form of the stack, line up with the corresponding orifices 17, 18, 17 and 18 in end plate 1 to provide four spin dope passageways leading through the stack from end plate 1 to the last plate prior to end plate 2.
Adjacent end plate 1 in the stack there is a first plate 3 with openings 12 leading from orifices 1-8 to the flat upper surface of the stack. Thus, first plate 3 provides a pathway for spin dope from the first group of passageways 18, 18 through openings 12 to the surface of the stack. Note that passageways 17, 17 are isloated from openings 12 and therefore there is no communication by way of first plate 3 between the second group of passageways 17, 17 and the surface of the stack.
Temporarily skipping the next plate in the stack, we find that the next plate after it is a second plate 5, which, preferably, may be the mirror image of first plate 3 and, as such, may be manufactured as a plate identical with first plate 3 but inserted into the stack in a reversed position. Second plate 5 is provided with openings 11 which communicate between orifices 17, 17 and the same surface of the stack as do openings 12 in plate 3'. Note that orifices 18, 18 in plate 5 are isolated from openings 11. Thus, second plate 5 provides a pathway for spin dope between the second group of passageways 17, 17 through openings 11 to the surface of the stack.
Between first plate 3 and second plate 5 is interposed at third plate 4, which serves to separate openings 12 from openings 11 in the adjacent plates 3 and S. The stack then continues with plates in the following order in a repetitive pattern: after second plate 5 comes another third plate 4, then another first plate 3, then another third plate 4, then another second plate 5, and so on for whatever number of plates may be desired before reaching end plate 2.
The various plates making up the stack are fastened into an integral structure by means of any suitable fastening materials. Generally, additional bolt holes are pro vided at several points through the various plates of the stack and the stack is secured by bolts passing through the provided bolt holes.
The orifice plate 8 is of a size coinciding with the upper surface formed by the joined plates of the stack, i.e. the surface to which spin dope flow has been directed. It is provided with a plurality of orifices in rows which are aligned with the flow pathways for spin dope provided by plates 3 and 5. The spacing or orifices 10 in any one row is halfway between orifices in the adjacent row.
A spacing plate 7 is placed immediately above orifice plate 8 to provide clearance necessary for lateral fiow of spin dope containing the sheath-forming component of the bicomponent fiber to be spun.
Above spacing plate 7 is placed spinnerette plate 6. Spinnerette plate 6 contains a plurality of fiber-forming orifices 9 arranged in rows which are aligned with orifices of the orifice plate through which flows spin dope containing core-forming component of the bicomponent fiber to be spun.
Orifice plate 8, spacer plate 7, and spinnerette plate '6 are laminated and secured to the surface of the stack to which flow of spin dope is directed.
The arrangement of fiber-forming orifices 9 of the spinnerette plate 6 is such that they align only wit-h those orifices 10 of the orifice plate 8 through which flows spin dope containing core-forming component of the bicomponent fiber to be spun. Additional orifices 10 of orifice plate 8 occupy four corners of a rectangle having the aligned orifices 10 and 9 centrally located therein. This arrangement is best seen in FIG. 3 which shows the back face of spinnerette plate 6*. In FIG. 3, the aligned orifices are indicated as double circles and the single circles represent projections 10' of additional orifices 10 of orifice plate 8 upon spinnerette plate 6. The arrows in FIG. 3 indicate the flow pattern of spin dope striking projections 10 under the influence of the operating pressure of the spinning apparatus, such flow occurring in the spacing between orifice plate 8 and spinnerette plate 6.
The sectional view in FIG. 2, left side, indicates alignment of orifices 10 and fiber-forming orifices 9 and also indicates location of projections 10' on spinnerette plate 6.
In operating the apparatus as just described, a spin-dope containing core-forming component is introduced through the passageways of the vertical stack which flow spin dope through orifices 10 in orifice plate 8 which are aligned with fiber-forming orifices 9 in spinnerette plate 6. A second spin dope containing sheath-forming component is introduced through the other passageways. As the second spin dope emerges from orifices 10 of orifice plate 8 it strikes against projections 10' on the back face of spinnerette plate 6 and is forced by operating pressure into flow patterns illustrated in FIG. 3 into the spacing between orifice plate 8 and spinnerette plate 6 to form a sheath about the core-forming component as it emerges from fiberforming orifices 9. In the operation described, the flow patterns of spin dope strikng projectons 10 on the back face of spinnerette plate 6 is such as to cause flattening on four sides of spin dope containing core-forming component with the result that the bicomponent formed will have the cross-section shown in FIG. 5.
An additional modification of the present invention is the invention for grooves 19 on the back face of spinnerette plate 6. The positioning of grooves 19 on the back face of spinnerette is shown in FIG. 2;, right side, which shows grooves 19 as rounded depressions in the area in which the projections 10' would normally be shown. In FIG. 4, the grooves are shown to form the sides of a rectangle which has as its corners the normal projections 10' of orifices 10 of orifice plate 8 on spinnerette plate 6 and the aligned orifices 10 and fiber-forming orifices 9, represented as double circles, are centrally located in said rectangle. The arrows in FIG. 4 illustrate a flow pattern of spin dope entering into grooves 19. The flow patterns illustrated in FIGS. 3 and 4 differ because grooves 19 control the flow of spin dope normally striking projections 10' to the point where spin dope from several projections meet and overflow the grooves. Accordingly, when the operation of the apparatus is carried out in the manner previously described except for the provision of grooves 19 in the arrangement shown in FIG. 4, the formed bicomponent fiber has the cross-section shown in FIG. 6.
It can be readily appreciated that by suitable variation in the depth, width, and direction of grooves 19 on the back face of spinnerette plate 6, a wide variety of crosssections of the formed bicomponent fiber is possible. Additional variations can be achieved by displacement of orifices 10 of orifice plate 8 that are not aligned with fiberforming orifices 9 of spinnerette plate 6.
Although in the embodiment illustrated by FIG. 1, use is made of a spacer plate 7 to provide spacing between orifice plate 8 and spinnerette plate 16, it can be readily appreciated that other embodiments are possible which can eliminate need for spacer plate 7. For example, spacing can be provided by projections from orifice plate 8 or from spinnerette plate 6 or from both.
An additional spin-dope distribution assembly that can be employed in conjunction with the orifice plate. and spaced spinnerette plate in the present invention is de scribed in US. Pat. 3,245,113, Sulich, issued Apr. 12, 1966, and represents a horizontal stack type.
We claim:
1. An apparatus for spinning a large number of sheathcore type bicomponent fibers from a single spinnerette comprising a distribution assembly having stacked dope feed chamber plates defining therebetween flow passageways having outlet surfaces for two separate fiber-forming spin dopes, an orifice plate immediately adacent said outlet surfaces, and, spaced therefrom, a spinnerette plate with fiber-forming orifices, wherein said fiber-forming ori fices are disposed in rows above the flow passageway of the stack which feeds one of the two dopes, the orifices in said orifice plate are disposed in rows such that (a) one set of rows is directly above the flow passageway for one dope with each orifice aligned with a corresponding fiberforming orifice in said spinnerette plate and (b) another set of rows is directly above the flow passageway for the second dope with the orifices therein disposed halfway between orifices of said first set whereby the dope flowing through said first set of orifices of said orifice plate forms the core-forming component of said fiber and the other dope is directed by lateral flow through the space provided to emerge as the sheath-forming component of said fiber.
2. The apparatus of claim 1 wherein said distribution means is a vertical stack type.
3. The apparatus of claim 2 wherein the back of said spinnerette plate is provided with grooves which direct flow of said sheath-forming component.
4. The apparatus of claim 1 wherein said distribution means is a horizontal stack type.
5. The apparatus of claim 4 wherein the back of said spinnerette plate is provided with grooves which direct flow of said sheath-forming component.
References Cited UNITED STATES PATENTS 2,386,173 10/1945 Kulp et al 188 SC 2,815,532 12/1957 Braunlich 188 SF 3,204,290 9/1965 Crompton 188 SC 3,245,113 4/1966 Sulich 18-8 SC 3,501,805 3/1970 Douglas et al 188 SC FOREIGN PATENTS 6600025 1/1967 Netherlands 188 SF J. SPENCER OVERHOLSTER, Primary Examiner M. 0. SUTTON, Assistant Examiner US Cl. X.R.
US32650A 1969-05-27 1970-04-28 Spinning apparatus for sheath-core bicomponent fibers Expired - Lifetime US3613170A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4976169 1969-05-27

Publications (1)

Publication Number Publication Date
US3613170A true US3613170A (en) 1971-10-19

Family

ID=12840153

Family Applications (1)

Application Number Title Priority Date Filing Date
US32650A Expired - Lifetime US3613170A (en) 1969-05-27 1970-04-28 Spinning apparatus for sheath-core bicomponent fibers

Country Status (2)

Country Link
US (1) US3613170A (en)
ES (1) ES380103A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787162A (en) * 1972-04-13 1974-01-22 Ici Ltd Conjugate filaments apparatus
US3807917A (en) * 1971-05-04 1974-04-30 Exlan Co Ltd Apparatus for spinning sheath-core type composite fibers
EP0128013A2 (en) * 1983-06-01 1984-12-12 Chisso Corporation Spinneret assembly
US4875844A (en) * 1988-02-17 1989-10-24 Chisso Corporation Spinneret assembly for sheath-core type composite fibers
US4918017A (en) * 1989-02-03 1990-04-17 Bridgestone/Firestone, Inc. Screen assembly for screening elastomeric material
EP0383602A2 (en) * 1989-02-15 1990-08-22 Chisso Corporation Spinneret device for conjugate fibers of eccentric sheath-and-core type
US5162074A (en) * 1987-10-02 1992-11-10 Basf Corporation Method of making plural component fibers
US5227109A (en) * 1992-01-08 1993-07-13 Wellman, Inc. Method for producing multicomponent polymer fibers
US5256050A (en) * 1989-12-21 1993-10-26 Hoechst Celanese Corporation Method and apparatus for spinning bicomponent filaments and products produced therefrom
US5533883A (en) * 1992-10-29 1996-07-09 Basf Corporation Spin pack for spinning synthetic polymeric fibers
US5551588A (en) * 1987-10-02 1996-09-03 Basf Corporation Profiled multi-component fiber flow plate method
US5620644A (en) * 1992-10-29 1997-04-15 Basf Corporation Melt-spinning synthetic polymeric fibers
US5679379A (en) * 1995-01-09 1997-10-21 Fabbricante; Anthony S. Disposable extrusion apparatus with pressure balancing modular die units for the production of nonwoven webs
US5720838A (en) * 1993-07-27 1998-02-24 Yugengaisya Towa Method of manufacturing colored doormats
EP0893517A2 (en) * 1997-07-23 1999-01-27 Anthony Fabbricante Micro-denier nonwoven materials made using modular die units
US5882573A (en) * 1997-09-29 1999-03-16 Illinois Tool Works Inc. Adhesive dispensing nozzles for producing partial spray patterns and method therefor
US5902540A (en) * 1996-10-08 1999-05-11 Illinois Tool Works Inc. Meltblowing method and apparatus
US5904298A (en) * 1996-10-08 1999-05-18 Illinois Tool Works Inc. Meltblowing method and system
US6051180A (en) * 1998-08-13 2000-04-18 Illinois Tool Works Inc. Extruding nozzle for producing non-wovens and method therefor
US6162537A (en) * 1996-11-12 2000-12-19 Solutia Inc. Implantable fibers and medical articles
US6197406B1 (en) 1998-08-31 2001-03-06 Illinois Tool Works Inc. Omega spray pattern
US6602554B1 (en) 2000-01-14 2003-08-05 Illinois Tool Works Inc. Liquid atomization method and system
US6680021B1 (en) 1996-07-16 2004-01-20 Illinois Toolworks Inc. Meltblowing method and system
US20050046090A1 (en) * 2003-08-28 2005-03-03 Nordson Corporation Lamellar meltblowing die apparatus and method
US20050046066A1 (en) * 2003-08-28 2005-03-03 Nordson Corporation Lamellar extrusion die apparatus and method
US20070205530A1 (en) * 2006-03-02 2007-09-06 Nordson Corporation Apparatus and methods for distributing a balanced air stream to an extrusion die of a meltspinning apparatus
US7798434B2 (en) 2006-12-13 2010-09-21 Nordson Corporation Multi-plate nozzle and method for dispensing random pattern of adhesive filaments
US8074902B2 (en) 2008-04-14 2011-12-13 Nordson Corporation Nozzle and method for dispensing random pattern of adhesive filaments
US20160263591A1 (en) * 2015-03-10 2016-09-15 Bum Je WOO Purge gas injection plate and manufacturing method thereof
CN112127014A (en) * 2020-09-24 2020-12-25 浙江纳博生物质材料有限公司 Preparation method of high-antibacterial deodorizing nano composite functional fiber

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807917A (en) * 1971-05-04 1974-04-30 Exlan Co Ltd Apparatus for spinning sheath-core type composite fibers
US3787162A (en) * 1972-04-13 1974-01-22 Ici Ltd Conjugate filaments apparatus
EP0128013A2 (en) * 1983-06-01 1984-12-12 Chisso Corporation Spinneret assembly
EP0128013A3 (en) * 1983-06-01 1987-04-15 Chisso Corporation Spinneret assembly
US4717325A (en) * 1983-06-01 1988-01-05 Chisso Corporation Spinneret assembly
US5344297A (en) * 1987-10-02 1994-09-06 Basf Corporation Apparatus for making profiled multi-component yarns
US5562930A (en) * 1987-10-02 1996-10-08 Hills; William H. Distribution plate for spin pack assembly
US5551588A (en) * 1987-10-02 1996-09-03 Basf Corporation Profiled multi-component fiber flow plate method
US5466410A (en) * 1987-10-02 1995-11-14 Basf Corporation Process of making multiple mono-component fiber
US5162074A (en) * 1987-10-02 1992-11-10 Basf Corporation Method of making plural component fibers
US4875844A (en) * 1988-02-17 1989-10-24 Chisso Corporation Spinneret assembly for sheath-core type composite fibers
US4918017A (en) * 1989-02-03 1990-04-17 Bridgestone/Firestone, Inc. Screen assembly for screening elastomeric material
EP0383602A3 (en) * 1989-02-15 1991-09-11 Chisso Corporation Spinneret device for conjugate fibers of eccentric sheath-and-core type
EP0383602A2 (en) * 1989-02-15 1990-08-22 Chisso Corporation Spinneret device for conjugate fibers of eccentric sheath-and-core type
US5256050A (en) * 1989-12-21 1993-10-26 Hoechst Celanese Corporation Method and apparatus for spinning bicomponent filaments and products produced therefrom
US5227109A (en) * 1992-01-08 1993-07-13 Wellman, Inc. Method for producing multicomponent polymer fibers
US5533883A (en) * 1992-10-29 1996-07-09 Basf Corporation Spin pack for spinning synthetic polymeric fibers
US5575063A (en) * 1992-10-29 1996-11-19 Basf Corporation Melt-spinning synthetic polymeric fibers
US5620644A (en) * 1992-10-29 1997-04-15 Basf Corporation Melt-spinning synthetic polymeric fibers
US5720838A (en) * 1993-07-27 1998-02-24 Yugengaisya Towa Method of manufacturing colored doormats
US5679379A (en) * 1995-01-09 1997-10-21 Fabbricante; Anthony S. Disposable extrusion apparatus with pressure balancing modular die units for the production of nonwoven webs
US6680021B1 (en) 1996-07-16 2004-01-20 Illinois Toolworks Inc. Meltblowing method and system
US5902540A (en) * 1996-10-08 1999-05-11 Illinois Tool Works Inc. Meltblowing method and apparatus
US6074597A (en) * 1996-10-08 2000-06-13 Illinois Tool Works Inc. Meltblowing method and apparatus
US6890167B1 (en) 1996-10-08 2005-05-10 Illinois Tool Works Inc. Meltblowing apparatus
US5904298A (en) * 1996-10-08 1999-05-18 Illinois Tool Works Inc. Meltblowing method and system
US6624097B2 (en) 1996-11-12 2003-09-23 Solutia Inc. Implantable fibers and medical articles
US6162537A (en) * 1996-11-12 2000-12-19 Solutia Inc. Implantable fibers and medical articles
EP0893517A2 (en) * 1997-07-23 1999-01-27 Anthony Fabbricante Micro-denier nonwoven materials made using modular die units
WO1999004950A1 (en) * 1997-07-23 1999-02-04 Gaunt, Robert, John Novel micro-denier nonwoven materials made using modular die units
EP0893517A3 (en) * 1997-07-23 1999-07-21 Anthony Fabbricante Micro-denier nonwoven materials made using modular die units
US5882573A (en) * 1997-09-29 1999-03-16 Illinois Tool Works Inc. Adhesive dispensing nozzles for producing partial spray patterns and method therefor
US6051180A (en) * 1998-08-13 2000-04-18 Illinois Tool Works Inc. Extruding nozzle for producing non-wovens and method therefor
US6197406B1 (en) 1998-08-31 2001-03-06 Illinois Tool Works Inc. Omega spray pattern
US6200635B1 (en) 1998-08-31 2001-03-13 Illinois Tool Works Inc. Omega spray pattern and method therefor
US6461430B1 (en) 1998-08-31 2002-10-08 Illinois Tool Works Inc. Omega spray pattern and method therefor
US6602554B1 (en) 2000-01-14 2003-08-05 Illinois Tool Works Inc. Liquid atomization method and system
US7033153B2 (en) * 2003-08-28 2006-04-25 Nordson Corporation Lamellar meltblowing die apparatus and method
US20050046066A1 (en) * 2003-08-28 2005-03-03 Nordson Corporation Lamellar extrusion die apparatus and method
US20050046090A1 (en) * 2003-08-28 2005-03-03 Nordson Corporation Lamellar meltblowing die apparatus and method
US7033154B2 (en) * 2003-08-28 2006-04-25 Nordson Corporation Lamellar extrusion die apparatus and method
US20070205530A1 (en) * 2006-03-02 2007-09-06 Nordson Corporation Apparatus and methods for distributing a balanced air stream to an extrusion die of a meltspinning apparatus
US7798434B2 (en) 2006-12-13 2010-09-21 Nordson Corporation Multi-plate nozzle and method for dispensing random pattern of adhesive filaments
US8074902B2 (en) 2008-04-14 2011-12-13 Nordson Corporation Nozzle and method for dispensing random pattern of adhesive filaments
US8435600B2 (en) 2008-04-14 2013-05-07 Nordson Corporation Method for dispensing random pattern of adhesive filaments
US20160263591A1 (en) * 2015-03-10 2016-09-15 Bum Je WOO Purge gas injection plate and manufacturing method thereof
US10358736B2 (en) * 2015-03-10 2019-07-23 Bum Je WOO Purge gas spraying plate for fume removing of a semiconductor manufacturing apparatus
CN112127014A (en) * 2020-09-24 2020-12-25 浙江纳博生物质材料有限公司 Preparation method of high-antibacterial deodorizing nano composite functional fiber
CN112127014B (en) * 2020-09-24 2023-08-01 普宁市雄风织造有限公司 Preparation method of high-antibacterial deodorizing nano composite functional fiber

Also Published As

Publication number Publication date
ES380103A1 (en) 1973-04-16

Similar Documents

Publication Publication Date Title
US3613170A (en) Spinning apparatus for sheath-core bicomponent fibers
US4406850A (en) Spin pack and method for producing conjugate fibers
US3237245A (en) Apparatus for the production of conjugated artificial filaments
US3192562A (en) Spinnerette
US3501805A (en) Apparatus for forming multicomponent fibers
US3963406A (en) Spinneret assembly for multifilament yarns
US4251200A (en) Apparatus for spinning bicomponent filaments
EP0495169B1 (en) Static mixing device
US3704971A (en) Spinneret assembly
US3807917A (en) Apparatus for spinning sheath-core type composite fibers
US3584339A (en) Spinneret for both composite and ordinary fibers
US3546328A (en) Methods for the production of heterofilaments
JPS6115163B2 (en)
GB1194406A (en) Device for producing Synthetic Fibres
ATE41037T1 (en) SPINNING PROCESS FOR AROMATIC POLYAMIDE FIBERS.
US3225383A (en) Spinneret distribution plate
US3320633A (en) Apparatus for forming two component yarns
US2703433A (en) Spinneret for the manufacture of staple fiber filaments
US3403422A (en) Apparatus for spinning multicomponent fibers
ES337232A1 (en) Apparatus for spinning a miltifilament yarn
US3730662A (en) Spinneret assembly
US3538544A (en) Spinneret assembly for composite filaments
US3792944A (en) Spinneret for composite spinning
US3336633A (en) Spinneret assembly
CN213835799U (en) Double-row hole melt-blown plate