US3614986A - Method for injecting heated fluids into mineral bearing formations - Google Patents

Method for injecting heated fluids into mineral bearing formations Download PDF

Info

Publication number
US3614986A
US3614986A US803533A US3614986DA US3614986A US 3614986 A US3614986 A US 3614986A US 803533 A US803533 A US 803533A US 3614986D A US3614986D A US 3614986DA US 3614986 A US3614986 A US 3614986A
Authority
US
United States
Prior art keywords
tubing
formation
fluids
mineral bearing
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US803533A
Inventor
William G Gill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electrothermic Co
Original Assignee
Electrothermic Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electrothermic Co filed Critical Electrothermic Co
Application granted granted Critical
Publication of US3614986A publication Critical patent/US3614986A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity

Definitions

  • the present invention relates to the recovery of minerals from sub-surface formations more particularly to method for injection of heated fluids in the subsurface formations for treating same.
  • sulphur is most commonly mined by injecting heated Water into the sulphur bearing formation for the purpose of melting the sulphur and permitting it to flow to the surface.
  • One of the methods for treating paraffin blocks in the production of oil is to inject hot oil into the formation. Hot water, steam and heated gases are often injected for repressuring petroleum bearing formations.
  • a definite limitation has been placed on the depth at which formations can be treated with heated fluids because of loss of heat of the fluids into the strata above the desired formation as the fluids flow through tubing from the surface to the formation of interest.
  • a well bore is drilled which extends from the surface into a mineral bearing formation positioned below other formations.
  • At least one tubular member of electrically conductive material is positioned in the well bore.
  • the fluids to be injected into the formation are heated and caused to flow through the tubular member into the mineral bearing formation while causing current to flow through the tubular member for generating heat and reducing loss of heat from the heated fluids into strata above the mineral bearing formation.
  • the tubular member is positioned within a string of conductive casing, but electrically insulated therefrom except at its bottom portion. Accordingly, the path of the flow of current will be down the tubular member to the mineral bearing formation, thence up to the conductive casing.
  • the tubular member can be made of material having a resistivity to provide the desired amount of heat. This is most often necessary when the mineral bearing formation is at relatively shallow depths.
  • high resistance sections can be provided in the tubular member producing additional heat at the high resistance portions.
  • FIG. 1 of the drawings a well bore 10 which penetrates the earth into a mineral bearing formation 12.
  • One or more strata 14 are positioned between the mineral bearing formation 12 and the surface 16 of the earth.
  • a formation 18 containing cold water is typically, among the formations penetrated by the well bore.
  • a String of casing 20 is positioned in the well bore 10 and extends from the surface to the mineral bearing formation 12.
  • an open hole completion is contemplated and the casing 20 only extends partially into the formation 12 whereas the well bore 10 suitably extends through the formation.
  • Concrete 22 is suitably forced into the formation above the mineral bearing formation and around the casing 20 for the purposes of limiting or restricting any tendency for the wall of the well bore to cave into the mineral bearing formation and for holding the casing 20 in place.
  • a flange 24 Threadedly connected to the upper of the string of casing 20 is a flange 24, suitably one formed of an insulating material.
  • a flange member 26 which supports a string of insulating pipe 30.
  • a string of conductive tubing 33 is supported by yet a third flange member 27, also suitably of insulating material.
  • the three flange members 24, 26 and 27 are connected into a unitary structure by a plurality of bolts 30 and nuts 32.
  • the lower portion 34 of the string of tubing is electrically connected to the lower portion 36 of the string of casing 20 by suitable means such as a centralizer 38 formed of conductive material.
  • the well head structure comprising the flanges 24, 26 and 27 in combination with the string of insulating pipe 28 effectively electrically insulates the string of tubing 33 from the string of casing 20 such that when a source of alternating current supply voltage is connected to the string of tubing 33 by a conductor 40 and to the string of casing 20 by conductor 42, the path of the flow of current will be along the entire length of the strings of tubing 33 and return through a path including casing 20 and the connecting member 38.
  • one of the flanges 24 and 27 is of insulating material that the tubing will be insulated from the casing at the head of the well and that the insulated head could be provided by other means, such as utilizing only the flange 26 to be of insulated material and insulating the bolt 30 from the flanges 27 and 24 or by using insulating bolts in combination with an insulating flange 26.
  • the string of tubing 33 is connected to a tank 50 through a valve 52 and a pump '54.
  • the tank 50 suitably contains fluid to be injected into the formation 12 and associated therewith is a heater 56 for heating the fluids to the desired temperature.
  • a second tank 58 which is connected to the string of tubing 33 at pump 60 and a valve 62.
  • the tank 58 and its associated pump 60 and valve 62 would only be provided, however, if it was desired to also remove fluids from the formation through the tubing 33. It will be noted in this regard that the pump 60 is effective when operated to produce a flow of fluids from the tubing 33 into the tank 58 whereas the tank 54 when operated will produce a flow of fluids from the tank 50 into the tubing 33.
  • the valve 62 and 52 would be closed and the pumps 54 and 60 would not be operated until such time as the fluids within the tank 50 were heated to a desired temperature by the heater 56. Electrical current is then caused to flow through the tubing 33 in casing 20 to produce heat.
  • the source of supply of voltage be connected to the conductors 40 and 42 through a transformer 70 having a plurality of taps 72 in order that the potential impressed across the circuit comprising the casing 20 in the tubing 33 can be varied.
  • the string of tubing can include one or more sections 74 of higher resistivity material in order to increase the resistance of the current path. As a greater amount of heat will be produced in the vicinity of the joints of high resistivity material, these can preferably be positioned in the vicinity of Water bearing sand such as the sand 18 or other strata having high coefficient of thermal conductivity.
  • the valve 52 is opened and the pump 54 operated to cause heated fluids to flow from the tank 50 into the mineral bearing formation 12.
  • Heat produced in the string of tubing 33 and the string of casing 20 as a result of flow of electrical current will effectively reduce the loss of heat from the heated fluids into the formations above the mineral bearing formations. Accordingly, it will be possible for the heated fluids from the tank 50 to arrive at the mineral bearing formation 12 at substantially the same temperature as that at which the fluids left the tank 50. It is important to note, in this regard, that when conventional installations are used for injection of heated fluids into subsurface formations that substantially no benefit will be obtained if the formation is more than 2000 feet deep as the temperature of the fluids reaching the formation will be substantially at formation temperature.
  • the tubing 33 can be thermally insulated from the formation 14 by applying thermal insulation to the casing or tubing or by centering the tubing 33 and pipe 28 with spacer 76 and sealing the annulus with packer 78 and 80 to provide air spaces with a miminimum of contact area.
  • FIG. 1 The installation of FIG. 1 can be modified as shown in in FIG. 2.
  • a path for flow of current through the formation can be provided by providing a length of insulating casing 96 at the lower end of the string of casing or by extending the tubing 33 below the insulating pipe 28 With the insulating pipe 28 extending below the casing 20.
  • the resistance of the current path in the formation can be varied to control the amount 4 of heating in the tubing and the formation. Such a procedure is especially useful in the treatment of formations containing paraffin base oils.
  • the method of treating a subterranean mineral producing formation wherein a well bore extends from the surface into a mineral bearing formation positioned below other formations comprises providing sections in a tubular member having a higher electrical resistivity than the remainder, positioning at said tubular member in said well bore extending downward from the surface into the mineral bearing formation and flowing heated fluids through the tubular member from the surface into the mineral bearing formation while causing electrical current to flow through said tubular member for generating heat and reducing loss of heat from said heated fluids into the other formations above said mineral bearing formations.
  • a method as defined in claim 1 further including the step of thermally insulating said tubular member from the other formations.
  • a method as defined in claim 4 further including the step of simultaneously heating the tubing and the mineral bearing formation adjacent said well bore.
  • a method as defined in claim 4 further including the step of thermally insulating said tubular member from the other formations.

Abstract

HEATED FLUIDS ARE INJECTED INTO MINERAL BEARING FORMATIONS WHILE FLOWING ELECTRICAL CURRENT THROUGH TUBING THROUGH WHICH THE FLUIDS ARE INJECTED AT A RATE TO PRODUCE HEAT IN THE TUBING SUFFICIENT TO PREVENT LOSS OF HEAT BY THE FLUIDS WHILE MOVING THROUGH THE TUBING.

Description

TANK
HEATER W. G. GILL Filed March 5, 1969 MINERAL BEARING FORMATIONS METHOD FOR INJECTING HEATED FLUIDS INTO VH/l/l/f/f/l/l/l/I/l/I I 1/! I I /////1 Oct. 26, 1,971
TANK
FIG. 2
INVENTOR WILLIAM G. GILL FIG.
I ////Jn/// United States Patent 3,614,986 METHOD FOR INJECTIN G HEATED FLUIDS INTO MINERAL BEARING FORMATIONS William G. Gill, Corpus Christi, Tex., assignor to The Electrothermic (10., Corpus Christi, Tex. Filed Mar. 3, 1969, Ser. No. 803,533 Int. Cl. E21b 43/24 US. Cl. 166-303 6 Claims ABSTRACT OF THE DISCLOSURE Heated fluids are injected into mineral bearing formations while flowing electrical current through tubing through which the fluids are injected. at a rate to produce heat in the tubing suflicient to prevent loss of heat by the fluids while moving through the tubing.
BACKGROUND OF THE INVENTION The present invention relates to the recovery of minerals from sub-surface formations more particularly to method for injection of heated fluids in the subsurface formations for treating same.
It is oftentimes desirable to treat a subsurface formation with heated fluids. For example, sulphur is most commonly mined by injecting heated Water into the sulphur bearing formation for the purpose of melting the sulphur and permitting it to flow to the surface. One of the methods for treating paraffin blocks in the production of oil is to inject hot oil into the formation. Hot water, steam and heated gases are often injected for repressuring petroleum bearing formations. However, a definite limitation has been placed on the depth at which formations can be treated with heated fluids because of loss of heat of the fluids into the strata above the desired formation as the fluids flow through tubing from the surface to the formation of interest. Thus, because of the above-mentioned cooling effect, it is generally not considered feasible to produce sulphur by the Frasch process at depths below 1500 feet. Similarly, efforts to treat oil bearing formations with heated fluids such as oil, gas or water at depths in excess of 2000 feet are generally not economical.
SUMMARY OF THE INVENTION In accordance with the method of the present invention, a well bore is drilled which extends from the surface into a mineral bearing formation positioned below other formations. At least one tubular member of electrically conductive material is positioned in the well bore. The fluids to be injected into the formation are heated and caused to flow through the tubular member into the mineral bearing formation while causing current to flow through the tubular member for generating heat and reducing loss of heat from the heated fluids into strata above the mineral bearing formation.
In accordance with the preferred embodiment of the invention, the tubular member is positioned within a string of conductive casing, but electrically insulated therefrom except at its bottom portion. Accordingly, the path of the flow of current will be down the tubular member to the mineral bearing formation, thence up to the conductive casing. If desired, the tubular member can be made of material having a resistivity to provide the desired amount of heat. This is most often necessary when the mineral bearing formation is at relatively shallow depths. Alternatively, high resistance sections can be provided in the tubular member producing additional heat at the high resistance portions.
Many objects and advantages of the invention will become apparent to those skilled in the art as a detailed description of the preferred embodiment of the invention 3,614,986 Patented Oct. 26, 1971 DESCRIPTION OF THE PREFERRED EMBODIMENT There is shown in FIG. 1 of the drawings a well bore 10 which penetrates the earth into a mineral bearing formation 12. One or more strata 14 are positioned between the mineral bearing formation 12 and the surface 16 of the earth. Typically, among the formations penetrated by the well bore would be a formation 18 containing cold water. A String of casing 20 is positioned in the well bore 10 and extends from the surface to the mineral bearing formation 12. In the specific example of the invention shown, an open hole completion is contemplated and the casing 20 only extends partially into the formation 12 whereas the well bore 10 suitably extends through the formation. Concrete 22 is suitably forced into the formation above the mineral bearing formation and around the casing 20 for the purposes of limiting or restricting any tendency for the wall of the well bore to cave into the mineral bearing formation and for holding the casing 20 in place.
Threadedly connected to the upper of the string of casing 20 is a flange 24, suitably one formed of an insulating material. There is also provided an insulating flange member 26 which supports a string of insulating pipe 30. A string of conductive tubing 33 is supported by yet a third flange member 27, also suitably of insulating material. The three flange members 24, 26 and 27 are connected into a unitary structure by a plurality of bolts 30 and nuts 32. The lower portion 34 of the string of tubing is electrically connected to the lower portion 36 of the string of casing 20 by suitable means such as a centralizer 38 formed of conductive material. It will be noted that the well head structure comprising the flanges 24, 26 and 27 in combination with the string of insulating pipe 28 effectively electrically insulates the string of tubing 33 from the string of casing 20 such that when a source of alternating current supply voltage is connected to the string of tubing 33 by a conductor 40 and to the string of casing 20 by conductor 42, the path of the flow of current will be along the entire length of the strings of tubing 33 and return through a path including casing 20 and the connecting member 38. It will be appreciated, in this regard, that so long as one of the flanges 24 and 27 is of insulating material that the tubing will be insulated from the casing at the head of the well and that the insulated head could be provided by other means, such as utilizing only the flange 26 to be of insulated material and insulating the bolt 30 from the flanges 27 and 24 or by using insulating bolts in combination with an insulating flange 26.
The string of tubing 33 is connected to a tank 50 through a valve 52 and a pump '54. The tank 50 suitably contains fluid to be injected into the formation 12 and associated therewith is a heater 56 for heating the fluids to the desired temperature. There can also be provided a second tank 58 which is connected to the string of tubing 33 at pump 60 and a valve 62. The tank 58 and its associated pump 60 and valve 62 would only be provided, however, if it was desired to also remove fluids from the formation through the tubing 33. It will be noted in this regard that the pump 60 is effective when operated to produce a flow of fluids from the tubing 33 into the tank 58 whereas the tank 54 when operated will produce a flow of fluids from the tank 50 into the tubing 33. In accordance with the method of the present invention, the valve 62 and 52 would be closed and the pumps 54 and 60 would not be operated until such time as the fluids within the tank 50 were heated to a desired temperature by the heater 56. Electrical current is then caused to flow through the tubing 33 in casing 20 to produce heat. In this connection, it is preferred that the source of supply of voltage be connected to the conductors 40 and 42 through a transformer 70 having a plurality of taps 72 in order that the potential impressed across the circuit comprising the casing 20 in the tubing 33 can be varied. Also, the string of tubing can include one or more sections 74 of higher resistivity material in order to increase the resistance of the current path. As a greater amount of heat will be produced in the vicinity of the joints of high resistivity material, these can preferably be positioned in the vicinity of Water bearing sand such as the sand 18 or other strata having high coefficient of thermal conductivity.
The valve 52 is opened and the pump 54 operated to cause heated fluids to flow from the tank 50 into the mineral bearing formation 12. Heat produced in the string of tubing 33 and the string of casing 20 as a result of flow of electrical current will effectively reduce the loss of heat from the heated fluids into the formations above the mineral bearing formations. Accordingly, it will be possible for the heated fluids from the tank 50 to arrive at the mineral bearing formation 12 at substantially the same temperature as that at which the fluids left the tank 50. It is important to note, in this regard, that when conventional installations are used for injection of heated fluids into subsurface formations that substantially no benefit will be obtained if the formation is more than 2000 feet deep as the temperature of the fluids reaching the formation will be substantially at formation temperature.
If an installation as shown in FIG. 1 is used, essentially all of the electrical energy will be converted to heat in the tubing as the casing becomes part of a conductor of indefinite area (the earth). The amount of heat which would be lost by the fluid if heat were not provided can easily be computed and the applied voltage controlled to pro vide the desired amount of heat.
In order to reduce the amount of heat required, the tubing 33 can be thermally insulated from the formation 14 by applying thermal insulation to the casing or tubing or by centering the tubing 33 and pipe 28 with spacer 76 and sealing the annulus with packer 78 and 80 to provide air spaces with a miminimum of contact area.
The installation of FIG. 1 can be modified as shown in in FIG. 2. Thus, it is feasible to insulate the tubing 33 from the casing 20 by using spacers 90 of insulating material and filling the annulus 92 above packer 94 with an insulating fluid. Further, if it is desired to provide heating in the formation 12 as well as the casing 20, a path for flow of current through the formation can be provided by providing a length of insulating casing 96 at the lower end of the string of casing or by extending the tubing 33 below the insulating pipe 28 With the insulating pipe 28 extending below the casing 20. By controlling the length of the joint 96 of casing or the distance the insulating pipe extends below the casing, the resistance of the current path in the formation can be varied to control the amount 4 of heating in the tubing and the formation. Such a procedure is especially useful in the treatment of formations containing paraffin base oils.
Although the invention has been described with reference to a particular preferred embodiment thereof, many changes and modifications will become apparent to those skilled in the art in view of the foregoing description which is intended to be illustrative and not limiting of the invention defined in the appended claims.
What is claimed is:
1. The method of treating a subterranean mineral producing formation wherein a well bore extends from the surface into a mineral bearing formation positioned below other formations that comprises providing sections in a tubular member having a higher electrical resistivity than the remainder, positioning at said tubular member in said well bore extending downward from the surface into the mineral bearing formation and flowing heated fluids through the tubular member from the surface into the mineral bearing formation while causing electrical current to flow through said tubular member for generating heat and reducing loss of heat from said heated fluids into the other formations above said mineral bearing formations.
2. A method as defined in claim 1 wherein the sections are positioned adjacent strata having a high coefficient of thermal conductivity.
3. A method as defined in claim 1 further including the step of thermally insulating said tubular member from the other formations.
4. The method of treating a subterranean mineral producing formation wherein a well bore extends from the the surface into a mineral bearing formation positioned below other formations that comprises positioning at least one tubular member in said well bore extending downward from the surface into the mineral bearing formation while causing electrical current to flow through said at least one tubular member for generating heat and reducing loss of heat from said heated fluids into the other formations above said mineral bearing formation and controlling the flow of electrical current to control the heat produced in said tubular member to be substantially equal to the heat which would be lost by the heated fluids in the absence of heating of the tubular member.
5. A method as defined in claim 4 further including the step of simultaneously heating the tubing and the mineral bearing formation adjacent said well bore.
6. A method as defined in claim 4 further including the step of thermally insulating said tubular member from the other formations.
References Cited UNITED STATES PATENTS 1,646,599 10/1927 Schaefer 219278 2,244,255 6/1941 Looman 166-302 2,561,249 7/1951 Tomlinson 2l9278 2,801,090 7/1957 Hoyer et al. 166248 X 3,236,304 2/1966 Sarapuu 166248 STEPHEN J. NOVOSAD, Primary Examiner US. Cl. X.R. 16660
US803533A 1969-03-03 1969-03-03 Method for injecting heated fluids into mineral bearing formations Expired - Lifetime US3614986A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80353369A 1969-03-03 1969-03-03

Publications (1)

Publication Number Publication Date
US3614986A true US3614986A (en) 1971-10-26

Family

ID=25186765

Family Applications (1)

Application Number Title Priority Date Filing Date
US803533A Expired - Lifetime US3614986A (en) 1969-03-03 1969-03-03 Method for injecting heated fluids into mineral bearing formations

Country Status (1)

Country Link
US (1) US3614986A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129183A (en) * 1977-06-30 1978-12-12 Texaco Inc. Use of organic acid chrome complexes to treat clay containing formations
US4140179A (en) * 1977-01-03 1979-02-20 Raytheon Company In situ radio frequency selective heating process
US4285401A (en) * 1980-06-09 1981-08-25 Kobe, Inc. Electric and hydraulic powered thermal stimulation and recovery system and method for subterranean wells
US4319632A (en) * 1979-12-04 1982-03-16 Gkj, Inc. Oil recovery well paraffin elimination means
US4378846A (en) * 1980-12-15 1983-04-05 Brock Kurtis B Enhanced oil recovery apparatus and method
US4538682A (en) * 1983-09-08 1985-09-03 Mcmanus James W Method and apparatus for removing oil well paraffin
US4716960A (en) * 1986-07-14 1988-01-05 Production Technologies International, Inc. Method and system for introducing electric current into a well
US4790375A (en) * 1987-11-23 1988-12-13 Ors Development Corporation Mineral well heating systems
US4821798A (en) * 1987-06-09 1989-04-18 Ors Development Corporation Heating system for rathole oil well
US4830111A (en) * 1987-09-09 1989-05-16 Jenkins Jerold D Water well treating method
US4911239A (en) * 1988-04-20 1990-03-27 Intra-Global Petroleum Reservers, Inc. Method and apparatus for removal of oil well paraffin
US4951748A (en) * 1989-01-30 1990-08-28 Gill William G Technique for electrically heating formations
US5020596A (en) * 1990-01-24 1991-06-04 Indugas, Inc. Enhanced oil recovery system with a radiant tube heater
US5082055A (en) * 1990-01-24 1992-01-21 Indugas, Inc. Gas fired radiant tube heater
US5101899A (en) * 1989-12-14 1992-04-07 International Royal & Oil Company Recovery of petroleum by electro-mechanical vibration
US5120935A (en) * 1990-10-01 1992-06-09 Nenniger John E Method and apparatus for oil well stimulation utilizing electrically heated solvents
US5247994A (en) * 1990-10-01 1993-09-28 Nenniger John E Method of stimulating oil wells
US5400430A (en) * 1990-10-01 1995-03-21 Nenniger; John E. Method for injection well stimulation
US6142707A (en) * 1996-03-26 2000-11-07 Shell Oil Company Direct electric pipeline heating
US6171025B1 (en) 1995-12-29 2001-01-09 Shell Oil Company Method for pipeline leak detection
US6179523B1 (en) 1995-12-29 2001-01-30 Shell Oil Company Method for pipeline installation
US6264401B1 (en) 1995-12-29 2001-07-24 Shell Oil Company Method for enhancing the flow of heavy crudes through subsea pipelines
US6315497B1 (en) 1995-12-29 2001-11-13 Shell Oil Company Joint for applying current across a pipe-in-pipe system
US6328102B1 (en) 1995-12-01 2001-12-11 John C. Dean Method and apparatus for piezoelectric transport
US6543539B1 (en) * 2000-11-20 2003-04-08 Board Of Regents, The University Of Texas System Perforated casing method and system
US6686745B2 (en) 2001-07-20 2004-02-03 Shell Oil Company Apparatus and method for electrical testing of electrically heated pipe-in-pipe pipeline
US6688900B2 (en) 2002-06-25 2004-02-10 Shell Oil Company Insulating joint for electrically heated pipeline
US6707012B2 (en) 2001-07-20 2004-03-16 Shell Oil Company Power supply for electrically heated subsea pipeline
US6714018B2 (en) 2001-07-20 2004-03-30 Shell Oil Company Method of commissioning and operating an electrically heated pipe-in-pipe subsea pipeline
US20040060693A1 (en) * 2001-07-20 2004-04-01 Bass Ronald Marshall Annulus for electrically heated pipe-in-pipe subsea pipeline
US6739803B2 (en) 2001-07-20 2004-05-25 Shell Oil Company Method of installation of electrically heated pipe-in-pipe subsea pipeline
US20040100273A1 (en) * 2002-11-08 2004-05-27 Liney David J. Testing electrical integrity of electrically heated subsea pipelines
WO2006116096A1 (en) * 2005-04-22 2006-11-02 Shell Internationale Research Maatschappij B.V. In situ conversion process utilizing a closed loop heating system
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US20090071647A1 (en) * 2003-04-24 2009-03-19 Vinegar Harold J Thermal processes for subsurface formations
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8200072B2 (en) 2002-10-24 2012-06-12 Shell Oil Company Temperature limited heaters for heating subsurface formations or wellbores
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US8608249B2 (en) 2001-04-24 2013-12-17 Shell Oil Company In situ thermal processing of an oil shale formation
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Cited By (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140179A (en) * 1977-01-03 1979-02-20 Raytheon Company In situ radio frequency selective heating process
US4129183A (en) * 1977-06-30 1978-12-12 Texaco Inc. Use of organic acid chrome complexes to treat clay containing formations
US4319632A (en) * 1979-12-04 1982-03-16 Gkj, Inc. Oil recovery well paraffin elimination means
US4285401A (en) * 1980-06-09 1981-08-25 Kobe, Inc. Electric and hydraulic powered thermal stimulation and recovery system and method for subterranean wells
US4378846A (en) * 1980-12-15 1983-04-05 Brock Kurtis B Enhanced oil recovery apparatus and method
US4538682A (en) * 1983-09-08 1985-09-03 Mcmanus James W Method and apparatus for removing oil well paraffin
US4716960A (en) * 1986-07-14 1988-01-05 Production Technologies International, Inc. Method and system for introducing electric current into a well
US4821798A (en) * 1987-06-09 1989-04-18 Ors Development Corporation Heating system for rathole oil well
US4830111A (en) * 1987-09-09 1989-05-16 Jenkins Jerold D Water well treating method
US4790375A (en) * 1987-11-23 1988-12-13 Ors Development Corporation Mineral well heating systems
US4911239A (en) * 1988-04-20 1990-03-27 Intra-Global Petroleum Reservers, Inc. Method and apparatus for removal of oil well paraffin
US4951748A (en) * 1989-01-30 1990-08-28 Gill William G Technique for electrically heating formations
US5101899A (en) * 1989-12-14 1992-04-07 International Royal & Oil Company Recovery of petroleum by electro-mechanical vibration
US5082055A (en) * 1990-01-24 1992-01-21 Indugas, Inc. Gas fired radiant tube heater
US5020596A (en) * 1990-01-24 1991-06-04 Indugas, Inc. Enhanced oil recovery system with a radiant tube heater
US5120935A (en) * 1990-10-01 1992-06-09 Nenniger John E Method and apparatus for oil well stimulation utilizing electrically heated solvents
US5247994A (en) * 1990-10-01 1993-09-28 Nenniger John E Method of stimulating oil wells
US5400430A (en) * 1990-10-01 1995-03-21 Nenniger; John E. Method for injection well stimulation
US6328102B1 (en) 1995-12-01 2001-12-11 John C. Dean Method and apparatus for piezoelectric transport
US6171025B1 (en) 1995-12-29 2001-01-09 Shell Oil Company Method for pipeline leak detection
US6179523B1 (en) 1995-12-29 2001-01-30 Shell Oil Company Method for pipeline installation
US6264401B1 (en) 1995-12-29 2001-07-24 Shell Oil Company Method for enhancing the flow of heavy crudes through subsea pipelines
US6315497B1 (en) 1995-12-29 2001-11-13 Shell Oil Company Joint for applying current across a pipe-in-pipe system
US6142707A (en) * 1996-03-26 2000-11-07 Shell Oil Company Direct electric pipeline heating
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6543539B1 (en) * 2000-11-20 2003-04-08 Board Of Regents, The University Of Texas System Perforated casing method and system
US8608249B2 (en) 2001-04-24 2013-12-17 Shell Oil Company In situ thermal processing of an oil shale formation
US6714018B2 (en) 2001-07-20 2004-03-30 Shell Oil Company Method of commissioning and operating an electrically heated pipe-in-pipe subsea pipeline
US6686745B2 (en) 2001-07-20 2004-02-03 Shell Oil Company Apparatus and method for electrical testing of electrically heated pipe-in-pipe pipeline
US6814146B2 (en) 2001-07-20 2004-11-09 Shell Oil Company Annulus for electrically heated pipe-in-pipe subsea pipeline
US20040060693A1 (en) * 2001-07-20 2004-04-01 Bass Ronald Marshall Annulus for electrically heated pipe-in-pipe subsea pipeline
US6707012B2 (en) 2001-07-20 2004-03-16 Shell Oil Company Power supply for electrically heated subsea pipeline
US6739803B2 (en) 2001-07-20 2004-05-25 Shell Oil Company Method of installation of electrically heated pipe-in-pipe subsea pipeline
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6688900B2 (en) 2002-06-25 2004-02-10 Shell Oil Company Insulating joint for electrically heated pipeline
US8200072B2 (en) 2002-10-24 2012-06-12 Shell Oil Company Temperature limited heaters for heating subsurface formations or wellbores
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US6937030B2 (en) 2002-11-08 2005-08-30 Shell Oil Company Testing electrical integrity of electrically heated subsea pipelines
US20040100273A1 (en) * 2002-11-08 2004-05-27 Liney David J. Testing electrical integrity of electrically heated subsea pipelines
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US20090071647A1 (en) * 2003-04-24 2009-03-19 Vinegar Harold J Thermal processes for subsurface formations
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
WO2006116096A1 (en) * 2005-04-22 2006-11-02 Shell Internationale Research Maatschappij B.V. In situ conversion process utilizing a closed loop heating system
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
EA011905B1 (en) * 2005-04-22 2009-06-30 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. In situ conversion process utilizing a closed loop heating system
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
CN101163858B (en) * 2005-04-22 2012-02-22 国际壳牌研究有限公司 In situ conversion system producing hydrocarbon compound from stratum and related method
AU2006239962B8 (en) * 2005-04-22 2010-04-29 Shell Internationale Research Maatschappij B.V. In situ conversion system and method of heating a subsurface formation
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US7831133B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
AU2006239962B2 (en) * 2005-04-22 2010-04-01 Shell Internationale Research Maatschappij B.V. In situ conversion system and method of heating a subsurface formation
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Similar Documents

Publication Publication Date Title
US3614986A (en) Method for injecting heated fluids into mineral bearing formations
US3605888A (en) Method and apparatus for secondary recovery of oil
US9399905B2 (en) Leak detection in circulated fluid systems for heating subsurface formations
US3757860A (en) Well heating
US3507330A (en) Method and apparatus for secondary recovery of oil
US3211220A (en) Single well subsurface electrification process
US3547193A (en) Method and apparatus for recovery of minerals from sub-surface formations using electricity
US4412585A (en) Electrothermal process for recovering hydrocarbons
US4730671A (en) Viscous oil recovery using high electrical conductive layers
CA2718767C (en) Using mines and tunnels for treating subsurface hydrocarbon containing formations
US3620300A (en) Method and apparatus for electrically heating a subsurface formation
US4612988A (en) Dual aquafer electrical heating of subsurface hydrocarbons
US8875788B2 (en) Low temperature inductive heating of subsurface formations
CA2929610C (en) Steam-injecting mineral insulated heater design
US20130269935A1 (en) Treating hydrocarbon formations using hybrid in situ heat treatment and steam methods
US10196885B2 (en) Downhole induction heater for oil and gas wells
US20120085535A1 (en) Methods of heating a subsurface formation using electrically conductive particles
US3650327A (en) Thermal insulation of wells
Ali et al. Electrical Heating—Doing the Same Thing Over and Over Again…
US3766980A (en) Permafrost and well protection
US3420301A (en) Apparatus for heating and recovering underground oil
AU2011237624B2 (en) Leak detection in circulated fluid systems for heating subsurface formations
US6536526B2 (en) Method for decreasing heat transfer from production tubing
Gill The electrothermic system for enhancing oil recovery