US3615479A - Automatic film processing method and apparatus therefor - Google Patents

Automatic film processing method and apparatus therefor Download PDF

Info

Publication number
US3615479A
US3615479A US732141A US3615479DA US3615479A US 3615479 A US3615479 A US 3615479A US 732141 A US732141 A US 732141A US 3615479D A US3615479D A US 3615479DA US 3615479 A US3615479 A US 3615479A
Authority
US
United States
Prior art keywords
film
density
developer
radiation
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US732141A
Inventor
Robert J Kohler
Jerry G Hughes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Guidance and Electronics Co Inc
Original Assignee
Itek Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itek Corp filed Critical Itek Corp
Application granted granted Critical
Publication of US3615479A publication Critical patent/US3615479A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/58Processes for obtaining metallic images by vapour deposition or physical development
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/26Processes using silver-salt-containing photosensitive materials or agents therefor
    • G03C5/29Development processes or agents therefor
    • G03C5/31Regeneration; Replenishers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03DAPPARATUS FOR PROCESSING EXPOSED PHOTOGRAPHIC MATERIALS; ACCESSORIES THEREFOR
    • G03D13/00Processing apparatus or accessories therefor, not covered by groups G11B3/00 - G11B11/00
    • G03D13/007Processing control, e.g. test strip, timing devices

Definitions

  • Grodberg ABSTRACT Selective region development of photographic film is made by relating density of the photographic emulsion with the intensity of an infrared beam directed onto the emulsion and by controlling the intensity as a function of the density. Apparatus for carrying out the method is provided.
  • FIGURE 1 FIGURE 2 sum 1- ur 4 FIGURE 5 Raben J. Koh/er Gerry 6.
  • the agitation or activity of the developing solution over different portions of the film is varied. It is possible with such a system to increase the developing activity in an area of the film where increased activity is desirable.
  • the present invention provides a process of selective region development of an exposed and partially developed photographic film by sensing the density of the film by exposure to a radiation beam to which the film is not sensitive, i.e. nonactinic radiation, (typically, infrared radiation); scanning the film directly with a beam of nonactinic radiation which causes heat effects on the film and increases the activity of the developer in the film; and controlling the intensity of the latter beam as a function of the sensed density.
  • a single beam of nonactinic radiation can be generated to measure the density of the film as well as to cause the heating and preferential development.
  • the preferred nonactinic radiation is infrared radiation.
  • the present invention represents a substantial advance in method and apparatus, which enables variation of the contrast and/or density of the image, and of selected areas of the exposed film, during the course of processing of the latent image.
  • the variables are selected so that the major portions of a film negative. when being developed at a given solution temperature for a given time interval, result in a negative of excellent contrast; a succeeding portion of the film may not, however, due to differences in contrast of the exposed image, respond correspondingly to such temperature and time parameters. Even if a compromise is made, substantial portions of the film may not develop satisfactorily.
  • FIG. 1 is a schematic, diagrammatic view of an embodiment of the invention in which a cold developer is employed
  • FIG. 2 is a schematic, diagrammatic view of another embodiment of the invention in which a viscous developer is employed
  • FIG. 3 is a schematic, perspective view of the infrared scanning system shown in FIGS. 1 and 2;
  • FIG 4 is a block diagram of the electronic components of the infrared scanning system shown in FIGS. 1 and 2;
  • FIG. 5 is a diagram illustrating the relationship of density (abscissa) and applied infrared energy (ordinate) in various films;
  • FIG. 6 represents a comparison of graphs of film densities (ordinate) vs. relative log exposure (abscissa) obtained with an aqueous developer for 4 minutes at 20 C. (curve A) and with an ethylene glycol viscous solution of the same developer at temperatures of 20 C. (curve C).
  • FIG. 7 represents a comparison of film densities (ordinate) with the relative log exposure (abscissa) after times of 0 sec. (curve A); 30 sec. (curve B); 60 sec. (curve C); and l20 sec. (curve D).
  • FIG. 8 is a graph of the relative log exposure (abscissa) versus density (ordinate) at 20 C. (curve A) 27 C. (curve B); 32 C (curve C) and 38 C. (curve D), with the viscous developer of FIG. 6; and
  • FIG. 9 is a graph of heating temperature (C.) (abscissa) related to relative film speed (ordinate), using the viscous developer of FIG. 6.
  • photosensitive media comprising silver halide as the photosensitive component
  • media comprising other organic or inorganic photosensitive materials can be used herein. These media comprise a photoconductor as the photosensitive component.
  • Preferred photoconductors are metal-containing photoconductors, and particularly preferred are the inorganic materials such as compounds of a metal and a nonmetallic element of group VIA of the periodic table* such as metal oxides, such as zinc oxide, titanium dioxide, antimony trioxide, aluminum oxide, zirconium dioxide, germanium dioxide, indium trioxide, hydrated potassium aluminum silicate (K AI Si O 'ZH O), tin oxide (SnO,), bismuth oxide 350, lead oxide (PbO), beryllium oxide (BeO), silicon dioxide (SiO barium titanate (BaTiO tantalum oxide Periodic table from Langes HANDBOOK or CHEMISTRY, Ninth Edition, pp. 56-57, 1956.
  • metal oxides such as zinc oxide, titanium dioxide, antimony trioxide, aluminum oxide, zirconium dioxide, germanium dioxide, indium trioxide, hydrated potassium aluminum silicate (K AI Si O 'ZH O), tin oxide (SnO,), bismuth oxide 350
  • Ti Te,0,,
  • Te0 tellurium oxide
  • boron oxide 5,0,
  • metal sultides such as cadmium sulfide (CdS), zinc sulfide (ZnS) and tin disulfide (SnS,)-, metal selenides such as cadmium selenide (CdSe).
  • Metal oxides are especially preferred photoconductors of this group. Titanium dioxide is a preferred metal oxide hecuuse of its unexpectedly good results.
  • fluorescent materials include, for example, compounds such as silver activated zinc sulfide, zinc activated zinc oxide,
  • manganese activated zinc phosphate Zn PO an admixture of copper sulfide, antimony sulfide (SbS) and magnesium oxide (MgO), and cadmium borate.
  • Suitable organic photoconductors include imidazolidinones, imidazolidinethiones, tetraarylazacyclooctatetraenes, and thiazines, such as l,3-diphenyl-4,5-bis( methoxyphenyl)imidazolidinone-2; 4,5-(bis(para-methoxyphenyl)imidazolidinone-2; 4-phenyl-50(paradimethylaminophenyl)imidazolidinone'2; 4,5- (bis(paramethoxyphenyl)imidazolidenthione-Z; 3, 4, 7, 8- tetraphenyH, 2, 5, 6-tetraazacyclooctatetraene-2, 3, 6, 8; and methylene blue.
  • heteropolyacids such as phosphotungstic acid, phosphosilicic acid, and phosphomolybic acid.
  • Developing agents useful for the media comprising photoconductors are liquid redox systems preferably comprising heavy metal ions such as silver, gold, copper, mercury, and other noble metal ions.
  • liquid redox systems preferably comprising heavy metal ions such as silver, gold, copper, mercury, and other noble metal ions.
  • British Pat. No. 1,043,250 fully describes suitable developing agents and processes for developing and fixing for use in this invention and is incorporated herein by reference.
  • exposed film 10 on supply roll 11 is advanced by appropriate motor means (not shown) through tank 12 containing a suitable developer indicated by 13.
  • the developer is maintained at a relatively low temperature, e.g., just above the freezing temperature, in order to minimize activity of the developing agent or agents therein.
  • Film 10 is advanced over a series of idlers l4 and is removed over idler 15.
  • various other methods of underdeveloping the film may be used, e.g., use of lowenergy developers, shortening the developing time, etc.
  • the emulsion (light-sensitive layer) portion of film 10 Upon removal from tank 12, the emulsion (light-sensitive layer) portion of film 10 will continue to contain developer.
  • Film 10 after having passed over idler 15 is then scanned with a rapidly moving beam of energy to which the film is not sensi tive, typically infrared energy, at a station 16.
  • the infrared energy is provided by a suitable source 17, preferably a Xenon lamp or a laser.
  • the IR rays are focused and are directed by an optical system comprising lenses l8 and movable mirror 19, upon film 10.
  • Mirror 19 is mounted on a movable part of galvanometer 20 to scan the beam over the film, as described hereinafter in connection with FIGS. 3 and 4.
  • the level of partial development is detected by means of infrared sensor 21.
  • This sensor 21 is positioned on the underside of film 10 and senses the transmissivity, i.e., the inverse of film density. Alternatively, reflectance may be sensed. Sensor 21 is associated with the electronics system depicted in FIG. 4.
  • a silver halide-type film will still have an appreciable amount of silver halide at station 16, since the film is only partially or predeveloped.
  • Silver halide, the photosensitive material in the undeveloped emulsion on film 10 is a whitishappearing material having a degree of transparency of about 4060 percent and a reflectance of about 60-40 percent depending upon the condition and type of the film. Such factors as the degree of wetness, amount of predevelopment and the like, govern the relative transmissitivity and reflectance of the film to nonactinic radiation.
  • Metallic silver is a blackish material and hence substantially not transmissive and not reflective.
  • the density level of the image on the film increases with increased development, less radiation is transmitted or reflected by any discrete area of the film and less radiation is received by sensor 21.
  • the scanned film is then advanced over idler 22 for further processing, including, in sequence, for example (but not shown) passage through a short stop bath, a fixing bath, a wash section and a drying section, all of which are well known in the art and need not be described in detail.
  • FIG. 2 there is shown a modification of the system illustrated in FIG. 1; similar elements have the same reference numerals and are not again described.
  • a viscous or gel developer is used. With such a developer, a controlled amount of developer can be put on the emulsion of the film and an ample supply of developer constituents is provided.
  • the viscous material or gel provides a substance into which oxidized development products can diffuse; there is reduced developer evaporation, and increased infrared absorption due to the thickness of the viscous or gel developer layer.
  • the film 10 is advanced to viscous or gel developer applicator 50.
  • the applicator may be of conventional form for applying a viscous or gel material to a surface.
  • viscous material may comprise a tank having an adjustable bottom slot and an adjustable doctor blade positioned beside the slot.
  • the gel containing the developer can be applied from a continuous roll supply of gel on a support therefor from which the gel separates on contact with the film.
  • the film is advanced to station 16 as described in connection with FIG. 1. Processing is the same as mentioned with FIG. 1, except that a prewashing can be included before the short stop bath in order to prevent contamination of the short stop bath with emulsifier.
  • the viscous or gel developer can be removed by use of a rubber blade in pressure contact with the film as it advances, thus obviating the need of a prewash.
  • FIG. 3 illustrates an infrared scanning system wherein infrared source 17 located in a chamber (not shown) provides, in air, an infrared beam which passes through filter 101, lens 102 and thence to mirror 19, from which it is focused upon film 10.
  • the mirror 19 is jointed to the moving element of galvanometer 20 through shaft 103.
  • a relatively large mirror 19 is used to subtend the infrared radiation passed by lens 102. For example, with a I 2.5 rotation of galvanometer shaft 13, a 5 deflection is given the infrared beam (100).
  • FIG. 4 illustrates an apparatus automatically adjusting for density, and effecting selective development.
  • the Xenon arc lamp may, for example, have an effective are area of 0.3 mm. x 0.3 mm., and an intensity of about 3,000 candles. Even after losses in the lenses, filters, mirror and other auxiliary equipment which may be used, approximately 5 watts of energy can still be applied to the film.
  • Xenon arc lamps have the property that the intensity of the lamp can be modulated electronically. with practically instant response.
  • the infrared radiation can be obtained by other means; lasers are particularly useful providing a sharply collimated and defined beam of high energy. When the laser is used, mirror 19 may be small.
  • a power supply 200 energizes a drive amplifier 20] controlled by a saw tooth oscillator 202 having a saw tooth wave output to the galvanometer 20, so that the galvanometer 20 will cause the mirror to rotate scanning beam 100 slowly across film 10 and then be returned suddenly to the starting point at one edge thereof.
  • Other means of scanning the beam across the film may, of course, be provided, such as providing a multisided rotating mirror or the like.
  • a semitransparent mirror 203 that is, a mirror which passes a portion of infrared beam straight through and reflects a portion thereof, is interposed in the path of the beam between galvanometer mirror 19 and film 10.
  • Mirror 203 directs the major portion of the beam 100 onto film 10.
  • beam 100 strikes photocell 204 which is designed to be specifically sensitive to the wavelength of radiation received.
  • Photocell 204 acts as a sensor of the radiation passing through the film, and develops a signal I, which is proportional to the radiation transmitted through the film.
  • a second photocell 205 is located in the path of the beam reflected by mirror 203, and from photocell 205 a signal I, is derived proportional to the output of radiation of lamp 17, which serves as a reference beam. lf reflected energy is to be measured, instead of transmitted energy, a reflected beam 100' (FlG.0) is detected by detector 204".
  • the output from the computing devices, comparator 206, will appear at a line 207, and is applied to an intensity control adjustment unit 208.
  • the intensity control adjustment unit introduces a distortion into the signal in dependence upon an input, schematically indicated at' 209, to compensate for the relative differences in sensitivity to infrared energy of various films.
  • This adjustment may have to be made manually, that is, the input at 209 may be a manual adjustment of parameters of unit 208 which, for example, may include resistance diode networks.
  • the output from intensity control unit 208, appearing at line 210, is applied to a current modulator 211, which modulates the power applied to lamp 17 from a power source 212, in accordance with the signal appearing at line 210.
  • a starting circuit, schematically shown at 213, is also provided for Xenon lamp 17.
  • the apparatus of FIG. 4 may be used at station 16 of either of FIGS. I or 2.
  • FIG. 1 Operation in accordance with FIG. 1 is as follows. Exposed, unprocessed film is predeveloped in tank 12 (FIG. 1), the temperature of the developer 13 being low enough to minimize the activity of developing agents, for example, of the order of 0 C., allowing only minimal development. Upon removal, the emulsion of the film, that is the light-sensitive layer, will retain all the developer it can hold. Upon scanning across film 10 with a flying spot of infrared energy, beam 100, the infrared beam will heat the emulsion and the developer in inverse relation to the amount of density present in the film.
  • the sensor 204 will detect a high transmission of infrared, thus controlling lines 207 unit 208 line 210, the modulator 211 to cause Xenon lamp 17 to provide more energy and thus more heat to the developer.
  • sensor 204 will detect a lesser amount of infrared and hence less heat will be applied to that portion of the film. Since the development rate is highly dependent on temperature (as is well known, and as illustrated by the graphs and discussion below), the rate of development can be controlled at incremental regions of the film by heating different portions of the film to different temperatures.
  • Operation of the apparatus in the system illustrated by FIG. 2 is as follows. The operation is similar to that previously described in connection with FIG. 1, except that unprocessed film 10 is coated with a viscous or gel developer. Development is again allowed to proceed to a minimal amount to provide some density in the film. Heat, again, is applied in inverse relationship to the amount of density present, that is the more density, the less infrared energy is supplied.
  • the signal applied at line 210 is a function not only of the instantaneous density of the film (derived from comparator 206) but also of the processing constants of the film (derived from unit 208). As shown graphically by FIG. 5, the shape and position of the curve will be different for different emulsions used. Manual adjustment at terminal 209 changes this control when the type of film being processed changes.
  • Comparator 206 can be simple. When silicon photovoltaic cells are used for sensors 204 and 205, and comparator 206 has a high resistance load approaching an open circuit, the output of the silicon cells is practically a logarithmic voltage function of the illumination, so that a simple subtracting network suffices. If the load on the silicon voltaic cells increases, the logarithmic relationship changes and at practically a short circuit across the silicon voltaic cell, current will be proportioned directly to the illumination and to the area of the cell illuminated, so that the logarithmic relationship is established by circuitry within unit 206.
  • sensor 204 sensing the density of the film, exposed to the same source of infrared radiation as that which is utilized to selectively develop the film.
  • the output signal appearing at line 210 can then be applied to a more powerful lamp, or other element instantaneously responsive to the signal at line 210, to cause selective development.
  • photocell 205 strictly necessary, if the intensity of the radiation source from which the density signal is obtained, is essentially constant.
  • the system illustrated in FIG. 4, however, is a simple closed loop utilizing a minimum of components.
  • a 70 mm. aerial negative, showing a section of a Metropolitan area was obtained in which a given exposure had produced a normal density in a sunlit area, but also contained a large area of lower density, caused by cloud shadow coverage.
  • the negative was projection printed onto a fine grain, medium contrast, aerial duplication film, type 8430.
  • the projection system comprised a 4X5chromega enlarger equipped with two I00-watt tungsten lamps and mm. lens. With a magnification factor of 4X, an exposure of 28 seconds at f/ 11 was given.
  • the exposed 8430 film was then processed in the following manner:
  • an exposure time of2 seconds was given at 03setting on the light control unit.
  • the remaining strips were then individually processed for a total time of 2 minutes, but during development were selec tively treated with varying exposure to infrared energy.
  • INFRARED EXPOSURE Strip 0 Initial Development IR Exposure (on't De ⁇ 2 l minute l0 seconds 50 seconds 3 I minute 20 seconds 4t! seconds 4 1 minute 30 seconds 30 seconds 5 l minute 40 seconds seconds with infrared energy.
  • the method is superior to conventional processing techniques, in that emulsion speed control during development is possible through controlled amounts of infrared energy.
  • the controlled development makes possible an increase in the amount of information obtainable from aerial films.
  • the method is effective for photographic dodging, which is the photographers art of improving the quality of reproduction made from poorly exposed film, which generally consists of selectively reducing the amount of light passing through underexposed areasof a negative .while allowing the same or more light to penetrate the darker. overexposed portions.
  • viscous or gel developers are advantageous in several respects. For example, there is a lower dissipation of heat by conduction along the surface of the film containing a viscous or gel developenLess energy is required to raise its temperature and there is no significant cooling due to evaporation.
  • a standard developer mixed in a solution which is slightly more viscous than it would be when mixed with water, can be used and normal sensitometry obtained which can have a 10X speed change with a 20 C. temperature change. This speed change can be obtained with only that developer remaining on the emulsion after draining.
  • the method of the present invention is effective for controlling film development rate and, hence, the emulsion speed, in the developer possessed sensitometry comparable to that which is obtained in a comparable aqueous developer.
  • This is shown by FIG. 6.
  • Curve B was lower than Curve A.
  • the viscous developers employed in the present invention may vary widely as to the viscosity.
  • the developer should have a viscosity of from about 2,000 centipoises up to several hundred thousand centipoises.
  • the flow characteristics of the developer should be of an order which permits efficient flow application into the photographic film, and retention of the developer on the film surface.
  • the developer can be provided in the form of a gel which has the physical properties of a continuous film or layer thus rendering it particularly suitable for the present process.
  • the gel film or layer can be applied in predetermined amount to the photographic film from a roll or feed supply composed of the gel on a suitable support from which the gel separates on contact with the photographic film.
  • the thickness of the gel film, concentration of developer and similar considerations are determined by the film requirements and other variables which are obvious to those skilled in the art.
  • a chemical processing method for selective region development of photographic film having an emulsion with a latent image thereon including the steps of partially developing the latent image in the emulsion and measuring the density of the film in successive regions of the partially developed image, the improvement which comprises directing a beam of non actinic energy causing heating effect on the film onto successive regions of the film, and controlling the intensity of said beam as a function of said measured density in each region to selectively heat each region of the film, thereby selectively controlling the extent of development in each region of the film.
  • step of directing the beam of infrared energy includes energizing a heat source, focusing a beam of heat radiation and cyclically deflecting the focused beam across the film.
  • the cyclical deflection step includes the step of applying the beam to a mirror and cyclically moving the mirror.
  • a chemical processing method for selective region development of photographic film having an emulsion with a latent image thereon including the steps of partially developing the latent image in the emulsion with a developer and measuring the density of the film in the region of the partially developed image by sensing radiation conveyed by the film from a beam of nonactinic energy and scanning the film with a beam of nonactinic radiation which causes heat effects on the film and increases the activity of the developer in the film, the intensity of said latter beam being controlled as a function of the sensed density, the improvement which comprises using a single beam of nonactinic radiation for said density measuring and said scanning.

Abstract

Selective region development of photographic film is made by relating density of the photographic emulsion with the intensity of an infrared beam directed onto the emulsion and by controlling the intensity as a function of the density. Apparatus for carrying out the method is provided.

Description

United States Patent Robert .I. Kohler Alexandria, Va.;
Jerry G. Hughes, Waltham, Mass. 732,141
May 27, 1968 Oct. 26, 1 971 Itek Corporation Lexington, Mass.
Inventors Appl. No. Filed Patented Assignee AUTOMATIC FILM PROCESSING METHOD AND APPARATUS THEREFOR 18 Claims, 9 Drawing Figs.
[1.8. CI 96/48, 96/89 Int. Cl G03c 5/24, G03c 1/72 Field of Search 96/48; 95/89 [56] References Cited UNITED STATES PATENTS 3,457,075 7/1969 Morgan et a1 M 96/48 HD 3,388,652 6/1968 Parrent 96/48 1,959,233 5/1934 Franke 95/89 3,033,678 5/1962 Hunt 96/108 Primary ExaminerNorman G. Torchin Assistant Examiner-Edward C. Kimlin Attorneys-Homer 0. Blair. Robert L. Nathans and Lester S.
Grodberg ABSTRACT: Selective region development of photographic film is made by relating density of the photographic emulsion with the intensity of an infrared beam directed onto the emulsion and by controlling the intensity as a function of the density. Apparatus for carrying out the method is provided.
PATENTEDnm 26 I97! FIGURE 1 FIGURE 2 sum 1- ur 4 FIGURE 5 Raben J. Koh/er Gerry 6. Hughes Afro/nay PATENTEUUCT 25 Ian SHEET 2 OF 4 T N 2/3 FIGURE STARTER-- 20 m0 2// 7 2/2 XENON CURRENT POWER LAMP MODULATOR SUPPLY 20/ T l DRIVE AMPLIFIER T 2/0 508 205 INTENSITY CONTROL m) l FILM 209 POWER SAWTOOTH COMPUTE SUPPLY OSC|LLATQR\ |DENSITY 202- T og log I 200 /nvem0rs Robe/f J. Ko/v/er Gerry 6. Hughes By Imam Afro/Hey PATENTEDum 2s |97l I 3,615,479
SHEET 30F 4 FIGUREE 3.0 C /[A FIGURE? 3 mwswfors Robe/f J. Kah/er Gerry 6. Hug/2 MXW A Nor/16y PATENTEDUET 26 men 3.615.479
SHEET u 0F 4 FIGURE 8 FIGURE 9 I6 21 27 32 38 mvenfors Robert J. Ko/v/er Gerry G. Hug/res By j Afro/nay AUTOMATIC FILM PROCESSING METHOD AND APPARATUS THEREFOR The invention hereindescribed was made in the course of or under a contract or subcontract thereunder with the United States Government, Department of Defense.
CROSS-REFERENCES This application is related to each of the following applications, each of which is entitled AUTOMATIC FILM PROCESSING DEVICE AND METHOD: I-90A Ser. No. 638,163, filed Mar. 10, 1967; and I-92A Ser. No. 657,558, filed Aug. 1,1967.
BACKGROUND OF THE INVENTION 1. Field of Invention This invention has to do with a method for processing photographic film and with film-processing apparatus. More specifically, the invention relates to such methods and apparatus which are essentially automatic.
The invention is described and is illustrated hereinbelow with regard to the processing of aerial reconnaissance film. However, it is to be understood that the method and apparatus of this invention are applicable equally to the processing of any type of film.
2. Description of Prior Art One of the prime prerequisites in photography is the faithful recording of detail, which is mainly dependent upon the size and shape of the photographic image, and the density differences which distinguish the image from its surroundings. Major problems are encountered in the recording of this detail due to solar altitude, atmospheric effects (e.g., haze and cloud shadows), terrain types e.g., beaches and forests) and other factors; this is particularly pronounced in high altitude, wide area, long distance photography where ground detail is contained in a microimage. Large area coverage generally requires great exposure latitude in the film, due to variations in illumination and terrain, the exposure in effect being a compromise between optimum exposure for highlights and shadows or dark areas.
It is desirable to control sensitometric characteristics of individual areas of a film negative without degrading the microimage detail. In an effort to increase the information content of wide area photography, the processing of the photographic film has been improved. By control of film development, the film's ability to record information is increased. Exposure latitude of the film has been extended, while enabling correcting for overexposure or underexposure. Such control can be exercised by change of various parameters of the developer, including; temperature, agitation, development time, and chemical composition.
According to other prior techniques, the agitation or activity of the developing solution over different portions of the film is varied. It is possible with such a system to increase the developing activity in an area of the film where increased activity is desirable.
SUMMARY OF THE INVENTION The present invention provides a process of selective region development of an exposed and partially developed photographic film by sensing the density of the film by exposure to a radiation beam to which the film is not sensitive, i.e. nonactinic radiation, (typically, infrared radiation); scanning the film directly with a beam of nonactinic radiation which causes heat effects on the film and increases the activity of the developer in the film; and controlling the intensity of the latter beam as a function of the sensed density. A single beam of nonactinic radiation can be generated to measure the density of the film as well as to cause the heating and preferential development. The preferred nonactinic radiation is infrared radiation.
The present invention represents a substantial advance in method and apparatus, which enables variation of the contrast and/or density of the image, and of selected areas of the exposed film, during the course of processing of the latent image. Ordinarily in techniques proposed hitherto, the variables are selected so that the major portions of a film negative. when being developed at a given solution temperature for a given time interval, result in a negative of excellent contrast; a succeeding portion of the film may not, however, due to differences in contrast of the exposed image, respond correspondingly to such temperature and time parameters. Even if a compromise is made, substantial portions of the film may not develop satisfactorily.
DESCRIPTION OF DRAWINGS The construction and operation of the apparatus of the present invention will become apparent from the description which follows taken in connection with the accompanying drawings, in which:
FIG. 1 is a schematic, diagrammatic view of an embodiment of the invention in which a cold developer is employed;
FIG. 2 is a schematic, diagrammatic view of another embodiment of the invention in which a viscous developer is employed;
FIG. 3 is a schematic, perspective view of the infrared scanning system shown in FIGS. 1 and 2;
FIG 4 is a block diagram of the electronic components of the infrared scanning system shown in FIGS. 1 and 2;
FIG. 5 is a diagram illustrating the relationship of density (abscissa) and applied infrared energy (ordinate) in various films;
FIG. 6 represents a comparison of graphs of film densities (ordinate) vs. relative log exposure (abscissa) obtained with an aqueous developer for 4 minutes at 20 C. (curve A) and with an ethylene glycol viscous solution of the same developer at temperatures of 20 C. (curve C).
FIG. 7 represents a comparison of film densities (ordinate) with the relative log exposure (abscissa) after times of 0 sec. (curve A); 30 sec. (curve B); 60 sec. (curve C); and l20 sec. (curve D).
FIG. 8 is a graph of the relative log exposure (abscissa) versus density (ordinate) at 20 C. (curve A) 27 C. (curve B); 32 C (curve C) and 38 C. (curve D), with the viscous developer of FIG. 6; and
FIG. 9 is a graph of heating temperature (C.) (abscissa) related to relative film speed (ordinate), using the viscous developer of FIG. 6.
DESCRIPTION OF REFERRED EMBODIMENTS In addition to photosensitive media comprising silver halide as the photosensitive component, media comprising other organic or inorganic photosensitive materials can be used herein. These media comprise a photoconductor as the photosensitive component. Preferred photoconductors are metal-containing photoconductors, and particularly preferred are the inorganic materials such as compounds of a metal and a nonmetallic element of group VIA of the periodic table* such as metal oxides, such as zinc oxide, titanium dioxide, antimony trioxide, aluminum oxide, zirconium dioxide, germanium dioxide, indium trioxide, hydrated potassium aluminum silicate (K AI Si O 'ZH O), tin oxide (SnO,), bismuth oxide 350, lead oxide (PbO), beryllium oxide (BeO), silicon dioxide (SiO barium titanate (BaTiO tantalum oxide Periodic table from Langes HANDBOOK or CHEMISTRY, Ninth Edition, pp. 56-57, 1956. (Ta,0,,), tellurium oxide (Te0,), and boron oxide (5,0,); metal sultides such as cadmium sulfide (CdS), zinc sulfide (ZnS) and tin disulfide (SnS,)-, metal selenides such as cadmium selenide (CdSe). Metal oxides are especially preferred photoconductors of this group. Titanium dioxide is a preferred metal oxide hecuuse of its unexpectedly good results.
Also useful as photoconductors are certain fluorescent materials. Such materials include, for example, compounds such as silver activated zinc sulfide, zinc activated zinc oxide,
manganese activated zinc phosphate Zn (PO an admixture of copper sulfide, antimony sulfide (SbS) and magnesium oxide (MgO), and cadmium borate.
Suitable organic photoconductors include imidazolidinones, imidazolidinethiones, tetraarylazacyclooctatetraenes, and thiazines, such as l,3-diphenyl-4,5-bis( methoxyphenyl)imidazolidinone-2; 4,5-(bis(para-methoxyphenyl)imidazolidinone-2; 4-phenyl-50(paradimethylaminophenyl)imidazolidinone'2; 4,5- (bis(paramethoxyphenyl)imidazolidenthione-Z; 3, 4, 7, 8- tetraphenyH, 2, 5, 6-tetraazacyclooctatetraene-2, 3, 6, 8; and methylene blue.
Also useful as photoconductors are heteropolyacids such as phosphotungstic acid, phosphosilicic acid, and phosphomolybic acid.
Developing agents useful for the media comprising photoconductors are liquid redox systems preferably comprising heavy metal ions such as silver, gold, copper, mercury, and other noble metal ions. British Pat. No. 1,043,250 fully describes suitable developing agents and processes for developing and fixing for use in this invention and is incorporated herein by reference.
Referring now to FIG. 1, exposed film 10 on supply roll 11 is advanced by appropriate motor means (not shown) through tank 12 containing a suitable developer indicated by 13. The developer is maintained at a relatively low temperature, e.g., just above the freezing temperature, in order to minimize activity of the developing agent or agents therein. Film 10 is advanced over a series of idlers l4 and is removed over idler 15. As is obvious to those skilled in the art, various other methods of underdeveloping the film may be used, e.g., use of lowenergy developers, shortening the developing time, etc.
Upon removal from tank 12, the emulsion (light-sensitive layer) portion of film 10 will continue to contain developer. Film 10 after having passed over idler 15 is then scanned with a rapidly moving beam of energy to which the film is not sensi tive, typically infrared energy, at a station 16. The infrared energy is provided by a suitable source 17, preferably a Xenon lamp or a laser. The IR rays are focused and are directed by an optical system comprising lenses l8 and movable mirror 19, upon film 10. Mirror 19 is mounted on a movable part of galvanometer 20 to scan the beam over the film, as described hereinafter in connection with FIGS. 3 and 4.
As filml0 is scanned with IR energy at station 16, the level of partial development is detected by means of infrared sensor 21. This sensor 21 is positioned on the underside of film 10 and senses the transmissivity, i.e., the inverse of film density. Alternatively, reflectance may be sensed. Sensor 21 is associated with the electronics system depicted in FIG. 4.
A silver halide-type film will still have an appreciable amount of silver halide at station 16, since the film is only partially or predeveloped. Silver halide, the photosensitive material in the undeveloped emulsion on film 10, is a whitishappearing material having a degree of transparency of about 4060 percent and a reflectance of about 60-40 percent depending upon the condition and type of the film. Such factors as the degree of wetness, amount of predevelopment and the like, govern the relative transmissitivity and reflectance of the film to nonactinic radiation. Metallic silver is a blackish material and hence substantially not transmissive and not reflective. Hence, as the density level of the image on the film increases with increased development, less radiation is transmitted or reflected by any discrete area of the film and less radiation is received by sensor 21. The scanned film is then advanced over idler 22 for further processing, including, in sequence, for example (but not shown) passage through a short stop bath, a fixing bath, a wash section and a drying section, all of which are well known in the art and need not be described in detail.
In FIG. 2, there is shown a modification of the system illustrated in FIG. 1; similar elements have the same reference numerals and are not again described. lnstead of the developing bath, a viscous or gel developer is used. With such a developer, a controlled amount of developer can be put on the emulsion of the film and an ample supply of developer constituents is provided. The viscous material or gel provides a substance into which oxidized development products can diffuse; there is reduced developer evaporation, and increased infrared absorption due to the thickness of the viscous or gel developer layer. The film 10 is advanced to viscous or gel developer applicator 50. The applicator may be of conventional form for applying a viscous or gel material to a surface. For example, with viscous material, it may comprise a tank having an adjustable bottom slot and an adjustable doctor blade positioned beside the slot. The gel containing the developer can be applied from a continuous roll supply of gel on a support therefor from which the gel separates on contact with the film. Following application of the developer to film 10, the film is advanced to station 16 as described in connection with FIG. 1. Processing is the same as mentioned with FIG. 1, except that a prewashing can be included before the short stop bath in order to prevent contamination of the short stop bath with emulsifier. Alternatively, the viscous or gel developer can be removed by use of a rubber blade in pressure contact with the film as it advances, thus obviating the need of a prewash.
FIG. 3 illustrates an infrared scanning system wherein infrared source 17 located in a chamber (not shown) provides, in air, an infrared beam which passes through filter 101, lens 102 and thence to mirror 19, from which it is focused upon film 10. The mirror 19 is jointed to the moving element of galvanometer 20 through shaft 103. A relatively large mirror 19 is used to subtend the infrared radiation passed by lens 102. For example, with a I 2.5 rotation of galvanometer shaft 13, a 5 deflection is given the infrared beam (100).
FIG. 4 illustrates an apparatus automatically adjusting for density, and effecting selective development. Xenon arc lamp 17, shown in block form only, emits a beam of infrared radiation 100 toward mirror 19 scanning across film 10 upon movement of the mirror 19 by the galvanometer 20. The Xenon arc lamp may, for example, have an effective are area of 0.3 mm. x 0.3 mm., and an intensity of about 3,000 candles. Even after losses in the lenses, filters, mirror and other auxiliary equipment which may be used, approximately 5 watts of energy can still be applied to the film. Xenon arc lamps have the property that the intensity of the lamp can be modulated electronically. with practically instant response. The infrared radiation can be obtained by other means; lasers are particularly useful providing a sharply collimated and defined beam of high energy. When the laser is used, mirror 19 may be small.
A power supply 200 energizes a drive amplifier 20] controlled by a saw tooth oscillator 202 having a saw tooth wave output to the galvanometer 20, so that the galvanometer 20 will cause the mirror to rotate scanning beam 100 slowly across film 10 and then be returned suddenly to the starting point at one edge thereof. Other means of scanning the beam across the film may, of course, be provided, such as providing a multisided rotating mirror or the like.
A semitransparent mirror 203, that is, a mirror which passes a portion of infrared beam straight through and reflects a portion thereof, is interposed in the path of the beam between galvanometer mirror 19 and film 10. Mirror 203 directs the major portion of the beam 100 onto film 10. After passing through the film, beam 100 strikes photocell 204 which is designed to be specifically sensitive to the wavelength of radiation received. Photocell 204 acts as a sensor of the radiation passing through the film, and develops a signal I, which is proportional to the radiation transmitted through the film. A second photocell 205 is located in the path of the beam reflected by mirror 203, and from photocell 205 a signal I, is derived proportional to the output of radiation of lamp 17, which serves as a reference beam. lf reflected energy is to be measured, instead of transmitted energy, a reflected beam 100' (FlG.0) is detected by detector 204".
Signals l and l, are compared in a comparator 206 having logarithmic characteristics, that is having a transfer function of (1) D=log I,,log I,..., where D is equal to the density, and 1,, and I, are incident and transmitted radiation, respectively.
The output from the computing devices, comparator 206, will appear at a line 207, and is applied to an intensity control adjustment unit 208. The intensity control adjustment unit introduces a distortion into the signal in dependence upon an input, schematically indicated at' 209, to compensate for the relative differences in sensitivity to infrared energy of various films. This adjustment may have to be made manually, that is, the input at 209 may be a manual adjustment of parameters of unit 208 which, for example, may include resistance diode networks.
The output from intensity control unit 208, appearing at line 210, is applied to a current modulator 211, which modulates the power applied to lamp 17 from a power source 212, in accordance with the signal appearing at line 210.
A starting circuit, schematically shown at 213, is also provided for Xenon lamp 17.
The transfer function of unit 208 is schematically illustrated in FIG. 5, mathematically:
(2) l=f(D)....
The apparatus of FIG. 4 may be used at station 16 of either of FIGS. I or 2.
Operation in accordance with FIG. 1 is as follows. Exposed, unprocessed film is predeveloped in tank 12 (FIG. 1), the temperature of the developer 13 being low enough to minimize the activity of developing agents, for example, of the order of 0 C., allowing only minimal development. Upon removal, the emulsion of the film, that is the light-sensitive layer, will retain all the developer it can hold. Upon scanning across film 10 with a flying spot of infrared energy, beam 100, the infrared beam will heat the emulsion and the developer in inverse relation to the amount of density present in the film. Thus, where there is no density, the sensor 204 will detect a high transmission of infrared, thus controlling lines 207 unit 208 line 210, the modulator 211 to cause Xenon lamp 17 to provide more energy and thus more heat to the developer. When there is substantial density, sensor 204 will detect a lesser amount of infrared and hence less heat will be applied to that portion of the film. Since the development rate is highly dependent on temperature (as is well known, and as illustrated by the graphs and discussion below), the rate of development can be controlled at incremental regions of the film by heating different portions of the film to different temperatures.
Operation of the apparatus in the system illustrated by FIG. 2 is as follows. The operation is similar to that previously described in connection with FIG. 1, except that unprocessed film 10 is coated with a viscous or gel developer. Development is again allowed to proceed to a minimal amount to provide some density in the film. Heat, again, is applied in inverse relationship to the amount of density present, that is the more density, the less infrared energy is supplied. The signal applied at line 210 is a function not only of the instantaneous density of the film (derived from comparator 206) but also of the processing constants of the film (derived from unit 208). As shown graphically by FIG. 5, the shape and position of the curve will be different for different emulsions used. Manual adjustment at terminal 209 changes this control when the type of film being processed changes.
Comparator 206 can be simple. When silicon photovoltaic cells are used for sensors 204 and 205, and comparator 206 has a high resistance load approaching an open circuit, the output of the silicon cells is practically a logarithmic voltage function of the illumination, so that a simple subtracting network suffices. If the load on the silicon voltaic cells increases, the logarithmic relationship changes and at practically a short circuit across the silicon voltaic cell, current will be proportioned directly to the illumination and to the area of the cell illuminated, so that the logarithmic relationship is established by circuitry within unit 206.
It is not necessary to have sensor 204, sensing the density of the film, exposed to the same source of infrared radiation as that which is utilized to selectively develop the film. A separate source of infrared radiation, or any, radiation to which the film is not sensitive so as to avoid fogging, can be provided. The output signal appearing at line 210 can then be applied to a more powerful lamp, or other element instantaneously responsive to the signal at line 210, to cause selective development. Nor is photocell 205 strictly necessary, if the intensity of the radiation source from which the density signal is obtained, is essentially constant. The system illustrated in FIG. 4, however, is a simple closed loop utilizing a minimum of components.
Comparative tests have been made to demonstrate the improvement realized by employing the method and apparatus of the invention.
A 70 mm. aerial negative, showing a section of a Metropolitan area was obtained in which a given exposure had produced a normal density in a sunlit area, but also contained a large area of lower density, caused by cloud shadow coverage. Utilizing conventional developing and printing procedures, the negative was projection printed onto a fine grain, medium contrast, aerial duplication film, type 8430. The projection system comprised a 4X5chromega enlarger equipped with two I00-watt tungsten lamps and mm. lens. With a magnification factor of 4X, an exposure of 28 seconds at f/ 11 was given. The exposed 8430 film was then processed in the following manner:
Developer Coated onto the exposed film utilizing a handdrawn doctor blade, resulting in a 56-inch thickness layer of viscous developer.
6 minutes 20' C. Stop 2% Acetic Acid Solution 10 seconds 10' C. Fix 5 minutes 20' C. Wash 30 minutes 22' C. Air Dried 30 minutes 43 C.
DEVELOPER Water (approx. 50 C.) 500 ml. Elon Developing Agent 2.0 grams Sodium Sulfite, desiccated 90.0 grams Hydroquinone 8.0 grams Sodium Carbonate, monohydrated 52.5 grams Potassium Bromite 5.0 grams Cold water to make 1.0 liter To which was added:
20 grams Sodium Carboxymethocellulose suspended in I00 ml. Methanol thus obtaining the viscous developer used. RAPID FIXING BATH Water (approx. 50 C.) 600 ml. Sodium Thiosulfate (Hypo) 360.0 grams Ammonium Chloride 50.0 grams Sodium Sulfite, desicated l5.0 grams Acetic Acid 28% 48.0 ml. Boric Acid, crystals 7.5 grams Potassium Alum 15.0 grams Cold water to make 1.0 liter Reproduced on film was a satisfactory density record of the cloud shadow area, but information was lost in the sunlit areas due to gross underexposure. Had the initial reproduction been exposed in a manner in which to produce a satisfactory record of the sunlit area the information contained in the cloud shadow area of the negative" would suffer similar consequences and be lost due to gross overexposure. In either procedure, some information contained in the overall scene would be of loss to the viewer.
Additional exposures were made onto type 8430 film in the previously mentioned manner, where an exposure was given to produce a satisfactory record for the cloud shadow area. These films were selectively treated individually with controlled exposures to infrared energy, in the sunlit area only, utilizing an infrared exposure apparatus such as illustrated in FIG. 2.
Each exposed test film was coated individually with the viscous developer, and allowed a one minute initial development period. The area of lower density (sunlit) was treated l0l007 0M3 Example 2 1 minute initial development 60 seconds on-off infrared exposure 4 minutes continued development Stop 7 6 minute total. v A satisfactory positive was produced, showing good density and detail in the sunlit area when the film was treated with 30 seconds infrared energy at a distance of 3 inches from the base of an infrared source. The initial positive receiving no infrared 20 exposure lacks both detail and density in the sunlit area.
Sensitometric tests were also conducted. The viscous developer and type 8430 film were used.
Five strips of. type 8430 film were exposed to a calibrated step wedge. The exposure given utilized a 100 watt tungsten bulb in conjunction with a ll-volt K & M Tri-Level point source light control unit and a Lectra Decade Interval Timer.
At a distance of 30 inches, an exposure time of2 seconds was given at 03setting on the light control unit.
One strip was then coated with the viscous developer at 20 30 C. and developed for 6 minutes, thus, producing a gamma of 1.32, relative speed 7.2, Dmin 0.07 and Dmax 2.69. (Curve B shown in FIG. 6)
The remaining strips were then individually processed for a total time of 2 minutes, but during development were selec tively treated with varying exposure to infrared energy.
INFRARED EXPOSURE Strip 0 Initial Development IR Exposure (on't De\ 2 l minute l0 seconds 50 seconds 3 I minute 20 seconds 4t! seconds 4 1 minute 30 seconds 30 seconds 5 l minute 40 seconds seconds with infrared energy. The method is superior to conventional processing techniques, in that emulsion speed control during development is possible through controlled amounts of infrared energy. The controlled development makes possible an increase in the amount of information obtainable from aerial films. The method is effective for photographic dodging, which is the photographers art of improving the quality of reproduction made from poorly exposed film, which generally consists of selectively reducing the amount of light passing through underexposed areasof a negative .while allowing the same or more light to penetrate the darker. overexposed portions.
It has been found that viscous or gel developers, referred to in connection with FIG. 2, are advantageous in several respects. For example, there is a lower dissipation of heat by conduction along the surface of the film containing a viscous or gel developenLess energy is required to raise its temperature and there is no significant cooling due to evaporation. These features are illustrated with a developer wherein ethylene glycol is used in place of a portion of the water normally employed, viz:
Water I25 F.) 100 milliliters Elon 0.55 gram Sodium sulfite 24 grams Hydroquinone 2.2 grams Sodium, carbonate 14 grams Potassium bromite 1.2 grams Ethylene glycol balance Total: 250 milliliters All materials, except the glycol, were mixed. and the resulting mixture was then added to the ethylene glycol The tests mentioned above were repeated, allowing the film strips to soak .60 seconds in the viscous developer at 20 C., after which time they were drained and rapidly heated to an elevated temperature for a 90-second wait time The film induction time is approximately 60 seconds The film being removed from the developer at the conclusion of its induction time could continue development with the developer on its surface, thus increasing adjacency effects. By controlling the temperature during this 90-second wait period, the rate of diffusion and thus the development rate was controlled by the temperature asshown in FIG. 8. A satisfactory speed range was obtained. A relative speed: vs. temperature curve is given in FIG. 9.
Thus, a standard developer mixed in a solution which is slightly more viscous than it would be when mixed with water, can be used and normal sensitometry obtained which can have a 10X speed change with a 20 C. temperature change. This speed change can be obtained with only that developer remaining on the emulsion after draining.
Film strips processed in the ethylene glycol viscous Relativi- Sensitometric testing data: Gamma speed l)-min. D-rnax.
Strip No. 1 ig z ig ggg gg gzgf 1.32 7. 2 .03 2. 59 1 minute initial de 1. 33 2. 5 04 2. 5" Strip No. 2. {10 sec 60 sec 1 min. Strip N0. 3 20 see. 1. 30 3. 0 05 2. 60
40 sec. 1 min. Strip N0. 4.... 30 sec. 1. 32 4. 2 10 2. 61
30 sec. 1 min. Strip N0. 5. 40 see. IR exposure 1.30 6. 4 .12 2.62
20 sec. continued dev...
The method of the present invention, as illustrated by the foregoing comparative examples, is effective for controlling film development rate and, hence, the emulsion speed, in the developer possessed sensitometry comparable to that which is obtained in a comparable aqueous developer. This is shown by FIG. 6. Curve B was lower than Curve A. Increasing the temareas of the negative, by differentially heating the emulsion peratureof the film to 32 C. (Curve C), thereby increasing the developer diffusion rate, increased the curve above the curve for the aqueous developer. A 12' C. rise in temperature induced a lateral log E speed shift of0.68.
Four films were individually soaked in the viscous developer for 60 seconds. They were then removed, drained, and placed on a counter for 0, 30, 60 and 120 seconds before fixing with the same conventional fixing solution. The results are shown in FIG. 7. As indicated, normal sensitometry can be expected from the viscous developer under such conditions.
The viscous developers employed in the present invention may vary widely as to the viscosity. Preferably, the developer should have a viscosity of from about 2,000 centipoises up to several hundred thousand centipoises. For most uses. the flow characteristics of the developer should be of an order which permits efficient flow application into the photographic film, and retention of the developer on the film surface. As previously indicated, the developer can be provided in the form of a gel which has the physical properties of a continuous film or layer thus rendering it particularly suitable for the present process. The gel film or layer can be applied in predetermined amount to the photographic film from a roll or feed supply composed of the gel on a suitable support from which the gel separates on contact with the photographic film. The thickness of the gel film, concentration of developer and similar considerations are determined by the film requirements and other variables which are obvious to those skilled in the art.
Although the foregoing disclosure is illustrated with infrared as the nonactinic radiation, other forms of radiation can be employed depending on the spectral sensitivity of the film being developed. For example, most silver halide film lS sensitive to only blue light but the sensitivity of the film is extended to green and red light by the addition of sensitizers. After exposure, the sensitizers can be removed prior to development, in which case the film is no longer sensitive to either green or red light, both of which may be employed as nonactinic radia tion in the present process. A typical reagent to remove the extended sensitivity of such film is pinacryptal green. Methods of desensitizing the films are available in the literature, for ex ample, Photographic Chemistry, Vol. 2 (Chapters XLll- Desensitization) by P. Glafkides, Fountain Press, London 1960.
Although the invention has been described with respect to the method and apparatus detailed above, it is not intended to be limited to the details so recited, since various modifications may be made without departing in any way from the spirit and scope ofthe claims appended hereto.
1. In a chemical processing method for selective region development of photographic film having an emulsion with a latent image thereon including the steps of partially developing the latent image in the emulsion and measuring the density of the film in successive regions of the partially developed image, the improvement which comprises directing a beam of non actinic energy causing heating effect on the film onto successive regions of the film, and controlling the intensity of said beam as a function of said measured density in each region to selectively heat each region of the film, thereby selectively controlling the extent of development in each region of the film.
2. The process of claim 1 wherein said beam of energy is an infrared beam.
3. The process ofclaim 1 including the steps of developing a control signal as a function of measured density, and
controlling the intensity of said beam by said control signal.
4. The process of claim 1 wherein transmission density is measured.
5. The process of claim 1 wherein reflection density is measured.
6. The process of claim 2 wherein said infrared beam has a wave length offrom about 0.8 to about 1.1 microns.
7. The process of claim 1 wherein said energy beam is provided by a Xenon lamp.
8. The process of claim 1 wherein said energy beam is provided by a laser.
9. The process of claim 1 wherein the intensity of said beam is varied as an inverse function of said control signal.
10. The process of claim 2 wherein the step of directing the beam of infrared energy includes energizing a heat source, focusing a beam of heat radiation and cyclically deflecting the focused beam across the film.
11. the process of claim 10 wherein the cyclical deflection step includes the step of applying the beam to a mirror and cyclically moving the mirror.
12. The method of claim 1 wherein a viscous or gel developer is applied to said emulsion before the film is so scanned.
13. In a chemical processing method for selective region development of photographic film having an emulsion with a latent image thereon including the steps of partially developing the latent image in the emulsion with a developer and measuring the density of the film in the region of the partially developed image by sensing radiation conveyed by the film from a beam of nonactinic energy and scanning the film with a beam of nonactinic radiation which causes heat effects on the film and increases the activity of the developer in the film, the intensity of said latter beam being controlled as a function of the sensed density, the improvement which comprises using a single beam of nonactinic radiation for said density measuring and said scanning.
14. Method as in claim 13 wherein said measuring and said scanning is performed substantially simultaneously.
15. Method as in claim 14 wherein said single beam of nonactinic radiation is an infrared beam.
16. Method as in claim 15 wherein the developer is in the form ofa viscous or gel layer on the film.
17. A method as set forth in claim 1 wherein said beam of nonactinic energy is utilized for said density measuring step, and the intensity of said beam is controlled according to the density of the region which is then being simultaneously measured.
18. A method as set forth in claim 13 wherein the intensity of said beam of radiation is controlled simultaneously as the density of the film is being measured.

Claims (17)

  1. 2. The process of claim 1 wherein said beam of energy is an infrared beam.
  2. 3. The process of claim 1 including the steps of developing a control signal as a function of measured density, and controlling the intensity of said beam by said control signal.
  3. 4. The process of claim 1 wherein transmission density is measured.
  4. 5. The process of claim 1 wherein reflection density is measured.
  5. 6. The process of claim 2 wherein said infrared beam has a wave length of from about 0.8 to about 1.1 microns.
  6. 7. The process of claim 1 wherein said energy beam is provided by a Xenon lamp.
  7. 8. The process of claim 1 wherein said energy beam is provided by a laser.
  8. 9. The process of claim 1 wherein the intensity of said beam is varied as an inverse function of said control signal.
  9. 10. The process of claim 2 wherein the step of directing the beam of infrared energy includes energizing a heat source, focusing a beam of heat radiation and cyclically deflecting the focused beam across the film.
  10. 11. The process of claim 10 wherein the cyclical deflection step includes the step of applying the beam to a mirror and cyclically moving the mirror.
  11. 12. The method of claim 1 wherein a viscous or gel developer is applied to said emulsion before the film is so scanned.
  12. 13. In a chemical processing method for selective region development of photographic film having an emulsion with a latent image thereon including the steps of partially developing the latent image in the emulsion with a developer and measuring the density of the film in the region of the partially developed image by sensing radiation conveyed by the film from a beam of nonactinic energy and scanning the film with a beam of nonactinic radiation which causes heat effects on the film and increases the activity of the developer in the film, the intensity of said latter beam being controlled as a function of the sensed density, the improvement which comprises using a single beam of nonactinic radiation for said density measuring and said scanning.
  13. 14. Method as in claim 13 wherein said measuring and said scanning is performed substantially simultaneously.
  14. 15. Method as in claim 14 wherein said single beam of nonactinic radiation is an infrared beam.
  15. 16. Method as in claim 15 wherein the developer is in the form of a viscous or gel layer on the film.
  16. 17. A method as set forth in claim 1 wherein said beam of nonactinic energy is utilized for said density measuring step, and the intensity of said beam is controlled according to the density of the region which is then being simultaneously measured.
  17. 18. A method as set forth in claim 13 wherein the intensity of said beam of radiation is controlled simultaneously as the density of the film is being measured.
US732141A 1968-05-27 1968-05-27 Automatic film processing method and apparatus therefor Expired - Lifetime US3615479A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US73214168A 1968-05-27 1968-05-27

Publications (1)

Publication Number Publication Date
US3615479A true US3615479A (en) 1971-10-26

Family

ID=24942356

Family Applications (1)

Application Number Title Priority Date Filing Date
US732141A Expired - Lifetime US3615479A (en) 1968-05-27 1968-05-27 Automatic film processing method and apparatus therefor

Country Status (1)

Country Link
US (1) US3615479A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948709A (en) * 1985-01-31 1990-08-14 Color Processing System Sdn Bhd. Production of business cards and the like
EP0954767A2 (en) * 1997-01-30 1999-11-10 Applied Science Fiction, Inc. System and method for latent film recovery in electronic film development
US20010030685A1 (en) * 1999-12-30 2001-10-18 Darbin Stephen P. Method and apparatus for digital film processing using a scanning station having a single sensor
US20010031084A1 (en) * 1999-12-17 2001-10-18 Cannata Philip E. Method and system for selective enhancement of image data
US20010040701A1 (en) * 2000-02-03 2001-11-15 Edgar Albert D. Photographic film having time resolved sensitivity distinction
US20010043755A1 (en) * 2000-02-03 2001-11-22 Edgar Albert D. Match blur system and method
US20020051215A1 (en) * 1999-12-30 2002-05-02 Thering Michael R. Methods and apparatus for transporting and positioning film in a digital film processing system
US20020080409A1 (en) * 1999-12-31 2002-06-27 Keyes Michael P. Digital film processing method
US6439784B1 (en) 1999-08-17 2002-08-27 Applied Science Fiction, Inc. Method and system for using calibration patches in electronic film processing
US20020118402A1 (en) * 2000-09-19 2002-08-29 Shaw Timothy C. Film bridge for digital film scanning system
US6443639B1 (en) * 1999-06-29 2002-09-03 Applied Science Fiction, Inc. Slot coater device for applying developer to film for electronic film development
US6447178B2 (en) 1999-12-30 2002-09-10 Applied Science Fiction, Inc. System, method, and apparatus for providing multiple extrusion widths
US20020126327A1 (en) * 2000-09-21 2002-09-12 Edgar Albert D. Method and system for improving scanned image detail
US6461061B2 (en) 1999-12-30 2002-10-08 Applied Science Fiction, Inc. System and method for digital film development using visible light
US20020146171A1 (en) * 2000-10-01 2002-10-10 Applied Science Fiction, Inc. Method, apparatus and system for black segment detection
US6475711B1 (en) 1999-12-31 2002-11-05 Applied Science Fiction, Inc. Photographic element and digital film processing method using same
US6503002B1 (en) 1996-12-05 2003-01-07 Applied Science Fiction, Inc. Method and apparatus for reducing noise in electronic film development
US6505977B2 (en) 1999-12-30 2003-01-14 Applied Science Fiction, Inc. System and method for digital color dye film processing
US6512601B1 (en) 1998-02-23 2003-01-28 Applied Science Fiction, Inc. Progressive area scan in electronic film development
US6540416B2 (en) 1999-12-30 2003-04-01 Applied Science Fiction, Inc. System and method for digital film development using visible light
US6554504B2 (en) 1999-12-30 2003-04-29 Applied Science Fiction, Inc. Distributed digital film processing system and method
US6594041B1 (en) 1998-11-20 2003-07-15 Applied Science Fiction, Inc. Log time processing and stitching system
US20030133710A1 (en) * 2001-07-16 2003-07-17 Winberg Paul N. System and method for digital film development using visible light
US6599036B2 (en) 2000-02-03 2003-07-29 Applied Science Fiction, Inc. Film processing solution cartridge and method for developing and digitizing film
US6619863B2 (en) 2000-02-03 2003-09-16 Eastman Kodak Company Method and system for capturing film images
US20040028288A1 (en) * 2002-01-14 2004-02-12 Edgar Albert D. Method, system, and software for improving signal quality using pyramidal decomposition
US20040047585A1 (en) * 2000-12-05 2004-03-11 Duong Dung T. Light transfer device and system
US6707557B2 (en) 1999-12-30 2004-03-16 Eastman Kodak Company Method and system for estimating sensor dark current drift and sensor/illumination non-uniformities
US6733960B2 (en) 2001-02-09 2004-05-11 Eastman Kodak Company Digital film processing solutions and method of digital film processing
US6781620B1 (en) 1999-03-16 2004-08-24 Eastman Kodak Company Mixed-element stitching and noise reduction system
US6786655B2 (en) 2000-02-03 2004-09-07 Eastman Kodak Company Method and system for self-service film processing
US6788335B2 (en) 1999-12-30 2004-09-07 Eastman Kodak Company Pulsed illumination signal modulation control & adjustment method and system
US6813392B2 (en) 1999-12-30 2004-11-02 Eastman Kodak Company Method and apparatus for aligning multiple scans of the same area of a medium using mathematical correlation
US6864973B2 (en) 1999-12-30 2005-03-08 Eastman Kodak Company Method and apparatus to pre-scan and pre-treat film for improved digital film processing handling
US6943920B2 (en) 2000-02-03 2005-09-13 Eastman Kodak Company Method, system, and software for signal processing using pyramidal decomposition
US6965692B1 (en) 1999-12-30 2005-11-15 Eastman Kodak Company Method and apparatus for improving the quality of reconstructed information
US6990251B2 (en) 2000-02-03 2006-01-24 Eastman Kodak Company Method, system, and software for signal processing using sheep and shepherd artifacts
US20060182337A1 (en) * 2000-06-28 2006-08-17 Ford Benjamin C Method and apparatus for improving the quality of reconstructed information
US20060192857A1 (en) * 2004-02-13 2006-08-31 Sony Corporation Image processing device, image processing method, and program
US20230129452A1 (en) * 2021-09-24 2023-04-27 Derek Lluisma User interface for darkroom process timer and film processor

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948709A (en) * 1985-01-31 1990-08-14 Color Processing System Sdn Bhd. Production of business cards and the like
US6503002B1 (en) 1996-12-05 2003-01-07 Applied Science Fiction, Inc. Method and apparatus for reducing noise in electronic film development
EP0954767A2 (en) * 1997-01-30 1999-11-10 Applied Science Fiction, Inc. System and method for latent film recovery in electronic film development
EP0954767A4 (en) * 1997-01-30 1999-11-10 Applied Science Fiction Inc
US6124082A (en) * 1997-01-30 2000-09-26 Applied Science Fiction, Inc. System and method for latent film recovery in electronic film development
US6193425B1 (en) 1997-01-30 2001-02-27 Applied Science Fiction, Inc. System and method for latent film recovery in electronic film development
US6558052B2 (en) * 1997-01-30 2003-05-06 Applied Science Fiction, Inc. System and method for latent film recovery in electronic film development
US6512601B1 (en) 1998-02-23 2003-01-28 Applied Science Fiction, Inc. Progressive area scan in electronic film development
US6594041B1 (en) 1998-11-20 2003-07-15 Applied Science Fiction, Inc. Log time processing and stitching system
US6781620B1 (en) 1999-03-16 2004-08-24 Eastman Kodak Company Mixed-element stitching and noise reduction system
US6443639B1 (en) * 1999-06-29 2002-09-03 Applied Science Fiction, Inc. Slot coater device for applying developer to film for electronic film development
US6439784B1 (en) 1999-08-17 2002-08-27 Applied Science Fiction, Inc. Method and system for using calibration patches in electronic film processing
US6915021B2 (en) 1999-12-17 2005-07-05 Eastman Kodak Company Method and system for selective enhancement of image data
US20010031084A1 (en) * 1999-12-17 2001-10-18 Cannata Philip E. Method and system for selective enhancement of image data
US20020051215A1 (en) * 1999-12-30 2002-05-02 Thering Michael R. Methods and apparatus for transporting and positioning film in a digital film processing system
US6554504B2 (en) 1999-12-30 2003-04-29 Applied Science Fiction, Inc. Distributed digital film processing system and method
US6461061B2 (en) 1999-12-30 2002-10-08 Applied Science Fiction, Inc. System and method for digital film development using visible light
US6864973B2 (en) 1999-12-30 2005-03-08 Eastman Kodak Company Method and apparatus to pre-scan and pre-treat film for improved digital film processing handling
US6707557B2 (en) 1999-12-30 2004-03-16 Eastman Kodak Company Method and system for estimating sensor dark current drift and sensor/illumination non-uniformities
US6705777B2 (en) 1999-12-30 2004-03-16 Eastman Kodak Company System and method for digital film development using visible light
US20030002879A1 (en) * 1999-12-30 2003-01-02 Corbin Douglas E. System and method for digital film development using visible light
US6447178B2 (en) 1999-12-30 2002-09-10 Applied Science Fiction, Inc. System, method, and apparatus for providing multiple extrusion widths
US6505977B2 (en) 1999-12-30 2003-01-14 Applied Science Fiction, Inc. System and method for digital color dye film processing
US6788335B2 (en) 1999-12-30 2004-09-07 Eastman Kodak Company Pulsed illumination signal modulation control & adjustment method and system
US6540416B2 (en) 1999-12-30 2003-04-01 Applied Science Fiction, Inc. System and method for digital film development using visible light
US20050128474A1 (en) * 1999-12-30 2005-06-16 Young Robert S.Jr. Method and apparatus to pre-scan and pre-treat film for improved digital film processing handling
US6793417B2 (en) 1999-12-30 2004-09-21 Eastman Kodak Company System and method for digital film development using visible light
US6965692B1 (en) 1999-12-30 2005-11-15 Eastman Kodak Company Method and apparatus for improving the quality of reconstructed information
US20010030685A1 (en) * 1999-12-30 2001-10-18 Darbin Stephen P. Method and apparatus for digital film processing using a scanning station having a single sensor
US6813392B2 (en) 1999-12-30 2004-11-02 Eastman Kodak Company Method and apparatus for aligning multiple scans of the same area of a medium using mathematical correlation
US20030142975A1 (en) * 1999-12-30 2003-07-31 Edgar Albert D. System and method for digital film development using visible light
US6824966B2 (en) 1999-12-31 2004-11-30 Eastman Kodak Company Digital film processing method
US6664034B2 (en) 1999-12-31 2003-12-16 Eastman Kodak Company Digital film processing method
US20020080409A1 (en) * 1999-12-31 2002-06-27 Keyes Michael P. Digital film processing method
US6910816B2 (en) 1999-12-31 2005-06-28 Eastman Kodak Company Digital film processing method
US20050008981A1 (en) * 1999-12-31 2005-01-13 Keyes Michael P. Digital film processing method
US6475711B1 (en) 1999-12-31 2002-11-05 Applied Science Fiction, Inc. Photographic element and digital film processing method using same
US20040053175A1 (en) * 1999-12-31 2004-03-18 Keyes Michael P. Digital film processing method
US6619863B2 (en) 2000-02-03 2003-09-16 Eastman Kodak Company Method and system for capturing film images
US20040076425A1 (en) * 2000-02-03 2004-04-22 Patterson Richard A. Film processing solution cartridge and method for developing and digitizing film
US6786655B2 (en) 2000-02-03 2004-09-07 Eastman Kodak Company Method and system for self-service film processing
US7020344B2 (en) 2000-02-03 2006-03-28 Eastman Kodak Company Match blur system and method
US6990251B2 (en) 2000-02-03 2006-01-24 Eastman Kodak Company Method, system, and software for signal processing using sheep and shepherd artifacts
US20010040701A1 (en) * 2000-02-03 2001-11-15 Edgar Albert D. Photographic film having time resolved sensitivity distinction
US6599036B2 (en) 2000-02-03 2003-07-29 Applied Science Fiction, Inc. Film processing solution cartridge and method for developing and digitizing film
US6943920B2 (en) 2000-02-03 2005-09-13 Eastman Kodak Company Method, system, and software for signal processing using pyramidal decomposition
US6913404B2 (en) 2000-02-03 2005-07-05 Eastman Kodak Company Film processing solution cartridge and method for developing and digitizing film
US20010043755A1 (en) * 2000-02-03 2001-11-22 Edgar Albert D. Match blur system and method
US20060182337A1 (en) * 2000-06-28 2006-08-17 Ford Benjamin C Method and apparatus for improving the quality of reconstructed information
US20020118402A1 (en) * 2000-09-19 2002-08-29 Shaw Timothy C. Film bridge for digital film scanning system
US20020126327A1 (en) * 2000-09-21 2002-09-12 Edgar Albert D. Method and system for improving scanned image detail
US20020176113A1 (en) * 2000-09-21 2002-11-28 Edgar Albert D. Dynamic image correction and imaging systems
US7016080B2 (en) 2000-09-21 2006-03-21 Eastman Kodak Company Method and system for improving scanned image detail
US20020146171A1 (en) * 2000-10-01 2002-10-10 Applied Science Fiction, Inc. Method, apparatus and system for black segment detection
US20040047585A1 (en) * 2000-12-05 2004-03-11 Duong Dung T. Light transfer device and system
US6888997B2 (en) 2000-12-05 2005-05-03 Eastman Kodak Company Waveguide device and optical transfer system for directing light to an image plane
US6733960B2 (en) 2001-02-09 2004-05-11 Eastman Kodak Company Digital film processing solutions and method of digital film processing
US6916125B2 (en) 2001-07-16 2005-07-12 Eastman Kodak Company Method for film inspection and development
US20030133710A1 (en) * 2001-07-16 2003-07-17 Winberg Paul N. System and method for digital film development using visible light
US6805501B2 (en) 2001-07-16 2004-10-19 Eastman Kodak Company System and method for digital film development using visible light
US20040170425A1 (en) * 2001-07-16 2004-09-02 Winberg Paul N. System and method for digital film development using visible light
US20040028288A1 (en) * 2002-01-14 2004-02-12 Edgar Albert D. Method, system, and software for improving signal quality using pyramidal decomposition
US7263240B2 (en) 2002-01-14 2007-08-28 Eastman Kodak Company Method, system, and software for improving signal quality using pyramidal decomposition
US20060192857A1 (en) * 2004-02-13 2006-08-31 Sony Corporation Image processing device, image processing method, and program
US20230129452A1 (en) * 2021-09-24 2023-04-27 Derek Lluisma User interface for darkroom process timer and film processor
US11693542B2 (en) * 2021-09-24 2023-07-04 Derek Lluisma User interface for darkroom process timer and film processor

Similar Documents

Publication Publication Date Title
US3615479A (en) Automatic film processing method and apparatus therefor
US1973468A (en) Method and means for photographic printing
US3642377A (en) Color printing system
US3887787A (en) Dry process photographic paper recording apparatus
US3282183A (en) Photographic apparatus for recording, processing, and projecting data for rapid visual inspection
US4161363A (en) Instantaneous exposure control for film
GB1038570A (en) Photographic apparatus
US3811885A (en) Laser stabilization and/or photodevelopment of silver halide materials
JP2955360B2 (en) Processing of photographic film
US3442648A (en) Photographic dodging method
GB1510532A (en) Method and apparatus for detecting data on a photographic recording medium
SE7708670L (en) LIGHTLY PHOTOGRAPHIC SILVER HALOGENIDE MATERIAL
US2244304A (en) Photographic process
US3623869A (en) Method for imaging diazosulfonate photoreproduction materials
US3658533A (en) Copying process
US1973470A (en) Photographic printing apparatus
US3196016A (en) Photocomposing process for the production of process copies without use of a layout
US3637389A (en) Method of producing photographic images by rapid processing
US3451816A (en) Photographic dodging method
US3713823A (en) Photographic contrast control
US3183088A (en) Process for forming images
US3600175A (en) Argentohalide complex film construction
US3241961A (en) Process for forming images
US3366480A (en) Information recording system comprising reversible color image
US3713824A (en) Physical development utilizing 1-phenyl-3-pyrazolidone or a benzene diamine combined with a polyhydroxybenzene in acidic medium