US3616312A - Hydrazine manufacture - Google Patents

Hydrazine manufacture Download PDF

Info

Publication number
US3616312A
US3616312A US870920A US3616312DA US3616312A US 3616312 A US3616312 A US 3616312A US 870920 A US870920 A US 870920A US 3616312D A US3616312D A US 3616312DA US 3616312 A US3616312 A US 3616312A
Authority
US
United States
Prior art keywords
hydrazine
membrane
ammonia
chamber
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US870920A
Inventor
Stuart G Mcgriff
Wayne A Mcrae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suez WTS Systems USA Inc
Original Assignee
Ionics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ionics Inc filed Critical Ionics Inc
Application granted granted Critical
Publication of US3616312A publication Critical patent/US3616312A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/16Hydrazine; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C241/00Preparation of compounds containing chains of nitrogen atoms singly-bound to each other, e.g. hydrazines, triazanes
    • C07C241/02Preparation of hydrazines

Definitions

  • This invention relates to novel apparatus and methods for producing hydrazine by the electrolysis of ammonia solutions and, in particular, to electrolytic cells utilizing electrolytes of solid ion-exchange material for the production of anhydrous hydrazine.
  • Hydrazine (M,M finds its greatest use as a rocket fuel, but also as an oxygen scavenger in boiler water; as an intermediate in drug manufacture; as a plant growth retardant and in rubber blowing.
  • the recent developments in new catalysts make hydrazine of increasing interest as a monopropellant and as a source of energy for fuel cell applications.
  • the present cost of hydrazine is too high for widespread commercial use.
  • hydrazine Almost all of the present production of hydrazine is based on the chemical oxidation of ammonia or urea in aqueous solutions by employing an oxidizing agent of an alkaline hypochlorite.
  • the hydrazine is obtained as a dilute aqueous solution containing many contaminants and the commercial product of hydrazine hydrate or anhydrous hydrazine is produced with difficulty and great expense.
  • Attempts have been made to produce hydrazine by electrolysis, using a variety of operating conditions and starting materials, but none appear to be sufficiently inexpensive for general use.
  • hydrazine is one of the first products formed by the anodic oxidation of ammonia.
  • Liquid ammonia like pure water, is a poor electrical conductor and is only slightly ionized into ammonium and amide ions, as shown in the following reaction: ZNH Z Nl-I[+NH During the electrolysis, the negatively charged amide ions are discharged by oxidation at the anode with a pair combining to form hydrazine.
  • the prior art has resorted to adding soluble electrolytes to the ammonia to form a solution having increased electrical conductance.
  • Such electrolytes include, for example, s oda;n ide, (Na NH sodium hydroxide, ammonium salts, including ammonium sulfonate and urea.
  • s oda;n ide Na NH sodium hydroxide, ammonium salts, including ammonium sulfonate and urea.
  • Hydrazine is thermodynamically usable" and" therefore readily susceptible to decomposition. Since hydrazine is more susceptible to oxidation than ammonia, the hydrazine formed at the anode, if allowed to remain in the area of the anode, will quickly decompose. Many materials are known that will catalyze or accelerate this decomposition, such materials being halide ions, heavy metal ions and strong proton acceptors, such as the amide and hydroxide ions. Additionally, certain materials used in the construction of the anodes will more readily chemisorb hydrazine with its resultant decomposition.
  • solutions of ammonia in contact with an electrolyte of solid ion-exchange material are subjected to electrolysis to produce hydrazine at the anode.
  • the electrolytic apparatus has a continuous bridge of a solid ion-exchange resin between and in intimate contact with the spaced cathode and anode electrodes.
  • the ionexchange material bridging the space between the electrodes will function to provide an hydroxide conducting path since the ammonia solution passing into the cell will have a high electrical resistance.
  • the concentration of mobile ions in the resin is not highly dependent upon the concentration of ions in the surrounding solution, but is essentially determined by the number of exchange sites within the resin itself.
  • the object of this invention is to provide a novel apparatus and process to produce hydrazine economically from liquid ammonia solutions by electrolysis.
  • a further object is to produce hydrazine derivatives the the process applicable to hydrazine by substituting amines in place of ammonia.
  • a further object is to economically prevent the further decomposition or oxidation of hydrazine once it is electrolytically formed.
  • a further object is to utilize a solid electrolyte of ionexchange resin in contact with ammonia to manufacture hydrazine electrolytically.
  • a further object is to employ a semiconducting anode for electrolytically oxidizing ammonia into hydrazine.
  • FIG. 1 is an exploded perspective view of one embodiment of the improved electrolytic cell of the present invention wherein the solid electrolyte of ion-exchange resin is in the fonn of a membrane having pebbled surfaces.
  • FIG. 2 is a sectional view of an assembled cell taken along lines 2-2 of FIG. 1, showing the membrane in contact with both electrodes.
  • FIG. 3 is a modification of an ion-exchange membrane in which both sides have a corrugated design.
  • FIG. 4 is a cross-sectional view of a corrugated ionexchange membrane taken along line 4-4 of FIG. 3.
  • FIG. 5 illustrated schematically the process for producing hydrazine electrolytically by employing an anion-selective membrane in the electrolytic cell
  • FIG. 6 illustrates schematically an alternate process using a cation-selective membrane.
  • the electrolytic cell is basically of a package or stack type.
  • the apparatus comprises a cathode 1, an anode 3, an embossed or contoured ion-permselective membrane 5 and spacer members 6, all of which are assembled between two terminal pressure end plates 7 and 8.
  • a fluidtight stack is obtained by applying the proper pressure against each end plate, as by bolts 9 and nuts 10.
  • Means for passing a DC potential transversely through the stack is provided for through leads I l and 12 from an outside source of electric current (not shown).
  • the spacer members 6 are generally of an electrically nonconducting plastic gasketing material such as polyethylene and have cutout central portions 13 and 14 which form the cathode and anode fluid-holding chambers, respectively. These chambers are confined by the frame or border 15 of the spacer which also functions to separate and gasket the substantially flat marginal area 25 of the membrane with respect to the adjacent electrodes 1 and 3.
  • the spacers, electrodes and end plates are shown with apertures 16 for directing a fluid to the cathode and anode chambers 13 and I4 and further apertures 17 are provided for withdrawing fluid therefrom.
  • the apertures 16 and l! in the frame 15 of the spacer are located on substantially opposite sides of the cutout flow area.
  • the apertures 16 and 17 in the frame of the spacer communicate with the respective cathode and anode chamhere by slits or channels 20 cut in the spacer material.
  • Inlet means for passing fluid into the cathode and anode chambers are provided by inlets 20 and 22 respectively, and outlet means for withdrawing the solutions are provided at 23 and 24.
  • the combination of a cathode and an anode chamber, membrane and terminal electrodes form a single electrolytic unit.
  • the single membrane 5 separating the electrode chambers 13 and 14 from each other is fabricated from an organic polymeric cross-linked material and may be anion permselective or cation perselective, both types of material being well known in the art.
  • Ion-exchange membranes are comprised of a solvated ion-exchange resin generally in sheet form which may be reinforced by an inert woven fabric structure. Such membranes generally comprise about 30 percent fabric by weight, 40 percent resin, and about 30 percent solvent, the solvent being uniformly dispersed throughout the resin.
  • Cation membranes are typically cross-linked sulfonated polystyrene.
  • the sulfonate groups are dissociated into bound negatively charged ions and mobile positively charged counterions.
  • the positively charged counter-ions are free to diffuse through the resin structure and, under the influence of an electric potential, are substantially the sole carrier of current.
  • Typical positively charged counter-ions for example, are sodium and ammonium.
  • the anion membranes may be a cross-linked polystyrene structure with quaternary ammonium salt groups which dissociate into bound positively charged quaternary ammonium ions and mobile negatively charged counter-ions such as, for example, hydroxide, sulfate and, in some nonaqueous solvents, the amide ion.
  • the membranes of the present invention are provided on both major faces with an elevated central area integrated with and generally of the same polymeric ion-exchange material as the substantially flat marginal sealing area 25 of the membrane to form a single homogeneous piece.
  • the surface of the central area is embossed or contoured with a plurality of projecting 26 and receding 27 portions. The receding portions are so arranged as to form flow channels 28 between the projections for the passage of fluid therethrough.
  • the contoured central area of the membrane is pebbled (FIG. I) or corrugated (H6. 3) but other various geometric designs, such as ribs, studs, ridges and the like may be provided on the surface.
  • the projecting central portions 26 of the membrane will extend directly into the central cutout portions 13 and 14 of the adjacent spacers which form the cathode and anode chambers.
  • the projections may be about the same height as the spacer thickness.
  • the height of the projections may vary within wide limits but an extension of about 30 mils (0.030 inches) in a direction perpendicular to the flat surface of the membrane would be satisfactory.
  • Such a membrane embossed on both sides and having a 30 mil thickness across the flat marginal area would than have a total central area thickness of about 90 mils.
  • the tips of the projections are caused to press firmly against the surface of each adjacent electrode to form an electrode'membrane interface 30 which makes electrical contact and forms a continuous ion-conducting bridge between the electrode pair.
  • This arrangement will allow an electric current to be carried between the electrodes, primarily by mobile ions of one sign passing solely through the membrane structure.
  • the recessed areas or interstices between the projections form fluid-flow channels 28.
  • the fluids used in the cell need not necessarily be electrolytically conducting since the electric current will be carried within and across the bridge of ion-conducting membrane material.
  • the membranes can of course be of various thicknesses and have pattern configurations other than those specifically described herein. All other factors being equal, it is evident that the greater the number of projections of membrane area contacting the electrode surface, the smaller the power consumption of the electrolytic cell.
  • the membranes may be fabricated by sandwiching the liquid polymer mix between two glass plates having the desired patterned surface, polymerizing the mix until solid, and then stripping off the glass molding plates to leave a solid polymerized structure.
  • the pattern serves as the mold for the contoured central portion of the membrane.
  • the solid structure is then treated with appropriate chemicals to make them either anion or cation permselective as by quarternization or sulfonation.
  • an inert sheet of open-weave cloth or screen material may be incorporated as a backing or reinforcing material within the membrane.
  • the liquid mix is poured over the cloth fabric prior to being sandwiched between the glass molding plates.
  • the liquid mix is poured over the cloth fabric prior to being sandwiched between the glass molding plates.
  • bits of fabric material or fibers of glass or other material be suspended in the liquid polymer mix before casting into a membrane. These fibers will structurally reinforce the entire raised membrane area to impart the necessary resistance to cracking.
  • the operation of the electrolytic apparatus for example, in the manufacture of hydrazine from ammonia, may be illustrated by referring particularly to H0. 5 wherein the membrane is anion-selective and the mobile counter-ions are amide ions N11,).
  • a catholytic and an anolytic feed solution are directed into inlet 21 and 22 respectively, and caused to flow into the respective cathode and anode chambers across the chambers via the interstices or flow channels 28 formed by the projecting membrane portions and out of the chamber by way of outlets 23 and 24 in the general direction as shown by the arrows of the figures.
  • the catholytic feed solution is comprised of a nonaqueous inert fluid solvent containing ammonia in dilute concentrations.
  • the feed to the anode chamber is pure anhydrous fluid solvent.
  • the fluid solvent should of course be a solvent for ammonia and hydrazine and, preferably, should have at least a moderate dielectric constant and have a negligible affinity for protons, and should not substantially dissociate into an anion which would have a strong afi'mity for protons.
  • Another preferred requirement of the solvent is that it has a higher boiling point than that of liquid hydrazine (B.P. 113.5 C.).
  • the electrolysis is carried out using a source of direct current and suitable electrode current densities. A range of about 10 and amps/ft is preferred although current densities outside this range are suitable.
  • the ammonia in the catholytic solution is reduced at the cathodemembrane interface into hydrogen gas and amide ions as follows:
  • the hydrogen gas is carried out of the chamber with the flow ing catholytic solution.
  • This catholytic solution now partially depleted in ammonia, is removed from the cell at exit 23 and directed to a gasJiquid separator (not shown) for removal of the hydrogen gas.
  • the solution may then be spiked with additional gaseous or liquid ammonia and recycled back to the cathode chamber of the cell for further processing.
  • the negatively charged amide ions formed at the cathode will, under the influence of the electric current, migrate across the anion-permselective membrane in the direction of the positively charged anode. On reaching the anode-membrane interface, oxidation of the amide ion will occur with a pair of amide ions combining to form hydrazine as follows:
  • hydrazine formed diffuses out of the membrane, and is carried out of the anode chamber with the flowing solvent to a gas separator (not shown) to remove any nitrogen gas contained therein.
  • the dissolved hydrazine is then separated from the remaining solution by any suitable means, such as distillation, freezing, membrane permeation, or the like.
  • the preferred method would be distillation whereby the solution is stripped of its anhydrous hydrazine and traces of ammonia.
  • Small amounts of hydrazine hydrate may be present in the final product due to unavoidable pickup of water in the system.
  • the ammonia, separated during distillation may be added to the catholytic feed solution, and the pure solvent remaining is recycled as the feed solution to the anode chamber.
  • the hydrazine formed be removed from the vicinity of the anode as quickly as possible. if allowed to remain within the anode area, the hydrazine becomes susceptible to oxidation and can readily decompose as follows:
  • hydrazine decomposition depends among other things on the anode current density and the concentration of the reactants present at the anodemembrane interface. Where the cell employs an anion-permeselective membrane, the reactants would be hydrazine along with amide ions, and naturally the lower their concentration at the interface, the less hydrazine decomposition. Further prevention of hydrazine decomposition can be attained by fabricating the anodes from a material on which hydrazine is not readily chemisorbed. Such anodes may be constructed of impervious graphite, platinum, electrolytic valve metals, such as titanium coated with a precious metal of platinum, and the like.
  • semiconducting electrodes be employed to further diminish the hydrazine decomposition process.
  • the preferred material for semiconducting electrodes is impervious self-bonding carbide having either the nor p-type conduction. Hydrazine will be less strongly absorbed on properly constructed semiconducting electrodes and therefore less subject to electro-oxidation or decomposition.
  • the ion-exchange resin of the membrane does not act as a catalyst in the decomposition of hydrazine.
  • the concentration at the anode of strong proton acceptors, such as the amide ion is kept at a low level since the only amide ions contacting the anode are those carrying the electric current in their migration through the ion-exchang e membrane.
  • the mobile amide ion is the only conducting ionic species within the anion selective resin which need be present in the process, hydrazine decomposition attributable to heavy metal ions or halides will not occur as would be the case where soluble salts are employed as the electrolyte of the cell.
  • FIG. 6 An alternate embodiment of the invention is diagrammatically illustrated in FlG. 6.
  • the membrane in this modification is cation selective and is in the ammonium ionic form NHJ). Operation of this cell is similar to that of FIG. 5 except that the feed solutions entering the electrode chambers are reversed; that is, the solution of solvent and ammonia is fed to the anode chamber, whereas the pure anhydrous-solvent is fed to the cathode chamber.
  • the ammonia is oxidized at the anode-membrane interface to hydrazine and positively charged ammonium ions as follows:
  • ammonia is a stronger base than hydrazine, the hydrazine will be in the free base form and diffuse out of the resin to be carried out of the anode chamber by the flowing anolyte.
  • the positively charged ammonium ions formed at the anode will migrate through the cation membrane in the direction of the cathode where they will be cathodically reduced at the cathode-membrane interface to ammonium and hydrogen gas as follows:
  • the hydrogen gas is then separated from the anolyte effluent solution, the solution is spiked with additional ammonia and the resulting solution of solvent and ammonia is recycled back to the cell as the feed to the anode chamber.
  • the membrane is a trimethylaminated, chloromethylated copolymer of ethyl vinyl benzene and divinyl benzene reinforced with woven polypropylene fabric.
  • the fixed charged groups are quaternary ammonium cations (benzyl trimethyl ammonium).
  • the total thickness of the membrane is about 0.090 inch.
  • the plane of the membrane is vertical and the surfaces of the membrane in the central portion are raised into ribs having a roughly triangular cross section and having their long dimension in a vertical direction.
  • the ribs project about 0.030 inch from the bulk of the membrane and are on centers of about 0.035 inch.
  • the central portion of the membrane is about 2 inches wide and 7 inches long.
  • the flow in each compartment is upward.
  • the electrodes are smooth platinum and the spacer gaskets are polypropylene.
  • the membrane is converted to the hydroxide form in water in the conventional way and then equilibrated with several changes of methanol to replace the water and with several changes of dimethyl formamide to replace the methanol.
  • the membrane is then assembled into the cell.
  • a 5 percent solution of sodium amide in anhydrous dimethyl formamide is passed upwardly through the cathode compartment at a rate of about 3 grams per minute. Pure anhydrous dimethyl formamide is passed upwardly through the anode compartment at a rate of about 3 grams per minute.
  • a current of 3 amperes is applied for 2 "hours and then the current is turned off and the compartments rinsed with anhydrous dimethyl formamide.
  • the catholyte is anhydrous dimethyl formamide containing about 5 percent anhydrous ammonia by weight.
  • the catholyte flows at a rate of about 3 grams per minute.
  • the anolyte is anhydrous dimethyl formamide and flows at a rate of about 3 grams per minute.
  • a current of about 3 amperes is applied. After about 3 hours, about l grams of enolyte efiluent have been collected.
  • the membrane in a cell constructed as shown in FIG. 6, is a sulfonated terpolymer of vinyl toluene, ethyl vinyl benzene and divinyl benzene reinforced with a woven fabric of glass fibers.
  • the fixed charged groups are sulfonate anions.
  • the total thickness of the membrane is about 0.090 inch.
  • the plane of the membrane is horizontal and the surfaces of the membrane in the central portion are raised into small hillocks rising about 0.030 inch from the surface of the membrane.
  • the hillocks are about 0.060 inch in diameter and are on centers of about 0.075 inch.
  • the central portion of the membrane is about 2 inches wide and 7 inches long.
  • the flow in each compartment is horizontal and in a composite direction parallol to the long dimension of the central portion.
  • the electrodes are self-bonded silicon carbide having n-type carriers.
  • the gaskets are polytetrafluorethylene.
  • the membrane is converted to the ammonium form in water in the conventional way and then equilibrated with several changes of methanol to replace the water and with several changes of dimethyl acetamide to replace the methanol.
  • the membrane is then assembled into the cell.
  • the catholyte is anhydrous dimethyl acetamide, flowing at a rate of about 3 grams per minute.
  • the enolyte is anhydrous dimethyl acetamide containing about 5 percent anhydrous ammonia by weight.
  • the anolyte flows at a rate of about 3 grams per minute. A current of about 3 amperes is applied. The product of the first two hours of operation is discarded and the product of the anolyte of the next three hours is collected. The amount collected is about 180 grams. Upon analysis by standard iodate solution using amaranth as an indicator, it is found that the collected anolyte contains about 3.20 grams of hydrazine. The current efficiency is about 60 percent. The hydrazine is recovered by fractional distillation.
  • EXAMPLE 3 The cell of example 2 is operated with percent methyl amine in anhydrous dimethyl sulfoxide as the anolyte and impervious graphite electrodes.
  • the catholyte is anhydrous dimethyl sulfoxide.
  • Dimethyl hydrazine (probably the symmetrical compound) is recovered from the anolyte.
  • the current efflciency is about 70 percent.
  • a process of electrolytically producing hydrazine from ammonia in a two-chamber cell having a terminal anode and cathode electrode and adjacently disposed anode and cathode chambers separated from one another by an ion-permselective membrane comprising, passing an ammonia-containing, nonaqueous fluid solvent into that electrode chamber which is adjacent to the electrode having a charge opposite in sign to the fixed charge on said membrane passing fluid solvent into said other electrode chamber, passing a direct current across the electrodes through said chambers and membrane to cause the anodic formation of hydrazine, withdrawing the resulting anolyte solution from said chamber, and separating and recovering said hydrazine from said anolyte solution.
  • fluid solvent is selected from the group consisting of dimethyl formamide, dimethyl acetamide, dimethyl sulfoxide and mixtures thereof.
  • a process of electrolytically producing alkyl hydrazines in a two-chamber cell having a terminal anode and cathode electrode and adjacently permselective membrane comprising, passing a nonaqueous fluid solvent containing a lower alkyl amine into that electrode chamber which is adjacent to the electrode having a charge opposite in sign to the fixed charge on said membrane, passing fluid solvent into said other electrode chamber, passing a direct current across the electrodes through said chambers and membrane to cause the anodic formation of a lower alkyl hyrazine, withdrawing the resulting anolyte solution from said chamber, and separating and recovering said alkyl hydrazine from said anolyte solution.

Abstract

Hydrazine is produced in a two chamber electrolytic cell with anode and cathode chambers separated by an ion exchange membrane. When using an anion exchange membrane, ammonia and nonaqueous solvent are fed to the cathode compartment and hydrazine and solvent are collected from the anode compartment. When using a cation exchange membrane ammonia and nonaqueous solvent are fed to the anode compartment while hydrazine is also removed from the anode compartment. Similarly, alkyl hydrazines can be produced by feeding a lower alkyl amine instead of ammonia.

Description

United States Patent [72] Inventors Stuart G. McGriff Alexandria, Va.; Wayne A. McRae, Lexington, Mass. [21] Appl. No. 870,920 [22] Filed Sept. 16, 1969 [23] Division of Ser. No. 542,780, Apr. 15,
1966, Pat. No. 3,496,091 [45] Patented Oct. 26, 1971 [73] Assignee Ionics, Incorporated Water-town, Mass.
[54] HYDRAZINE MANUFACTURE 7 Claims, 6 Drawing Figs.
[52] US. Cl 204/59, 204/101, 204/102, 204/180 P [51] 1nt.Cl 801k 3/00, BOlk 3/08, BOlk 3/10 [50] Field of Search 204/180 P, 101, 102,59; 23/190 [56] References Cited UNITED STATES PATENTS 2,813,067 11/1957 Stuart 204/59 2,841,543 7/1958 Haller 204/59 3,034,861 5/1962 Pursley 23/190 3,251,755 5/1966 Mayland et al. 204/101 3,268,425 8/1966 Pursley.... 204/59 3,280,015 10/1966 Chu 204/101 3,281,211 10/1966 Lacey 23/190 3,301,773 1/1967 Whitney 204/101 Primary Examiner-John H. Mack Assistant Examiner-A. C. Prescott Attorneys-Aaron Tushin and Norman E. Saliba PATENTED B 2619?! 3,816,131 2 SHEET 10F 2 INVENTORS FIG I STUART 6. MC GRIFF WAYNE A. MC RAE B 77MB, J
ATTORNEY PATENTEDUCT 2619?! 3.616312 SHEET 2 F 2 FIG?) 5 FIG.4
SOLVENT+ HYDRAZINE (N2+NH3) 28 so 26 27 28 24 22 L 1 l T PURE SOLVENT /\'J\fL'---+- A #Nm- [\AAAA/ SOLVENT+AMMONIA I I i a T1 I A-ANION PERMSELECTIVE 28 3O 28 23 MEMBRANE H6 5 SOLVENT+ AMMONIA+ H2 C-CATION PERMSELECTIVE M MBRANE SOLVENT HYDRAZINE SOLVENT AMMONIA (N NH;)
8E5 3o 2a Ml gs 3 u 24 YI/VVVW A T C 4 INVENTORS r-- STUART 0. MC GRIFF 21 L I WAYNE A.MC RAE 1 l 30 SOLVENT+ AMMONIA BY +Hz MM 4M PURE SOLVENT H ATTORNEY HYDRAZINE MANUFACTURE This application is a division of Ser. No. 542,780 filed Apr. l5, 1966 now U.S. Pat. No. 3,496,091.
This invention relates to novel apparatus and methods for producing hydrazine by the electrolysis of ammonia solutions and, in particular, to electrolytic cells utilizing electrolytes of solid ion-exchange material for the production of anhydrous hydrazine.
Hydrazine (M,M finds its greatest use as a rocket fuel, but also as an oxygen scavenger in boiler water; as an intermediate in drug manufacture; as a plant growth retardant and in rubber blowing. The recent developments in new catalysts make hydrazine of increasing interest as a monopropellant and as a source of energy for fuel cell applications. However, the present cost of hydrazine is too high for widespread commercial use.
Almost all of the present production of hydrazine is based on the chemical oxidation of ammonia or urea in aqueous solutions by employing an oxidizing agent of an alkaline hypochlorite. The hydrazine is obtained as a dilute aqueous solution containing many contaminants and the commercial product of hydrazine hydrate or anhydrous hydrazine is produced with difficulty and great expense. Attempts have been made to produce hydrazine by electrolysis, using a variety of operating conditions and starting materials, but none appear to be sufficiently inexpensive for general use.
In the electrolysis of liquid ammonia, hydrazine is one of the first products formed by the anodic oxidation of ammonia. Liquid ammonia, like pure water, is a poor electrical conductor and is only slightly ionized into ammonium and amide ions, as shown in the following reaction: ZNH Z Nl-I[+NH During the electrolysis, the negatively charged amide ions are discharged by oxidation at the anode with a pair combining to form hydrazine. However, because of the poor conductance of liquid ammonia, the prior art has resorted to adding soluble electrolytes to the ammonia to form a solution having increased electrical conductance. Such electrolytes, soluble in liquid ammonia, include, for example, s oda;n ide, (Na NH sodium hydroxide, ammonium salts, including ammonium sulfonate and urea. Although the high degree of dissociation of the electrolytes do in fact increase the electrical conductivity of the resulting solution, their presence can be detrimental to the production of hydrazine.
Hydrazine is thermodynamically usable" and" therefore readily susceptible to decomposition. Since hydrazine is more susceptible to oxidation than ammonia, the hydrazine formed at the anode, if allowed to remain in the area of the anode, will quickly decompose. Many materials are known that will catalyze or accelerate this decomposition, such materials being halide ions, heavy metal ions and strong proton acceptors, such as the amide and hydroxide ions. Additionally, certain materials used in the construction of the anodes will more readily chemisorb hydrazine with its resultant decomposition.
In accordance with the present invention, solutions of ammonia in contact with an electrolyte of solid ion-exchange material are subjected to electrolysis to produce hydrazine at the anode. The electrolytic apparatus has a continuous bridge of a solid ion-exchange resin between and in intimate contact with the spaced cathode and anode electrodes. The ionexchange material bridging the space between the electrodes will function to provide an hydroxide conducting path since the ammonia solution passing into the cell will have a high electrical resistance. In the equilibrium between the ionexchange resin and a solution, the concentration of mobile ions in the resin is not highly dependent upon the concentration of ions in the surrounding solution, but is essentially determined by the number of exchange sites within the resin itself. Thus, in the case of an anion-permeable resin, it is possible to have a high concentration of mobile negatively charged am e iqiistN i ill ifi ifll wjll to Obtain r q i d electrical conductance without the addition of soluble salts or electrolytes to the ambient solution. This technique provides an available source of amide ions. The hydrazine formed at the anode will dissolve in the liquid, and the resulting solution will be removed from the cell before there is an substantial contact between the hydrazine in solution and amide ions in the resin. The result of this process is that hydrazine is formed in the liquid solution with the solution isolating the hydrazine from contact with catolytic materials which would cause excessive decomposition.
Therefore, the object of this invention is to provide a novel apparatus and process to produce hydrazine economically from liquid ammonia solutions by electrolysis.
A further object is to produce hydrazine derivatives the the process applicable to hydrazine by substituting amines in place of ammonia.
A further object is to economically prevent the further decomposition or oxidation of hydrazine once it is electrolytically formed.
A further object is to utilize a solid electrolyte of ionexchange resin in contact with ammonia to manufacture hydrazine electrolytically.
A further object is to employ a semiconducting anode for electrolytically oxidizing ammonia into hydrazine.
These and various other objects, features and advantages of the invention will appear more fully from the detailed description which follows accompanied by the drawings. To better understand the invention, the description is made with specific reference to certain preferred embodiments; however, it is not to be construed as limited thereto except as defined in the appended claims. By way of example, the use of this invention will now be described in detail with reference to the accompanying drawings in which:
FIG. 1 is an exploded perspective view of one embodiment of the improved electrolytic cell of the present invention wherein the solid electrolyte of ion-exchange resin is in the fonn of a membrane having pebbled surfaces.
FIG. 2 is a sectional view of an assembled cell taken along lines 2-2 of FIG. 1, showing the membrane in contact with both electrodes.
FIG. 3 is a modification of an ion-exchange membrane in which both sides have a corrugated design.
FIG. 4 is a cross-sectional view of a corrugated ionexchange membrane taken along line 4-4 of FIG. 3.
FIG. 5 illustrated schematically the process for producing hydrazine electrolytically by employing an anion-selective membrane in the electrolytic cell and FIG. 6 illustrates schematically an alternate process using a cation-selective membrane.
As shown in the drawings and, in particular, in FIGS. 1 and 2, the electrolytic cell is basically of a package or stack type. The apparatus comprises a cathode 1, an anode 3, an embossed or contoured ion-permselective membrane 5 and spacer members 6, all of which are assembled between two terminal pressure end plates 7 and 8. A fluidtight stack is obtained by applying the proper pressure against each end plate, as by bolts 9 and nuts 10. Means for passing a DC potential transversely through the stack is provided for through leads I l and 12 from an outside source of electric current (not shown).
The spacer members 6 are generally of an electrically nonconducting plastic gasketing material such as polyethylene and have cutout central portions 13 and 14 which form the cathode and anode fluid-holding chambers, respectively. These chambers are confined by the frame or border 15 of the spacer which also functions to separate and gasket the substantially flat marginal area 25 of the membrane with respect to the adjacent electrodes 1 and 3. The spacers, electrodes and end plates are shown with apertures 16 for directing a fluid to the cathode and anode chambers 13 and I4 and further apertures 17 are provided for withdrawing fluid therefrom. The apertures 16 and l! in the frame 15 of the spacer are located on substantially opposite sides of the cutout flow area. The apertures 16 and 17 in the frame of the spacer communicate with the respective cathode and anode chamhere by slits or channels 20 cut in the spacer material. Inlet means for passing fluid into the cathode and anode chambers are provided by inlets 20 and 22 respectively, and outlet means for withdrawing the solutions are provided at 23 and 24. The combination of a cathode and an anode chamber, membrane and terminal electrodes form a single electrolytic unit.
The single membrane 5 separating the electrode chambers 13 and 14 from each other is fabricated from an organic polymeric cross-linked material and may be anion permselective or cation perselective, both types of material being well known in the art.
The manufacture and properties of ion-selective membranes are fully disclosed in U.S. Pat. Nos. 2,702,272; 2,703;768; 2,73l,408; 2,800,445; Re. 24,865, and many others. Ion-exchange membranes are comprised of a solvated ion-exchange resin generally in sheet form which may be reinforced by an inert woven fabric structure. Such membranes generally comprise about 30 percent fabric by weight, 40 percent resin, and about 30 percent solvent, the solvent being uniformly dispersed throughout the resin.
Cation membranes are typically cross-linked sulfonated polystyrene. In the presence of inbibed solvent having at least a moderate dielectric constant, for example, dimethyl formamide, the sulfonate groups are dissociated into bound negatively charged ions and mobile positively charged counterions. The positively charged counter-ions are free to diffuse through the resin structure and, under the influence of an electric potential, are substantially the sole carrier of current. Typical positively charged counter-ions, for example, are sodium and ammonium. Similarly, the anion membranes may be a cross-linked polystyrene structure with quaternary ammonium salt groups which dissociate into bound positively charged quaternary ammonium ions and mobile negatively charged counter-ions such as, for example, hydroxide, sulfate and, in some nonaqueous solvents, the amide ion.
Generally, conventional ion-selective membranes are fabricated as sheets having totally flat surfaces. However, the membranes of the present invention are provided on both major faces with an elevated central area integrated with and generally of the same polymeric ion-exchange material as the substantially flat marginal sealing area 25 of the membrane to form a single homogeneous piece. The surface of the central area is embossed or contoured with a plurality of projecting 26 and receding 27 portions. The receding portions are so arranged as to form flow channels 28 between the projections for the passage of fluid therethrough. As shown in the drawings, the contoured central area of the membrane is pebbled (FIG. I) or corrugated (H6. 3) but other various geometric designs, such as ribs, studs, ridges and the like may be provided on the surface.
When the elements comprising the electrolytic cell are as sembled into a fluidtight stack arrangement, the projecting central portions 26 of the membrane will extend directly into the central cutout portions 13 and 14 of the adjacent spacers which form the cathode and anode chambers. The projections may be about the same height as the spacer thickness. The height of the projections may vary within wide limits but an extension of about 30 mils (0.030 inches) in a direction perpendicular to the flat surface of the membrane would be satisfactory. Such a membrane embossed on both sides and having a 30 mil thickness across the flat marginal area would than have a total central area thickness of about 90 mils. On assembly of the cell, the tips of the projections are caused to press firmly against the surface of each adjacent electrode to form an electrode'membrane interface 30 which makes electrical contact and forms a continuous ion-conducting bridge between the electrode pair. This arrangement will allow an electric current to be carried between the electrodes, primarily by mobile ions of one sign passing solely through the membrane structure. The recessed areas or interstices between the projections form fluid-flow channels 28. The fluids used in the cell need not necessarily be electrolytically conducting since the electric current will be carried within and across the bridge of ion-conducting membrane material. The membranes can of course be of various thicknesses and have pattern configurations other than those specifically described herein. All other factors being equal, it is evident that the greater the number of projections of membrane area contacting the electrode surface, the smaller the power consumption of the electrolytic cell.
The membranes may be fabricated by sandwiching the liquid polymer mix between two glass plates having the desired patterned surface, polymerizing the mix until solid, and then stripping off the glass molding plates to leave a solid polymerized structure. The pattern serves as the mold for the contoured central portion of the membrane. There are glass molding plates of numerous design patterns which are available commercially. The solid structure is then treated with appropriate chemicals to make them either anion or cation permselective as by quarternization or sulfonation. in order to add strength and flexibility to the membrane, an inert sheet of open-weave cloth or screen material may be incorporated as a backing or reinforcing material within the membrane. in such a method, the liquid mix is poured over the cloth fabric prior to being sandwiched between the glass molding plates. Additionally, in order to prevent or minimize fracturing of the projecting or raised portions of the membrane, especially during assembly of the electrolytic cell when the membrane is com pressed between the pair of electrodes. It is preferable that bits of fabric material or fibers of glass or other material be suspended in the liquid polymer mix before casting into a membrane. These fibers will structurally reinforce the entire raised membrane area to impart the necessary resistance to cracking.
The operation of the electrolytic apparatus, for example, in the manufacture of hydrazine from ammonia, may be illustrated by referring particularly to H0. 5 wherein the membrane is anion-selective and the mobile counter-ions are amide ions N11,).
A catholytic and an anolytic feed solution are directed into inlet 21 and 22 respectively, and caused to flow into the respective cathode and anode chambers across the chambers via the interstices or flow channels 28 formed by the projecting membrane portions and out of the chamber by way of outlets 23 and 24 in the general direction as shown by the arrows of the figures.
The catholytic feed solution is comprised of a nonaqueous inert fluid solvent containing ammonia in dilute concentrations. The feed to the anode chamber is pure anhydrous fluid solvent. The fluid solvent should of course be a solvent for ammonia and hydrazine and, preferably, should have at least a moderate dielectric constant and have a negligible affinity for protons, and should not substantially dissociate into an anion which would have a strong afi'mity for protons. Another preferred requirement of the solvent is that it has a higher boiling point than that of liquid hydrazine (B.P. 113.5 C.). This requirement evolves from the consideration of recovering the hydrazine from the mixture of hydrazine and solvent issuing as the effluent of the anode chamber. Distillation is a preferred method since two liquids are involved and of course recovery cost will be minimized if the hydrazine has a substantially lower boiling point that the solvent to allow its being boiled off from the bulk of solvent. Suitable solvents meeting the preferred requirement are dimethyl acetamide, dimethyl formamide, dimethyl sulfoxide, and the like.
The electrolysis is carried out using a source of direct current and suitable electrode current densities. A range of about 10 and amps/ft is preferred although current densities outside this range are suitable. During electrolysis, the ammonia in the catholytic solution is reduced at the cathodemembrane interface into hydrogen gas and amide ions as follows:
2NH 2e- 2NH, H, The hydrogen gas is carried out of the chamber with the flow ing catholytic solution. This catholytic solution, now partially depleted in ammonia, is removed from the cell at exit 23 and directed to a gasJiquid separator (not shown) for removal of the hydrogen gas. The solution may then be spiked with additional gaseous or liquid ammonia and recycled back to the cathode chamber of the cell for further processing.
The negatively charged amide ions formed at the cathode will, under the influence of the electric current, migrate across the anion-permselective membrane in the direction of the positively charged anode. On reaching the anode-membrane interface, oxidation of the amide ion will occur with a pair of amide ions combining to form hydrazine as follows:
ZNHQ-fNJi 2c In addition, small amounts of nitrogen and ammonia may also result as products of the oxidation process. The hydrazine formed diffuses out of the membrane, and is carried out of the anode chamber with the flowing solvent to a gas separator (not shown) to remove any nitrogen gas contained therein. The dissolved hydrazine is then separated from the remaining solution by any suitable means, such as distillation, freezing, membrane permeation, or the like. The preferred method would be distillation whereby the solution is stripped of its anhydrous hydrazine and traces of ammonia. Small amounts of hydrazine hydrate may be present in the final product due to unavoidable pickup of water in the system. The ammonia, separated during distillation, may be added to the catholytic feed solution, and the pure solvent remaining is recycled as the feed solution to the anode chamber.
It is important that the hydrazine formed be removed from the vicinity of the anode as quickly as possible. if allowed to remain within the anode area, the hydrazine becomes susceptible to oxidation and can readily decompose as follows:
The extent of hydrazine decomposition depends among other things on the anode current density and the concentration of the reactants present at the anodemembrane interface. Where the cell employs an anion-permeselective membrane, the reactants would be hydrazine along with amide ions, and naturally the lower their concentration at the interface, the less hydrazine decomposition. Further prevention of hydrazine decomposition can be attained by fabricating the anodes from a material on which hydrazine is not readily chemisorbed. Such anodes may be constructed of impervious graphite, platinum, electrolytic valve metals, such as titanium coated with a precious metal of platinum, and the like. In place of these conventional electrodes, it is further contemplated that semiconducting electrodes be employed to further diminish the hydrazine decomposition process. The preferred material for semiconducting electrodes is impervious self-bonding carbide having either the nor p-type conduction. Hydrazine will be less strongly absorbed on properly constructed semiconducting electrodes and therefore less subject to electro-oxidation or decomposition.
The ion-exchange resin of the membrane does not act as a catalyst in the decomposition of hydrazine. In fact, in its use as the electrolyte of the cell, the concentration at the anode of strong proton acceptors, such as the amide ion, is kept at a low level since the only amide ions contacting the anode are those carrying the electric current in their migration through the ion-exchang e membrane. Additionally, since the mobile amide ion is the only conducting ionic species within the anion selective resin which need be present in the process, hydrazine decomposition attributable to heavy metal ions or halides will not occur as would be the case where soluble salts are employed as the electrolyte of the cell.
An alternate embodiment of the invention is diagrammatically illustrated in FlG. 6. The membrane in this modification is cation selective and is in the ammonium ionic form NHJ). Operation of this cell is similar to that of FIG. 5 except that the feed solutions entering the electrode chambers are reversed; that is, the solution of solvent and ammonia is fed to the anode chamber, whereas the pure anhydrous-solvent is fed to the cathode chamber. In the anode chamber, the ammonia is oxidized at the anode-membrane interface to hydrazine and positively charged ammonium ions as follows:
To minimize the decomposition of the hydrazine, an excess of ammonia is maintained at the membrane surface. Since ammonia is a stronger base than hydrazine, the hydrazine will be in the free base form and diffuse out of the resin to be carried out of the anode chamber by the flowing anolyte.
The positively charged ammonium ions formed at the anode will migrate through the cation membrane in the direction of the cathode where they will be cathodically reduced at the cathode-membrane interface to ammonium and hydrogen gas as follows:
The hydrogen gas is then separated from the anolyte effluent solution, the solution is spiked with additional ammonia and the resulting solution of solvent and ammonia is recycled back to the cell as the feed to the anode chamber.
The following examples are further illustrative of the practice of this invention and are not intended to be limiting:
EXAMPLE I In a cell constructed as shown in FIG. 5, the membrane is a trimethylaminated, chloromethylated copolymer of ethyl vinyl benzene and divinyl benzene reinforced with woven polypropylene fabric. The fixed charged groups are quaternary ammonium cations (benzyl trimethyl ammonium). The total thickness of the membrane is about 0.090 inch. The plane of the membrane is vertical and the surfaces of the membrane in the central portion are raised into ribs having a roughly triangular cross section and having their long dimension in a vertical direction. The ribs project about 0.030 inch from the bulk of the membrane and are on centers of about 0.035 inch. The central portion of the membrane is about 2 inches wide and 7 inches long. The flow in each compartment is upward. The electrodes are smooth platinum and the spacer gaskets are polypropylene. The membrane is converted to the hydroxide form in water in the conventional way and then equilibrated with several changes of methanol to replace the water and with several changes of dimethyl formamide to replace the methanol. The membrane is then assembled into the cell. To convert the membrane to the amide fonn, a 5 percent solution of sodium amide in anhydrous dimethyl formamide is passed upwardly through the cathode compartment at a rate of about 3 grams per minute. Pure anhydrous dimethyl formamide is passed upwardly through the anode compartment at a rate of about 3 grams per minute. A current of 3 amperes is applied for 2 "hours and then the current is turned off and the compartments rinsed with anhydrous dimethyl formamide. In a production run the catholyte is anhydrous dimethyl formamide containing about 5 percent anhydrous ammonia by weight. The catholyte flows at a rate of about 3 grams per minute. The anolyte is anhydrous dimethyl formamide and flows at a rate of about 3 grams per minute. A current of about 3 amperes is applied. After about 3 hours, about l grams of enolyte efiluent have been collected. Upon analysis by standard iodate solution using amaranth as an indicator, it is found that the collected anolyte contains about 3.75 grams of hydrazine. The current efficiency is about 70 percent. The hydrazine is recovered by fractional distillation.
EXAMPLE 2 in a cell constructed as shown in FIG. 6, the membrane is a sulfonated terpolymer of vinyl toluene, ethyl vinyl benzene and divinyl benzene reinforced with a woven fabric of glass fibers. The fixed charged groups are sulfonate anions. The total thickness of the membrane is about 0.090 inch. The plane of the membrane is horizontal and the surfaces of the membrane in the central portion are raised into small hillocks rising about 0.030 inch from the surface of the membrane. The hillocks are about 0.060 inch in diameter and are on centers of about 0.075 inch. The central portion of the membrane is about 2 inches wide and 7 inches long. The flow in each compartment is horizontal and in a composite direction parallol to the long dimension of the central portion. The electrodes are self-bonded silicon carbide having n-type carriers. The gaskets are polytetrafluorethylene. The membrane is converted to the ammonium form in water in the conventional way and then equilibrated with several changes of methanol to replace the water and with several changes of dimethyl acetamide to replace the methanol. The membrane is then assembled into the cell. In a production run, the catholyte is anhydrous dimethyl acetamide, flowing at a rate of about 3 grams per minute. The enolyte is anhydrous dimethyl acetamide containing about 5 percent anhydrous ammonia by weight. The anolyte flows at a rate of about 3 grams per minute. A current of about 3 amperes is applied. The product of the first two hours of operation is discarded and the product of the anolyte of the next three hours is collected. The amount collected is about 180 grams. Upon analysis by standard iodate solution using amaranth as an indicator, it is found that the collected anolyte contains about 3.20 grams of hydrazine. The current efficiency is about 60 percent. The hydrazine is recovered by fractional distillation.
EXAMPLE 3 The cell of example 2 is operated with percent methyl amine in anhydrous dimethyl sulfoxide as the anolyte and impervious graphite electrodes. The catholyte is anhydrous dimethyl sulfoxide. Dimethyl hydrazine (probably the symmetrical compound) is recovered from the anolyte. The current efflciency is about 70 percent.
What is claimed is:
l. A process of electrolytically producing hydrazine from ammonia in a two-chamber cell having a terminal anode and cathode electrode and adjacently disposed anode and cathode chambers separated from one another by an ion-permselective membrane comprising, passing an ammonia-containing, nonaqueous fluid solvent into that electrode chamber which is adjacent to the electrode having a charge opposite in sign to the fixed charge on said membrane passing fluid solvent into said other electrode chamber, passing a direct current across the electrodes through said chambers and membrane to cause the anodic formation of hydrazine, withdrawing the resulting anolyte solution from said chamber, and separating and recovering said hydrazine from said anolyte solution.
2. The process of claim 1 wherein the fluid solvent is selected from the group consisting of dimethyl formamide, dimethyl acetamide, dimethyl sulfoxide and mixtures thereof.
3. The process of claim 1 wherein the hydrazine is separated and recovered from the withdrawn anloyte solution by distillation.
4. The process of claim 1 wherein the membrane is cationpermselective and wherein the ammonia-containing fluid solvent is passed into said anode chamber and the fluid solvent into said cathode chamber.
5. The process of claim 1 wherein the membrane is anionpermselective and wherein the ammonia-containing fluid solvent is passed into said cathode chamber and the fluid solvent into said anode chamber.
6. A process of electrolytically producing alkyl hydrazines in a two-chamber cell having a terminal anode and cathode electrode and adjacently permselective membrane comprising, passing a nonaqueous fluid solvent containing a lower alkyl amine into that electrode chamber which is adjacent to the electrode having a charge opposite in sign to the fixed charge on said membrane, passing fluid solvent into said other electrode chamber, passing a direct current across the electrodes through said chambers and membrane to cause the anodic formation of a lower alkyl hyrazine, withdrawing the resulting anolyte solution from said chamber, and separating and recovering said alkyl hydrazine from said anolyte solution.
7. The process of claim 6 wherein the lower alkyl amine is methyl amine and the fluid solvent in dimethyl sulfoxide.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3 16 ,31 Dated October 26 1971 Inventor) Stuart G McGriff et a1.
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 8, line 23, after "adjacently" insert disposed anode and cathode chambers separated from one another by an ion Signed and sealed this 29th day of August 1972.
(SEAL) Attest:
EDWARD M.FLETCHER,JR. ROBERT GOTTSCHALK Attesting Officer Commissioner of Patents RM Po-1050(10-69) UScOMM-DC wan-Pun 9 U S GOVERNMENT PRINTING OFFICE l9! D36i 3J4

Claims (6)

  1. 2. The process of claim 1 wherein the fluid solvent is selected from the group consisting of dimethyl formamide, dimethyl acetamide, dimethyl sulfoxide and mixtures thereof.
  2. 3. The process of claim 1 wherein the hydrazine is separated and recovered from the withdrawn anloyte solution by distillation.
  3. 4. The process of claim 1 wherein the membrane is cation-permselective and wherein the ammonia-containing fluid solvent is passed into said anode chamber and the fluid solvent into said cathode chamber.
  4. 5. The process of claim 1 wherein the membrane is anion-permselective and wherein the ammonia-containing fluid solvent is passed into said cathode chamber and the fluid solvent into said anode chamber.
  5. 6. A process of electrolytically producing alkyl hydrazines in a two-chamber cell having a terminal anode and cathode electrode and adjacently permselective membrane comprising, passing a nonaqueous fluid solvent containing a lower alkyl amine into that electrode chamber which is adjacent to the electrode having a charge opposite in sign to the fixed charge on said membrane, passing fluid solvent into said other electrode chamber, passing a direct current across the electrodes through said chambers and membrane to cause the anodic formation of a lower alkyl hyrazine, withdrawing the resulting anolyte solution from said chamber, and separating and recovering said alkyl hydrazine from said anolyte solution.
  6. 7. The process of claim 6 wherein the lower alkyl amine is methyl amine and the fluid solvent in dimethyl sulfoxide.
US870920A 1966-04-15 1969-09-16 Hydrazine manufacture Expired - Lifetime US3616312A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US54278066A 1966-04-15 1966-04-15
US87092069A 1969-09-16 1969-09-16

Publications (1)

Publication Number Publication Date
US3616312A true US3616312A (en) 1971-10-26

Family

ID=27067146

Family Applications (1)

Application Number Title Priority Date Filing Date
US870920A Expired - Lifetime US3616312A (en) 1966-04-15 1969-09-16 Hydrazine manufacture

Country Status (1)

Country Link
US (1) US3616312A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050078348A1 (en) * 2003-09-30 2005-04-14 Wen-Jian Lin Structure of a micro electro mechanical system and the manufacturing method thereof
US20060077519A1 (en) * 2004-09-27 2006-04-13 Floyd Philip D System and method for providing thermal compensation for an interferometric modulator display
US20060256420A1 (en) * 2003-06-24 2006-11-16 Miles Mark W Film stack for manufacturing micro-electromechanical systems (MEMS) devices
US20060257070A1 (en) * 2003-05-26 2006-11-16 Wen-Jian Lin Optical interference display cell and method of making the same
US7250315B2 (en) 2002-02-12 2007-07-31 Idc, Llc Method for fabricating a structure for a microelectromechanical system (MEMS) device
US20070236774A1 (en) * 2006-04-10 2007-10-11 Evgeni Gousev Interferometric optical display system with broadband characteristics
US20070247401A1 (en) * 2006-04-19 2007-10-25 Teruo Sasagawa Microelectromechanical device and method utilizing nanoparticles
US20070247696A1 (en) * 2006-04-19 2007-10-25 Teruo Sasagawa Microelectromechanical device and method utilizing a porous surface
US7297471B1 (en) 2003-04-15 2007-11-20 Idc, Llc Method for manufacturing an array of interferometric modulators
US20070279730A1 (en) * 2006-06-01 2007-12-06 David Heald Process and structure for fabrication of mems device having isolated egde posts
US7349136B2 (en) 2004-09-27 2008-03-25 Idc, Llc Method and device for a display having transparent components integrated therein
US7369296B2 (en) * 2004-09-27 2008-05-06 Idc, Llc Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
US7369292B2 (en) 2006-05-03 2008-05-06 Qualcomm Mems Technologies, Inc. Electrode and interconnect materials for MEMS devices
US7373026B2 (en) 2004-09-27 2008-05-13 Idc, Llc MEMS device fabricated on a pre-patterned substrate
US7382515B2 (en) 2006-01-18 2008-06-03 Qualcomm Mems Technologies, Inc. Silicon-rich silicon nitrides as etch stops in MEMS manufacture
US7405863B2 (en) 2006-06-01 2008-07-29 Qualcomm Mems Technologies, Inc. Patterning of mechanical layer in MEMS to reduce stresses at supports
US7405861B2 (en) 2004-09-27 2008-07-29 Idc, Llc Method and device for protecting interferometric modulators from electrostatic discharge
US7417783B2 (en) 2004-09-27 2008-08-26 Idc, Llc Mirror and mirror layer for optical modulator and method
US7420728B2 (en) 2004-09-27 2008-09-02 Idc, Llc Methods of fabricating interferometric modulators by selectively removing a material
US7450295B2 (en) 2006-03-02 2008-11-11 Qualcomm Mems Technologies, Inc. Methods for producing MEMS with protective coatings using multi-component sacrificial layers
US7485236B2 (en) 2003-08-26 2009-02-03 Qualcomm Mems Technologies, Inc. Interference display cell and fabrication method thereof
US7492502B2 (en) 2004-09-27 2009-02-17 Idc, Llc Method of fabricating a free-standing microstructure
US7527996B2 (en) 2006-04-19 2009-05-05 Qualcomm Mems Technologies, Inc. Non-planar surface structures and process for microelectromechanical systems
US7534640B2 (en) 2005-07-22 2009-05-19 Qualcomm Mems Technologies, Inc. Support structure for MEMS device and methods therefor
US7547565B2 (en) 2005-02-04 2009-06-16 Qualcomm Mems Technologies, Inc. Method of manufacturing optical interference color display
US7547568B2 (en) 2006-02-22 2009-06-16 Qualcomm Mems Technologies, Inc. Electrical conditioning of MEMS device and insulating layer thereof
US7550794B2 (en) 2002-09-20 2009-06-23 Idc, Llc Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer
US7553684B2 (en) 2004-09-27 2009-06-30 Idc, Llc Method of fabricating interferometric devices using lift-off processing techniques
US7566664B2 (en) 2006-08-02 2009-07-28 Qualcomm Mems Technologies, Inc. Selective etching of MEMS using gaseous halides and reactive co-etchants
US7623287B2 (en) 2006-04-19 2009-11-24 Qualcomm Mems Technologies, Inc. Non-planar surface structures and process for microelectromechanical systems
US7630114B2 (en) 2005-10-28 2009-12-08 Idc, Llc Diffusion barrier layer for MEMS devices
US7684104B2 (en) 2004-09-27 2010-03-23 Idc, Llc MEMS using filler material and method
US7763546B2 (en) 2006-08-02 2010-07-27 Qualcomm Mems Technologies, Inc. Methods for reducing surface charges during the manufacture of microelectromechanical systems devices
US7781850B2 (en) 2002-09-20 2010-08-24 Qualcomm Mems Technologies, Inc. Controlling electromechanical behavior of structures within a microelectromechanical systems device
US7780833B2 (en) 2005-07-26 2010-08-24 John Hawkins Electrochemical ion exchange with textured membranes and cartridge
US7795061B2 (en) 2005-12-29 2010-09-14 Qualcomm Mems Technologies, Inc. Method of creating MEMS device cavities by a non-etching process
US7959780B2 (en) 2004-07-26 2011-06-14 Emporia Capital Funding Llc Textured ion exchange membranes
US8562803B2 (en) 2005-10-06 2013-10-22 Pionetics Corporation Electrochemical ion exchange treatment of fluids
US8830557B2 (en) 2007-05-11 2014-09-09 Qualcomm Mems Technologies, Inc. Methods of fabricating MEMS with spacers between plates and devices formed by same

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7642110B2 (en) 2002-02-12 2010-01-05 Qualcomm Mems Technologies, Inc. Method for fabricating a structure for a microelectromechanical systems (MEMS) device
US7250315B2 (en) 2002-02-12 2007-07-31 Idc, Llc Method for fabricating a structure for a microelectromechanical system (MEMS) device
US7781850B2 (en) 2002-09-20 2010-08-24 Qualcomm Mems Technologies, Inc. Controlling electromechanical behavior of structures within a microelectromechanical systems device
US7550794B2 (en) 2002-09-20 2009-06-23 Idc, Llc Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer
US7297471B1 (en) 2003-04-15 2007-11-20 Idc, Llc Method for manufacturing an array of interferometric modulators
US20060257070A1 (en) * 2003-05-26 2006-11-16 Wen-Jian Lin Optical interference display cell and method of making the same
US7706044B2 (en) 2003-05-26 2010-04-27 Qualcomm Mems Technologies, Inc. Optical interference display cell and method of making the same
US20060256420A1 (en) * 2003-06-24 2006-11-16 Miles Mark W Film stack for manufacturing micro-electromechanical systems (MEMS) devices
US7616369B2 (en) 2003-06-24 2009-11-10 Idc, Llc Film stack for manufacturing micro-electromechanical systems (MEMS) devices
US7485236B2 (en) 2003-08-26 2009-02-03 Qualcomm Mems Technologies, Inc. Interference display cell and fabrication method thereof
US20050078348A1 (en) * 2003-09-30 2005-04-14 Wen-Jian Lin Structure of a micro electro mechanical system and the manufacturing method thereof
US7291921B2 (en) 2003-09-30 2007-11-06 Qualcomm Mems Technologies, Inc. Structure of a micro electro mechanical system and the manufacturing method thereof
US7959780B2 (en) 2004-07-26 2011-06-14 Emporia Capital Funding Llc Textured ion exchange membranes
US7684104B2 (en) 2004-09-27 2010-03-23 Idc, Llc MEMS using filler material and method
US7429334B2 (en) 2004-09-27 2008-09-30 Idc, Llc Methods of fabricating interferometric modulators by selectively removing a material
US7373026B2 (en) 2004-09-27 2008-05-13 Idc, Llc MEMS device fabricated on a pre-patterned substrate
US7553684B2 (en) 2004-09-27 2009-06-30 Idc, Llc Method of fabricating interferometric devices using lift-off processing techniques
US7830589B2 (en) 2004-09-27 2010-11-09 Qualcomm Mems Technologies, Inc. Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
US7405861B2 (en) 2004-09-27 2008-07-29 Idc, Llc Method and device for protecting interferometric modulators from electrostatic discharge
US7417783B2 (en) 2004-09-27 2008-08-26 Idc, Llc Mirror and mirror layer for optical modulator and method
US7660031B2 (en) 2004-09-27 2010-02-09 Qualcomm Mems Technologies, Inc. Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
US7420728B2 (en) 2004-09-27 2008-09-02 Idc, Llc Methods of fabricating interferometric modulators by selectively removing a material
US7349136B2 (en) 2004-09-27 2008-03-25 Idc, Llc Method and device for a display having transparent components integrated therein
US20060077519A1 (en) * 2004-09-27 2006-04-13 Floyd Philip D System and method for providing thermal compensation for an interferometric modulator display
US7369296B2 (en) * 2004-09-27 2008-05-06 Idc, Llc Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
US7492502B2 (en) 2004-09-27 2009-02-17 Idc, Llc Method of fabricating a free-standing microstructure
US7547565B2 (en) 2005-02-04 2009-06-16 Qualcomm Mems Technologies, Inc. Method of manufacturing optical interference color display
US7534640B2 (en) 2005-07-22 2009-05-19 Qualcomm Mems Technologies, Inc. Support structure for MEMS device and methods therefor
US8293085B2 (en) 2005-07-26 2012-10-23 Pionetics Corporation Cartridge having textured membrane
US7780833B2 (en) 2005-07-26 2010-08-24 John Hawkins Electrochemical ion exchange with textured membranes and cartridge
US8562803B2 (en) 2005-10-06 2013-10-22 Pionetics Corporation Electrochemical ion exchange treatment of fluids
US9090493B2 (en) 2005-10-06 2015-07-28 Pionetics Corporation Electrochemical ion exchange treatment of fluids
US7630114B2 (en) 2005-10-28 2009-12-08 Idc, Llc Diffusion barrier layer for MEMS devices
US8394656B2 (en) 2005-12-29 2013-03-12 Qualcomm Mems Technologies, Inc. Method of creating MEMS device cavities by a non-etching process
US7795061B2 (en) 2005-12-29 2010-09-14 Qualcomm Mems Technologies, Inc. Method of creating MEMS device cavities by a non-etching process
US7382515B2 (en) 2006-01-18 2008-06-03 Qualcomm Mems Technologies, Inc. Silicon-rich silicon nitrides as etch stops in MEMS manufacture
US7547568B2 (en) 2006-02-22 2009-06-16 Qualcomm Mems Technologies, Inc. Electrical conditioning of MEMS device and insulating layer thereof
US7450295B2 (en) 2006-03-02 2008-11-11 Qualcomm Mems Technologies, Inc. Methods for producing MEMS with protective coatings using multi-component sacrificial layers
US20070236774A1 (en) * 2006-04-10 2007-10-11 Evgeni Gousev Interferometric optical display system with broadband characteristics
US7643203B2 (en) 2006-04-10 2010-01-05 Qualcomm Mems Technologies, Inc. Interferometric optical display system with broadband characteristics
US7564613B2 (en) 2006-04-19 2009-07-21 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing a porous surface
US20070247696A1 (en) * 2006-04-19 2007-10-25 Teruo Sasagawa Microelectromechanical device and method utilizing a porous surface
US20070247401A1 (en) * 2006-04-19 2007-10-25 Teruo Sasagawa Microelectromechanical device and method utilizing nanoparticles
US7711239B2 (en) 2006-04-19 2010-05-04 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing nanoparticles
US7417784B2 (en) 2006-04-19 2008-08-26 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing a porous surface
US7623287B2 (en) 2006-04-19 2009-11-24 Qualcomm Mems Technologies, Inc. Non-planar surface structures and process for microelectromechanical systems
US7527996B2 (en) 2006-04-19 2009-05-05 Qualcomm Mems Technologies, Inc. Non-planar surface structures and process for microelectromechanical systems
US7369292B2 (en) 2006-05-03 2008-05-06 Qualcomm Mems Technologies, Inc. Electrode and interconnect materials for MEMS devices
US20070279730A1 (en) * 2006-06-01 2007-12-06 David Heald Process and structure for fabrication of mems device having isolated egde posts
US7321457B2 (en) 2006-06-01 2008-01-22 Qualcomm Incorporated Process and structure for fabrication of MEMS device having isolated edge posts
US7405863B2 (en) 2006-06-01 2008-07-29 Qualcomm Mems Technologies, Inc. Patterning of mechanical layer in MEMS to reduce stresses at supports
US7566664B2 (en) 2006-08-02 2009-07-28 Qualcomm Mems Technologies, Inc. Selective etching of MEMS using gaseous halides and reactive co-etchants
US7763546B2 (en) 2006-08-02 2010-07-27 Qualcomm Mems Technologies, Inc. Methods for reducing surface charges during the manufacture of microelectromechanical systems devices
US8830557B2 (en) 2007-05-11 2014-09-09 Qualcomm Mems Technologies, Inc. Methods of fabricating MEMS with spacers between plates and devices formed by same

Similar Documents

Publication Publication Date Title
US3616312A (en) Hydrazine manufacture
US3496091A (en) Electrolytic-electrodialysis apparatus
US3884777A (en) Electrolytic process for manufacturing chlorine dioxide, hydrogen peroxide, chlorine, alkali metal hydroxide and hydrogen
US3401099A (en) Electrolytic method of gas separation
US3262868A (en) Electrochemical conversion of electrolyte solutions
CA1073401A (en) Electrolytic production of chlorine dioxide, chlorine, alkali metal hydroxide and hydrogen
US4397719A (en) Process for preparing nitrogen by ammonium nitrate decomposition
US3214362A (en) Electrolysis of aqueous electrolyte solutions and apparatus therefor
US4124477A (en) Electrolytic cell utilizing pretreated semi-permeable membranes
US3660259A (en) Electrolytic cell
KR840006830A (en) Electrolytic Manufacturing Method Of Organic Compound And Electrolyzer
Raucq et al. Production of sulphuric acid and caustic soda from sodium sulphate by electromembrane processes. Comparison between electro-electrodialysis and electrodialysis on bipolar membrane
US5906722A (en) Method of converting amine hydrohalide into free amine
US3904495A (en) Electrolytic-electrodialytic and chemical manufacture of chlorine dioxide, chlorine and chloride-free alkali metal hydroxide
US3884778A (en) Electrolytic production of hydrogen peroxide and alkali metal hydroxide
US2981671A (en) Method of reducing scale formation in electrodialytic cells
EP0221751B1 (en) Method for separating an acid and an alkali from an aqueous solution of a salt
FI87937B (en) ELEKTROLYTISK CELL
US3925174A (en) Electrolytic method for the manufacture of hypochlorites
US3616385A (en) Chlorine- and chloride-free hyprochlorous acid by electrodialysis
US4391682A (en) Method for electrolytic production of hydrogen
US4636286A (en) Electro organic method
US4065376A (en) Electrolytic cell
EP0063420A1 (en) Electrolyzers for the production of hydrogen
US3907654A (en) Electrolytic cell and process for electrolyzing sodium sulfate