US3622829A - Improvements in fluorescent screen display panels - Google Patents

Improvements in fluorescent screen display panels Download PDF

Info

Publication number
US3622829A
US3622829A US778279A US3622829DA US3622829A US 3622829 A US3622829 A US 3622829A US 778279 A US778279 A US 778279A US 3622829D A US3622829D A US 3622829DA US 3622829 A US3622829 A US 3622829A
Authority
US
United States
Prior art keywords
electrode
sheets
insulating substrate
holes
control electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US778279A
Inventor
Masanori Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Application granted granted Critical
Publication of US3622829A publication Critical patent/US3622829A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/48Cold-cathode tubes with more than one cathode or anode, e.g. sequence-discharge tube, counting tube, dekatron
    • H01J17/49Display panels, e.g. with crossed electrodes, e.g. making use of direct current
    • H01J17/498Display panels, e.g. with crossed electrodes, e.g. making use of direct current with a gas discharge space and a post acceleration space for electrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/025Electron guns using a discharge in a gas or a vapour as electron source

Definitions

  • cathode-ray tubes are widely used in display devices including TV sets.
  • the characteristics of the cathode-ray tube include easiness in obtaining high brightness, possibility of changing from low to high brightness continuously and obtain a so-called halftone, possibility of obtaining high resolution and so forth.
  • the cathode-ray tube since in a cathode-ray tube the cathode ray is accelerated, deflected and made to bombard the fluorescent screen for illumination, the electron gun, the deflection yoke, etc. must be arranged in sequence on or around the same axis. Accordingly, the device necessarily becomes large in length and large in volume. Further, even if the cathode-ray tube is constructed in a panel form, the construction is limited by the presence of the electron gun and the deflection means.
  • Platinum wires 3, 4 are set on both sides of the insulating substrate 2 comprising a large number of regularly arranged holes 1 in a way that the wires may pass the center of said holes 1 and the periphery is sealed airtight by closely adhering the glass plates 5, 6 on both sides.
  • the directions of the platinum wires 3, 4 are orthogonal to each other.
  • the inside of the device is filled with an inert gas like neon, argon, etc. with appropriate pressure.
  • the DC voltage is applied selectively to the mutually orthogonal platinum wires 3, 4, the gas in the cell at the intersection is ionized and made to illuminate.
  • the deficiencies of said display devices include the spread of the order of several hundred microseconds present in the time lag between the application of the discharge voltage with the initiation of discharge.
  • the frame number is 30 per second
  • the number of scanning lines is 525 per frame and the number of the effective scanning lines is 491 per frame
  • the linear scanning time is 63.5 microseconds and the effective linear scanning time is 52.7 microseconds.
  • the number of frames is 25 per second
  • the number of scanning lines is 405 per frame
  • the number of effective scanning lines is 379 per frame.
  • the linear scanning time is 98.8 microseconds and the effective linear scanning time is 82.0 microseconds.
  • the linear scanning time is 64.0 microseconds and the effective linear scanning time is 53.0 microseconds. Accordingly, since in either one of these TV standard systems, the effective linear scanning time is less than 100 microseconds, a several hundred microsecond time lag is too large for effective use in any of the above TV systems. Further, since the brightness depends on the discharge time, it is technically diflicult to realize brightness modulation due to the large jitter.
  • An object of this invention is to provide a panel form or thin display device.
  • Another object of the invention is to provide a device having a short response time, i.e. a device having good response characteristics comparable to or better than those of conventional TV sets.
  • a further object of the invention is to provide a device in which brightness comparable to that of conventional TV sets is obtained and the brightness can be changed by a signal.
  • a yet further object of the invention is to provide a thin TV set which can be hung on the wall.
  • a yet further object of the invention is to provide a light TV set having a large panel or image display screen.
  • FIG. I is a diagram for illustrating the main parts of the display panel utilizing gas discharge as present by Th. J. de Boer;
  • FIG. 2 is a diagram illustrating the structure of an embodiment of this invention.
  • FIG. 3 is a diagram illustrating the control electrode of the device shown in FIG. 2;
  • FIG. 4 illustrates the operation of the device shown in FIG.
  • FIGS. 5 and 6 show the characteristics of the control electrode shown in FIG. 3;
  • FIG. 7 is a diagram for explaining Paschens law.
  • FIG. 8 shows a perspective view of an embodiment of this invention.
  • 11 is the panel-shaped discharge tube, at least one principal wall of which is made of a transparent insulating material like glass
  • 12 is a glass plate mount against the inner wall of said principal wall of the discharge tube 11
  • 13 is a transparent electrode formed of conductive filmlike tin oxide film adhered to the surface of said glass plate l2
  • 14 is a fluorescent screen formed by applying fluorescent material like zinc sulfide on the transparent electrode 13
  • 15 is a control electrode arranged adjacently to the fluorescent film 14 in parallel with the glass plate 12.
  • the control grid 15 comprises the first grid electrode 17 on one surface of the insulating substrate 16 and the second grid electrode 18 on the other surface; both grid electrodes being formed by arranging a plurality of metal electrode sheets in parallel with each other.
  • the direction of the array of the second set of grid elements 18a, l8b,... l8n,... is orthogonal to that of the first set of grid elements 17a, l7b,... 17:11,... At the part where the metal electrode sheets 17a, l7b,... l7m,... and 18a, l8b,... l8n,...
  • the reference numeral 20 indicates the grid or mesh subsidiary electrode placed adjacently to the control electrode 15 in parallel therewith on the side opposite to the transparent electrode 13 of the control electrode 15.
  • the numerals 21 and 22 indicate discharge electrodes. When DC or AC voltage is applied between the two, a glow discharge is generated and plasma 23 results.
  • the discharge tube 11 is filled with inert gas or a mixture of such gas and other kinds of gas of the order of 10" Torr in pressure.
  • the numeral 24 indicates a power supply, e.g. a DC power supply, whose cathode and anode are connected to the electrodes 21 and 22, respectively, and 25 is a DC bias power supply whose cathode is connected to the subsidiary electrode 20 and whose anode is connected to the electrode 22 or the anode of the DC power supply 24.
  • a potential lower than that of the electrode 22 is given.
  • the reference numerals 26 and 27 indicate DC bias power supplies whose anodes are both connected to the subsidiary electrode 20 or the cathode of the DC bias power supply 25.
  • the cathode of the DC bias power supply 26 is connected to the first grid electrode 17 of the control electrode by way of the resistor 28.
  • the other DC bias power supply 27 is connected to the second grid electrode 18 of the control electrode through the resistor 29.
  • the numerals 30, 31 designate signal input terminals. Pulsed signals are fed from the terminal 30 to the first grid electrode 17 of the control electrode 15 and from the terminal 31 to the second grid electrode 18 of the control electrode 15.
  • the sheets of electrodes elements composing the first and second electrodes 17 and 18 comprise individual input terminals, but they are represented by said signal input terminals 30, 31 in FIG. 2.
  • the numeral 32 indicates a high-tension DC power supply the cathode thereof being connected to the subsidiary electrode 20 and the anode being connected to the transparent electrode 13.
  • a portion 170 of each element of the grid electrode 17 and a portion 180 of each element of the grid electrode 18 extends into the holes 19. This feature improves the control of the electron flow by reducing the surface charge caused by electrons adhering to the surface of the insulating substrate 16 defining the hole 19.
  • the discharge voltage is applied between the electrodes 21 and 22 by the DC power supply 24, a glow discharge is generated and the gas present between said electrodes 21 and 22 is ionized to form the plasma 23.
  • the electrode 21 to which the cathode of the DC power supply 24 is connected is a thermionic cathode, the plasma 23 can be formed with a voltage between less than 100 volts and about several tens of volts.
  • the plasma 23 fills the space surrounded by the walls of the discharge tube 11 and the subsidiary electrode 20 and electrons and ions distribute with substantially uniform density.
  • the subsidiary electrode 20 is maintained by the DC bias source 25 at a potential slightly lower than than of the electrode 22 to which the anode of the DC power supply 24 is connected. At the same time, part of the plasma 23 flows into the side of the control electrode 15 through the gaps or meshes of the subsidiary electrode 20.
  • the potential, the density and the electron temperature of the plasma passing through the electrode 20 can easily be made more uniform than these of the plasma 23 located between the electrodes 21
  • the first grid electrode 17 of the control electrode 15 is supplied by the DC bias source 26 with a potential lower than that of the subsidiary electrode 20. Since the potential of the plasma passing through the subsidiary electrode 20 is nearly equal to that of the electrode 20, there will occur no constant flow of electron current onto grid electrode 17. Similarly, since the second grid electrode 18 is supplied with a potential lower than that of the subsidiary electrode 20 by the DC bias source 27, the electron current does not flow into the electrode 18 either. Therefore, in the quiescent state electrons will not flow into the side of the fluorescent screen 14 through the holes 19 provided in the control electrode 15.
  • a pulse signal with positive polarity is applied from the input signal terminal 30 to the M electrode of the metal electrode sheets composing the first grid electrode 17 of the control electrode 15.
  • the potential of the M electrode will instantaneously become higher than that of the subsidiary electrode 20 due to the pulse signal. This state is shown 4.
  • the electrons in the plasma 23, particularly the electrons which passed through the subsidiary electrode 20, are attracted to the M electrode and the electron current flows in. Since a large number of holes 19 are provided at the M electrode, part of the electrons enter the holes 19.
  • the semicylindrical electron sheath is formed around the M electrode, and a self-convergent electron current flows.
  • a unique relation holds among the plasma density, the thickness of the electron sheath and the potential difference between the electrode and the plasma.
  • the relation 3 4 20 V5 17, 11,11 holds, where n denotes the plasma density, a denotes the thickness of the electron sheath, V denotes the potential difference between the electrode and the plasma, m indicates the electron mass, e the elementary charge and v, the mean velocity of the electron.
  • the electrons at the plasma surface move in a way to satisfy the above equation, and the electron sheath is formed around the electrodes to which the signal is applied.
  • the electron current flowing into the holes 19 of said M electrode is reflected by the electric field formed by said electrode 18 and never enters into the fluorescent screen 14.
  • a pulse signal of positive polarity is applied from the signal input terminal 31 to the N electrode of the metal electrode sheets composing the second grid electrode 18.
  • the potential of the N electrode becomes instantaneously higher than that of the subsidiary electrode 20 while the pulse is present.
  • the first and second grid electrodes 17 and 18 are arranged orthogonally to each other, the electron current flows through the common hole (M, N) of the M and N electrodes, whose potential is higher than that of the subsidiary electrode 20, from the side of the subsidiary electrode 20 to the side of the fluorescent screen 14.
  • a high potential is applied to the transparent electrode 13 by the DC high-tension power supply 32.
  • the electric field formed by the transparent electrode 13 acts as an accelerating electric field for electrons. Therefore, the electric current which passed through said hole (M, N) travels while being accelerated in a beam form and finally collides with the fluorescent screen 14.
  • the atoms in the small region of the fluorescent screen 14 where the electron current hits are excited and emit light in the form of a spot.
  • FIG. 5 shows an example of the relation when the potential of the second grid electrode 18 of the control electrode 15 is maintained equal to that of the subsidiary electrode 20 and a signal voltage is applied to the first grid electrode 17.
  • the abscissa shows the potential difference between the first grid electrode 17 and the subsidiary electrode 20 when a signal voltage is applied to the electrode 17.
  • the ordinate shows the relative value of the electron current corresponding to the potential difference.
  • FIG. 6 shows an example of the relation when a signal voltage is applied to the second grid electrode 18 while maintaining the potential of the first grid electrode 17 of the control electrode 15 equal to that of the subsidiary electrode 20.
  • the abscissa shows the potential difference between the second grid electrode 18 and the subsidiary electrode 20 and the ordinate shows the relative value of the electron current.
  • the electron current flows in correspondence to the signal voltage fed to the control electrode 15.
  • a linear relation holds between the signal voltage fed to the second grid electrode 18 of the control electrode 15 and the electron current passing through the holes 19 of the control electrode.
  • the fluorescent screen 14 emits light with a brightness corresponding to the amplitude of the pulse signal. if the pulse signal is changed with time, the brightness of the fluorescent screen 14 changes with position, and letters or ranged very close to each other without causing electrical discharge therebetween even if a certain large potential difference is produced therebetween.
  • argon gas providing a gas pressure of 10' mm. Hg and the figures can be displayed.
  • discharge electrode distance 100 mm. between the elecln this embodiment the wall of the discharge tube 11 is trodes 21, 22
  • the product Pd is equal to 1 mm. Hg mm. made transparent only at its area mounting the glass plate 12, although this product value differs from that of the table (12 the transparent electrode 13 and the fluorescent screen 14 mm.
  • the electrical discharge is easily occurrable and may be made of opaque at the other area thereof. Further, with a thermionic cathode as the discharge electrode 21.
  • the control electrode 15 and the accelerating electrode 13 may be made in the form of the fluorescent screen 14 and the electrode distance is set to be l-2 mm., so that the product Pd transparent electrode 13 which are mounted onto the tube 11 is equal to l2 mm. Hg'mm. which remarkably differs from without such an intermediate glass plate 12. the table value, and the spark initiation voltage also becomes If the transparent electrode 13 is provided on the face of the l 5 very high.
  • the luminescent screen is adtrode 17 Composing the control electrode and the Video signal he ed directly the face of the discharge tube and the Of one level scanning period is and distributed t0 th transparent electrode is provided thereon, the electrons can metal eleetl'odeisheet composing the Second g electrode 18, pass through the transparent electrode to make the screen illuthe transmitted Image is reproducedminate, but ions cannot.
  • the luminescent screen 14 may eh' field formed by Seleehvely PP y h the Pulse Slghel of be damaged (so-called ion spot) due to the large mass of ions.
  • the method of using electrons is 18 of h eohtrol electrode the response hme qhhe more preferable because of the easiness of acceleration and Short S'hee the electrons whleh passed through the e e 19 the lace of danger of damaging the luminescent Screen of the control electrode 15 are accelerated by the electric field
  • a particular construction of the discharge tube 11 is as folformed by the trahepareht eleeh'ede h lag between lows: the insulating substrate 16 of the control electrode 15 is h arm/a1 0f h Signal and the mination of the small rea glass plate of 1-2 mm.
  • the first grid electrode the luhhheseeht Screen 14 f the spondingposil7 and the Second grid electrode 18 are formed of tion is hardly noticeable.
  • a signal such as a TV signal, sistivity material like Cu, Al, Au, Ag, etc. of 0.005-0.l mm. in emphmde changes aPPed the dew, thickness
  • the hole provided at the insulating substrate 16 is the devlce operates m aproper manner 0254 mm in diameter the holes rovided at the first and
  • FIG. 8 shows an example of the completed device.
  • the elecp tronic device of the TV set is installed into the base 101 or the second grid electrodes 17 and 18 are 0.2-0.8 mm. in diameter,
  • the control electrode 15 is l-2 mm.
  • the potential difference 40 L A display panel comprising a panel shaped discharge between h twoeleetrodes l3 h 15 2 5 and h tube filled with low-pressure inert gas;atransparent electrode thickness of the discharge tube 11 is 10 to several tens of milprovided on one inner Surface of said tube; a fluorescent hmeters' screen applied on said transparent electrode; control elec- Though a hlgh'tensmn voltage, apphed between h trans trode means spaced in parallel with said one inner surface of parent electrode 13 and the subsidiary electrode 20, discharge Said discharge tube; and a pair of Spaced discharge electrodes will never occur between the transparent electrode 13 and the for producing a plasma by ionizing Said inert gas Said Shhs'
  • both sheets having apertures in corresponpr sur an he lectr e g p di anc will be h wn in h dence with said holes in said insulating substrate; and further following table.
  • the above table is derived from the Electric Engineering comprising means applying asignal voltage in sequence to Said Handbook published by the Institute of Electrical Engineers metal electrode sheets of said control electrode means while of Japan.
  • the values in the case of helium, neon applying a high voltage between said transparent electrode and argon are shown with respect to the use of the cathode of 70 and each of said discharge electrodes.
  • a display panel according to claim 1 further comprising a According to the above fact, when the gas pressure P and subsidiary electrode disposed in parallel with and between the electrode gap distance d between the discharge electrodes said control electrode means and said opposite inner surface 21, 22 are determined so as to ensure the minimum spark voltof said discharge tube. age Vs of the Paschen's law, the transparent electrode 13, the 3.
  • a display panel comprising a panel-shaped discharge tube filled with low-pressure inert gas; a transparent electrode provided on one inner surface of said tube; a fluorescent screen applied on said transparent electrode; control electrode means spaced in parallel with said one inner surface of said discharge tube; and a pair of spaced discharge electrodes for producing a plasma by ionizing said inert gas, said discharge electrodes being placed in a space opposite to said fluorescent screen, said space being defined by said control electrode means and the opposite inner surface of said discharge tube; said control electrode means comprising an insulating substrate having a plurality of holes formed therein, a plurality of first parallel metal electrode sheets on one surface of said insulating substrate and a plurality of second parallel metal electrode sheets on the opposite surface of said substrate which are orthogonal to said first metal electrode sheets, said holes being formed in and through said insulating substrate at the intersections of said first and second metal electrode sheets, both sheets having apertures in correspondence with said holes in said insulating substrate, wherein a portion of each of said first and second electrode sheets extends into said
  • a display panel comprising a panel-shaped discharge tube filled with low-pressure inert gas; a fluorescent screen applied on one inner surface of said discharge tube; an electrode provided on said fluorescent screen; control electrode means spaced in parallel with said one inner surface of said discharge tube; and a pair ofspaced discharge electrodes for producing a plasma by ionizing said inert gas, said discharge electrodes being placed in a space opposite to said fluorescent screen, said space being defined by said control electrode means and the opposite inner surface of said discharge tube; said control electrode means comprising an insulating substrate having a plurality of holes formed therein, a plurality of first parallel metal electrode sheets on one surface of said insulating substrate and a plurality of second parallel metal electrode sheets on the opposite surface of said substrate which are orthogonal to said first metal electrode sheets, said holes being formed in and through said insulating substrate at the intersections of said first and second metal electrode sheets, both sheets having apertures in correspondence with said holes in said insulating substrate; and further comprising means applying a signal voltage in sequence to said metal electrode sheets of said
  • a display panel comprising a panel-shaped discharge H tube filled with low-pressure inert gas; a fluorescent screen applied on one inner surface of said discharge tube; an electrode provided on said fluorescent screen; control electrode means spaced in parallel with said one inner surface of said discharge tube; and a pair of spaced discharge electrodes for producing a plasma by ionizing said inert gas, said discharge electrodes being placed in a space opposite to said fluorescent screen, said space being defined by said control electrode means and the opposite inner surface of said discharge tube; said control electrode means comprising an insulating substrate having a plurality of holes formed therein, a plurality of first parallel metal electrode sheets on one surface of said insulating substrate and a plurality of second parallel metal electrode sheets on the opposite surface of said substrate which are orthogonal to said first metal electrode sheets, said holes being formed in and through said insulating substrate at the intersections of said first and second metal electrode sheets, both sheets having apertures in correspondence with said holes in said insulating substrate, wherein a portion of each of said first and second electrode sheets extends into said
  • a display panel comprising a flat panel-shaped discharge tube filled with low-pressure inert gas; a transparent sheet electrode provided on one longitudinal inner surface of said tube; a fluorescent screen coated on said transparent electrode; control electrode means parallel spaced from said inner surface and said screen; a mesh-type subsidiary electrode spaced from said control electrode means; opposed cathode and anode discharge electrodes; and a plasma space for ionized inert gas opposite to said screen and defined by said subsidiary electrode, said discharge electrodes and a second longitudinal inner surface of said tube; said control electrode means comprising an insulating substrate having a plurality of holes formed therein, a plurality of first parallel metal electrode sheets on one surface of said substrate, and a plurality of second parallel metal electrode sheets on the opposite surface of said substrate which are arranged orthogonally to said first sheets, said holes being arranged in a matrix penetrating through said substrate at the intersections of said first and second sheets, both sheets having apertures therein in correspondence with said holes; and wherein said display panel is further provided with means for biasing the
  • a display panel comprising a flat panel-shaped discharge tube filled with low-pressure inert gas; a transparent sheet electrode provided on one longitudinal inner surface of said tube; a fluorescent screen coated on said transparent electrode; control electrode means parallel spaced from said inner'surface and said screen; a mesh-type subsidiary electrode spaced from said control electrode means; opposed cathode and anode discharge electrodes; and a plasma space for ionized inert gas opposite to said screen and defined by said subsidiary electrode, said discharge electrodes and a second longitudinal inner surface of said tube; said control electrode means comprising an insulating substrate having a plurality of holes formed therein, a plurality of first parallel metal electrode sheets on one surface of said substrate, and a plurality of second parallel metal electrode sheets on the opposite surface of said substrate which are arranged orthogonally to said first sheets, said holes being arranged in a matrix penetrating through said substrate at the intersections of said first and second sheets, both sheets having apertures therein in correspondence with said holes, wherein a portion of each of said first and second electrode sheets
  • a display panel according to claim 10 further provided with scanning means for supplying information signals to said first and second electrode sheets.

Abstract

A display panel useful for realizing a very thin panel-shaped letter or figure display device or a panel-shaped TV set, wherein the small region of the fluorescent screen may be illuminated by the bombardment of charged particles; the control electrode, formed by providing a plurality of parallel metal electrode sheets on one principal surface of the insulating substrate, a plurality of parallel metal electrode sheets on the other principal surface orthogonal to the direction of arrangement of said former metal electrode sheets and holes penetrating through the insulating substrate at the part where said metal electrode sheets intersect across the insulating substrate, being made to contact the discharge plasma generated between the discharge electrodes; electrons or ions being taken out of the discharge plasma by applying a signal voltage to said metal electrodes of the control electrode and made to pass through the holes selectively, the transparent electrode comprising the fluorescent screen being provided on the side opposite to said discharge plasma with respect to said control electrode in parallel with said electrodes; and the electrons or ions passing through said holes being accelerated and made to collide with the fluorescent screen by the high voltage applied to said transparent electrode.

Description

United States Patent [7 2] lnventor Masanori Watanabe Osaka, Japan [2]] Appl. No. 778,279 [22] Filed Nov. 22, 1968 [45] Patented Nov. 23, 1971 [73] Assignee Matsushlta Electric Industrial Co., Ltd.
Osaka,.1apan [32] Priorities Nov. 28 1967 1 J p [31] 42/77143;
Nov. 28, 1967, Japan, No. 42/77144; Nov. 28, 1967, Japan, No. 42/77145; Nov. 28, 1967, Japan, No. 42/77147 [54] FLUORESCENT SCREEN DISPLAY PANELS 11 Claims, 8 Drawing Figs.
[52] U.S. C1 313/108 R, 315/169 R [51] Int. Cl H0lj1/62, H01 j 63/04 [50] Field of Search 313/108, 109.5; 315/169, 169 TV; l78/7.5 D, 7.5
[56] References Cited UNITED STATES PATENTS 2,848,638 8/1958 Smith 313/1095 2,926,286 2/1960 Skellet 315/169 2,965,801 12/1960 Archer et a1 315/169 3,l07,303 10/1963 Berkowitz 3,176,184 3/1965 Hopkins ABSTRACT: A display panel useful for realizing a very thin panel-shaped letter or figure display device or a panel-shaped TV set, wherein the small region of the fluorescent screen may be illuminated by the bombardment of charged particles; the control electrode, formed by providing a plurality of parallel metal electrode sheets on one principal surface of the insulating substrate, a plurality of parallel metal electrode sheets on the other principal surface orthogonal to the direction of arrangement of said former metal electrode sheets and holes penetrating through the insulating substrate at the part where said metal electrode sheets intersect across the insulating substrate, being made to contact the discharge plasma generated between the discharge electrodes; electrons or ions being taken out of the discharge plasma by applying a signal voltage to said metal electrodes of the control electrode and made to pass through the holes selectively, the transparent electrode comprising the fluorescent screen being provided on the side opposite to said discharge plasma with respect to said control electrode in parallel with said electrodes; and the electrons or ions passing through said holes being accelerated and made to collide with the fluorescent screen by the high voltage applied to said transparent electrode.
SUPPL Y I 24 war 00 ems SUPPLY POWER 25) "092 5 J- SUPPLY SUPPLY 28 b P? 29 3/ 25 H/ H ravs/o/v DCSOUECE 32 30 PATENTEnuuv 23 |97l SHEET 3 UP 4 8 4 00 Emma $5.3m $5? H 2 O REEQQU EQNVRUM um .mXR w wwm POTENT/AL DIFFERENCE BETWEEN SECOND GRID ELECTRODE OF CONTROL CR/D ELECTRODE AND SUBS/D/ARX ELECTRODE (l I N VENTOR HFJD/VDR/ W TD/VREE ATTORNEYS PATENTEDuuv 23 ISYI SHEET Q [If 4 Muck QQL WQQQIUQQ ktvmxm PRODUCT 0F PRESSURE AND ELECTRODE GAP D/STZINCE ATTORNEYS IMPROVEMENTS IN FLUORESCENT SCREEN DISPLAY PANELS This invention relates to a plasma display panel in which electrons or ions emitted from the surface of the discharge plasma, which is the source of the charged particles, are accelerated and made to bombard the fluorescent material to illuminate the panel selectively, and more particularly to a TV set or a letter display device.
Today, cathode-ray tubes are widely used in display devices including TV sets. The characteristics of the cathode-ray tube include easiness in obtaining high brightness, possibility of changing from low to high brightness continuously and obtain a so-called halftone, possibility of obtaining high resolution and so forth.
However, since in a cathode-ray tube the cathode ray is accelerated, deflected and made to bombard the fluorescent screen for illumination, the electron gun, the deflection yoke, etc. must be arranged in sequence on or around the same axis. Accordingly, the device necessarily becomes large in length and large in volume. Further, even if the cathode-ray tube is constructed in a panel form, the construction is limited by the presence of the electron gun and the deflection means.
Recently, the need for a display pane wherein said deficiencies are obviated has become great. As such a display panel, many devices utilizing the electroluminescence or gas discharge phenomena have been studied and proposed. The device utilizing electroluminescence is still in the developmental stage since sufficient brightness for practical use has not yet been obtained. A study on the device utilizing gas discharge has been reported in Th. .1. de Boer: Ninth National Symposium on Information Display: p. 193 (1968), B. M. Arora, D. l... Bitzer, H. G. Slottow and R. H. Wilson: Eighth National Symposium on Information Display: p. l (1967).
The report of Boer will be described briefly with reference to FIG. 1. Platinum wires 3, 4 are set on both sides of the insulating substrate 2 comprising a large number of regularly arranged holes 1 in a way that the wires may pass the center of said holes 1 and the periphery is sealed airtight by closely adhering the glass plates 5, 6 on both sides. Here, the directions of the platinum wires 3, 4 are orthogonal to each other. The inside of the device is filled with an inert gas like neon, argon, etc. with appropriate pressure. When the DC voltage is applied selectively to the mutually orthogonal platinum wires 3, 4, the gas in the cell at the intersection is ionized and made to illuminate.
The device reported by M. B. Arora et al. is almost the same in structure and principle of operation as the one by Boer.
The deficiencies of said display devices include the spread of the order of several hundred microseconds present in the time lag between the application of the discharge voltage with the initiation of discharge. For example, since according to the American TV standard system, the frame number is 30 per second, the number of scanning lines is 525 per frame and the number of the effective scanning lines is 491 per frame, the linear scanning time is 63.5 microseconds and the effective linear scanning time is 52.7 microseconds. According to the British TV standard system, the number of frames is 25 per second, the number of scanning lines is 405 per frame, the number of effective scanning lines is 379 per frame. Thus, the linear scanning time is 98.8 microseconds and the effective linear scanning time is 82.0 microseconds. Further, according to the European TV standard system, since the number of frames is 25 per second, the number of scanning lines is 625 per frame and the number of effective scanning lines is 584 per frame, the linear scanning time is 64.0 microseconds and the effective linear scanning time is 53.0 microseconds. Accordingly, since in either one of these TV standard systems, the effective linear scanning time is less than 100 microseconds, a several hundred microsecond time lag is too large for effective use in any of the above TV systems. Further, since the brightness depends on the discharge time, it is technically diflicult to realize brightness modulation due to the large jitter.
An object of this invention is to provide a panel form or thin display device.
Another object of the invention is to provide a device having a short response time, i.e. a device having good response characteristics comparable to or better than those of conventional TV sets.
A further object of the invention is to provide a device in which brightness comparable to that of conventional TV sets is obtained and the brightness can be changed by a signal.
A yet further object of the invention is to provide a thin TV set which can be hung on the wall.
A yet further object of the invention is to provide a light TV set having a large panel or image display screen.
Other objects, features and advantages of the present invention will be readily apparent from the following detailed description of certain preferred embodiments taken in conjunction with the accompanying drawings, in which:
FIG. I is a diagram for illustrating the main parts of the display panel utilizing gas discharge as present by Th. J. de Boer;
FIG. 2 is a diagram illustrating the structure of an embodiment of this invention;
FIG. 3 is a diagram illustrating the control electrode of the device shown in FIG. 2;
FIG. 4 illustrates the operation of the device shown in FIG.
FIGS. 5 and 6 show the characteristics of the control electrode shown in FIG. 3;
FIG. 7 is a diagram for explaining Paschens law; and
FIG. 8 shows a perspective view of an embodiment of this invention.
Referring to FIG. 2, the structure of a panel-shaped display device according to this invention will be described. In the figure, 11 is the panel-shaped discharge tube, at least one principal wall of which is made of a transparent insulating material like glass, 12 is a glass plate mount against the inner wall of said principal wall of the discharge tube 11, 13 is a transparent electrode formed of conductive filmlike tin oxide film adhered to the surface of said glass plate l2, 14 is a fluorescent screen formed by applying fluorescent material like zinc sulfide on the transparent electrode 13, and 15 is a control electrode arranged adjacently to the fluorescent film 14 in parallel with the glass plate 12. As shown in FIG. 3 which shows a magnified part of the control electrode, the control grid 15 comprises the first grid electrode 17 on one surface of the insulating substrate 16 and the second grid electrode 18 on the other surface; both grid electrodes being formed by arranging a plurality of metal electrode sheets in parallel with each other. The direction of the array of the second set of grid elements 18a, l8b,... l8n,... is orthogonal to that of the first set of grid elements 17a, l7b,... 17:11,... At the part where the metal electrode sheets 17a, l7b,... l7m,... and 18a, l8b,... l8n,... composing the first and second grid electrodes 17 and 18, respectively, intersect, small holes 19 penetrating through the electrodes and the insulating substrate 16 are provided. As material for the insulating substrate 16, glass is preferable. The reference numeral 20 indicates the grid or mesh subsidiary electrode placed adjacently to the control electrode 15 in parallel therewith on the side opposite to the transparent electrode 13 of the control electrode 15. The numerals 21 and 22 indicate discharge electrodes. When DC or AC voltage is applied between the two, a glow discharge is generated and plasma 23 results. The discharge tube 11 is filled with inert gas or a mixture of such gas and other kinds of gas of the order of 10" Torr in pressure.
The numeral 24 indicates a power supply, e.g. a DC power supply, whose cathode and anode are connected to the electrodes 21 and 22, respectively, and 25 is a DC bias power supply whose cathode is connected to the subsidiary electrode 20 and whose anode is connected to the electrode 22 or the anode of the DC power supply 24. By said DC bias power supply 25, a potential lower than that of the electrode 22 is given. The reference numerals 26 and 27 indicate DC bias power supplies whose anodes are both connected to the subsidiary electrode 20 or the cathode of the DC bias power supply 25. The cathode of the DC bias power supply 26 is connected to the first grid electrode 17 of the control electrode by way of the resistor 28. The other DC bias power supply 27 is connected to the second grid electrode 18 of the control electrode through the resistor 29. The numerals 30, 31 designate signal input terminals. Pulsed signals are fed from the terminal 30 to the first grid electrode 17 of the control electrode 15 and from the terminal 31 to the second grid electrode 18 of the control electrode 15. The sheets of electrodes elements composing the first and second electrodes 17 and 18 comprise individual input terminals, but they are represented by said signal input terminals 30, 31 in FIG. 2. The numeral 32 indicates a high-tension DC power supply the cathode thereof being connected to the subsidiary electrode 20 and the anode being connected to the transparent electrode 13.
In another embodiment, shown in FIG. 4, a portion 170 of each element of the grid electrode 17 and a portion 180 of each element of the grid electrode 18 extends into the holes 19. This feature improves the control of the electron flow by reducing the surface charge caused by electrons adhering to the surface of the insulating substrate 16 defining the hole 19.
Now, the operation of said device when the fluorescent film is bombarded with electrons will be explained.
Since the discharge voltage is applied between the electrodes 21 and 22 by the DC power supply 24, a glow discharge is generated and the gas present between said electrodes 21 and 22 is ionized to form the plasma 23. If the electrode 21 to which the cathode of the DC power supply 24 is connected is a thermionic cathode, the plasma 23 can be formed with a voltage between less than 100 volts and about several tens of volts.
The plasma 23 fills the space surrounded by the walls of the discharge tube 11 and the subsidiary electrode 20 and electrons and ions distribute with substantially uniform density. The subsidiary electrode 20 is maintained by the DC bias source 25 at a potential slightly lower than than of the electrode 22 to which the anode of the DC power supply 24 is connected. At the same time, part of the plasma 23 flows into the side of the control electrode 15 through the gaps or meshes of the subsidiary electrode 20. By suitably selecting the gap width when the subsidiary electrode 20 is grid-shaped, and the size of the mesh when it is mesh-shaped, the potential, the density and the electron temperature of the plasma passing through the electrode 20 can easily be made more uniform than these of the plasma 23 located between the electrodes 21 The first grid electrode 17 of the control electrode 15 is supplied by the DC bias source 26 with a potential lower than that of the subsidiary electrode 20. Since the potential of the plasma passing through the subsidiary electrode 20 is nearly equal to that of the electrode 20, there will occur no constant flow of electron current onto grid electrode 17. Similarly, since the second grid electrode 18 is supplied with a potential lower than that of the subsidiary electrode 20 by the DC bias source 27, the electron current does not flow into the electrode 18 either. Therefore, in the quiescent state electrons will not flow into the side of the fluorescent screen 14 through the holes 19 provided in the control electrode 15.
To obtain an image on screen 14, a pulse signal with positive polarity is applied from the input signal terminal 30 to the M electrode of the metal electrode sheets composing the first grid electrode 17 of the control electrode 15. The potential of the M electrode will instantaneously become higher than that of the subsidiary electrode 20 due to the pulse signal. This state is shown 4.
Then, the electrons in the plasma 23, particularly the electrons which passed through the subsidiary electrode 20, are attracted to the M electrode and the electron current flows in. Since a large number of holes 19 are provided at the M electrode, part of the electrons enter the holes 19.
The, the semicylindrical electron sheath is formed around the M electrode, and a self-convergent electron current flows. A unique relation holds among the plasma density, the thickness of the electron sheath and the potential difference between the electrode and the plasma. According to the theory of plasma technology, the relation 3 4 20 V5 17, 11,11 holds, where n denotes the plasma density, a denotes the thickness of the electron sheath, V denotes the potential difference between the electrode and the plasma, m indicates the electron mass, e the elementary charge and v, the mean velocity of the electron. The electrons at the plasma surface move in a way to satisfy the above equation, and the electron sheath is formed around the electrodes to which the signal is applied.
Since the potential of the second grid electrode 18 is maintained lower than that of the subsidiary electrode 20 by the DC bias source 27, the electron current flowing into the holes 19 of said M electrode is reflected by the electric field formed by said electrode 18 and never enters into the fluorescent screen 14. In such a state, a pulse signal of positive polarity is applied from the signal input terminal 31 to the N electrode of the metal electrode sheets composing the second grid electrode 18. The potential of the N electrode becomes instantaneously higher than that of the subsidiary electrode 20 while the pulse is present. Since the first and second grid electrodes 17 and 18 are arranged orthogonally to each other, the electron current flows through the common hole (M, N) of the M and N electrodes, whose potential is higher than that of the subsidiary electrode 20, from the side of the subsidiary electrode 20 to the side of the fluorescent screen 14.
A high potential is applied to the transparent electrode 13 by the DC high-tension power supply 32. The electric field formed by the transparent electrode 13 acts as an accelerating electric field for electrons. Therefore, the electric current which passed through said hole (M, N) travels while being accelerated in a beam form and finally collides with the fluorescent screen 14. The atoms in the small region of the fluorescent screen 14 where the electron current hits are excited and emit light in the form of a spot.
Then, if a pulse signal is fed to the (N+l) electrode of the second grid electrode 18 while maintaining the potential of the M metal electrode sheet of the first grid electrode 17 above that of the subsidiary electrode 20, the electron current passes through the common hole (M, N+l) only while the pulse is present, and the small region of the fluorescent screen 14 at a position corresponding to the hole (M, N+l) is illuminated. Thus, if a pulse signal is fed to the metal electrode sheets composing the first and second grid electrodes 17 and 18, the fluorescent screen 14 can be scanned by the electric current.
If the amplitude of the pulse signal is controlled, the quantity of the electron current, which passes selectively through the holes 19 of the control electrode 15 while the pulse signal is applied, is controlled. The relation between the signal voltage and the electron current in this state is shown in FIGS. 5 and 6. FIG. 5 shows an example of the relation when the potential of the second grid electrode 18 of the control electrode 15 is maintained equal to that of the subsidiary electrode 20 and a signal voltage is applied to the first grid electrode 17. The abscissa shows the potential difference between the first grid electrode 17 and the subsidiary electrode 20 when a signal voltage is applied to the electrode 17. The ordinate shows the relative value of the electron current corresponding to the potential difference. FIG. 6 shows an example of the relation when a signal voltage is applied to the second grid electrode 18 while maintaining the potential of the first grid electrode 17 of the control electrode 15 equal to that of the subsidiary electrode 20. The abscissa shows the potential difference between the second grid electrode 18 and the subsidiary electrode 20 and the ordinate shows the relative value of the electron current. As is evident from the figure, the electron current flows in correspondence to the signal voltage fed to the control electrode 15. In particular, a linear relation holds between the signal voltage fed to the second grid electrode 18 of the control electrode 15 and the electron current passing through the holes 19 of the control electrode.
Accordingly, the fluorescent screen 14 emits light with a brightness corresponding to the amplitude of the pulse signal. if the pulse signal is changed with time, the brightness of the fluorescent screen 14 changes with position, and letters or ranged very close to each other without causing electrical discharge therebetween even if a certain large potential difference is produced therebetween. For example, in the case of argon gas, providing a gas pressure of 10' mm. Hg and the figures can be displayed. discharge electrode distance 100 mm. (between the elecln this embodiment the wall of the discharge tube 11 is trodes 21, 22), the product Pd is equal to 1 mm. Hg mm. made transparent only at its area mounting the glass plate 12, Although this product value differs from that of the table (12 the transparent electrode 13 and the fluorescent screen 14 mm. Hg-mm.), the electrical discharge is easily occurrable and may be made of opaque at the other area thereof. Further, with a thermionic cathode as the discharge electrode 21. As to another embodiment of the present display panel arrangement the control electrode 15 and the accelerating electrode 13, the may be made in the form of the fluorescent screen 14 and the electrode distance is set to be l-2 mm., so that the product Pd transparent electrode 13 which are mounted onto the tube 11 is equal to l2 mm. Hg'mm. which remarkably differs from without such an intermediate glass plate 12. the table value, and the spark initiation voltage also becomes If the transparent electrode 13 is provided on the face of the l 5 very high. discharge tube 11 and the luminescent screen 14 is applied on If a pulse signal of positive polarity lasting for a time interval the opposite side of the electrode 13, the luminescent efficienqual to one level scanning period of the TV signal is applied cy increases since the electrons or ions hit the luminescent in sequence t0 each metal electrode Sheet Ofthe g @160- screen 14 directly. Conversely, if the luminescent screen is adtrode 17 Composing the control electrode and the Video signal he ed directly the face of the discharge tube and the Of one level scanning period is and distributed t0 th transparent electrode is provided thereon, the electrons can metal eleetl'odeisheet composing the Second g electrode 18, pass through the transparent electrode to make the screen illuthe transmitted Image is reproducedminate, but ions cannot. in the method of bombarding the lu- Shee the electrons are takeh out of h Plasma by the minescent screen 14 with ions, the luminescent screen 14 may eh' field formed by Seleehvely PP y h the Pulse Slghel of be damaged (so-called ion spot) due to the large mass of ions. 25 Posmve Polamy to the first and Second 3nd eleetfodeh 17 h Therefore, it may be said that the method of using electrons is 18 of h eohtrol electrode the response hme qhhe more preferable because of the easiness of acceleration and Short S'hee the electrons whleh passed through the e e 19 the lace of danger of damaging the luminescent Screen of the control electrode 15 are accelerated by the electric field A particular construction of the discharge tube 11 is as folformed by the trahepareht eleeh'ede h lag between lows: the insulating substrate 16 of the control electrode 15 is h arm/a1 0f h Signal and the mination of the small rea glass plate of 1-2 mm. in thickness, the first grid electrode the luhhheseeht Screen 14 f the spondingposil7 and the Second grid electrode 18 are formed of tion is hardly noticeable. When a signal, such as a TV signal, sistivity material like Cu, Al, Au, Ag, etc. of 0.005-0.l mm. in emphmde changes aPPed the dew, thickness, the hole provided at the insulating substrate 16 is the devlce operates m aproper manner 0254 mm in diameter the holes rovided at the first and FIG. 8 shows an example of the completed device. The elecp tronic device of the TV set is installed into the base 101 or the second grid electrodes 17 and 18 are 0.2-0.8 mm. in diameter,
column 102 and the 1mage-reproducing discharge tube 104 is the thickness of the transparent electrode 13 is of the order of installed in the panel-shaped case 103. m ii, and the gap between the transparent electrode 13 and what is claimed is: the control electrode 15 is l-2 mm., the potential difference 40 L A display panel comprising a panel shaped discharge between h twoeleetrodes l3 h 15 2 5 and h tube filled with low-pressure inert gas;atransparent electrode thickness of the discharge tube 11 is 10 to several tens of milprovided on one inner Surface of said tube; a fluorescent hmeters' screen applied on said transparent electrode; control elec- Though a hlgh'tensmn voltage, apphed between h trans trode means spaced in parallel with said one inner surface of parent electrode 13 and the subsidiary electrode 20, discharge Said discharge tube; and a pair of Spaced discharge electrodes will never occur between the transparent electrode 13 and the for producing a plasma by ionizing Said inert gas Said Shhs'd'ary electrode 20 or the h' eleethode Thls discharge electrodes being placed in a space opposite to said beeahsethe Property of such gas discharge expressed by fluorescent screen, said space being defined by said control paseheh 5 Namely the spfh'k voltage vs of the umfonh electrode means and the opposite inner surface of said eleemc held becomes a fhhehoh of the Product of the gas discharge tube; said control electrode means comprising an in- Presshre P and the electrode gap h The spark voltage sulating substrate having a plurality of holes formed therein, a V5 decreases as Sald l Pd increases and assumes a plurality of first parallel metal electrode sheets on one surface minimum Value at a Certain Value- AS the l' Pd increases of said insulating substrate and a plurality of second parallel further, the spark voltage Vs increases. Such relation holds metal electrode Sheets on the opposite surface f Said ever the wide range of the lih'oehlet Pd of gas Pressure P strate which are orthogonal to said first metal electrode 10- 2 ,{l0Q rr rri Hg, electrode gap d istance z i 5 g j sheets, said holes being formed in and through said insulating em. and gas tel'hpel'amre Some examples Oflhe substrate at the intersections of said first and second metal minimum Spark voltage V3 and the Product Pd of the gas electrode sheets, both sheets having apertures in corresponpr sur an he lectr e g p di anc will be h wn in h dence with said holes in said insulating substrate; and further following table.
Helium Neon Argon Mercury Hydrogen N ltrogen Gas (He) (Ne) (Ar) vapor (Hg) Air (H2) (Ni) Vsmin (V) 147 168 192 400 330 270 250 Pd (mm. IIg-mm.) 35 38 12 6.6 5. 67 11.5 6.7
The above table is derived from the Electric Engineering comprising means applying asignal voltage in sequence to Said Handbook published by the Institute of Electrical Engineers metal electrode sheets of said control electrode means while of Japan. In the table, the values in the case of helium, neon applying a high voltage between said transparent electrode and argon are shown with respect to the use of the cathode of 70 and each of said discharge electrodes. aluminum- 2. A display panel according to claim 1 further comprising a According to the above fact, when the gas pressure P and subsidiary electrode disposed in parallel with and between the electrode gap distance d between the discharge electrodes said control electrode means and said opposite inner surface 21, 22 are determined so as to ensure the minimum spark voltof said discharge tube. age Vs of the Paschen's law, the transparent electrode 13, the 3. A display panel according to claim 1, wherein one of said control electrode 15 and the subsidiary electrode 20 are ardischarge electrodes is a thermionic cathode.
4. A display panel comprising a panel-shaped discharge tube filled with low-pressure inert gas; a transparent electrode provided on one inner surface of said tube; a fluorescent screen applied on said transparent electrode; control electrode means spaced in parallel with said one inner surface of said discharge tube; and a pair of spaced discharge electrodes for producing a plasma by ionizing said inert gas, said discharge electrodes being placed in a space opposite to said fluorescent screen, said space being defined by said control electrode means and the opposite inner surface of said discharge tube; said control electrode means comprising an insulating substrate having a plurality of holes formed therein, a plurality of first parallel metal electrode sheets on one surface of said insulating substrate and a plurality of second parallel metal electrode sheets on the opposite surface of said substrate which are orthogonal to said first metal electrode sheets, said holes being formed in and through said insulating substrate at the intersections of said first and second metal electrode sheets, both sheets having apertures in correspondence with said holes in said insulating substrate, wherein a portion of each of said first and second electrode sheets extends into said, holes in said insulating substrate; and further comprising means applying a signal voltage in sequence to said metal electrode sheets of said control electrode means while applying a high voltage between said transparent electrode and each of said discharge electrodes.
5. A display panel comprising a panel-shaped discharge tube filled with low-pressure inert gas; a fluorescent screen applied on one inner surface of said discharge tube; an electrode provided on said fluorescent screen; control electrode means spaced in parallel with said one inner surface of said discharge tube; and a pair ofspaced discharge electrodes for producing a plasma by ionizing said inert gas, said discharge electrodes being placed in a space opposite to said fluorescent screen, said space being defined by said control electrode means and the opposite inner surface of said discharge tube; said control electrode means comprising an insulating substrate having a plurality of holes formed therein, a plurality of first parallel metal electrode sheets on one surface of said insulating substrate and a plurality of second parallel metal electrode sheets on the opposite surface of said substrate which are orthogonal to said first metal electrode sheets, said holes being formed in and through said insulating substrate at the intersections of said first and second metal electrode sheets, both sheets having apertures in correspondence with said holes in said insulating substrate; and further comprising means applying a signal voltage in sequence to said metal electrode sheets of said control electrode means while applying a high voltage between said electrode provided on said fluorescent screen and each of said discharge electrodes.
6, A display panel according to claim 5, further comprising a subsidiary electrode disposed in parallel with and between said control electrode means and said opposite inner surface of said discharge tube.
7. A display panel according to claim 5, wherein one of said discharge electrodes is a thermionic cathode.
8. A display panel comprising a panel-shaped discharge H tube filled with low-pressure inert gas; a fluorescent screen applied on one inner surface of said discharge tube; an electrode provided on said fluorescent screen; control electrode means spaced in parallel with said one inner surface of said discharge tube; and a pair of spaced discharge electrodes for producing a plasma by ionizing said inert gas, said discharge electrodes being placed in a space opposite to said fluorescent screen, said space being defined by said control electrode means and the opposite inner surface of said discharge tube; said control electrode means comprising an insulating substrate having a plurality of holes formed therein, a plurality of first parallel metal electrode sheets on one surface of said insulating substrate and a plurality of second parallel metal electrode sheets on the opposite surface of said substrate which are orthogonal to said first metal electrode sheets, said holes being formed in and through said insulating substrate at the intersections of said first and second metal electrode sheets, both sheets having apertures in correspondence with said holes in said insulating substrate, wherein a portion of each of said first and second electrode sheets extends into said holes in said insulating substrate; and further comprising means applying a signal voltage in sequence to said metal electrode sheets of said control electrode means while applying a high voltage between said electrode provided on said fluorescent screen and each of said discharge electrodes.
9. A display panel comprising a flat panel-shaped discharge tube filled with low-pressure inert gas; a transparent sheet electrode provided on one longitudinal inner surface of said tube; a fluorescent screen coated on said transparent electrode; control electrode means parallel spaced from said inner surface and said screen; a mesh-type subsidiary electrode spaced from said control electrode means; opposed cathode and anode discharge electrodes; and a plasma space for ionized inert gas opposite to said screen and defined by said subsidiary electrode, said discharge electrodes and a second longitudinal inner surface of said tube; said control electrode means comprising an insulating substrate having a plurality of holes formed therein, a plurality of first parallel metal electrode sheets on one surface of said substrate, and a plurality of second parallel metal electrode sheets on the opposite surface of said substrate which are arranged orthogonally to said first sheets, said holes being arranged in a matrix penetrating through said substrate at the intersections of said first and second sheets, both sheets having apertures therein in correspondence with said holes; and wherein said display panel is further provided with means for biasing the potential of said subsidiary electrode below the potential of said anode discharge electrode, means for biasing the potentials of said control electrode sheets below the potential of said subsidiary electrode, and a high-voltage supply connected between said transparent sheet electrode and said cathode and anode electrodes.
10. A display panel comprising a flat panel-shaped discharge tube filled with low-pressure inert gas; a transparent sheet electrode provided on one longitudinal inner surface of said tube; a fluorescent screen coated on said transparent electrode; control electrode means parallel spaced from said inner'surface and said screen; a mesh-type subsidiary electrode spaced from said control electrode means; opposed cathode and anode discharge electrodes; and a plasma space for ionized inert gas opposite to said screen and defined by said subsidiary electrode, said discharge electrodes and a second longitudinal inner surface of said tube; said control electrode means comprising an insulating substrate having a plurality of holes formed therein, a plurality of first parallel metal electrode sheets on one surface of said substrate, and a plurality of second parallel metal electrode sheets on the opposite surface of said substrate which are arranged orthogonally to said first sheets, said holes being arranged in a matrix penetrating through said substrate at the intersections of said first and second sheets, both sheets having apertures therein in correspondence with said holes, wherein a portion of each of said first and second electrode sheets extend into said holes in said insulating substrate; and wherein said display panel is further provided with means for biasing the potential of said subsidiary electrode below the potential of said anode discharge electrode, means for biasing the potentials of said control electrode sheets below the potential of said subsidiary electrode, and a high-voltage supply connected between said transparent sheet electrode and said cathode and anode electrodes.
11. A display panel according to claim 10, further provided with scanning means for supplying information signals to said first and second electrode sheets.

Claims (11)

1. A display panel comprising a panel-shaped discharge tube filled with low-pressure inert gas; a transparent electrode provided on one inner surface of said tube; a fluorescent screen applied on said transparent electrode; control electrode means spaced in parallel with said one inner surface of said discharge tube; and a pair of spaced discharge electrodes for producing a plasma by ionizing said inert gas, said discharge electrodes being placed in a space opposite to said fluorescent screen, said space being defined by said control electrode means and the opposite inner surface of said discharge tube; said control electrode means comprising an insulating substrate having a plurality of holes formed therein, a plurality of first parallel metal electrode sheets on one surface of said insulating substrate and a plurality of second parallel metal electrode sheets on the opposite surface of said substrate which are orthogonal to said first metal electrode sheets, said holes being formed in and through said insulating substrate at the intersections of said first and second metal electrode sheets, both sheets having apertures in correspondence with said holes in said insulating substrate; and further comprising means applying a signal voltage in sequence to said metal electrode sheets of said control electrode means while applying a high voltage between said transparent electrode and each of said discharge electrodes.
2. A display panel according to claim 1, further comprising a subsidiary electrode disposed in parallel with and between said control electrode means and said opposite inner surface of said discharge tube.
3. A display panel according to claim 1, wherein one of said discharge electrodes is a thermionic cathode.
4. A display panel comprising a panel-shaped discharge tube filled with low-pressure inert gas; a transparent electrode provided on one inner surface of said tube; a fluorescent screen applied on said transparent electrode; control electrode means spaced in parallel with said one inner surface of said discharge tube; and a pair of spaced discharge electrodes for producing a plasma by ionizing said inert gas, said discharge electrodes being placed in a space opposite to said fluorescent screen, said space being defined by said control electrode means and the opposite inner surface of said discharge tube; said control electrode means comprising an insulating substrate having a plurality of holes formed therein, a plurality of first parallel metal electrode sheets on one surface of said insulating substrate and a plurality of second parallel metal electrode sheets on the opposite surface of said substrate which are orthogonal to said first metal electrode sheets, said holes being formed in and through said insulating substrate at the intersections of said first and second metal electrode sheets, both sheets having apertures in correspondence with said holes in said insulating substrate, wherein a portion of each of said first and second electrode sheets extends into said holes in said insulating substrate; and further comprising means applying a signal voltage in sequence to said metal electrode sheets of said control electrode means while applying a high voltage between said transparent electrode and each of said discharge electrodes.
5. A display panel comprising a panel-shaped discharge tube filled with low-pressure inert gas; a fluorescent screen applied on one inner surface of said discharge tube; an electrode provided on said fluorescent screen; control electrode means spaced in parallel with said one inner surface of said discharge tube; and a pair of spaced discharge electrodes for producing a plasma by ionizing said inert gas, said discharge electrodes being placed in a space opposite to said fluorescent screen, said space being defined by said control electrode means and the opposite inner surface of said discharge tube; said control electrode means comprising an insulating substrate having a plurality of holes formed therein, a plurality of first parallel metal electrode sheets on one surface of said insulating substrate and a plurality of second parallel metal electrode sheets on the opposite surface of said substrate which are orthogonal to said first metal electrode sheets, said holes being formed in and through said insulating substrate at the intersections of said first and second metal electrode sheets, both sheets having apertures in correspondence with said holes in said insulating substrate; and further comprising means applying a signal voltage in sequence to said metal electrode sheets of said control electrode means while applying a high voltage between said electrode provided on said fluorescent screen and each of said discharge electrodes.
6. A display panel according to claim 5, further comprising a subsidiary electrode disposed in parallel with and between said control electrode means and said opposite inner surface of said discharge tube.
7. A display panel according to claim 5, wherein one of said discharge electrodes is a thermionic cathode.
8. A display panel comprising a panel-shaped discharge tube filled with low-pressure inert gas; a fluorescent screen applied on one inner surface of said discharge tube; an electrode provided on said fluorescent screen; control electrode means spaced in parallel with said one inner surface of said discharge tube; and a pair of spaced discharge electrodes for producing a plasma by ionizing said inert gas, said discharge electrodes being placed in a space opposite to said fluorescent screen, said space being defined by said control electrode means and the opposite inner surface of said discharge tube; said control electrode means comprising an insulating substrate having a plurality of holes formed therein, a plurality of first parallel metal electrode sheets on one surface of said insulating substrate and a plurality of second parallel metal electrode sheets on the opposite surface of said substrate which are orthogonal to said first metal electrode sheets, said holes being formed in and through said insulating substrate at the intersections of said first and second metal electrode sheets, both sheets having apertures in correspondence with said holes in said insulating substrate, wherein a portion of each of said first and second electrode sheets extends into said holes in said insulating substrate; and further comprising means applying a signal voltage in sequence to said metal electrode sheets of said control electrode means while applying a high voltage between said electrode provided on said fluorescent screen and each of said discharge electrodes.
9. A display panel comprising a flat panel-shaped discharge tube filled with low-pressure inert gas; a transparent sheet electrode provided on one longitudinal inner surface of said tube; a fluorescent screen coated on said transparent electrode; control electrode means parallelely spaced from said inner surface and said screen; a mesh-type subsidiary electrode spaced from said control electrode means; opposed cathode and anode discharge electrodes; and a plasma space for ionized inert gas opposite to said screen and defined by said subsidiary electrode, said discharge electrodes and a second longitudinal inner surface of said tube; said control electrode means comprising an insulating substrate having a plurality of holes formed therein, a plurality of first parallel metal electrode sheets on one surface of said substrate, and a plurality of second parallel metal electrode sheets on the opposite surface of said substrate which are arranged orthogonally to said first sheets, said holes being arranged in a matrix penetrating through said substrate at the intersections of said first and second sheets, both sheets having apertures therein in correspondence with said holes; and wherein said display panel is further provided with means for biasing the potential of said subsidiary electrode below the potential of said anode discharge electrode, means for biasing the potentials of said control electrode sheets below the potential of said subsidiary electrode, and a high-voltage supply connected between said transparent sheet electrode and said cathode and anode electrodes.
10. A display panel comprising a flat panel-shaped discharge tube filled with low-pressure inert gas; a transparent sheet electrode provided on one longitudinal inner surface of said tube; a fluorescent screen coated on said transparent electrode; control electrode means parallelely spaced from said inner surface and said screen; a mesh-type subsidiary electrode spaced from said control electrode means; opposed cathode and anode discharge electrodes; and a plasma space for ionized inert gas opposite to said screen and defined by said subsidiary electrode, said discharge electrodes and a second longitudinal inner surface of said tube; said control electrode means comprising an insulating substrate having a plurality of holes formed therein, a plurality of first parallel metal electrode sheets on one surface of said substrate, and a plurality of second parallel metal electrode sheets on the opposite surface of said substrate which are arranged orthogonally to said first sheets, said holes being arranged in a matrix penetrating through said substrate at the intersections of said first and second sheets, both sheets having apertures therein in correspondence with said holes, wherein a portion of each of said first and second electrode sheets extend into said holes in said insulating substrate; and wherein said display panel is further provided with means for biasing the potential of said subsidiary electrode below the potential of said anode discharge electrode, means for biasing the potentials of said control electrode sheets below the potential of said subsidiary electrode, and a high-voltage supply connected between said transparent sheet electrode and said cathode and anode electrodes.
11. A display panel according to claim 10, further provided with scanning means for supplying information signals to said first and second electrode sheets.
US778279A 1967-11-28 1968-11-22 Improvements in fluorescent screen display panels Expired - Lifetime US3622829A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP7714567 1967-11-28
JP7714467 1967-11-28
JP7714767 1967-11-28
JP7714367 1967-11-28

Publications (1)

Publication Number Publication Date
US3622829A true US3622829A (en) 1971-11-23

Family

ID=27466011

Family Applications (1)

Application Number Title Priority Date Filing Date
US778279A Expired - Lifetime US3622829A (en) 1967-11-28 1968-11-22 Improvements in fluorescent screen display panels

Country Status (5)

Country Link
US (1) US3622829A (en)
DE (1) DE1811272C3 (en)
FR (1) FR1600480A (en)
GB (1) GB1210107A (en)
NL (1) NL6816990A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728483A (en) * 1972-03-22 1973-04-17 Zenith Radio Corp Acoustically scanned image display device
US3806760A (en) * 1969-04-17 1974-04-23 S Shimada Electron tube
US3836810A (en) * 1971-08-20 1974-09-17 Philips Corp Picture display device comprising a plurality of light producing elements
US3882342A (en) * 1974-07-30 1975-05-06 Japan Broadcasting Corp Gas discharge display panel for color picture reproduction
US3899636A (en) * 1973-09-07 1975-08-12 Zenith Radio Corp High brightness gas discharge display device
US3914635A (en) * 1971-09-30 1975-10-21 Owens Illinois Inc Gaseous discharge display/memory device with improved memory margin
US3925697A (en) * 1972-10-24 1975-12-09 Owens Illinois Inc Helium-xenon gas mixture for gas discharge device
US3992644A (en) * 1975-06-20 1976-11-16 Zenith Radio Corporation Cathodoluminescent display with hollow cathodes
US4112329A (en) * 1976-04-09 1978-09-05 Siemens Aktiengesellschaft Gas discharge display device
US4123687A (en) * 1976-05-21 1978-10-31 Thomson-Csf Display system using low energy electrons
US4160191A (en) * 1977-12-27 1979-07-03 Hausfeld David A Self-sustaining plasma discharge display device
US4227114A (en) * 1977-02-16 1980-10-07 Zenith Radio Corporation Cathodoluminescent gas discharge image display panel
US4329626A (en) * 1979-07-19 1982-05-11 Siemens Aktiengesellschaft Plasma display device
EP0167360A2 (en) * 1984-06-28 1986-01-08 International Business Machines Corporation Programmable ion beam patterning system
EP0213839A2 (en) * 1985-08-13 1987-03-11 Source Technology Corporation Flat electron control device utilizing a uniform space-charge cloud of free electrons as a virtual cathode
US5469021A (en) * 1993-06-02 1995-11-21 Btl Fellows Company, Llc Gas discharge flat-panel display and method for making the same
US5519414A (en) * 1993-02-19 1996-05-21 Off World Laboratories, Inc. Video display and driver apparatus and method
EP0834900A2 (en) * 1996-10-04 1998-04-08 International Business Machines Corporation Display device
US5954560A (en) * 1993-06-02 1999-09-21 Spectron Corporation Of America, L.L.C. Method for making a gas discharge flat-panel display
US6008573A (en) * 1996-10-04 1999-12-28 International Business Machines Corporation Display devices
US20040113545A1 (en) * 2002-09-19 2004-06-17 Lg.Philips Lcd Co., Ltd. Transmissive-type organic electroluminescent display device and fabricating method of the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235491B2 (en) * 1972-02-16 1977-09-09
DE2508393C2 (en) * 1975-02-26 1983-02-17 Siemens AG, 1000 Berlin und 8000 München Gas discharge indicating device and method for its operation
DE2615681C2 (en) * 1976-04-09 1983-02-17 Siemens AG, 1000 Berlin und 8000 München Display device with a gas discharge space as an electron source, with an electron post-acceleration space and with a fluorescent screen
DE2615569C3 (en) * 1976-04-09 1982-01-14 Siemens AG, 1000 Berlin und 8000 München Color image display device
DE2623988A1 (en) * 1976-04-30 1977-12-08 Licentia Gmbh Modulation system for flow of charged particles - uses selection electrodes to switch stream to appropriate matrix cell of anode screen display
DE2638829A1 (en) * 1976-08-28 1978-03-02 Licentia Gmbh Control system of display or flat screen - has matrix consisting of lines and columns with control cells in nodal points
DE2926393C2 (en) * 1979-06-29 1982-10-07 Siemens AG, 1000 Berlin und 8000 München Gas discharge indicator
DE3132070A1 (en) * 1981-08-13 1983-03-03 Siemens AG, 1000 Berlin und 8000 München Control of the electron flux in plasma displays

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2848638A (en) * 1953-06-09 1958-08-19 Edwin W Smith Multi-display tube
US2926286A (en) * 1958-09-19 1960-02-23 Tung Sol Electric Inc Cold cathode display device
US2965801A (en) * 1954-12-23 1960-12-20 Philips Corp Method of and apparatus for position-selection, scanning and the like
US3107303A (en) * 1960-12-28 1963-10-15 Bell Telephone Labor Inc Positive or negative high gain image amplifier
US3176184A (en) * 1961-02-20 1965-03-30 Roy L Knox Electron deflection system for image reproduction including flat tube and planar cathode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1247372A (en) * 1967-10-18 1971-09-22 Burroughs Corp Display panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2848638A (en) * 1953-06-09 1958-08-19 Edwin W Smith Multi-display tube
US2965801A (en) * 1954-12-23 1960-12-20 Philips Corp Method of and apparatus for position-selection, scanning and the like
US2926286A (en) * 1958-09-19 1960-02-23 Tung Sol Electric Inc Cold cathode display device
US3107303A (en) * 1960-12-28 1963-10-15 Bell Telephone Labor Inc Positive or negative high gain image amplifier
US3176184A (en) * 1961-02-20 1965-03-30 Roy L Knox Electron deflection system for image reproduction including flat tube and planar cathode

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806760A (en) * 1969-04-17 1974-04-23 S Shimada Electron tube
US3836810A (en) * 1971-08-20 1974-09-17 Philips Corp Picture display device comprising a plurality of light producing elements
US3914635A (en) * 1971-09-30 1975-10-21 Owens Illinois Inc Gaseous discharge display/memory device with improved memory margin
US3728483A (en) * 1972-03-22 1973-04-17 Zenith Radio Corp Acoustically scanned image display device
US3925697A (en) * 1972-10-24 1975-12-09 Owens Illinois Inc Helium-xenon gas mixture for gas discharge device
US3899636A (en) * 1973-09-07 1975-08-12 Zenith Radio Corp High brightness gas discharge display device
US3882342A (en) * 1974-07-30 1975-05-06 Japan Broadcasting Corp Gas discharge display panel for color picture reproduction
US3992644A (en) * 1975-06-20 1976-11-16 Zenith Radio Corporation Cathodoluminescent display with hollow cathodes
US4112329A (en) * 1976-04-09 1978-09-05 Siemens Aktiengesellschaft Gas discharge display device
US4123687A (en) * 1976-05-21 1978-10-31 Thomson-Csf Display system using low energy electrons
US4227114A (en) * 1977-02-16 1980-10-07 Zenith Radio Corporation Cathodoluminescent gas discharge image display panel
US4160191A (en) * 1977-12-27 1979-07-03 Hausfeld David A Self-sustaining plasma discharge display device
US4329626A (en) * 1979-07-19 1982-05-11 Siemens Aktiengesellschaft Plasma display device
EP0167360A3 (en) * 1984-06-28 1986-12-30 International Business Machines Corporation Programmable ion beam patterning system
EP0167360A2 (en) * 1984-06-28 1986-01-08 International Business Machines Corporation Programmable ion beam patterning system
EP0213839A2 (en) * 1985-08-13 1987-03-11 Source Technology Corporation Flat electron control device utilizing a uniform space-charge cloud of free electrons as a virtual cathode
EP0213839A3 (en) * 1985-08-13 1988-06-01 Source Technology Inc Flat electron control device utilizing a uniform space-charge cloud of free electrons as a virtual cathode
US5519414A (en) * 1993-02-19 1996-05-21 Off World Laboratories, Inc. Video display and driver apparatus and method
US5654727A (en) * 1993-06-02 1997-08-05 Spectron Corporation Of America, L.L.C. Gas discharge flat-panel display
US5634836A (en) * 1993-06-02 1997-06-03 Spectron Corporation Of America, L.L.C. Method of making a gas discharge flat-panel display
US5469021A (en) * 1993-06-02 1995-11-21 Btl Fellows Company, Llc Gas discharge flat-panel display and method for making the same
US5954560A (en) * 1993-06-02 1999-09-21 Spectron Corporation Of America, L.L.C. Method for making a gas discharge flat-panel display
EP0834900A2 (en) * 1996-10-04 1998-04-08 International Business Machines Corporation Display device
EP0834900A3 (en) * 1996-10-04 1998-04-29 International Business Machines Corporation Display device
US5889363A (en) * 1996-10-04 1999-03-30 International Business Machines Corporation Display devices
US6008573A (en) * 1996-10-04 1999-12-28 International Business Machines Corporation Display devices
US20040113545A1 (en) * 2002-09-19 2004-06-17 Lg.Philips Lcd Co., Ltd. Transmissive-type organic electroluminescent display device and fabricating method of the same
US7173371B2 (en) * 2002-09-19 2007-02-06 Lg.Philips Lcd Co., Ltd. Transmissive-type organic electroluminescent display device and fabricating method of the same

Also Published As

Publication number Publication date
DE1811272A1 (en) 1970-04-02
DE1811272C3 (en) 1971-07-08
NL6816990A (en) 1969-05-30
GB1210107A (en) 1970-10-28
FR1600480A (en) 1970-07-27
DE1811272B2 (en) 1970-12-03

Similar Documents

Publication Publication Date Title
US3622829A (en) Improvements in fluorescent screen display panels
US5083058A (en) Flat panel display device
CA1039872A (en) Cathodo-luminescent display panel
US3875442A (en) Display panel
US3262010A (en) Electrical display apparatus incorpolrating electroluminescent and gas discharge devices
US4112329A (en) Gas discharge display device
US4227114A (en) Cathodoluminescent gas discharge image display panel
EP0201609B1 (en) Electron gun of picture display device
EP0139314A1 (en) Picture display panel
US3622828A (en) Flat display tube with addressable cathode
US3825922A (en) Channel plate display device having positive optical feedback
US3771008A (en) Gaseous discharge display device
US3836810A (en) Picture display device comprising a plurality of light producing elements
US3845241A (en) Television display panel having gas discharge cathodo-luminescent elements
US4160191A (en) Self-sustaining plasma discharge display device
GB2031220A (en) Evacuated display tubes
US3683364A (en) Display panel wherein each scanning cell is associated with a plurality of display cells
US4122376A (en) Multi-indicia fluorescent display tube
US3579015A (en) Electron beam addressed plasma display panel
US3863089A (en) Gas discharge display and memory panel with magnesium oxide coatings
US3753041A (en) Digitally addressable gas discharge display apparatus
US3925697A (en) Helium-xenon gas mixture for gas discharge device
US3749969A (en) Gas discharge display apparatus
US4328444A (en) Gas discharge display device with a lamellar lattice in the gas discharge space
US3999094A (en) Cathodoluminescent gas discharge device with improved modulation characteristics