US3630204A - Blade for bone reamer - Google Patents

Blade for bone reamer Download PDF

Info

Publication number
US3630204A
US3630204A US49301A US3630204DA US3630204A US 3630204 A US3630204 A US 3630204A US 49301 A US49301 A US 49301A US 3630204D A US3630204D A US 3630204DA US 3630204 A US3630204 A US 3630204A
Authority
US
United States
Prior art keywords
blade
midpoint
segments
edge
notches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US49301A
Inventor
Meyer Fishbein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3630204A publication Critical patent/US3630204A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1664Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the hip
    • A61B17/1666Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the hip for the acetabulum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/89Tool or Tool with support
    • Y10T408/905Having stepped cutting edges
    • Y10T408/906Axially spaced
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/89Tool or Tool with support
    • Y10T408/909Having peripherally spaced cutting edges
    • Y10T408/9093Each formed by a pair of axially facing facets

Definitions

  • Lilly ABSTRACT A bone-cutting blade with a convex scraper edge, rotatable about an axis which is in the plane of the blade and which intersects the midpoint of the convex scraper edge, the convex scraper edge having spaced notches therein, alternating with arcuate blade edge segments, with segments one side of the midpoint of the arcuate blade corresponding in position along the blade edge with notches on the opposite side of the midpoint.
  • This invention relates generally to blades for rotary bone cutters, particularly of the variety designed for forming a hemispherical socket in a bone, e.g., in hip surgery.
  • cup arthroplasty In hip surgery, the procedure known as cup arthroplasty includes the reshaping of the acetabulum of thehip to provide a nicely rounded cavity therein.
  • This has been done in various ways heretofore, and my aforesaid patent application discloses a rotary cutter and blade for accomplishing this purpose in an improved manner.
  • the blade is a flat, tool steel plate, with an arcuate shearing edge, and is rotated in the bone cavity to generate hemispherical surface of revolution therein.
  • An electric drill is used to drive the holder for the blade, and it is the common practice to use for this purpose self-contained battery power for this drill, with the drill housing sealed against any possibility of sparking such as might cause ignition of any explosive gases that might be present in the operating room.
  • Such drills are generally of relatively low power and limited in torque; and in some cases the bone in the region of the socket to be constructed has become so dense and hardened that the torque available from a drill of the type mentioned has been somewhat limited for the bone condition encountered. For this reason particularly, but also because a reduced torque requirement is always desirable, the purpose of the present invention is to materially reduce the torque requirement of the blade mentioned above.
  • the arcuate cutting of the earlier blade is formed on opposite sides of its midpoint with spaced notches, alternating with arcuate blade edge segments, with the notches on one side of the midpoint corresponding generally in position with the arcuate segments on the opposite side of the midpoint.
  • the segments cover the full area of the hemispherical cavity, but each arcuate half of the blade engages and cuts along a series of segments whose summed length is materially less, e.g., half, or somewhat more, of the full length of the arcuate half of the blade.
  • the overall torque requirement to cut through the bone can thereby be reduced as much as half; and with a given torque availability, the cutting force availability can thus be doubled.
  • rela' tively lightly powered battery operated drills such as are now commercially available, andsuch as are admirably suited to the work because of compactness and low weight are capable of generating the torque necessary to cut dense and hard bone easily and satisfactorily.
  • FIG. 1 is a side elevational view of a reamer in accordance with the invention, with parts broken away;
  • FIG. 2 is a side elevational view of the cutter, in a position at 90 from FIG. 1, parts being broken away;
  • FIG. 3 is a front elevational view of the cutter as seen from the left toward FIG. 2;
  • FIG. 4 is a side elevational view, to double scale, of the blade of the cutter of FIGS. 1-3;
  • FIG. 5 is a view ofthe blade, as seen looking toward the right in FIG. 4;
  • FIG. 6 is a fragmentary perspective view of the central portion of the cutter blade.
  • FIG. 7 is a largely diagrammatic view showing the cutter blade in a simple basic form.
  • a rotary bone cutter has a head 10 of substantially hemispherical form with a convex front surface of revolution 11, and a flat rearward surface 12.
  • a hub 13 with a reduced coaxial coupling pin 14 projects axially from surface 12.
  • Pin 14 is received in a socket 15 in the end ofa somewhat tapered shank 16, and is connected to the latter by a roll pin 17.
  • Shank 16 is to be understood as adapted at its opposite end for coupling to a rotary driver, preferably an electric surgical drill.'
  • the centerof curvature C of the convex front face of the head 10 is preferably spaced somewhat rearwardly of the rearward head surface 12, so that while the head can be described as generally-or substantially hemispherical, its preferred form is just a trifle under a full hemisphere.
  • the blade 22 is shaped in general resemblance to the head and hub, with alternating notches and segments, its cutting edge being convex in form, as described later, and with a shank 24 extending from its base edge 25, so as to seat into the bottom of the slot 20.
  • the hub is drilled and tapped on the axis of the center C to receive a shoulder bolt 27, and the blade 22 is drilled as at 28 to receive and be positioned accurately by this bolt 27. Tightening of the bolt 27 clamps the split head and knife in solid assembly. The blade may be quickly removed and replaced by taking out and replacing the bolt 27.
  • the radius r of the convex blade edge 30, drawn from center C, is slightly greater than that of the convex head surface ll, so that the blade edge projects a slight marginal distance beyond the latter for proper cutting, the cutting depth being controlled bythe proximity of the hemispherical surface 11.
  • the blade edge is oppositely beveled on opposite sides of its center or midpoint 31 to give a suitable clearance angle for each half of the blade, as designated at 32 and 33, and so as to form two shear or scraper edges 32 and 33, respectively.
  • Rotation of the head spins the two. convex scraper edges against the cartilage and/or bone to take a fine hemispherical shear type cut therein, which may be progressively deepened as desired.
  • the blade produces flne cuttings or scrapings, which are disposed of as presently described. It will be particularly noted that the curved blade edges 32' and 33 move normally to the bone, and depth of cut is controlled to be uniform along the entire blade edges by the uniform projection distance thereof beyond the hemispherical guide surface ll. Maximized cutting rate can be achieved with projection distance small enough to avoid gouging or chatter.
  • the blade slot 20 is bisected by a diametrical plane P of the head, so that the two blade edges 32' and 33' are equidistantly positioned, by distances equal to the halfthickness of the blade, ahead of this diametrical plane. Maximum uniformity of cutting by the two oppositely beveled halflengths of the blade is thereby achieved, and a highly uniform hemispherical socket obtained.
  • each knife edge 32' and 33' the head 10 is formed with a trough, passage, or groove 40.
  • each of these grooves extends from a point just beyond the midpoint of the blade, back past said midpoint and angularly down or back alongside the opposite half of the blade.
  • the groove opens to the blade on one side, and intersects the convex surface 11 on the other, in a curved line 42, opening through a discharge notch 44 in the back surface 12 of the cavity being formed, there is no need for the surgeon to stop his work to clean out the cutter.
  • the cutter as heretofore described, excepting for brief reference to the blade notches is disclosed in my aforementioned application.
  • FIG. 7 of this application The arcuate, convex edge 30 of the blade 22 is divided into two halves by a midpoint 31 coinciding with the axis of rotation A-A'.
  • the convex edge 30 is shown to subtend somewhat less than 180 of angle about the center C of the edge 30, and, for simple example, each half of the edge 30, on
  • the segments will be understood to be oppositely beveled on opposite side of the midpoint 31, as explained in connection with FIGS. 1-6.
  • the segments in this simple example are of the same lengths as the notches 51, though in the preferred example, FIGS. 1-6, the segments 50 exceed the notches in length by substantially 2to I.
  • the first segment 50 of the lower half of the blade edge '30 has one end at the midpoint 31. It is followed by a notch 51, then a second segment 50, and a second notch 51.
  • each segment and of each notch of each blade half thus define a zone.
  • these zones Z meet edge to edge along parallel planes such as p in FIG. 7.
  • the zone defined and occupied by each segment on each blade half thus meets and fits precisely between adjacent zones defined notches on the other blade half. If, however, the segments are of greater lengths than the notches, as in FIG. 1-6, the zones for the segments slightly overlap the zones defined by the notches. There is thus a factor of safety assuring that cutting will occur continuously about the complete hemisphere.
  • FIGS. 1-6 it will be immediately observed that a larger number of segments 50 and notches 51 have been used, and also, as suggested hereinabove, that the segments 50 have been made substantially double the length of the notches 51. Also, as will be clear from the drawings, the zones defined by the segments at least slightly overlap the zones defined by the notches in the opposite half of the convex blade. Clean cutting and stable nonchattering cutting, with assurance of cutting continuously, without leaving a narrow strip of bone between successive segments on the two halves of the blade, are thereby achieved.
  • a further improvement in the region of the midpoint 31 of the convex blade is also employed.
  • the segment 50 (FIG. 5) at the midpoint of the blade is above the midpoint for most of its length, but extends for a short portion 50a of its length below the midpoint 31, and that this last mentioned portion of the segment has an opposite bevel from the remainder of the segment.
  • the segment thus divided into two oppositely beveled portions, assures clean cutting at the center.
  • the present blade which performs successfully, has a center-to-center spacing angle, from notch to notch, of 1815, and the notches are substantially 0. l0 inch in length along the arc.
  • the blade is double scale in the patent drawings in FIGS. 5 and 6 (prior to reduction in printing).
  • a rotary shearing blade for a rotary bone cutter adapted to rotate it on an axis substantially in the plane thereof, comprising a fiat plate having aconvex arcuate edge struck from a center point on said axis of rotation, said arcuate edge being oppositely beveled on opposite sides of its midpoint, the two halves of said beveled arcuate edge, on opposite sides of said midpoint, having spaced notches therein, alternating with beveled arcuate edge segments, with segments on one of the halves corresponding substantially in position along the armate edge with notches in the other half, such that the segments on the two halves of the arcuate edge coact to cut a continuous substantially hemispherical surface of revolution when rotated on said axis, with each half cutting a plurality of spaced zones thereof which intervene between zones cut by the other half.
  • beveled edge segment on one arcuate edge half of the blade extends to the midpoint of the arcuate blade edge, and is immediately adjoined, at said midpoint, by an oppositely beveled edge segment on the other arcuate edge half of the blade.
  • blade segments on each side of the midpoint of the blade define and occupy zones about the axis of rotation which at least meet adjacent zones defined and occupied by notches on the opposite side of the midpoint of the blade.
  • zones occupied on each side of the midpoint of the blade at least slightly overlap zones defined and occupied by blade notches on opposite sides of the midpoint of the blade.

Abstract

A bone-cutting blade with a convex scraper edge, rotatable about an axis which is in the plane of the blade and which intersects the midpoint of the convex scraper edge, the convex scraper edge having spaced notches therein, alternating with arcuate blade edge segments, with segments one side of the midpoint of the arcuate blade corresponding in position along the blade edge with notches on the opposite side of the midpoint.

Description

United States Patent Inventor Meyer Fishbein 12020 Saltair PL, Los Angeles, Calif. 90049 Appl. No. 49,301 Filed June 24, 1970 Patented Dec. 28, 1971 BLADE FOR BONE REAMER 5 Claims, 7 Drawing Figs.
U.S. Cl 128/305, 408/224, 408/228 Int. Cl ..A6lb 17/32, B23b 51/10, B23d 77/00 Field of Search 128/305; 408/223, 224, 227, 228
[56] References Cited FOREIGN PATENTS 1,020,421 11/1952 Fiance 128/305 1,031,888 3/1953 France 128/305 Primary Examiner-Channing L. Pace Attorney-Forrest]. Lilly ABSTRACT: A bone-cutting blade with a convex scraper edge, rotatable about an axis which is in the plane of the blade and which intersects the midpoint of the convex scraper edge, the convex scraper edge having spaced notches therein, alternating with arcuate blade edge segments, with segments one side of the midpoint of the arcuate blade corresponding in position along the blade edge with notches on the opposite side of the midpoint.
BLADE FOR BONE REAMER RELATED APPLICATION This application discloses an improvement over a bone cutting blade disclosed in my copending application filed Aug. 22,1969, Ser. No. 852,226.
FIELD OF THE INVENTION This invention relates generally to blades for rotary bone cutters, particularly of the variety designed for forming a hemispherical socket in a bone, e.g., in hip surgery.
BACKGROUND OF THE INVENTION In hip surgery, the procedure known as cup arthroplasty includes the reshaping of the acetabulum of thehip to provide a nicely rounded cavity therein. This has been done in various ways heretofore, and my aforesaid patent application discloses a rotary cutter and blade for accomplishing this purpose in an improved manner. The blade is a flat, tool steel plate, with an arcuate shearing edge, and is rotated in the bone cavity to generate hemispherical surface of revolution therein. An electric drill is used to drive the holder for the blade, and it is the common practice to use for this purpose self-contained battery power for this drill, with the drill housing sealed against any possibility of sparking such as might cause ignition of any explosive gases that might be present in the operating room. Such drills are generally of relatively low power and limited in torque; and in some cases the bone in the region of the socket to be constructed has become so dense and hardened that the torque available from a drill of the type mentioned has been somewhat limited for the bone condition encountered. For this reason particularly, but also because a reduced torque requirement is always desirable, the purpose of the present invention is to materially reduce the torque requirement of the blade mentioned above.
BRIEF SUMMARY OF THE INVENTION In accordance with the present invention the arcuate cutting of the earlier blade, mentioned hereinabove, is formed on opposite sides of its midpoint with spaced notches, alternating with arcuate blade edge segments, with the notches on one side of the midpoint corresponding generally in position with the arcuate segments on the opposite side of the midpoint. Together, the segments cover the full area of the hemispherical cavity, but each arcuate half of the blade engages and cuts along a series of segments whose summed length is materially less, e.g., half, or somewhat more, of the full length of the arcuate half of the blade. The overall torque requirement to cut through the bone can thereby be reduced as much as half; and with a given torque availability, the cutting force availability can thus be doubled. With this improvement, rela' tively lightly powered battery operated drills such as are now commercially available, andsuch as are admirably suited to the work because of compactness and low weight are capable of generating the torque necessary to cut dense and hard bone easily and satisfactorily.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a side elevational view of a reamer in accordance with the invention, with parts broken away;
FIG. 2 is a side elevational view of the cutter, in a position at 90 from FIG. 1, parts being broken away;
FIG. 3 is a front elevational view of the cutter as seen from the left toward FIG. 2;
FIG. 4 is a side elevational view, to double scale, of the blade of the cutter of FIGS. 1-3;
FIG. 5 is a view ofthe blade, as seen looking toward the right in FIG. 4;
FIG. 6 is a fragmentary perspective view of the central portion of the cutter blade; and
FIG. 7 is a largely diagrammatic view showing the cutter blade in a simple basic form.
DESCRIPTION OF A PREFERRED EMBODIMENT In the drawings, a rotary bone cutter has a head 10 of substantially hemispherical form with a convex front surface of revolution 11, and a flat rearward surface 12. A hub 13 with a reduced coaxial coupling pin 14 projects axially from surface 12. Pin 14 is received in a socket 15 in the end ofa somewhat tapered shank 16, and is connected to the latter by a roll pin 17. Shank 16 is to be understood as adapted at its opposite end for coupling to a rotary driver, preferably an electric surgical drill.'
The centerof curvature C of the convex front face of the head 10 is preferably spaced somewhat rearwardly of the rearward head surface 12, so that while the head can be described as generally-or substantially hemispherical, its preferred form is just a trifle under a full hemisphere.
The hemispherical head 10, and the hub 13, for approximately three-fourths of the depth of the latter, are split longitudinally on a diametrical plane, forming a diametrical slot 20, adapted to receive the flat, tool steel blade 22. The blade 22 is shaped in general resemblance to the head and hub, with alternating notches and segments, its cutting edge being convex in form, as described later, and with a shank 24 extending from its base edge 25, so as to seat into the bottom of the slot 20. The hub is drilled and tapped on the axis of the center C to receive a shoulder bolt 27, and the blade 22 is drilled as at 28 to receive and be positioned accurately by this bolt 27. Tightening of the bolt 27 clamps the split head and knife in solid assembly. The blade may be quickly removed and replaced by taking out and replacing the bolt 27.
The radius r of the convex blade edge 30, drawn from center C, is slightly greater than that of the convex head surface ll, so that the blade edge projects a slight marginal distance beyond the latter for proper cutting, the cutting depth being controlled bythe proximity of the hemispherical surface 11. The blade edge is oppositely beveled on opposite sides of its center or midpoint 31 to give a suitable clearance angle for each half of the blade, as designated at 32 and 33, and so as to form two shear or scraper edges 32 and 33, respectively. Rotation of the head spins the two. convex scraper edges against the cartilage and/or bone to take a fine hemispherical shear type cut therein, which may be progressively deepened as desired. The blade produces flne cuttings or scrapings, which are disposed of as presently described. It will be particularly noted that the curved blade edges 32' and 33 move normally to the bone, and depth of cut is controlled to be uniform along the entire blade edges by the uniform projection distance thereof beyond the hemispherical guide surface ll. Maximized cutting rate can be achieved with projection distance small enough to avoid gouging or chatter.
Preferably, the blade slot 20 is bisected by a diametrical plane P of the head, so that the two blade edges 32' and 33' are equidistantly positioned, by distances equal to the halfthickness of the blade, ahead of this diametrical plane. Maximum uniformity of cutting by the two oppositely beveled halflengths of the blade is thereby achieved, and a highly uniform hemispherical socket obtained.
Alongside each knife edge 32' and 33', the head 10 is formed with a trough, passage, or groove 40. As will be seen, each of these grooves extends from a point just beyond the midpoint of the blade, back past said midpoint and angularly down or back alongside the opposite half of the blade. The groove opens to the blade on one side, and intersects the convex surface 11 on the other, in a curved line 42, opening through a discharge notch 44 in the back surface 12 of the cavity being formed, there is no need for the surgeon to stop his work to clean out the cutter.
Irrigation is not required, and since the cuttings and scrapings pass continuously out of the cutter and the bone cavity being formed, there is no need for the surgeon to stop his work to clean out the cutter.
The cutter as heretofore described, excepting for brief reference to the blade notches is disclosed in my aforementioned application. For a basic understanding of the present invention, please refer to the diagrammatic FIG. 7 of this application. The arcuate, convex edge 30 of the blade 22 is divided into two halves by a midpoint 31 coinciding with the axis of rotation A-A'. The convex edge 30 is shown to subtend somewhat less than 180 of angle about the center C of the edge 30, and, for simple example, each half of the edge 30, on
opposite sides of midpoint 31, has two arcuate segments 50,
alternating with two notches 51. The segments will be understood to be oppositely beveled on opposite side of the midpoint 31, as explained in connection with FIGS. 1-6. The segments in this simple example are of the same lengths as the notches 51, though in the preferred example, FIGS. 1-6, the segments 50 exceed the notches in length by substantially 2to I. As seen in simple basic example of FIG. 7, the first segment 50 of the lower half of the blade edge '30 has one end at the midpoint 31. It is followed by a notch 51, then a second segment 50, and a second notch 51. (More segments and notches are desirable in practice.) The upper half of the blade edge 30 beings at midpoint 31, with a notch 51, followed by a segment 50, a second notch 51, and a second segment 50. Thus, a segment on one-half of the convex blade edge corresponds in position along the arc with a notch in the other half. It will be clear that if the blade is rotated on axis A-A, the cutting segments on one half will cut spaced bands in the hemispherical bone cavity, and the cutting segments on the other half will cut the remaining or intervening bands," so that a complete substantially hemispherical cut will be made. It is convenient to adopt as a definition for these bands," that used in works on Solid Geometry, i.e., the portion of the surface of a sphere included between two parallel planes is called a zone. The two ends of each segment and of each notch of each blade half thus define a zone. And for the simple example of FIG. 7, these zones Z meet edge to edge along parallel planes such as p in FIG. 7. The zone defined and occupied by each segment on each blade half thus meets and fits precisely between adjacent zones defined notches on the other blade half. If, however, the segments are of greater lengths than the notches, as in FIG. 1-6, the zones for the segments slightly overlap the zones defined by the notches. There is thus a factor of safety assuring that cutting will occur continuously about the complete hemisphere.
Turning now to the preferred embodiment of FIGS. 1-6, it will be immediately observed that a larger number of segments 50 and notches 51 have been used, and also, as suggested hereinabove, that the segments 50 have been made substantially double the length of the notches 51. Also, as will be clear from the drawings, the zones defined by the segments at least slightly overlap the zones defined by the notches in the opposite half of the convex blade. Clean cutting and stable nonchattering cutting, with assurance of cutting continuously, without leaving a narrow strip of bone between successive segments on the two halves of the blade, are thereby achieved.
A further improvement in the region of the midpoint 31 of the convex blade is also employed. Note that the segment 50 (FIG. 5) at the midpoint of the blade is above the midpoint for most of its length, but extends for a short portion 50a of its length below the midpoint 31, and that this last mentioned portion of the segment has an opposite bevel from the remainder of the segment. The segment, thus divided into two oppositely beveled portions, assures clean cutting at the center.
It will be clear that various changes in design in the number, length, location, and arrangement of the segments or teeth 50 and the notches or gaps 51 may be made within the broad scope ofthe inventlon. The present blade, which performs successfully, has a center-to-center spacing angle, from notch to notch, of 1815, and the notches are substantially 0. l0 inch in length along the arc. The blade is double scale in the patent drawings in FIGS. 5 and 6 (prior to reduction in printing).
I claim:
1. A rotary shearing blade for a rotary bone cutter adapted to rotate it on an axis substantially in the plane thereof, comprising a fiat plate having aconvex arcuate edge struck from a center point on said axis of rotation, said arcuate edge being oppositely beveled on opposite sides of its midpoint, the two halves of said beveled arcuate edge, on opposite sides of said midpoint, having spaced notches therein, alternating with beveled arcuate edge segments, with segments on one of the halves corresponding substantially in position along the armate edge with notches in the other half, such that the segments on the two halves of the arcuate edge coact to cut a continuous substantially hemispherical surface of revolution when rotated on said axis, with each half cutting a plurality of spaced zones thereof which intervene between zones cut by the other half.
2. The subject matter of claim 1, wherein the beveled edge segment on one arcuate edge half of the blade extends to the midpoint of the arcuate blade edge, and is immediately adjoined, at said midpoint, by an oppositely beveled edge segment on the other arcuate edge half of the blade.
3. The subject matter of claim I, wherein blade segments on each side of the midpoint of the blade define and occupy zones about the axis of rotation which at least meet adjacent zones defined and occupied by notches on the opposite side of the midpoint of the blade.
4. The subject matter of claim 3, with blade segments longer than blade notches, in such arrangement that zones defined and occupied by blade segments on each side of the midpoint of the blade at least meeting zones defined and occupied by the blade notches on opposite sides of the midpoint of the blade.
5. The subject matter of claim 4, wherein the zones occupied on each side of the midpoint of the blade at least slightly overlap zones defined and occupied by blade notches on opposite sides of the midpoint of the blade.

Claims (5)

1. A rotary shearing blade for a rotary bone cutter adapted to rotate it on an axis substantially in the plane thereof, comprising a flat plate having a convex arcuate edge struck from a center point on said axis of rotation, said arcuate edge being oppositely beveled on opposite sides of its midpoint, the two halves of said beveled arcuate edge, on opposite sides of said midpoint, having spaced notches therein, alternating with beveled arcuate edge segments, with segments on one of the halves corresponding substantially in position along the arcuate edge with notches in the other half, such that the segments on the two halves of the arcuate edge coact to cut a continuous substantially hemispherical surface of revolution when rotated on said axis, with each half cutting a plurality of spaced zones thereof which intervene between zones cut by the other half.
2. The subject matter of claim 1, wherein the beveled edge segment on one arcuate edge half of the blade extends to the midpoint of the arcuate blade edge, and is immediately adjoined, at said midpoint, by an oppositely beveled edge segment on the other arcuate edge half of the blade.
3. The subject matter of claim 1, wherein blade segments on each side of the midpoint of the blade define and occupy zones about the axis of rotation which at least meet adjacent zones defined and occupied by notches on the opposite side of the midpoint of the blade.
4. The subject matter of claim 3, with blade segments longer than blade notches, in such arrangement that zones defined and occupied by blade segments on each side of the midpoint of the blade at least meeting zones defined and occupied by the blade notches on opposite sides of the midpoint of the blade.
5. The subject matter of claim 4, wherein the zones occupied on each side of the midpoint of the blade at least slightly overlap zones defined and occupied by blade notches on opposite sides of the midpoint of the blade.
US49301A 1970-06-24 1970-06-24 Blade for bone reamer Expired - Lifetime US3630204A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US4930170A 1970-06-24 1970-06-24

Publications (1)

Publication Number Publication Date
US3630204A true US3630204A (en) 1971-12-28

Family

ID=21959104

Family Applications (1)

Application Number Title Priority Date Filing Date
US49301A Expired - Lifetime US3630204A (en) 1970-06-24 1970-06-24 Blade for bone reamer

Country Status (1)

Country Link
US (1) US3630204A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702611A (en) * 1971-06-23 1972-11-14 Meyer Fishbein Surgical expansive reamer for hip socket
US4023572A (en) * 1974-08-06 1977-05-17 Hanfried Weigand Milling tool for preparing a joint socket in the prosthetic replacement of a joint
US4251172A (en) * 1978-08-25 1981-02-17 Societe A.R.A.F. Cutting tool insert for precision radial machining
US4412763A (en) * 1981-01-21 1983-11-01 Metal Cutting Tools, Inc. Drill with single cutter
US4473070A (en) * 1983-01-05 1984-09-25 Regents Of The University Of Michigan Intramedullary reamer
US4621637A (en) * 1984-07-30 1986-11-11 Meyer Fishbein Surgical device for removing bone and tissue from joint members
US5015255A (en) * 1989-05-10 1991-05-14 Spine-Tech, Inc. Spinal stabilization method
US5336226A (en) * 1992-08-11 1994-08-09 Chapman Lake Instruments, Inc. Bone face cutter
US5445639A (en) * 1989-05-10 1995-08-29 Spine-Tech, Inc. Intervertebral reamer construction
DE19639193A1 (en) * 1996-09-24 1998-04-16 Aesculap Ag & Co Kg Surgical milling cutter for bone or tissue
US5976144A (en) * 1998-03-18 1999-11-02 Vozeh Equipment Corp. Hollow dome reamer with removable teeth
US6027503A (en) * 1997-10-17 2000-02-22 Johnson & Johnson Professional, Inc. Orthopedic reaming instrument
WO2001034039A1 (en) * 1999-11-08 2001-05-17 Zsolt Szabo Surgical treatment tool for creating a recess in a cartilage and/or bone tissue for a joint prosthesis
US20040049199A1 (en) * 2000-12-21 2004-03-11 Andre Lechot Surgical reamer
US20050113837A1 (en) * 2003-11-25 2005-05-26 Salyer Paul E. Orthopaedic rotary reamer with implant compliant cutting teeth
US7220264B1 (en) 2003-03-12 2007-05-22 Biomet Manufacturing Corp. Minimally invasive reamer
US20090088757A1 (en) * 2007-10-02 2009-04-02 Howmedica Osteonics Corp. Acetabular reamer
US20100280518A1 (en) * 2007-12-21 2010-11-04 Depuy International Limited Instrument for removing tissue
US7931689B2 (en) 2000-02-28 2011-04-26 Spineology Inc. Method and apparatus for treating a vertebral body
EP2478852A1 (en) 2011-01-21 2012-07-25 Greatbatch Ltd. Disposable surgical hemispherical cutter for convex or concave surfaces
DE102012100565A1 (en) 2012-01-24 2013-07-25 Normed Medizin-Technik Gmbh Bone cutter, assortment and system with bone cutter
US20150327873A1 (en) * 2011-01-28 2015-11-19 DePuy Synthes Products, Inc. Oscillating rasp for use in an orthopaedic surgical procedure
US10016205B2 (en) 2015-08-07 2018-07-10 Greatbatch Ltd. Bi-directional reamer assembly
US11311301B2 (en) 2014-08-14 2022-04-26 Biomet Manufacturing, Llc Flexible bone reamer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1020421A (en) * 1950-06-16 1953-02-06 Burr with removable blades for cutting acetabular cavities
FR1031888A (en) * 1951-01-30 1953-06-26 Cutter-shaped tool, usable in particular for hollowing out acetabular cups

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1020421A (en) * 1950-06-16 1953-02-06 Burr with removable blades for cutting acetabular cavities
FR1031888A (en) * 1951-01-30 1953-06-26 Cutter-shaped tool, usable in particular for hollowing out acetabular cups

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702611A (en) * 1971-06-23 1972-11-14 Meyer Fishbein Surgical expansive reamer for hip socket
US4023572A (en) * 1974-08-06 1977-05-17 Hanfried Weigand Milling tool for preparing a joint socket in the prosthetic replacement of a joint
US4251172A (en) * 1978-08-25 1981-02-17 Societe A.R.A.F. Cutting tool insert for precision radial machining
US4412763A (en) * 1981-01-21 1983-11-01 Metal Cutting Tools, Inc. Drill with single cutter
US4473070A (en) * 1983-01-05 1984-09-25 Regents Of The University Of Michigan Intramedullary reamer
US4621637A (en) * 1984-07-30 1986-11-11 Meyer Fishbein Surgical device for removing bone and tissue from joint members
US5445639A (en) * 1989-05-10 1995-08-29 Spine-Tech, Inc. Intervertebral reamer construction
US5015255A (en) * 1989-05-10 1991-05-14 Spine-Tech, Inc. Spinal stabilization method
US5062845A (en) * 1989-05-10 1991-11-05 Spine-Tech, Inc. Method of making an intervertebral reamer
US5336226A (en) * 1992-08-11 1994-08-09 Chapman Lake Instruments, Inc. Bone face cutter
DE19639193A1 (en) * 1996-09-24 1998-04-16 Aesculap Ag & Co Kg Surgical milling cutter for bone or tissue
DE19639193C2 (en) * 1996-09-24 2000-07-06 Aesculap Ag & Co Kg Surgical router
US6027503A (en) * 1997-10-17 2000-02-22 Johnson & Johnson Professional, Inc. Orthopedic reaming instrument
US5976144A (en) * 1998-03-18 1999-11-02 Vozeh Equipment Corp. Hollow dome reamer with removable teeth
WO2001034039A1 (en) * 1999-11-08 2001-05-17 Zsolt Szabo Surgical treatment tool for creating a recess in a cartilage and/or bone tissue for a joint prosthesis
US7931689B2 (en) 2000-02-28 2011-04-26 Spineology Inc. Method and apparatus for treating a vertebral body
US20040049199A1 (en) * 2000-12-21 2004-03-11 Andre Lechot Surgical reamer
US7011662B2 (en) * 2000-12-21 2006-03-14 Precimed Sa Surgical reamer
US7220264B1 (en) 2003-03-12 2007-05-22 Biomet Manufacturing Corp. Minimally invasive reamer
US7217272B2 (en) * 2003-11-25 2007-05-15 Symmetry Medical, Inc. Orthopaedic rotary reamer with implant compliant cutting teeth
US20050113837A1 (en) * 2003-11-25 2005-05-26 Salyer Paul E. Orthopaedic rotary reamer with implant compliant cutting teeth
US20090088757A1 (en) * 2007-10-02 2009-04-02 Howmedica Osteonics Corp. Acetabular reamer
US20100280518A1 (en) * 2007-12-21 2010-11-04 Depuy International Limited Instrument for removing tissue
US9066731B2 (en) * 2007-12-21 2015-06-30 Depuy International Limited Instrument for removing tissue
US9011442B2 (en) * 2011-01-21 2015-04-21 Greatbatch Ltd. Disposable surgical hemispherical cutter for convex and concave surfaces
EP3318202A2 (en) 2011-01-21 2018-05-09 Greatbatch Ltd. Disposable surgical hemispherical cutter for convex or concave surfaces
EP3318202A3 (en) * 2011-01-21 2018-09-12 Greatbatch Ltd. Disposable surgical hemispherical cutter for convex or concave surfaces
US20120191098A1 (en) * 2011-01-21 2012-07-26 Greatbatch Ltd. Disposable Surgical Hemispherical Cutter For Convex Surfaces
US20120191099A1 (en) * 2011-01-21 2012-07-26 Greatbatch Ltd. Disposable Surgical Hemispherical Cutter For Concave Surfaces
EP2478852A1 (en) 2011-01-21 2012-07-25 Greatbatch Ltd. Disposable surgical hemispherical cutter for convex or concave surfaces
US9107677B2 (en) * 2011-01-21 2015-08-18 Greatbach Ltd. Disposable surgical hemispherical cutter for convex and concave surfaces
US20150327873A1 (en) * 2011-01-28 2015-11-19 DePuy Synthes Products, Inc. Oscillating rasp for use in an orthopaedic surgical procedure
US9861376B2 (en) * 2011-01-28 2018-01-09 DePuy Synthes Products, Inc. Oscillating rasp for use in an orthopaedic surgical procedure
US10159500B2 (en) * 2011-01-28 2018-12-25 DePuy Synthes Products, Inc. Oscillating rasp for use in an orthopaedic surgical procedure
US9517078B2 (en) 2012-01-24 2016-12-13 Zimmer Gmbh Bone milling tool, assorted set and system with bone milling tool
EP2620108A1 (en) 2012-01-24 2013-07-31 NORMED Medizin-Technik GmbH Bone milling tool, assorted set and system with bone milling tool
DE102012100565A1 (en) 2012-01-24 2013-07-25 Normed Medizin-Technik Gmbh Bone cutter, assortment and system with bone cutter
US11311301B2 (en) 2014-08-14 2022-04-26 Biomet Manufacturing, Llc Flexible bone reamer
US10016205B2 (en) 2015-08-07 2018-07-10 Greatbatch Ltd. Bi-directional reamer assembly

Similar Documents

Publication Publication Date Title
US3630204A (en) Blade for bone reamer
US3633583A (en) Orthopedic single-blade bone cutter
US3905374A (en) Knee osteotomy blade
EP1569566B1 (en) Bone resection device
US3836278A (en) Tapered drill bit
US3852881A (en) Cutting blade for use with an oscillating cutting device
GB209033A (en) Improvements in hobs and like milling cutters
US3696484A (en) Ball mill cutter
JPH01321195A (en) Cutter knife for rotary type paper cutter
US2307471A (en) Shaving implement
EP0001923A1 (en) An improved drilling bit
US6796751B2 (en) Serrated ball nose end mill insert
US2374528A (en) Milling cutter
US2382510A (en) Boring tool
US2728366A (en) Rotary cutter heads with resilient blade holding arms
US2535398A (en) Bolt pointer
GB2181986A (en) Cable stripper
JP2019531140A (en) Surgical bar
US2030846A (en) Adjustable burnishing reamer
US56033A (en) Improved tool for cutting twist-drills
US2086716A (en) Shaving implement
US2538909A (en) Cutter
US4265282A (en) Tubular rotating cutter
US213691A (en) Improvement in tools for cutting pipes
US941829A (en) Skinning and cutting tool.