US3663973A - Cushion structure - Google Patents

Cushion structure Download PDF

Info

Publication number
US3663973A
US3663973A US98816A US3663973DA US3663973A US 3663973 A US3663973 A US 3663973A US 98816 A US98816 A US 98816A US 3663973D A US3663973D A US 3663973DA US 3663973 A US3663973 A US 3663973A
Authority
US
United States
Prior art keywords
cushion
gel
fabric
cushion structure
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US98816A
Inventor
Wayman R Spence
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stryker Corp
Original Assignee
Stryker Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stryker Corp filed Critical Stryker Corp
Application granted granted Critical
Publication of US3663973A publication Critical patent/US3663973A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/14Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G7/00Beds specially adapted for nursing; Devices for lifting patients or disabled persons
    • A61G7/05Parts, details or accessories of beds
    • A61G7/057Arrangements for preventing bed-sores or for supporting patients with burns, e.g. mattresses specially adapted therefor
    • A61G7/05738Arrangements for preventing bed-sores or for supporting patients with burns, e.g. mattresses specially adapted therefor with fluid-like particles, e.g. sand, mud, seeds, gel, beads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S5/00Beds
    • Y10S5/909Flowable viscous, e.g. gel material containing

Definitions

  • This invention relates to a cushion structure and, in particular, to an improved cushion structure usable in patient treatment for protecting the body of a human or animal against calized pressures.
  • a further object of this invention has been the provision of a cushion structure, as aforesaid, which is hypoallergenic, stable over a relatively wide temperature range, which will not support the growth of algae and/or bacteria, which is relatively easy to handle and maintain, which has good properties of moisture and thermal resistance, and which includes a soft, nonfriable and jelly-like material capable of absorbing relatively large shearing forces without fracturing.
  • a further object of this invention has been the provision of a cushion structure, as aforesaid, which can be used effectively in zones where normal relatively thin padding has heretofore been used while, at the same time, performing the aforesaid protection.
  • Still a further object of the present invention is the provision of a cushion structure, as aforesaid, provided with a gel core having a flexible mesh-like fabric disposed centrally within and completely surrounded by the gel, the fabric being disposed approximately midway between the upper and lower surfaces of the core for providing the core with additional resistance against damage while at the same time permitting the core to be effectively formed as a single monolithic mass and without restricting materially the capability of both sides of the gel core to absorb pressures and minimize shearing forces.
  • FIG. 1 is a plan view of a cushion structure embodying the invention.
  • FIG. 2 is an enlarged, broken, sectional view taken along the line lI-ll in FIG. 1.
  • FIG. 3 is a plan view of a alternate cushion structure.
  • FIG. 4 is an enlarged, broken, sectional view taken along the line IVIV in FIG. 3.
  • FIG. 5 is an enlarged broken, sectional view similar to that appearing in FIG. 4 and including protective cover sheets on the opposite sides thereof.
  • FIG. 6 is a broken, cross-sectional view of the cushion structure of FIG. 4 disposed between the outer surface of a human body and a plaster cast.
  • FIG. 7 is a broken, partially sectioned view of another alternate cushion structure.
  • FIG. 8 is a fragmentary sectional view taken along the line VIII-VIII in FIG. 7.
  • FIG. 9 is a broken, partially sectioned view similar to FIG. 7 and disclosing modified cushion structure.
  • top, bottom and words of similar import will have reference to the front and rear sides, respectively, of the cushion structures appearing in FIGS. 1 and 3, for example.
  • inner, outer and derivatives thereof will have reference to the geometric center of a said cushion structure and parts thereof.
  • the cushion structure 11 is comprised of a relatively flat and thin, self-contained, semisolid core 12 and a pair of resiliently flexible sheets 13 and 14 disposed on opposite sides of said core.
  • the core 12 is preferably made from an organosiloxane gel, substantially of the type disclosed and described in U.S. Pat. No. 3,020,260. Thus, said core will have a soft, slightly tacky, nonfriable and jelly-like consistency in its cured condition.
  • the elastic, flexible sheets 13 and 14 may be fabricated from a foamed material such as polyurethane or from any other elastic, flexible material. Although such material should be of a type that is reasonably soft and resilient, it should also to a certain degree resist stretching. Sheets 13 and 14 may be secured together wherever they are in contact with each other, as distinguished from contact with core 12, by an adhesive material 16 such as, for example, zinc oxide. As shown in FIG. 1, the zone of engagement occurs along the entire periphery 14 of the cushion structure 10.
  • the cushion structure 11 in especially suitable for use with corrective appliances, such as a Milwaukee Brace.
  • the cushion 11 may be disposed between the appliance and the patients body in all areas where pressure is apt to exist.
  • the laminated cushion structure 31 (FIGS. 3 and 4) is well adapted for use between a patient and a plaster cast 43 (FIG. 6).
  • Cushion structure 31 has a central member 32 which is comprised of a porous material, such as a sheet of foamed polyurethane or a fibrous fabric, which is impregnated with a gel, such as the gel 12 in cushion 11.
  • the gel is applied to the central member 32 so as to form layers 33 and 34 of gel disposed on either side of the central member 32.
  • the gel which impregnates fabric and the gel layers 33 and 34 are integral parts of a single mass in which the fabric is embedded.
  • the cushion structure 31 is illustrated in a rectangular shape, it may be provided in various shapes including long strips which, for example, may be rolled up on a spool.
  • a pair of protective sheets 37 and 38 may be provided adjacent the layers 33 and 34, respectively, thereby preventing damage to or contamination of said layers during handling.
  • the paper sheets 37 and 38 are removed from the cushion structure 31.
  • the gel layers 33 and 34 may have a slightly tacky texture which would normally cause them to stick to the surface 39 and the cast 43, which would be undesirable in regions where said excessive movement occurs.
  • a layer of lubricant 42 such as talc, is placed between the surface 39 of the patient and cushion structure 31 before the plaster cast 43 is applied to the patient over the cushion structure 31.
  • FIGS. 7 and 8 illustrate a further cushion structure 51 which is specifically desirable when the cushions are of rather larger size since the cushion structure possesses the necessary strength and durability to permit ease of handling without fear of tearing or otherwise damaging the gel core.
  • the cushion 51 includes a core 52 which is formed from a gel, such as the gel 12 used in the cushion 1 1.
  • the core 52 includes a thin central member 53 which comprises a flexible, mesh-like sheet or fabric, such as a dacron mesh or net.
  • the mesh-like member 53 is disposed within the core 52 so that the gel effectively forms layers 56 and 57 of gel disposed on opposite sides of the fabric 53.
  • the gel forming the core 52 effectively impregnates and totally surrounds the member 53 so that the gel layers 56 and 57 are in fact integrally bonded together and the layers 56 and 57 thus effectively form a single monolithic mass of gel.
  • the cushion structure 51 is normally provided in the form of a seat cushion having substantially parallel major surfaces 54 and 55, and the mesh 53 is preferably disposed substantially midway between and substantially parallel to the surfaces 54 and 55.
  • the gel of the core 52 is normally of such shape and strength that it is capable of maintaining its own continuity, nevertheless the type of use to which it is exposed generally dictates the use of some form of container.
  • the core 52 is preferably placed in a resiliently flexible envelope 58 which may be made from a stockinette material.
  • the combined core 52 and envelope 58 are then preferably inserted into a waterproof casing, such as a pure latex rubber cover 59.
  • the provision of the intermediate fabric 53 impregnated and bonded within the central portion of the core 52 is highly desirable since it substantially strengthens the core 52 and thus reduces the possibility of damage to the core 52 without restricting materially the capability of the cushion 51 to absorb pressures and minimizing shearing forces.
  • cushions of the type illustrated in FIGS. 7 and 8 when used as a seat cushion, are generally of substantial size and weight. Further, when the cushions are being handled, there is a tendency to grasp the cushion by a corner thereof, which can cause a piece of the gel to separate from the remainder of the gel core. This type of damage is virtually eliminated in the present invention since the fabric 53 provides substantial strength to the overall cushion 51, particularly when the cushion is being suspended vertically, as by being grasped adjacent one edge thereof.
  • FIG. 9 illustrates a further cushion structure 61 which is similar to the cushion structure illustrated in FIGS. 7 and 8.
  • the cushion structure 61 is also provided in the form of a seat cushion and includes a core 62 consisting of a gel which may be of the same type used in the core 12. While the gel of core 62 is normally of such thickness that it is capable of maintaining its own continuity, nevertheless the type of use to which the cushion 61 is exposed also dictates the use of some form of container.
  • the core 62 is also preferably placed within a resiliently flexible envelope 66, which may be of a stockinette material, with the combined core 62 and envelope 66 then preferably being inserted into a waterproof casing, such as a pure latex rubber cover 67.
  • the rubber cover 67 tends to strengthen the seat cushion 61 and further reduce the possibility of damage to the gel core 62 without restricting materially the capability of the pad to absorb pressures and minimize the shearing force.
  • the gel core 62 is also preferably provided with a thin, flexible, mesh-like sheet or fabric 63 securely bonded to and impregnated with the gel of the core 62.
  • the fabric 63 is disposed adjacent one of the surfaces of the core (the bottom surface in FIG. 9) so as to provide the core with additional resistance against damage.
  • the gel portions or cores 12, 33, 34, 56, 57 and 62 are preferably made from the reaction product of an intimate mixture consisting essentially of (1) an organosiloxane having a viscosity of from to 10,000 centistokes at 25 C. and being a copolymer consisting essentially of units of the formula RViSiO, R SiO and CH R SiO where each R individually is selected from the group consisting of methyl and phenyl radicals and Vi represents a vinyl radical, at least 0.
  • log visc. 1.00 0.0l23M- where M is the molecular weight and visc.” is the viscosity of (l) in cs. at 25 C.
  • the above-described gel possesses very desirable hydrostatic properties in that the gel is capable of easily flowing laterally under pressure, the gel being capable of returning toward its original shape as a result of its internal restoring force when the external pressure is removed.
  • the gel portions 12, 33, 34, 56, 57 and 62 may be made of a pure reaction product as described in the preceding paragraph, it may be found desirable in some cases to incorporate a quantity of a filler or extender material in the reaction product in order to minimize cost. It has been found satisfactory to use a filler consisting essentially of dimethyl polysiloxane fluid which can be uniformly mixed in the reac tion mixture before the reaction begins.
  • the dimethyl polysiloxane fluid may be of viscosity of about 1,000 cs. at 25 C. It has been found quite desirable to use about 25 percent by weight of the filler material, but approximately percent up to 50 percent by weight can be used for some applications.
  • a cushion structure for protecting a mammal body against the application on the body of injurious localized pressures comprising:
  • said cushion having two substantially parallel major surfaces whose dimensions are substantially larger than the dimensions of the minor surfaces of said cushion, one of said major surfaces forming a mammal-supporting surface so that when a mammal contacts the mammal-supporting surface, the gel comprising the cushion will flow laterally in order to avoid injurious concentrations of supporting pressure in the area of support of said mammal by said cushion;
  • a thin, flexible and substantially flat sheet of porous meshlike material disposed within said cushion in substantially parallel relation to said major surfaces whereby substantial quantities of gel are disposed in layers on opposite sides of said sheet, said sheet having sulficient porosity to permit the gel to penetrate therethrough whereby the gel layers are integrally connected so as to form a single mass of gel.
  • a cushion structure according to claim 1 including resiliently flexible envelope means enclosing said cushion and closely enga 'ng same;
  • a cushion structure according to claim I in which the gel is a reaction product of a methyl polysiloxane containing silicon-bonded vinyl groups and a methyl polysiloxane containing Sil-l groups in which said reaction is catalyzed by platinum.
  • v cushion consists essentially of an organosiloxane gel which is the reaction product of an intimate mixture consisting essentially of 1) an organosiloxane having a viscosity of from to 10,000 cs. at 25 C.
  • a cushion structure for protecting a mammal body against the application on the body of injurious localized pressures comprising:
  • a one-piece cushion made of an elastic, nonfriable, nonporous, semisolid gel of a synthetic organic material, the gel having a hydrostatic property so that it is capable of easily flowing laterally under pressure and is capable of returning toward its original shape as a result of its internal restoring force when the pressure is removed;

Abstract

A cushion structure constructed of a gel-like substance, such as an organosiloxane gel comprising the reaction product of an organosiloxane and a hydrogenosiloxane which is preferably a copolymer of a particular combination of siloxanes combined with an additive such as dimethylpolysiloxane. The gel is preferably covered, at least on one side, by sheet material which may be cloth, rubber, leather, foamed plastic or paper, depending upon the particular use. A flexible mesh-like member, such as dacron net, is preferably embedded within the cushion. The cushion structure is used to at least minimize pressure necrosis.

Description

I United States Patent [151 3,663,973 Spence [451 May 23, 1972 54] CUSHION STRUCTURE 3,273,179 9/1966 Ridenour ..5/361 R 3,140,086 7/1964 [72] Inventor. Wayman R. Spence, Waco, Tex. 3,308,491 3/1967 [73] Assignee: Stryker Corporation, Kalamazoo, Mich. 3,309,714 1967 3,548,420 12 1970 [22] Filed: Dec. 16, 1970 l 2 1 98,81 Primary Examiner-Bobby R. Gay
Assistant Examiner-Andrew M. Calvert Related US. Application Data AttorneyWoodhams, Blanchard and Flynn [63] Continuation-in-part of Ser. No. 621,056, Mar. 6, TR q 1967, Pat. No. 3,548,420, which is a continuation-in- [57] ABS CT part of Ser. No. 515,525, Dec. 22, 1965, Pat. No. A cushion structure constructed of a gel-like substance, such 3,308,491. as an organosiloxane gel comprising the reaction product of an organosiloxane and a hydrogenosiloxane which is [52] US. Cl ..5/348, 5/355, 5/361, preferably a copolymer of a particular combination of silox- 3/20, 128/83, 260/465 anes combined with an additive such as dimethylpolysiloxane. [51] int. Cl. ,.A47c 27/08, A6lf 5/04 The gel is preferably covered, at least on one side, by sheet [58] Field of Search ..260/29.6 B, 91.3 A; 3/20; material which may be cloth, rubber, leather, foamed plastic 5/338, 355, 361; 297/452, 556; 128/581, 594, 24, or paper, depending upon the particular use. A flexible mesh- 83 like member, such as dacron net, is preferably embedded within the cushion. The cushion structure is used to at least [56] References Cited minimize pressure necrosis.
UNITED STATES PATENTS 10 Claims, 9 Drawing Figures CUSHION STRUCTURE CROSS-REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of my copending application Ser. No. 621,056, filed Mar. 6, 1967 and entitled Cushion Structure, assigned U.S. Pat. No. 3,548,420, which in turn was a continuation-in-part of application Ser. No. 515,525, filed Dec. 22, 1965 and entitled Cushion Structure," now U.S. Pat. No. 3,308,491.
FIELD OF THE INVENTION This invention relates to a cushion structure and, in particular, to an improved cushion structure usable in patient treatment for protecting the body of a human or animal against calized pressures.
BACKGROUND OF THE INVENTION In the course of developing and adapting the cushion structure of my U.S. Pat. No. 3,308,491 to various uses related to patient therapy and treatment, I found that many problems were greatly reduced, but not completely eliminated, by the original design of the cushion structure, which was directed primarily, but not entirely, to the relief of necrosis due to concentrations of weight on pressure points produced by bones located close to the surface of the skin. However, it is well known in the medical profession that necrosis producing substantially the same discomforts can results from pressures produced by prosthetic devices, by corrective appliances and by plaster casts, especially if the patient is ambulatory. Other similar and related conditions develop the same type of pressure necrosis problems.
In addition to the foregoing, there are special weightproducing pressure necrosis conditions, such as those encountered by people having particular foot gear problems which require special adaptation of my cushion structure. Almost all of these special problems have certain common factors which, when understood, render these problems capable of solution by variations in my cushion structure. A principal factor was the need for maintaining the gel in a relatively thin layer so that the cushion could fit into a relatively narrow space and, further, confining the gel against migration under conditions of substantially continuous and relatively high pressure. Yet, on the other hand, where shearing forces tend to develop due to shifting in the position of the patients body with respect to the pressure creating device, the material confining the gel must be capable of allowing the gel to effect the lateral movement which avoid the necrosis which usually occurs with conventional pads for substantially the same purpose. In other words, the containing material must be capable of holding the gel in a selected position to minimize necrosis and soreness due to excessive pressure without creating necrosis due to the creation of prohibitive shearing forces parallel with the engaged surface of the patient.
It was found that even small amounts of lateral movement provided by the cushion could greatly reduce necrosis due to shearing forces so that the gel could be used in combination with layers of fabric or foamed plastic, for example, which would serve to contain the gel within a selected, desired region.
Under some circumstances, particularly with ambulatory patients, severe pressure conditions exist or occur on a periodic repetitive basis. For example, particular problems may arise wherein the feet may be sensitive in localized areas to the support of weight, such as the metatarsal region, and are not sensitive when no weight is placed upon such spots. Yet, due to the normal buildup of protective calluses on the bottom of the foot, necrosis due to shearing motions are not a problem. However, due to the excessive weight concentrated on such sensitive spots, migration of the gel becomes a far more serious problem. Thus, the containing material must be capable of applying sufficient pressure in its uncompressed condition (due to the weight of the human) to tend to move the gel into a preselected position following each pressure application produced by walking, for example. This type of problem also occurs at the distal end of a stump where it is engaged by a prosthetic device and in other similar circumstances.
During the further development of the cushion structure of my prior U.S. Pat. No. 3,308,491, particularly when the structure was provided in the form of a seat cushion, it was discovered that the cushion was often moved from one place of use to another and, when so moved, was mishandled and thereby damaged. That is, persons without knowledge of the nature of the cushion would grasp it along one edge and suspend it from such edge. Due to the substantial size and weight of the cushion, support thereof in this manner sometimes resulted in the breaking away of pieces of the gel core from the remainder thereof.
Accordingly, it is a primary object of the present invention to provide a cushion structure which overcomes the abovementioned disadvantages.
Particularly, it is an object of this invention to provide a cushion structure for protecting the body of a human or animal against localized pressures directed against the surface of the body and usually capable of developing pressure necrosis of such pressure concentrations are not eliminated.
A further object of this invention has been the provision of a cushion structure, as aforesaid, which is hypoallergenic, stable over a relatively wide temperature range, which will not support the growth of algae and/or bacteria, which is relatively easy to handle and maintain, which has good properties of moisture and thermal resistance, and which includes a soft, nonfriable and jelly-like material capable of absorbing relatively large shearing forces without fracturing.
A further object of this invention has been the provision of a cushion structure, as aforesaid, which can be used effectively in zones where normal relatively thin padding has heretofore been used while, at the same time, performing the aforesaid protection.
Still a further object of the present invention is the provision of a cushion structure, as aforesaid, provided with a gel core having a flexible mesh-like fabric disposed centrally within and completely surrounded by the gel, the fabric being disposed approximately midway between the upper and lower surfaces of the core for providing the core with additional resistance against damage while at the same time permitting the core to be effectively formed as a single monolithic mass and without restricting materially the capability of both sides of the gel core to absorb pressures and minimize shearing forces.
Other objects and purposes of this invention will become apparent to persons familiar with this type of structure upon reading the following descriptive material and examining the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view of a cushion structure embodying the invention.
FIG. 2 is an enlarged, broken, sectional view taken along the line lI-ll in FIG. 1.
FIG. 3 is a plan view of a alternate cushion structure.
FIG. 4 is an enlarged, broken, sectional view taken along the line IVIV in FIG. 3.
FIG. 5 is an enlarged broken, sectional view similar to that appearing in FIG. 4 and including protective cover sheets on the opposite sides thereof.
FIG. 6 is a broken, cross-sectional view of the cushion structure of FIG. 4 disposed between the outer surface of a human body and a plaster cast.
FIG. 7 is a broken, partially sectioned view of another alternate cushion structure.
FIG. 8 is a fragmentary sectional view taken along the line VIII-VIII in FIG. 7.
FIG. 9 is a broken, partially sectioned view similar to FIG. 7 and disclosing modified cushion structure.
For convenience in description, the terms top, bottom and words of similar import will have reference to the front and rear sides, respectively, of the cushion structures appearing in FIGS. 1 and 3, for example. The terms inner, outer and derivatives thereof will have reference to the geometric center of a said cushion structure and parts thereof.
DETAILED DESCRIPTION As shown in FIGS. 1 and 2, which illustrate one embodiment of the invention, the cushion structure 11 is comprised of a relatively flat and thin, self-contained, semisolid core 12 and a pair of resiliently flexible sheets 13 and 14 disposed on opposite sides of said core. Although the cushion structure 11 (FIG. 1) is shown as being substantially rectangular in outside shape, it could be otherwise if so desired. The core 12 is preferably made from an organosiloxane gel, substantially of the type disclosed and described in U.S. Pat. No. 3,020,260. Thus, said core will have a soft, slightly tacky, nonfriable and jelly-like consistency in its cured condition. Specific reference is made herein to the use of a gel and, more specifically, to those gels known as organosiloxane gels, because this particular material has been found especially suited to the purposes of the invention. However, it may be found that other gels and/or colloids, including jelly-like substances which, strictly speaking, are not colloids, can serve satisfactorily in carrying out the purposes of the invention.
The elastic, flexible sheets 13 and 14 may be fabricated from a foamed material such as polyurethane or from any other elastic, flexible material. Although such material should be of a type that is reasonably soft and resilient, it should also to a certain degree resist stretching. Sheets 13 and 14 may be secured together wherever they are in contact with each other, as distinguished from contact with core 12, by an adhesive material 16 such as, for example, zinc oxide. As shown in FIG. 1, the zone of engagement occurs along the entire periphery 14 of the cushion structure 10.
The particular embodiment of the cushion structure 11 described in especially suitable for use with corrective appliances, such as a Milwaukee Brace. In such an application the cushion 11 may be disposed between the appliance and the patients body in all areas where pressure is apt to exist.
The laminated cushion structure 31 (FIGS. 3 and 4) is well adapted for use between a patient and a plaster cast 43 (FIG. 6). Cushion structure 31 has a central member 32 which is comprised of a porous material, such as a sheet of foamed polyurethane or a fibrous fabric, which is impregnated with a gel, such as the gel 12 in cushion 11. The gel is applied to the central member 32 so as to form layers 33 and 34 of gel disposed on either side of the central member 32. In some cases, the gel which impregnates fabric and the gel layers 33 and 34 are integral parts of a single mass in which the fabric is embedded. Although the cushion structure 31 is illustrated in a rectangular shape, it may be provided in various shapes including long strips which, for example, may be rolled up on a spool.
A pair of protective sheets 37 and 38 (FIG. of material such as paper may be provided adjacent the layers 33 and 34, respectively, thereby preventing damage to or contamination of said layers during handling. Immediately prior to use, the paper sheets 37 and 38 are removed from the cushion structure 31. It is known that casts are often located in regions where the adjacent surface 39 of the patients body can move excessively with respect to the cast in a direction parallel with the surface 39. However, under normal conditions, the cast will often be urged strongly against such surface. The gel layers 33 and 34 may have a slightly tacky texture which would normally cause them to stick to the surface 39 and the cast 43, which would be undesirable in regions where said excessive movement occurs. Thus, to provide for pressure protection and excessive lateral movement, a layer of lubricant 42, such as talc, is placed between the surface 39 of the patient and cushion structure 31 before the plaster cast 43 is applied to the patient over the cushion structure 31.
FIGS. 7 and 8 illustrate a further cushion structure 51 which is specifically desirable when the cushions are of rather larger size since the cushion structure possesses the necessary strength and durability to permit ease of handling without fear of tearing or otherwise damaging the gel core. The cushion 51 includes a core 52 which is formed from a gel, such as the gel 12 used in the cushion 1 1. The core 52 includes a thin central member 53 which comprises a flexible, mesh-like sheet or fabric, such as a dacron mesh or net. The mesh-like member 53 is disposed within the core 52 so that the gel effectively forms layers 56 and 57 of gel disposed on opposite sides of the fabric 53. However, due to the porosity of the member 53, the gel forming the core 52 effectively impregnates and totally surrounds the member 53 so that the gel layers 56 and 57 are in fact integrally bonded together and the layers 56 and 57 thus effectively form a single monolithic mass of gel.
The cushion structure 51 is normally provided in the form of a seat cushion having substantially parallel major surfaces 54 and 55, and the mesh 53 is preferably disposed substantially midway between and substantially parallel to the surfaces 54 and 55. Although the gel of the core 52 is normally of such shape and strength that it is capable of maintaining its own continuity, nevertheless the type of use to which it is exposed generally dictates the use of some form of container. For this purpose, the core 52 is preferably placed in a resiliently flexible envelope 58 which may be made from a stockinette material. The combined core 52 and envelope 58 are then preferably inserted into a waterproof casing, such as a pure latex rubber cover 59.
The provision of the intermediate fabric 53 impregnated and bonded within the central portion of the core 52 is highly desirable since it substantially strengthens the core 52 and thus reduces the possibility of damage to the core 52 without restricting materially the capability of the cushion 51 to absorb pressures and minimizing shearing forces. Particularly, cushions of the type illustrated in FIGS. 7 and 8, when used as a seat cushion, are generally of substantial size and weight. Further, when the cushions are being handled, there is a tendency to grasp the cushion by a corner thereof, which can cause a piece of the gel to separate from the remainder of the gel core. This type of damage is virtually eliminated in the present invention since the fabric 53 provides substantial strength to the overall cushion 51, particularly when the cushion is being suspended vertically, as by being grasped adjacent one edge thereof.
FIG. 9 illustrates a further cushion structure 61 which is similar to the cushion structure illustrated in FIGS. 7 and 8. Particularly, the cushion structure 61 is also provided in the form of a seat cushion and includes a core 62 consisting of a gel which may be of the same type used in the core 12. While the gel of core 62 is normally of such thickness that it is capable of maintaining its own continuity, nevertheless the type of use to which the cushion 61 is exposed also dictates the use of some form of container. Thus, the core 62 is also preferably placed within a resiliently flexible envelope 66, which may be of a stockinette material, with the combined core 62 and envelope 66 then preferably being inserted into a waterproof casing, such as a pure latex rubber cover 67. The rubber cover 67 tends to strengthen the seat cushion 61 and further reduce the possibility of damage to the gel core 62 without restricting materially the capability of the pad to absorb pressures and minimize the shearing force. The gel core 62 is also preferably provided with a thin, flexible, mesh-like sheet or fabric 63 securely bonded to and impregnated with the gel of the core 62. The fabric 63 is disposed adjacent one of the surfaces of the core (the bottom surface in FIG. 9) so as to provide the core with additional resistance against damage.
The gel portions or cores 12, 33, 34, 56, 57 and 62 are preferably made from the reaction product of an intimate mixture consisting essentially of (1) an organosiloxane having a viscosity of from to 10,000 centistokes at 25 C. and being a copolymer consisting essentially of units of the formula RViSiO, R SiO and CH R SiO where each R individually is selected from the group consisting of methyl and phenyl radicals and Vi represents a vinyl radical, at least 0. 174 molar percent of the units in said copolymer being the said RViSiO units, (2) a liquid hydrogenosiloxane of the average general formula l-lRCl-l siO (R SiO),,SiCl-l Rl-l where each R is as above defined and n has an average value such that the viscosity of the hydrogenosiloxane is no more than 10,000 cs. at 25 C., no more than 25 molar percent of the total R radicals present in (1) and (2) being phenyl and (3) a platinum catalyst in an amount sufficient to furnish at least 0.1 part per million of Pt based on the combined weight of l) and (2); the proportions of (l) and (2) being such.that prior to reaction there is an average of from 1.4 to 1.8 grams atoms of the silicon-bonded H atoms in (2) per gram molecular weight of 1) and there being at least one RViSlO unit in (l) for every silicon-bonded H atom in (2), the molecular weight of 1) being calculated by the equation:
log visc. 1.00 0.0l23M- where M is the molecular weight and visc." is the viscosity of (l) in cs. at 25 C.
The above-described gel possesses very desirable hydrostatic properties in that the gel is capable of easily flowing laterally under pressure, the gel being capable of returning toward its original shape as a result of its internal restoring force when the external pressure is removed.
While the gel portions 12, 33, 34, 56, 57 and 62 may be made of a pure reaction product as described in the preceding paragraph, it may be found desirable in some cases to incorporate a quantity of a filler or extender material in the reaction product in order to minimize cost. It has been found satisfactory to use a filler consisting essentially of dimethyl polysiloxane fluid which can be uniformly mixed in the reac tion mixture before the reaction begins. The dimethyl polysiloxane fluid may be of viscosity of about 1,000 cs. at 25 C. It has been found quite desirable to use about 25 percent by weight of the filler material, but approximately percent up to 50 percent by weight can be used for some applications.
Although a particular preferred embodiment of the invention has been described above in detail for illustrative purposes, it will be recognized that variations or modifications of such disclosure, which lie within the scope of the appended claims, are fully contemplated.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A cushion structure for protecting a mammal body against the application on the body of injurious localized pressures, comprising:
a cushion made of an elastic, nonfriable, nonporous, semisolid gel of a synthetic organic material, said gel having a hydrostatic property so that it is capable of easily flowing laterally under pressure and is capable of returning toward its original shape as a result of its internal restoring forces when the pressure is removed:
said cushion having two substantially parallel major surfaces whose dimensions are substantially larger than the dimensions of the minor surfaces of said cushion, one of said major surfaces forming a mammal-supporting surface so that when a mammal contacts the mammal-supporting surface, the gel comprising the cushion will flow laterally in order to avoid injurious concentrations of supporting pressure in the area of support of said mammal by said cushion; and
a thin, flexible and substantially flat sheet of porous meshlike material disposed within said cushion in substantially parallel relation to said major surfaces whereby substantial quantities of gel are disposed in layers on opposite sides of said sheet, said sheet having sulficient porosity to permit the gel to penetrate therethrough whereby the gel layers are integrally connected so as to form a single mass of gel.
2. A cushion structure according to claim 1, including resiliently flexible envelope means enclosing said cushion and closely enga 'ng same; and
a thin 1'6Sfiillll)! flexible and extensible casing loosely and completely enclosing said envelope means and said cushion.
3. A cushion structure according to claim I, in which the gel is a reaction product of a methyl polysiloxane containing silicon-bonded vinyl groups and a methyl polysiloxane containing Sil-l groups in which said reaction is catalyzed by platinum.
4. A cushion structure according to claim 1, wherein said sheet of material comprises a plastic, meshlike fabric.
5. A cushion structure according to claim 4, wherein said sheet of material comprises a dacron mesh.
6. A cushion structure according to claim 4, wherein said sheet of fabric is disposed approximately midway between the major surfaces and extends substantially coextensively with said major surfaces.
7. A cushion structure accordingto claim 4, in which the v cushion consists essentially of an organosiloxane gel which is the reaction product of an intimate mixture consisting essentially of 1) an organosiloxane having a viscosity of from to 10,000 cs. at 25 C. and being a copolymer consisting essentially of units of the formula RViSiO, R SiO and CH R SiO where each R individually is selected from the group consisting of methyl and phenyl radicals and Vi represents a vinyl radical, at least 0.174 molar percent of the units in said copolymer being the said RViSiO units, (2) a liquid hydrogenosiloxane of the average formula HRCl-l SiO (R SiO),,iCl-l RH where each R is as above defined and n has an average value such that the viscosity of the hydrogenosiloxane is no more than 10,000 cs. at 25 C., no more than 25 molar percent of the total R radicals present in (l)and 2) being phenyl: the proportions of (1) and (2) being such that prior to reaction there is an average of from 1.4 to 1.8 gram atoms of the silicon-bonded H atoms in (2) per gram molecular weight of l) and there being at least one RViSiO unit in l) for every silicon-bonded H atom in (2), the molecular weight of 1) being calculated by the equation:
log visc. 1.00 0.0123M' where M is the molecular weight and visc. is the viscosity of (l) in cs. at 25 C., and (3) a dimethyl polysiloxane fluid having a viscosity of about 1,000 cs. at 25 C. and comprising from approximately 10 percent to 50 percent by weight of said cushion.
8. A cushion structure according to claim 4, wherein said gel is hypoallergenic, stable over a selected temperature range and incapable of supporting the growth of bacteria.
9. A cushion structure for protecting a mammal body against the application on the body of injurious localized pressures, comprising:
a one-piece cushion made of an elastic, nonfriable, nonporous, semisolid gel of a synthetic organic material, the gel having a hydrostatic property so that it is capable of easily flowing laterally under pressure and is capable of returning toward its original shape as a result of its internal restoring force when the pressure is removed;
a thin, flexible sheet of mesh-like fabric securely bonded to the gel of said cushion, said sheet of fabric being substantially coextensive with one of the external surfaces of said cushion, whereby said sheet of mesh-like fabric resists damage to the gel cushion due to forces applied to said cushion in a direction substantially parallel with said fabric; and
flexible cover means surrounding and totally enclosing said cushion and said sheet of fabric.
10. A cushion structure according to claim 9, wherein said sheet of fabric is disposed totally within the gel cushion so as to form gel layers on opposite sides of the sheet of mesh-like fabric with the porosity of the mesh-like fabric permitting the gel layers to be integrally interconnected so that the gel of the cushion is effectively a single monolithic mass.

Claims (9)

  1. 2. A cushion structure according to claim 1, including resiliently flexible envelope means enclosing said cushion and closely engaging same; and a thin resiliently flexible and extensible casing loosely and completely enclosing said envelope means and said cushion.
  2. 3. A cushion structure according to claim 1, in which the gel is a reaction product of a methyl polysiloxane containing silicon-bonded vinyl groups and a methyl polysiloxane containing SiH groups in which said reaction is catalyzed by platinum.
  3. 4. A cushion structure according to claim 1, wherein said sheet of material comprises a plastic, mesh-like fabric.
  4. 5. A cushion structure according to claim 4, wherein said sheet of material comprises a dacron mesh.
  5. 6. A cushion structure according to claim 4, wherein said sheet of fabric is disposed approximately midway between the major surfaces and extends substantially coextensively with said major surfaces.
  6. 7. A cushion structure according to claim 4, in which the cushion consists essentially of an organosiloxane gel which is the reaction product of an intimate mixture consisting essentially of (1) an organosiloxane having a viscosity of from 100 to 10,000 cs. at 25* C. and being a copolymer consisting essentially of units of the formula RViSiO, R2SiO and CH3R2SiO.5 where each R individually is selected from the group consisting of methyl and phenyl radicals and Vi represents a vinyl radical, at least 0.174 molar percent of the units in said copolymer being the said RViSiO units, (2) a liquid hydrogenosiloxane of the average formula HRCH3SiO (R2SiO)nSiCH3RH where each R is as above defined and n has an average value such that the viscosity of the hydrogenosiloxane is no more than 10,000 cs. at 25* C., no more than 25 molar percent of the total R radicals present in (1)and (2) being phenyl: the proportions of (1) and (2) being such that prior to reaction there is an average of from 1.4 to 1.8 gram atoms of the silicon-bonded H atoms in (2) per gram molecular weight of (1) and there being at least one RViSiO unit in (1) for every silicon-bonded H atom in (2), the molecular weight of (1) being calculated by the equation: log visc. 1.00 + 0.0123M.5 where M is the molecular weight and ''''visc.'''' is the viscosity of (1) in cs. at 25* C., and (3) a dimethyl polysiloxane fluid having a viscosity of about 1,000 cs. at 25* C. and comprising from approximately 10 percent to 50 percent by weight of said cushion.
  7. 8. A cushion structure according to claim 4, wherein said gel is hypoallergenic, stable over a selected temperature range and incapable of supporting the growth of bacteria.
  8. 9. A cushion structure for protecting a mammal body against the application on the body of injurious localized pressures, comprising: a one-piece cushion made of an elastic, nonfriable, nonporous, semisolid gel of a synthetic organic material, the gel having a hydrostatic property so that it is capable of easily flowing laterally under pressure and is capable of returning toward its original shape as a result of its internal restoring force when the pressure is removed; a thin, flexible sheet of mesh-like fabric securely bonded to the gel of said cushion, said sheet of fabric being substantially coextensive with one of the external surfaces of said cushion, whereby said sheet of mesh-like fabric resists damage to the gel cushion due to forces applied to said cushion in a direction substantially parallel with said fabric; and flexible cover means surrounding and totally enclosing said cushion and said sheet of fabric.
  9. 10. A cushion structure according to claim 9, wherein said sheet of fabric is disposed totally within the gel cushion so as to form gel layers on opposite sides of the sheet of mesh-like fabric with the porosity of the mesh-like fabric permitting the gel layers to be integrally interconnected so that the gel of the cushion is effectively a single monolithic mass.
US98816A 1970-12-16 1970-12-16 Cushion structure Expired - Lifetime US3663973A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US9881670A 1970-12-16 1970-12-16

Publications (1)

Publication Number Publication Date
US3663973A true US3663973A (en) 1972-05-23

Family

ID=22271039

Family Applications (1)

Application Number Title Priority Date Filing Date
US98816A Expired - Lifetime US3663973A (en) 1970-12-16 1970-12-16 Cushion structure

Country Status (1)

Country Link
US (1) US3663973A (en)

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702484A (en) * 1971-11-18 1972-11-14 Aqua Therm Prod Corp Light-weight, minimum-volume water pad
US3815165A (en) * 1971-11-18 1974-06-11 Aqua Therm Prod Corp Light-weight, minimum-volume water pad
US3833454A (en) * 1972-05-11 1974-09-03 Northern Fibre Prod Co Reinforced foam plastic seat bun and method of molding same
US4149286A (en) * 1977-12-30 1979-04-17 Classic Products Corporation Waterbed safety liner
US4301560A (en) * 1979-12-26 1981-11-24 Richard Fraige Waterbed mattress
US4338692A (en) * 1977-02-11 1982-07-13 Santo Philip J Body-support floatation system
US4380569A (en) * 1981-08-03 1983-04-19 Spenco Medical Corporation Lightweight preformed stable gel structures and method of forming
WO1983003195A1 (en) * 1982-03-16 1983-09-29 Jay, Eric, C. Improved seat cushion
US4456642A (en) * 1981-02-03 1984-06-26 Bayer Aktiengesellschaft Gel pads and a process for their preparation
US4671267A (en) * 1984-05-30 1987-06-09 Edward I. Stout Gel-based therapy member and method
US4815361A (en) * 1986-02-24 1989-03-28 Chiarella Michele A Anatomical multilayer bicycle seat and method for making same
US4930171A (en) * 1989-05-03 1990-06-05 International Healthcare Products, Inc. Contour retaining support cushion
US4951336A (en) * 1989-04-03 1990-08-28 Pin Dot Products Contoured support cushions
US4964402A (en) * 1988-08-17 1990-10-23 Royce Medical Company Orthopedic device having gel pad with phase change material
US4980939A (en) * 1989-06-08 1991-01-01 Smith Peter A Water filled cushion
US4999068A (en) * 1986-02-24 1991-03-12 Chiarella Michele A Method for making an anatomical multilayer bicycle-type seat
US5093138A (en) * 1989-09-21 1992-03-03 Alden Laboratories, Inc. Glycerin-containing flowable, pressure-compensating material and process for producing same
US5100712A (en) * 1989-09-21 1992-03-31 Alden Laboratories, Inc. Flowable, pressure-compensating material and process for producing same
US5108076A (en) * 1986-02-24 1992-04-28 Chiarella Michele A Anatomical multilayer bicycle seat
US5145933A (en) * 1987-12-18 1992-09-08 Dow Corning France S.A. Organosiloxane gel-forming compositions and use thereof
US5203607A (en) * 1990-12-11 1993-04-20 Supracor Systems, Inc. Bicycle seat
US5204154A (en) * 1989-09-21 1993-04-20 Alden Laboratories, Inc. Flowable, pressure-compensating material and process for producing same
US5363631A (en) * 1993-12-16 1994-11-15 Tim Garrison Shock-reducing saddle pad
US5407481A (en) * 1989-09-21 1995-04-18 Alden Laboratories, Inc. Flowable, pressure-compensating materials
US5406660A (en) * 1994-03-07 1995-04-18 Strata Flotation, Inc. Waterbed mattress with plastic netting fill
US5441676A (en) * 1933-10-19 1995-08-15 Selle Royal S.P.A. Method for manufacturing integral elastic supports using an expandable resin
US5464443A (en) * 1993-05-03 1995-11-07 Rik Medical, L.L.C. Prosthetic device for amputees
US5527269A (en) * 1993-12-24 1996-06-18 Medi Bayreuth Gmbh & Co. Ankle joint orthesis
US5539020A (en) * 1992-07-06 1996-07-23 Schering-Plough Healthcare Products, Inc. Method and device for cushioning limbs
USD386036S (en) * 1996-04-04 1997-11-11 Medical Support Systems Limited Cushion
WO1998004218A1 (en) * 1996-07-31 1998-02-05 Ohio Willow Wood Company Gel and cushioning devices
US5830237A (en) * 1996-03-05 1998-11-03 Ohio Willow Wood Company Gel and cushioning devices
US5834543A (en) * 1993-12-16 1998-11-10 Garrison; Tim Impact dispersing compositions
US5869164A (en) * 1995-11-08 1999-02-09 Rik Medical Llc Pressure-compensating compositions and pads made therefrom
US5916949A (en) * 1997-08-18 1999-06-29 Mattel, Inc. Moldable compositions and method of making the same
US5918334A (en) * 1997-06-03 1999-07-06 Medical Support Systems Limited Cushion with gel sac and gel overlay
US5922470A (en) * 1993-12-22 1999-07-13 Schering-Plough Healthcare Products, Inc. Soft polysiloxanes having a pressure sensitive adhesive
US6044506A (en) * 1995-06-01 2000-04-04 Valene; Murray S. Water/foam wheelchair pad
GB2342857A (en) * 1998-10-20 2000-04-26 James Arthur Hill Viscous fluid filled seat cushion
US6082824A (en) * 1996-11-08 2000-07-04 Chow; William W. Therapeutic sling seat
WO2000069293A1 (en) * 1999-05-12 2000-11-23 Plant, Daniel, James Energy absorbing protective member
US6163615A (en) * 1997-08-06 2000-12-19 University Research & Engineers & Associates, Inc. Circumaural ear cup audio seal for use in connection with a headset, ear defender, helmet and the like
US6299621B1 (en) * 1999-06-18 2001-10-09 Novare Surgical Systems, Inc. Surgical clamp pads with elastomer impregnated mesh
US6432268B1 (en) 2000-09-29 2002-08-13 Kimberly-Clark Worldwide, Inc. Increased hydrophobic stability of a softening compound
US6494418B1 (en) 1996-02-06 2002-12-17 3M Innovative Properties Company Wrist rest assembly
US6547614B2 (en) * 2000-10-06 2003-04-15 Salus Marine Wear Inc. Personal flotation device construction method
US6702858B2 (en) * 2002-05-15 2004-03-09 Roland J. Christensen Liner for prosthetic socket with variable viscosity fluid
US6719766B1 (en) 2000-08-24 2004-04-13 Novare Surgical Systems, Inc. Surgical clamp pads having surface overlay
US20040171321A1 (en) * 2001-09-13 2004-09-02 Plant Daniel James Flexible energy absorbing material and methods of manufacture thereof
US20040202701A1 (en) * 1999-12-27 2004-10-14 Kimberly-Clark Worldwide, Inc. Modified siloxane yielding transferring benefits from soft tissue products
US20040211005A1 (en) * 2003-04-24 2004-10-28 Kuo Chun Fu Gelatinous cushion having fiberous base
US20040217555A1 (en) * 2000-01-15 2004-11-04 Boyd Willat Writing implement having deformable grip
US20040226098A1 (en) * 1996-02-14 2004-11-18 Pearce Tony M. Stacked cushions
US20050101693A1 (en) * 2003-11-06 2005-05-12 Ohio Willow Wood Company Gel and cushioning devices
US6923834B2 (en) 2000-10-04 2005-08-02 Ossur Hf Artificial limb socket containing volume control pad
US6936073B2 (en) 2000-10-04 2005-08-30 Ossur Hf Artificial limb socket containing volume control pad
WO2005079631A1 (en) * 2004-02-24 2005-09-01 Imetali, Inc. Flame-retardant seat
US20050240283A1 (en) * 1996-07-31 2005-10-27 The Ohio Willow Wood Company Tube sock-shaped covering
US7162039B1 (en) 1996-02-23 2007-01-09 Matthew G. Callahan Noise barrier apparatus having acoustic wave damping cushions
US20070017540A1 (en) * 2005-06-21 2007-01-25 Goody Products, Inc. Handle Having a Ribbed Gel Grip
US20080244832A1 (en) * 2007-04-04 2008-10-09 Chun Fu Kuo Air permeable fabric sheet member
US7461894B2 (en) 2005-11-21 2008-12-09 Nightgear Llc Seating accessory
US20090076625A1 (en) * 2007-09-14 2009-03-19 The Ohio Willow Wood Company Reinforced prosthetic suspension sleeve
US20090240344A1 (en) * 2008-03-19 2009-09-24 The Ohio Willow Wood Company Multi-layer polymeric prosthetic liner
US20100009128A1 (en) * 2008-07-09 2010-01-14 HIRAKAWA CORPORATION & Litao FAN Gel mat and method for manufacturing the same
US20100058538A1 (en) * 2008-09-09 2010-03-11 Michael Rieber Baby headrest
US20110156459A1 (en) * 2005-11-21 2011-06-30 Nightgear Llc Seating pad assembly for use with transportation seat
US20110208321A1 (en) * 2010-02-23 2011-08-25 The Ohio Willow Wood Company Polymeric Prosthetic Liner With Controlled Stretch Characteristics
US20110289687A1 (en) * 2008-09-09 2011-12-01 Michael Rieber Baby Headrest
US20140156026A1 (en) * 2002-12-20 2014-06-05 Ossur Hf Suspension liner system with seal
US20150335168A1 (en) * 2014-05-23 2015-11-26 American Signature, Inc. Composite Seat Cushion
US9204731B2 (en) * 2012-01-30 2015-12-08 Comfort Revolution, LLC Bedding products having flexible gel panels
US9265629B2 (en) 2011-04-01 2016-02-23 The Ohio Willow Wood Company Fabric covered polymeric prosthetic liner
US20160073724A1 (en) * 2014-09-16 2016-03-17 Let's Gel Incorporated Shoe Cover System With Internal Cushioning Member
CN106132208A (en) * 2014-03-13 2016-11-16 希伦布兰德管理有限责任公司 patient monitoring and reset system and method
EP3192392A1 (en) * 2005-12-23 2017-07-19 Polyworks, Inc. Polymeric gel articles
US9962902B2 (en) * 2013-04-08 2018-05-08 Technogel Italia S.R.L. Padding element for seats and method of manufacturing the same
US10694864B2 (en) 2018-03-01 2020-06-30 Comfort Concepts Llc Seating pad with woven cover
US10828179B2 (en) 2002-12-20 2020-11-10 Ossur Iceland Ehf Adjustable seal system, seal component and method for using the same
US20230092340A1 (en) * 2021-09-20 2023-03-23 Dillon Harris Pet Paw Slip Inhibiting Device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140086A (en) * 1961-09-25 1964-07-07 David E Lawson Seat construction
US3273179A (en) * 1963-03-19 1966-09-20 Hoover Ball & Bearing Co Insulator for foam pads and method of making the same
US3308491A (en) * 1965-12-22 1967-03-14 Stryker Corp Cushion structure
US3309714A (en) * 1964-01-27 1967-03-21 Porten Laurence Pneumatic cushion socket with a porous filler
US3548420A (en) * 1967-03-06 1970-12-22 Stryker Corp Cushion structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140086A (en) * 1961-09-25 1964-07-07 David E Lawson Seat construction
US3273179A (en) * 1963-03-19 1966-09-20 Hoover Ball & Bearing Co Insulator for foam pads and method of making the same
US3309714A (en) * 1964-01-27 1967-03-21 Porten Laurence Pneumatic cushion socket with a porous filler
US3308491A (en) * 1965-12-22 1967-03-14 Stryker Corp Cushion structure
US3548420A (en) * 1967-03-06 1970-12-22 Stryker Corp Cushion structure

Cited By (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441676A (en) * 1933-10-19 1995-08-15 Selle Royal S.P.A. Method for manufacturing integral elastic supports using an expandable resin
US3815165A (en) * 1971-11-18 1974-06-11 Aqua Therm Prod Corp Light-weight, minimum-volume water pad
US3702484A (en) * 1971-11-18 1972-11-14 Aqua Therm Prod Corp Light-weight, minimum-volume water pad
US3833454A (en) * 1972-05-11 1974-09-03 Northern Fibre Prod Co Reinforced foam plastic seat bun and method of molding same
US4338692A (en) * 1977-02-11 1982-07-13 Santo Philip J Body-support floatation system
US4149286A (en) * 1977-12-30 1979-04-17 Classic Products Corporation Waterbed safety liner
US4301560A (en) * 1979-12-26 1981-11-24 Richard Fraige Waterbed mattress
US4456642A (en) * 1981-02-03 1984-06-26 Bayer Aktiengesellschaft Gel pads and a process for their preparation
US4380569A (en) * 1981-08-03 1983-04-19 Spenco Medical Corporation Lightweight preformed stable gel structures and method of forming
US4588229A (en) * 1982-03-16 1986-05-13 Jay Medical, Ltd. Seat cushion
US4726624A (en) * 1982-03-16 1988-02-23 Jay Medical, Ltd. Seat cushion
WO1983003195A1 (en) * 1982-03-16 1983-09-29 Jay, Eric, C. Improved seat cushion
US4671267A (en) * 1984-05-30 1987-06-09 Edward I. Stout Gel-based therapy member and method
US4999068A (en) * 1986-02-24 1991-03-12 Chiarella Michele A Method for making an anatomical multilayer bicycle-type seat
US4815361A (en) * 1986-02-24 1989-03-28 Chiarella Michele A Anatomical multilayer bicycle seat and method for making same
US5108076A (en) * 1986-02-24 1992-04-28 Chiarella Michele A Anatomical multilayer bicycle seat
US5145933A (en) * 1987-12-18 1992-09-08 Dow Corning France S.A. Organosiloxane gel-forming compositions and use thereof
US4964402A (en) * 1988-08-17 1990-10-23 Royce Medical Company Orthopedic device having gel pad with phase change material
US4951336A (en) * 1989-04-03 1990-08-28 Pin Dot Products Contoured support cushions
US4960304A (en) * 1989-05-03 1990-10-02 Internatinal Healthcare Products, Inc. Contour retaining back support cushion
US4930171A (en) * 1989-05-03 1990-06-05 International Healthcare Products, Inc. Contour retaining support cushion
US4980939A (en) * 1989-06-08 1991-01-01 Smith Peter A Water filled cushion
US5204154A (en) * 1989-09-21 1993-04-20 Alden Laboratories, Inc. Flowable, pressure-compensating material and process for producing same
US5407481A (en) * 1989-09-21 1995-04-18 Alden Laboratories, Inc. Flowable, pressure-compensating materials
US5100712A (en) * 1989-09-21 1992-03-31 Alden Laboratories, Inc. Flowable, pressure-compensating material and process for producing same
US5093138A (en) * 1989-09-21 1992-03-03 Alden Laboratories, Inc. Glycerin-containing flowable, pressure-compensating material and process for producing same
US5507866A (en) * 1989-09-21 1996-04-16 Alden Laboratories, Inc. Flowable, pressure-compensating materials
US5203607A (en) * 1990-12-11 1993-04-20 Supracor Systems, Inc. Bicycle seat
US5539020A (en) * 1992-07-06 1996-07-23 Schering-Plough Healthcare Products, Inc. Method and device for cushioning limbs
US5464443A (en) * 1993-05-03 1995-11-07 Rik Medical, L.L.C. Prosthetic device for amputees
US5834543A (en) * 1993-12-16 1998-11-10 Garrison; Tim Impact dispersing compositions
US5363631A (en) * 1993-12-16 1994-11-15 Tim Garrison Shock-reducing saddle pad
US5922470A (en) * 1993-12-22 1999-07-13 Schering-Plough Healthcare Products, Inc. Soft polysiloxanes having a pressure sensitive adhesive
US5527269A (en) * 1993-12-24 1996-06-18 Medi Bayreuth Gmbh & Co. Ankle joint orthesis
US5406660A (en) * 1994-03-07 1995-04-18 Strata Flotation, Inc. Waterbed mattress with plastic netting fill
US6843454B2 (en) 1994-06-03 2005-01-18 3M Innovative Properties Company Method of assembling a wrist rest
US20040035986A1 (en) * 1994-06-03 2004-02-26 3M Innovative Properties Company Wrist rest assembly
US6626403B1 (en) 1994-06-03 2003-09-30 3M Innovative Properties Company Wrist rest assembly
US6044506A (en) * 1995-06-01 2000-04-04 Valene; Murray S. Water/foam wheelchair pad
US5869164A (en) * 1995-11-08 1999-02-09 Rik Medical Llc Pressure-compensating compositions and pads made therefrom
US6494418B1 (en) 1996-02-06 2002-12-17 3M Innovative Properties Company Wrist rest assembly
US20040226098A1 (en) * 1996-02-14 2004-11-18 Pearce Tony M. Stacked cushions
US7076822B2 (en) * 1996-02-14 2006-07-18 Edizone, Lc Stacked cushions
US7162039B1 (en) 1996-02-23 2007-01-09 Matthew G. Callahan Noise barrier apparatus having acoustic wave damping cushions
US7291182B1 (en) 1996-03-05 2007-11-06 The Ohio Willow Wood Company Gel and cushioning devices
US5830237A (en) * 1996-03-05 1998-11-03 Ohio Willow Wood Company Gel and cushioning devices
USD386036S (en) * 1996-04-04 1997-11-11 Medical Support Systems Limited Cushion
WO1998004218A1 (en) * 1996-07-31 1998-02-05 Ohio Willow Wood Company Gel and cushioning devices
US6406499B1 (en) 1996-07-31 2002-06-18 Ohio Willow Wood Company Gel and cushioning devices
US20020103545A1 (en) * 1996-07-31 2002-08-01 Ohio Willow Wood Company Gel and cushioning devices
US8523951B2 (en) 1996-07-31 2013-09-03 The Ohio Willow Wood Company Prosthetic socket interface and assembly
US20090132056A1 (en) * 1996-07-31 2009-05-21 The Ohio Willow Wood Company Tube sock-shaped covering
US20050240283A1 (en) * 1996-07-31 2005-10-27 The Ohio Willow Wood Company Tube sock-shaped covering
US6964688B1 (en) 1996-07-31 2005-11-15 Ohio Willow Wood Company Tube sock-shaped covering
US6082824A (en) * 1996-11-08 2000-07-04 Chow; William W. Therapeutic sling seat
US5918334A (en) * 1997-06-03 1999-07-06 Medical Support Systems Limited Cushion with gel sac and gel overlay
US6163615A (en) * 1997-08-06 2000-12-19 University Research & Engineers & Associates, Inc. Circumaural ear cup audio seal for use in connection with a headset, ear defender, helmet and the like
US5916949A (en) * 1997-08-18 1999-06-29 Mattel, Inc. Moldable compositions and method of making the same
GB2342857A (en) * 1998-10-20 2000-04-26 James Arthur Hill Viscous fluid filled seat cushion
GB2349798B (en) * 1999-05-12 2003-09-03 Daniel James Plant Energy absorbing protective member
WO2000069293A1 (en) * 1999-05-12 2000-11-23 Plant, Daniel, James Energy absorbing protective member
US6913802B1 (en) * 1999-05-12 2005-07-05 Daniel James Plant Energy absorbing protective member
US6299621B1 (en) * 1999-06-18 2001-10-09 Novare Surgical Systems, Inc. Surgical clamp pads with elastomer impregnated mesh
US20040202701A1 (en) * 1999-12-27 2004-10-14 Kimberly-Clark Worldwide, Inc. Modified siloxane yielding transferring benefits from soft tissue products
US20040217555A1 (en) * 2000-01-15 2004-11-04 Boyd Willat Writing implement having deformable grip
US7334298B2 (en) * 2000-01-15 2008-02-26 Sanford, L.P. Writing implement having deformable grip
US20040167552A1 (en) * 2000-08-24 2004-08-26 Novare Surgical Systems, Inc. Surgical clamp pads having surface overlay
US6719766B1 (en) 2000-08-24 2004-04-13 Novare Surgical Systems, Inc. Surgical clamp pads having surface overlay
US6432268B1 (en) 2000-09-29 2002-08-13 Kimberly-Clark Worldwide, Inc. Increased hydrophobic stability of a softening compound
US6923834B2 (en) 2000-10-04 2005-08-02 Ossur Hf Artificial limb socket containing volume control pad
US6936073B2 (en) 2000-10-04 2005-08-30 Ossur Hf Artificial limb socket containing volume control pad
US6547614B2 (en) * 2000-10-06 2003-04-15 Salus Marine Wear Inc. Personal flotation device construction method
US7608314B2 (en) 2001-09-13 2009-10-27 Daniel James Plant Flexible energy absorbing material and methods of manufacture thereof
US20040171321A1 (en) * 2001-09-13 2004-09-02 Plant Daniel James Flexible energy absorbing material and methods of manufacture thereof
US20100086747A1 (en) * 2001-09-13 2010-04-08 Daniel James Plant Flexible Energy Absorbing Material and Methods of Manufacture Thereof
US6702858B2 (en) * 2002-05-15 2004-03-09 Roland J. Christensen Liner for prosthetic socket with variable viscosity fluid
US11918492B2 (en) 2002-12-20 2024-03-05 Ossur Iceland Ehf Adjustable seal system, seal component and method for using the same
US10828179B2 (en) 2002-12-20 2020-11-10 Ossur Iceland Ehf Adjustable seal system, seal component and method for using the same
US9066821B2 (en) * 2002-12-20 2015-06-30 Ossur Hf Suspension liner system with seal
US9060885B2 (en) * 2002-12-20 2015-06-23 Ossur Hf Suspension liner system with seal
US20140195008A1 (en) * 2002-12-20 2014-07-10 Ossur Hf Suspension liner system with seal
US20140156026A1 (en) * 2002-12-20 2014-06-05 Ossur Hf Suspension liner system with seal
US20040211005A1 (en) * 2003-04-24 2004-10-28 Kuo Chun Fu Gelatinous cushion having fiberous base
US6842926B2 (en) * 2003-04-24 2005-01-18 Chun Fu Kuo Gelatinous cushion having fiberous base
US20050101693A1 (en) * 2003-11-06 2005-05-12 Ohio Willow Wood Company Gel and cushioning devices
CN100548184C (en) * 2004-02-24 2009-10-14 株式会社爱美特利 Flame-retardant seat
WO2005079631A1 (en) * 2004-02-24 2005-09-01 Imetali, Inc. Flame-retardant seat
US20070017540A1 (en) * 2005-06-21 2007-01-25 Goody Products, Inc. Handle Having a Ribbed Gel Grip
US7797782B2 (en) 2005-06-21 2010-09-21 Goody Products, Inc. Handle having a ribbed gel grip
US20090039693A1 (en) * 2005-11-21 2009-02-12 Nightgear Llc Seating accessory
US8342603B2 (en) 2005-11-21 2013-01-01 Nightgear Llc Seat assembly
US7731282B2 (en) 2005-11-21 2010-06-08 Nightgear Llc Seating accessory
US7789461B2 (en) 2005-11-21 2010-09-07 Nightgear Llc Seating accessory
US20090121529A1 (en) * 2005-11-21 2009-05-14 Nightgear Llc Seating accessory
US20110156459A1 (en) * 2005-11-21 2011-06-30 Nightgear Llc Seating pad assembly for use with transportation seat
US20110163144A1 (en) * 2005-11-21 2011-07-07 Nightgear Llc Seat assembly
US7461894B2 (en) 2005-11-21 2008-12-09 Nightgear Llc Seating accessory
US7731283B2 (en) 2005-11-21 2010-06-08 Nightgear Llc Seating accessory
US20090127901A1 (en) * 2005-11-21 2009-05-21 Nightgear Llc Seating accessory
EP3192392A1 (en) * 2005-12-23 2017-07-19 Polyworks, Inc. Polymeric gel articles
US20080244832A1 (en) * 2007-04-04 2008-10-09 Chun Fu Kuo Air permeable fabric sheet member
US20090076625A1 (en) * 2007-09-14 2009-03-19 The Ohio Willow Wood Company Reinforced prosthetic suspension sleeve
US20090240344A1 (en) * 2008-03-19 2009-09-24 The Ohio Willow Wood Company Multi-layer polymeric prosthetic liner
US8381495B2 (en) * 2008-07-09 2013-02-26 Hirakawa Corporation Gel mat and method for manufacturing the same
US20100009128A1 (en) * 2008-07-09 2010-01-14 HIRAKAWA CORPORATION & Litao FAN Gel mat and method for manufacturing the same
US20110289687A1 (en) * 2008-09-09 2011-12-01 Michael Rieber Baby Headrest
US20100058538A1 (en) * 2008-09-09 2010-03-11 Michael Rieber Baby headrest
US9167921B2 (en) * 2008-09-09 2015-10-27 Michael Rieber Baby headrest
US8317873B2 (en) 2010-02-23 2012-11-27 The Ohio Willow Wood Company Polymeric prosthetic liner with controlled stretch characteristics
US20110208321A1 (en) * 2010-02-23 2011-08-25 The Ohio Willow Wood Company Polymeric Prosthetic Liner With Controlled Stretch Characteristics
US9265629B2 (en) 2011-04-01 2016-02-23 The Ohio Willow Wood Company Fabric covered polymeric prosthetic liner
US10016064B2 (en) * 2012-01-30 2018-07-10 Comfort Revolution, LLC Bedding products having flexible gel panels
US9204731B2 (en) * 2012-01-30 2015-12-08 Comfort Revolution, LLC Bedding products having flexible gel panels
US9962902B2 (en) * 2013-04-08 2018-05-08 Technogel Italia S.R.L. Padding element for seats and method of manufacturing the same
CN106132208A (en) * 2014-03-13 2016-11-16 希伦布兰德管理有限责任公司 patient monitoring and reset system and method
CN106132208B (en) * 2014-03-13 2019-10-22 希伦布兰德管理有限责任公司 Patient monitoring and reset system and method
US20150335168A1 (en) * 2014-05-23 2015-11-26 American Signature, Inc. Composite Seat Cushion
US20160073724A1 (en) * 2014-09-16 2016-03-17 Let's Gel Incorporated Shoe Cover System With Internal Cushioning Member
US10694864B2 (en) 2018-03-01 2020-06-30 Comfort Concepts Llc Seating pad with woven cover
US20230092340A1 (en) * 2021-09-20 2023-03-23 Dillon Harris Pet Paw Slip Inhibiting Device

Similar Documents

Publication Publication Date Title
US3663973A (en) Cushion structure
US3548420A (en) Cushion structure
US3308491A (en) Cushion structure
US5462519A (en) Bed sore pad
US5944683A (en) Protection and treatment device for ankle, heel and elbow prominences
AU666753B2 (en) Method and device for cushioning limbs
US6211426B1 (en) Devices and methods of treatment for pressure ulcers and related impaired blood circulation problems
US3893198A (en) Mattress for preventing bedsores
US7141032B2 (en) Apparatus and methods for preventing and/or healing pressure ulcers
US3600727A (en) Pressure-controlled cushion structure
US6110134A (en) Gel padded thermoplastic splint
US20180369009A1 (en) Multilayer dressing device and method for preventing and treating pressure ulcers and chronic wounds
US4710991A (en) Headrest pillow
US20050113732A1 (en) Scar tissue treatment bandage and method
US5131412A (en) Pediatric intravenous device
US20080178390A1 (en) Thigh support with free space for popliteal fossa
ES2235406T3 (en) RETENTION DEVICE OF THE PHYSICAL POSITION FOR PEOPLE.
Avsar et al. Dressings for preventing pressure ulcers: how do they work?
Kandha Vadivu Design and development of portable support surface and multilayered fabric cover for bed sore prevention
Brienza et al. Understanding support surface technologies
Scales Pressure on the patient
US20070061973A1 (en) Wound elevation protection and prevention device
US7141713B2 (en) Method for reducing pressure damage to skin of a person, and corresponding skin protective devices
Scales Pathogenesis of pressure sores
Exton-Smith The prevention of pressure sores