US3664495A - Locking capsule - Google Patents

Locking capsule Download PDF

Info

Publication number
US3664495A
US3664495A US100303A US3664495DA US3664495A US 3664495 A US3664495 A US 3664495A US 100303 A US100303 A US 100303A US 3664495D A US3664495D A US 3664495DA US 3664495 A US3664495 A US 3664495A
Authority
US
United States
Prior art keywords
cap
capsule
indent
locking
indents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US100303A
Inventor
Richard J Graham
Ralph E Mottin
Oscar B Noren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Parke Davis and Co LLC
Original Assignee
Parke Davis and Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parke Davis and Co LLC filed Critical Parke Davis and Co LLC
Application granted granted Critical
Publication of US3664495A publication Critical patent/US3664495A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/07Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use
    • A61J3/071Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use into the form of telescopically engaged two-piece capsules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/34Anti-tamper pharmaceutical capsules, e.g. tamper indicating or resistant

Definitions

  • An economical locking capsule having telescopically joinable cap and body parts adapted to be joined together in a prelocking position and optionally in a more fully joined position.
  • the capsule, for packaging of medicaments and the like, is produced by the dip-molding technic on conventional automatic machinery and can be printed, filled, etc., using standard equipment.
  • Thisinvention relates to hard shell locking capsules of the type having a cap part and a bodv part adapted to be telescopically joined together to provide a container for substances such as pharmaceutical preparations intended 'for oral administration. More particularly, the invention relates to cap sules of the kind described which can be manufactured, printed, filled and joined on modern high-production machinery and can be locked in the closed position, as desired, in a partial lock or pre-lock, and optionally in a more completely joined lock.
  • the conventional locking pharmaceutical capsules consist of a tubular or cvlindrical cap part closed at one end with the opposite end open to telescopically receive a closely fitting body part of like conformation having contacting inner surfaces which provide a locking action to prevent separation of the cap and body parts.
  • the known types of locking capsules are constructed to provide both a temporary lock (sometimes referred to as a semi-lock or pre-lock) when partly. joined and a more secure lock .when more fully joined.
  • the capsules are delivered from the supplv hopper by oscillatory movements tending to cause the capsule parts to separate.
  • a separated part undesirably can cause the magazine tube to be blocked, or a free cap, for instance, can seat on' a joined capsule bodv and form a double-cap" which may jam the rectifying mechanism.
  • the loose part can crowd the filling ring chamber so that the intended body part does not seat properly in the filling ring.
  • each malfunction constitutes an economic loss whether of production time, capsule material, medicament, etc.
  • Still another object of the invention is to provide an improved capsule having pre-lock means assuring the partial joining of the capsule pans in a constant pre-determined length.
  • Yet another object of the invention is to provide pre-lock means for capsules which prevents or minimizes the occurrence of popping apart of the capsule parts as they are being assembled.
  • FIG. 1 is a side view of an assembled capsule according to the invention
  • FIG. 2 is a section taken on axis line-2'2 of FIG. I, of the upper part of a capsule of the invention in a full lock position;
  • FIG. 3 is a similar view in the pre-locked or partly closed position
  • FIG. 4 is a transverse section of a capsule taken on line 44 of FIG. 1;
  • FIG. 5 is a plan view in section of the indented pre-lock contour of the cap mold pin, the pin contour being covered over with a capsule shell coating;
  • FIG. 5a is a section of the pre-lock position of a capsule shown in contact according to the invention with the capsule bodv;
  • FIG. 6 is an elevational view of the contour represented in FIG. 5.
  • FIGS. 7a, 7b and 7c are sectional views illustrating the stepwisev migration of the capsule liquid onto the shaped contours of a capsule mold pin as the pin is dipped increasinglv deeper into the capsule liquid.
  • the capsule of the invention 10 includes a cap 11 and a body 12 with closed ends 13 and l4, the parts being readily molded, stripped, etc., on standard capsule-making machinery and assembled easily, as desired, in either locked or semi-locked position.
  • the cap 11 includes a cap end 18 with a suitable opening and a pair of capsule indents 24 (FIGS. 2, 3 and 4).
  • the cap 1 l in greater detail as seen in FIGS. 2 and 3, has an inner wall 16 and an outer wall 17.
  • the closed end 13 is preferably rounded or hemispherical but the shape is not critical. If desired, the cap end can have other shapes.
  • the cap and body parts are shown in the fully locked position whereas in FIG. 3 the cap and body parts are shown in partly closed or pre-locked position.
  • the body has a standard tapered side wall and is generally conventional. In FIG.
  • the cap and bodv have been pressed together from the partly closed pre-locked or semi-locked position into the fully closed, locked position. In this position the open body end has advanced into the cap 'to a point near or preferably just bevond the shoulder line 23.
  • the bodv like the cap is tapered in the same degree and in the direction from its open end. to its closed end.
  • the body taper and the body dimensions are such as to provide an ample entrance of the body into the cap.
  • the body taper and the body dimensions in relation to the taper and dimensions of the cap also are such as to provide an elastic frictional fit in the pre-locked posmon shown in FIG.
  • the fit between adjacent wall surfaces of the cap and body advantageously permits the passage of air particularly around the peripherv of the fiat and along a gap 24c at the slopes 24b.
  • the body wall is in close conformity with the indent flat 24a and edges 24d (FIGS. 5a and 6).
  • the pre-locked fit in the area of the indent 24 is a friction fit wherein the capsule parts are elastically distorted-the cap undergoing "ovalling and the body dimpling"making for increased passage means or air vent means so as to permit the escape of compressed air contained within the capsule occasioned, for example, by the sudden joining-of the body and cap parts into locked position.
  • the release of air advantageously avoids any tendency of the cap and body to pop apart.
  • FIGS. 7a, 7b and 7c illustrate how the capsule making fluid moves in relation to an excessively angular pin contour as the pin 25 is being dipped into the capsule liquid.
  • the capsule liquid 26 is rising upward along the pin and is entering the concavity of the pin mold indent.
  • FIG. 7a the capsule liquid 26 is rising upward along the pin and is entering the concavity of the pin mold indent.
  • the liquid has moved farther past the corner formed by the indent slope and the indent flat without actuallv wetting the corner so that the air bubble 27 is formed.
  • the capsule liquid 26 has moved higher across the capsule indent contour without contacting the innermost corner portions of the contour thereby causing air bubbles 27 in these portions.
  • the air bubbles formed are believed to merge with the liquid film 26 and to migrate in the film until the film sets up and solidifies, whereu pen the air bubbles 27 are physically trapped within the capsule wall and particularly with the wall of the capsule indent 24.
  • Such air bubbles tend to cause an undesirable weakness of the capsule. In extreme cases, bubble formation results in formation of holes in the capsule.
  • the capsule indents 24 of the capsules of the invention must also have a relatively long flat 24a between the indent slopes 24b. In general, a longer flat is associated with fewer, or smaller, air bubbles. It is found that in this regard the length of the indent flat separating slopes 24b should be about 0.030 to 0.040 inch and preferably about 0.035 inch; the width is of the same order and is not particularly critical.
  • the diametral spacing of the capsule indents should be such that the open end of the body can enter into the cap to the pre-locking position and yet the cap and body at this position mutually engage in a frictional fit. in this regard the spacing should preferably be less than the outside diameter of the open end of the bodv by an approximate distance (designated herein as constriction”) differing according to capsule size, as follows:
  • gelatin of pharmaceutical grade is a preferred material for the manufacture of the capsules of the invention, other materials having like properties can be substituted in whole or in part for gelatin.
  • capsule mold pins it is conventional for capsule mold pins to be made of high-grade stainless steel, and it will be understood that the contour of the mold pins used for making the capsule parts of the invention can be suitably formed by any conventional means such as milling, grinding or the like. It is a significant feature of the invention that the configuration of the indents is such as to require relatively less forming of the standard capsule mold pins.
  • a hard shell pharmaceutical locking capsule having cylindrical, telescopically joinable, coaxial ,cap and body parts each having a side wall, an open end and a closed end, the cap and bodv being adapted to be mutually joined in a first pre-locking position and optionally in another more completely joined position,
  • cap and body side walls each having an inner surface and an outer surface and the cap side wall also having a pair of diametrically opposed integral indents extending radially inwardly from the sides of the wall
  • each indent including two indent slopes separated at a distance of about 0.030 to 0.040 inch by an indent flat, the slopes joining the flat at an angle of about 8-l2,
  • the diametral spacing of the indents being less than the outside diameter of the open end of the body bv an approximate constriction distance differing according to capsule size, as set forth below, such that the body can enter into the cap to the pre-locking position and yet the cap and body at this position mutually engage in an elastic frictional fit,
  • the center line of the indents being located axially from the inner surface of the closed end of the cap at a distance permitting optimum wall flexibility and pre-locking strength, the location differing according to capsule size approximately as follows:

Abstract

An economical locking capsule is provided having telescopically joinable cap and body parts adapted to be joined together in a prelocking position and optionally in a more fully joined position. The capsule, for packaging of medicaments and the like, is produced by the dip-molding technic on conventional automatic machinery and can be printed, filled, etc., using standard equipment.

Description

United States Patent Graham et al. [4 1 May 23, 1972 54 LOCKING CAPSULE 3,258,115 6/1966 Kath ..206/63.2 R [72] Inventors: Richard L G I Gmsse Mme; Ralph 3,285,408 11/1966 Carnagh1etal.... ....206/63.2 R E. Mom Grosse Poime Pam; o 3,399,803 9/l968 Oglevee etal ..220/60R 3,584,759 6/1971 Lorincz ..22o/42 A Noren, Grosse Pointe Farms, all of Mich.
Primary Examiner-Allen N. Knowles Attorney-Robert R. Adams, David B. Ehrlinger, George M. Richards and Edward J. Gall [57] ABSTRACT An economical locking capsule is provided having telescopically joinable cap and body parts adapted to be joined together in a prelocking position and optionally in a more fully joined position. The capsule, for packaging of medicaments and the like, is produced by the dip-molding technic on conventional automatic machinery and can be printed, filled, etc., using standard equipment.
1 Claim, 10 Drawing Figures PATE'N TEBMAY 23 m2 RICHARD J. GRAHAM RALPH E. MOTTIN OSCAR B. NOREN INVENTORS A TTY.
SUMMARY ANDDETAILED DESCRIPTION Thisinvention relates to hard shell locking capsules of the type having a cap part and a bodv part adapted to be telescopically joined together to provide a container for substances such as pharmaceutical preparations intended 'for oral administration. More particularly, the invention relates to cap sules of the kind described which can be manufactured, printed, filled and joined on modern high-production machinery and can be locked in the closed position, as desired, in a partial lock or pre-lock, and optionally in a more completely joined lock.
The conventional locking pharmaceutical capsules consist of a tubular or cvlindrical cap part closed at one end with the opposite end open to telescopically receive a closely fitting body part of like conformation having contacting inner surfaces which provide a locking action to prevent separation of the cap and body parts. In general, the known types of locking capsulesare constructed to provide both a temporary lock (sometimes referred to as a semi-lock or pre-lock) when partly. joined and a more secure lock .when more fully joined.
One such type of capsule, for example, is known from British Pat. specification No. 1,108,629 and Italian Pat. No. 789,324. The prior art locking capsules have in general been satisfactorv but some types have occasionally malfunctionedor failed from time to time in finishing, distribution, etc. In particular, the cap and body parts have sometimes tended to "pop apart when joined on the production line; also, empty capsules in the pre-lock position prior to filling or subsequentl as in shipment to the customer, have sometimes pulled apart especially in a case where the cap has been insufi'iciently advanced onto the bodv. Also, capsules in the fully locked position have sometimes been known to pull apart and become separated due to severe vibration. Capsules of the friction lock type, that is capsules locked with the capsule walls under distortion,
have been known to crack and fail, especiallv under excessive drying conditions as when filled with hygroscopic powders or other desiccating substances. The failures are not uncommon, especially during the printing operation using equipment which calls for precise length control of the pre-lock capsule.v Separation failures are also likely to occur during the filling:
steps, particularly where, as in standard machinery, the capsules are delivered from the supplv hopper by oscillatory movements tending to cause the capsule parts to separate. A separated part undesirably can cause the magazine tube to be blocked, or a free cap, for instance, can seat on' a joined capsule bodv and form a double-cap" which may jam the rectifying mechanism. Also, the loose part can crowd the filling ring chamber so that the intended body part does not seat properly in the filling ring. As will be appreciated, each malfunction constitutes an economic loss whether of production time, capsule material, medicament, etc.
It is therefore an object of the present invention to provide a locking capsule of a novel type having an improved pre-lock construction for optimum performance during finishing, dis tribution, etc.
It is also an object of the invention to provide an improved capsule having cooperating elements for the partial and complete locking of the body and cap parts.
Still another object of the invention is to provide an improved capsule having pre-lock means assuring the partial joining of the capsule pans in a constant pre-determined length.
Yet another object of the invention is to provide pre-lock means for capsules which prevents or minimizes the occurrence of popping apart of the capsule parts as they are being assembled.
Other objects, features and advantages of the invention will be seen in the following specification with reference to the accompanying drawings in which:
FIG. 1 is a side view of an assembled capsule according to the invention;
FIG. 2 is a section taken on axis line-2'2 of FIG. I, of the upper part of a capsule of the invention in a full lock position;
FIG. 3 is a similar view in the pre-locked or partly closed position;
FIG. 4 is a transverse section of a capsule taken on line 44 of FIG. 1;
FIG. 5 is a plan view in section of the indented pre-lock contour of the cap mold pin, the pin contour being covered over with a capsule shell coating;
FIG. 5a is a section of the pre-lock position of a capsule shown in contact according to the invention with the capsule bodv;
FIG. 6 is an elevational view of the contour represented in FIG. 5; and
FIGS. 7a, 7b and 7c are sectional views illustrating the stepwisev migration of the capsule liquid onto the shaped contours of a capsule mold pin as the pin is dipped increasinglv deeper into the capsule liquid.
Referring to FIG. 1, the capsule of the invention 10 includes a cap 11 and a body 12 with closed ends 13 and l4, the parts being readily molded, stripped, etc., on standard capsule-making machinery and assembled easily, as desired, in either locked or semi-locked position. The cap 11 includes a cap end 18 with a suitable opening and a pair of capsule indents 24 (FIGS. 2, 3 and 4).
The cap 1 l, in greater detail as seen in FIGS. 2 and 3, has an inner wall 16 and an outer wall 17. The closed end 13 is preferably rounded or hemispherical but the shape is not critical. If desired, the cap end can have other shapes. The inner cap wall 16 proceeding from the open end 18 to the line 23, which is the shoulder line, has a slight narrowing diametral taper of the order of 0.010 inch per inch exclusive of indent means 24. In FIG. 2 the cap and body parts are shown in the fully locked position whereas in FIG. 3 the cap and body parts are shown in partly closed or pre-locked position. The body has a standard tapered side wall and is generally conventional. In FIG. 2, as indicated, the cap and bodv have been pressed together from the partly closed pre-locked or semi-locked position into the fully closed, locked position. In this position the open body end has advanced into the cap 'to a point near or preferably just bevond the shoulder line 23. The bodv like the cap is tapered in the same degree and in the direction from its open end. to its closed end. The body taper and the body dimensions are such as to provide an ample entrance of the body into the cap. The body taper and the body dimensions in relation to the taper and dimensions of the cap also are such as to provide an elastic frictional fit in the pre-locked posmon shown in FIG. 3; the fit between adjacent wall surfaces of the cap and body advantageously permits the passage of air particularly around the peripherv of the fiat and along a gap 24c at the slopes 24b. By contrast the body wall is in close conformity with the indent flat 24a and edges 24d (FIGS. 5a and 6). The pre-locked fit in the area of the indent 24 is a friction fit wherein the capsule parts are elastically distorted-the cap undergoing "ovalling and the body dimpling"making for increased passage means or air vent means so as to permit the escape of compressed air contained within the capsule occasioned, for example, by the sudden joining-of the body and cap parts into locked position. Thus, the release of air advantageously avoids any tendency of the cap and body to pop apart. The mentioned construction unexpectedly provides performance characteristics (in joining, separation, printing, filling, etc.) which are wholly acceptable by comparison with any prior art capsule heretofore produced. Thus, there is little tendency under the conditions obtaining in capsule manufacture for the pre-locked capsule parts in accordance with the invention to become separated inadvertently or to become joined together farther than intended.
avoid the excessive formation of air bubbles in the freshly formed capsule wall. Thus, the slopes 24b in relation to the flat 24a (shown in FIG. 5 as angle A and angle B) should form an angle of about 8l 2. An angle of about 10 is preferred whereas slope angles substantially more than 12 are associated with the formation of excessive numbers of bubbles in the capsule wall portion adhering to the surfaces of the indent slopes and adjacent portions of the indent flat 24a. FIGS. 7a, 7b and 7c illustrate how the capsule making fluid moves in relation to an excessively angular pin contour as the pin 25 is being dipped into the capsule liquid. In FIG. 7a the capsule liquid 26 is rising upward along the pin and is entering the concavity of the pin mold indent. In FIG. 7b the liquid has moved farther past the corner formed by the indent slope and the indent flat without actuallv wetting the corner so that the air bubble 27 is formed. In FIG. 70 the capsule liquid 26 has moved higher across the capsule indent contour without contacting the innermost corner portions of the contour thereby causing air bubbles 27 in these portions. Subsequently in the molding process while the pin bars are being transported, rotated, subjected to the drying cycle, etc., the air bubbles formed are believed to merge with the liquid film 26 and to migrate in the film until the film sets up and solidifies, whereu pen the air bubbles 27 are physically trapped within the capsule wall and particularly with the wall of the capsule indent 24. Such air bubbles tend to cause an undesirable weakness of the capsule. In extreme cases, bubble formation results in formation of holes in the capsule.
The capsule indents 24 of the capsules of the invention must also have a relatively long flat 24a between the indent slopes 24b. In general, a longer flat is associated with fewer, or smaller, air bubbles. It is found that in this regard the length of the indent flat separating slopes 24b should be about 0.030 to 0.040 inch and preferably about 0.035 inch; the width is of the same order and is not particularly critical. The diametral spacing of the capsule indents should be such that the open end of the body can enter into the cap to the pre-locking position and yet the cap and body at this position mutually engage in a frictional fit. in this regard the spacing should preferably be less than the outside diameter of the open end of the bodv by an approximate distance (designated herein as constriction") differing according to capsule size, as follows:
Constriction, inches Capsule size Capsule size Indent Location, inches Where the indents are located substantially nearer the closed end, the pre-locking engagement is significantly less flexible so that the capability of the capsule parts to accommodate to variable characteristics such as capsule length, wall thickness, etc., is noticeably diminished. On the other hand, where the indents are located nearer the open end, the pre-lock tends to be weaker and therefore less effective. I
While gelatin of pharmaceutical grade is a preferred material for the manufacture of the capsules of the invention, other materials having like properties can be substituted in whole or in part for gelatin. It is conventional for capsule mold pins to be made of high-grade stainless steel, and it will be understood that the contour of the mold pins used for making the capsule parts of the invention can be suitably formed by any conventional means such as milling, grinding or the like. It is a significant feature of the invention that the configuration of the indents is such as to require relatively less forming of the standard capsule mold pins. In other words, relatively little metal needs to be taken from the pin to provide the indent grooves and yet the locking action of the resulting molded capsule parts is entirely satisfactor It will also be understood that the dip-molding process confers the contour of the pin precisely to the inner surface of the molded capsule part. In this respect the capsule cap parts of the invention which include the capsule indent 24 can be readily stripped from the mold pins without difficulty or damage to the capsule part.
While the invention in locking capsules has been described in detail in the foregoing specification, considerable variation in such detail can be made, as will be appreciated by those skilled in the art, without departing from the spirit of the invention.
We claim:
1. A hard shell pharmaceutical locking capsule having cylindrical, telescopically joinable, coaxial ,cap and body parts each having a side wall, an open end and a closed end, the cap and bodv being adapted to be mutually joined in a first pre-locking position and optionally in another more completely joined position,
the cap and body side walls each having an inner surface and an outer surface and the cap side wall also having a pair of diametrically opposed integral indents extending radially inwardly from the sides of the wall,
the profile of each indent including two indent slopes separated at a distance of about 0.030 to 0.040 inch by an indent flat, the slopes joining the flat at an angle of about 8-l2,
the diametral spacing of the indents being less than the outside diameter of the open end of the body bv an approximate constriction distance differing according to capsule size, as set forth below, such that the body can enter into the cap to the pre-locking position and yet the cap and body at this position mutually engage in an elastic frictional fit,
the center line of the indents being located axially from the inner surface of the closed end of the cap at a distance permitting optimum wall flexibility and pre-locking strength, the location differing according to capsule size approximately as follows:
Capsule Size constriction, lndent Location,
inches inches

Claims (1)

1. A hard shell pharmaceutical locking capsule having cylindrical, telescopically joinable, coaxial cap and body parts each having a side wall, an open end and a closed end, the cap and body being adapted to be mutually joined in a first prelocking position and optionally in another more completely joined position, the cap and body side walls each having an inner surface and an outer surface and the cap side wall also having a pair of diametrically opposed integral indents extending radially inwardly from the sides of the wall, the profile of each indent including two indent slopes separated at a distance of about 0.030 to 0.040 inch by an indent flat, the slopes joining the flat at an angle of about 8*-12*, the diametral spacing of the indents being less than the outside diameter of the open end of the body by an approximate constriction distance differing according to capsule size, as set forth below, such that the body can enter into the cap to the pre-locking position and yet the cap and body at this position mutually engage in an elastic frictional fit, the center line of the indents being located axially from the inner surface of the closed end of the cap at a distance permitting optimum wall flexibility and pre-locking strength, the location differing according to capsule size approximately as follows: Capsule Size Constriction, Indent Location, inches inches 0 .0068 .265 1 .0054 .250 2 .0047 .235 3 .0045 .225 4 .0040 .210 5 .0039 .140
US100303A 1970-12-21 1970-12-21 Locking capsule Expired - Lifetime US3664495A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10030370A 1970-12-21 1970-12-21

Publications (1)

Publication Number Publication Date
US3664495A true US3664495A (en) 1972-05-23

Family

ID=22279099

Family Applications (1)

Application Number Title Priority Date Filing Date
US100303A Expired - Lifetime US3664495A (en) 1970-12-21 1970-12-21 Locking capsule

Country Status (7)

Country Link
US (1) US3664495A (en)
BE (1) BE761729A (en)
CA (1) CA930667A (en)
CH (1) CH538281A (en)
DE (1) DE2102228A1 (en)
FR (1) FR2119298A5 (en)
GB (1) GB1302343A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3823843A (en) * 1972-10-26 1974-07-16 Lilly Co Eli Locking capsule
US4040536A (en) * 1975-05-05 1977-08-09 R. P. Scherer Corporation Locking hard gelatin capsule
US4076848A (en) * 1976-03-18 1978-02-28 Limur Eleanor De Encapsulated pulverized dehydrated fruit and vegetable product
US4196564A (en) * 1977-05-20 1980-04-08 S.A. Capsugel A.G. Method of manufacturing a joined capsule filled with viscous material
US4247006A (en) * 1977-05-20 1981-01-27 Capsugel Ag Capsule body, in particular for use with a joined capsule for a pharmaceutical preparation, and method of and apparatus for producing it
US4738817A (en) * 1983-11-17 1988-04-19 Warner-Lambert Company Method for forming pharmaceutical capsules from hydrophilic polymers
US4738724A (en) * 1983-11-04 1988-04-19 Warner-Lambert Company Method for forming pharmaceutical capsules from starch compositions
US4822618A (en) * 1986-05-15 1989-04-18 Lilly Industries Limited Capsules
US4893721A (en) * 1982-10-29 1990-01-16 Warner-Lambert Company Tamper-proof capsules
FR2636527A1 (en) * 1986-12-20 1990-03-23 Su Heung Capsule Co Ltd CAPSULE FOR MEDICINES
GR880100826A (en) * 1988-12-08 1991-03-15 Su Heung Capsule Co Ltd Medicines capsule
US5119936A (en) * 1990-04-30 1992-06-09 Johnson Level And Tool Mfg. Co., Inc. Structure and method for protectively encasing a level
US5632971A (en) * 1995-09-23 1997-05-27 Su Heung Capsule Co., Ltd. Empty medicinal and food capsule
EP0781542A2 (en) 1991-05-31 1997-07-02 Gs Technologies, Inc. Method and apparatus for manufacturing pharmaceutical cellulose capsules - fully gelatinizing
US5698155A (en) * 1991-05-31 1997-12-16 Gs Technologies, Inc. Method for the manufacture of pharmaceutical cellulose capsules
US5769267A (en) * 1995-11-09 1998-06-23 Warner-Lambert Company Container
US20040255447A1 (en) * 2001-07-26 2004-12-23 Kendall Mark Anthony Fernance Particle cassette, method and kit therefor
US20060157054A1 (en) * 2005-01-11 2006-07-20 Boehringer Lngelheim Pharma Gmbh & Co. Kg Two-part capsule with pre-closure for housing pharmaceutical preparations for powder inhalers
US20070036830A1 (en) * 2005-08-09 2007-02-15 Stef Vanquickenborne Container
US20070184077A1 (en) * 2005-08-09 2007-08-09 Stef Vanquickenborne Container
US20080160076A1 (en) * 1998-08-05 2008-07-03 Dieter Hochrainer Two-part capsule to accept pharmaceutical preparations for powder inhalers
USD864151S1 (en) * 2017-10-20 2019-10-22 Shenzhen Fogaap Technologies Co., Ltd. Earphones
CN112353776A (en) * 2020-11-18 2021-02-12 武汉智能装备工业技术研究院有限公司 Improved capsule and packaging method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US691687A (en) * 1901-03-22 1902-01-21 Robert Burns Wilson Capsule.
US3258115A (en) * 1965-05-12 1966-06-28 Scherer Corp R P Two-piece hard gelatin capsule
US3285408A (en) * 1964-10-16 1966-11-15 Lilly Co Eli Capsule with integral locking band
US3399803A (en) * 1966-10-11 1968-09-03 Parke Davis & Co Self-locking medicament capsule
US3584759A (en) * 1969-06-19 1971-06-15 Scherer Ltd G C Separation-resistant capsule

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US691687A (en) * 1901-03-22 1902-01-21 Robert Burns Wilson Capsule.
US3285408A (en) * 1964-10-16 1966-11-15 Lilly Co Eli Capsule with integral locking band
US3258115A (en) * 1965-05-12 1966-06-28 Scherer Corp R P Two-piece hard gelatin capsule
US3399803A (en) * 1966-10-11 1968-09-03 Parke Davis & Co Self-locking medicament capsule
US3584759A (en) * 1969-06-19 1971-06-15 Scherer Ltd G C Separation-resistant capsule

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3823843A (en) * 1972-10-26 1974-07-16 Lilly Co Eli Locking capsule
US4040536A (en) * 1975-05-05 1977-08-09 R. P. Scherer Corporation Locking hard gelatin capsule
US4076848A (en) * 1976-03-18 1978-02-28 Limur Eleanor De Encapsulated pulverized dehydrated fruit and vegetable product
US4196564A (en) * 1977-05-20 1980-04-08 S.A. Capsugel A.G. Method of manufacturing a joined capsule filled with viscous material
US4247006A (en) * 1977-05-20 1981-01-27 Capsugel Ag Capsule body, in particular for use with a joined capsule for a pharmaceutical preparation, and method of and apparatus for producing it
US4893721A (en) * 1982-10-29 1990-01-16 Warner-Lambert Company Tamper-proof capsules
US4738724A (en) * 1983-11-04 1988-04-19 Warner-Lambert Company Method for forming pharmaceutical capsules from starch compositions
US4738817A (en) * 1983-11-17 1988-04-19 Warner-Lambert Company Method for forming pharmaceutical capsules from hydrophilic polymers
US4822618A (en) * 1986-05-15 1989-04-18 Lilly Industries Limited Capsules
FR2636527A1 (en) * 1986-12-20 1990-03-23 Su Heung Capsule Co Ltd CAPSULE FOR MEDICINES
BE1002650A3 (en) * 1986-12-20 1991-04-23 Su Heung Capsule Co Ltd CAPSULE FOR MEDICAMENT.
GR880100826A (en) * 1988-12-08 1991-03-15 Su Heung Capsule Co Ltd Medicines capsule
US5119936A (en) * 1990-04-30 1992-06-09 Johnson Level And Tool Mfg. Co., Inc. Structure and method for protectively encasing a level
EP0781540A2 (en) 1991-05-31 1997-07-02 Gs Technologies, Inc. Method and apparatus for manufacturing pharmaceutical cellulose capsules - drying the capsule
EP0781541A2 (en) 1991-05-31 1997-07-02 Gs Technologies, Inc. Method and apparatus for manufacturing pharmaceutical cellulose capsules - sizing the capsule
EP0784969A2 (en) 1991-05-31 1997-07-23 Gs Technologies, Inc. Method and apparatus for manufacturing pharmaceutical cellulose capsules - removing capsule from pin
US5698155A (en) * 1991-05-31 1997-12-16 Gs Technologies, Inc. Method for the manufacture of pharmaceutical cellulose capsules
US5750157A (en) * 1991-05-31 1998-05-12 Gs Technologies, Inc. Apparatus for the manufacture of pharmaceutical cellulose capsules
US5756036A (en) * 1991-05-31 1998-05-26 Gs Technologies, Inc. Method for the manufacture of pharmaceutical cellulose capsules
EP0781542A2 (en) 1991-05-31 1997-07-02 Gs Technologies, Inc. Method and apparatus for manufacturing pharmaceutical cellulose capsules - fully gelatinizing
US5632971A (en) * 1995-09-23 1997-05-27 Su Heung Capsule Co., Ltd. Empty medicinal and food capsule
ES2108650A1 (en) * 1995-09-23 1997-12-16 Su Heung Capsule Co Ltd Empty medicinal and food capsule
US5769267A (en) * 1995-11-09 1998-06-23 Warner-Lambert Company Container
US20080160076A1 (en) * 1998-08-05 2008-07-03 Dieter Hochrainer Two-part capsule to accept pharmaceutical preparations for powder inhalers
US8298575B2 (en) 1998-08-05 2012-10-30 Boehringer Ingelheim Pharma Gmbh & Co. Kg Two-part capsule to accept pharmaceutical preparations for powder inhalers
US8061006B2 (en) * 2001-07-26 2011-11-22 Powderject Research Limited Particle cassette, method and kit therefor
US20080300535A1 (en) * 2001-07-26 2008-12-04 Powderject Research Limited Particle cassette, method and kit therefor
US20040255447A1 (en) * 2001-07-26 2004-12-23 Kendall Mark Anthony Fernance Particle cassette, method and kit therefor
US20060157054A1 (en) * 2005-01-11 2006-07-20 Boehringer Lngelheim Pharma Gmbh & Co. Kg Two-part capsule with pre-closure for housing pharmaceutical preparations for powder inhalers
US8662076B2 (en) * 2005-01-11 2014-03-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Two-part capsule with pre-closure for housing pharmaceutical preparations for powder inhalers
US20070184077A1 (en) * 2005-08-09 2007-08-09 Stef Vanquickenborne Container
US20070036830A1 (en) * 2005-08-09 2007-02-15 Stef Vanquickenborne Container
US8377471B2 (en) 2005-08-09 2013-02-19 Capsugel Belgium Nv Container
USD864151S1 (en) * 2017-10-20 2019-10-22 Shenzhen Fogaap Technologies Co., Ltd. Earphones
CN112353776A (en) * 2020-11-18 2021-02-12 武汉智能装备工业技术研究院有限公司 Improved capsule and packaging method

Also Published As

Publication number Publication date
CA930667A (en) 1973-07-24
CH538281A (en) 1973-06-30
DE2102228A1 (en) 1972-08-03
FR2119298A5 (en) 1972-08-04
BE761729A (en) 1971-07-01
GB1302343A (en) 1973-01-10

Similar Documents

Publication Publication Date Title
US3664495A (en) Locking capsule
US3508678A (en) Locking capsule
US3399803A (en) Self-locking medicament capsule
US3823843A (en) Locking capsule
KR890003520Y1 (en) Medicinal capsule
US4040536A (en) Locking hard gelatin capsule
JP4416732B2 (en) container
US3173840A (en) Separation-resistant capsule
CA2172910A1 (en) Empty medicine and food capsule
FI66807C (en) CAPSULE FOR BEHAOLLARLOCK AND FOAR FARANDE FOER TILLVERKNING AV DETSAMMA
US3285408A (en) Capsule with integral locking band
US4247006A (en) Capsule body, in particular for use with a joined capsule for a pharmaceutical preparation, and method of and apparatus for producing it
KR101235951B1 (en) Improved capsule with air-vents
US3258115A (en) Two-piece hard gelatin capsule
EP0254258A2 (en) Low mass piston for aerosol can
CA1045547A (en) Capsule, especially for medicaments
US3584759A (en) Separation-resistant capsule
US3651972A (en) Cap
EP0246804A2 (en) Improvements in capsules
US3653500A (en) Filled capsules
US20170360716A1 (en) Separable capsule
GB2172569A (en) Improved capsule construction
US3057520A (en) Receptacle with closure having a retractable spout
JP3028641U (en) Drug or food capsule
PL91107B1 (en)