US3680633A - Situ combustion initiation process - Google Patents

Situ combustion initiation process Download PDF

Info

Publication number
US3680633A
US3680633A US101888A US3680633DA US3680633A US 3680633 A US3680633 A US 3680633A US 101888 A US101888 A US 101888A US 3680633D A US3680633D A US 3680633DA US 3680633 A US3680633 A US 3680633A
Authority
US
United States
Prior art keywords
air
formation
oxygen
separated
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US101888A
Inventor
John D Bennett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunoco Inc
Original Assignee
Sun Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Oil Co filed Critical Sun Oil Co
Application granted granted Critical
Publication of US3680633A publication Critical patent/US3680633A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ

Definitions

  • In situ combustion is a process which involves burning hydrocarbon fluids contained in a formation. This process is employed for several purposes.
  • the primary purpose of in situ combustion is to stimulate the recovery of hydrocarbon fluids.
  • Another purpose of in situ combustion is to consolidate the formation adjacent the wellbore so that particles of the formation do not clog the well or damage well equipment.
  • the in situ combustion process usually operates quite difl'erently.
  • air is usually injected in wells adjacent the well having a sand consolidation problem, and heat is provided in the well having such a problem.
  • the flame front will move outwardly from the wellbore having the sand consolidation problem toward the source of air injected in the adjacent wells.
  • This burning of reservoir fluids is continued until the area to be consolidated has been traversed.
  • This process is ordinarily termed a reverse burn in situ combustion process.
  • a characteristic of such a reverse burn is that a residue of coke is left on the particles making up the formation. This coke residue effectively bonds together the elements of the formation, thereby eliminating the deficiency in formation consolidation.
  • thepresent invention includes injecting air into the formation, which together with hydrocarbon fluids contained in the formation comprises a fuel mixture.
  • Oxygen is added to the air stream being injected into the .formation to make a more combustible fuelmixture.
  • This oxygen is supplied by extracting a portion of the air being supplied to'the wellbore, liquefying such air, vaporizing the nitrogen, and'subsequently injecting theremaining oxygen into the air stream enteringtheformation.
  • FIG. 1 is a cross section of a wellbore with a heater contained therein and a schematic illustration of an oxygen enriching system connected therewith.
  • a wellbore I0 penetrating a formation 50.
  • tubing 42 Located within .casing 40 and extending from the surface to a point adjacent and above the formation 50 is tubing 42.
  • seating nipple 46 which is an annularflange for seating wellbore tools.
  • heater 48 Suspended in tubing 42 by line 52 is heater 48.
  • Line 52 may be an armored electrical cable if the heater-48 is electrical or an armored thermocouple cable if the heater is catalytic, or a combination of the two. Heater-48 is suspended in the tubing by resting on seating nipple 46.
  • Wellhead 44 atop wellbore '10 has an airline 66 connected thereto through valve 38.
  • Air compressor 14 having air inlet 12 is connected with air line 66 for providing air to the wellbore through the annular space between casing 40 and tubing'42.
  • An air tap 16 located in air line 66 allows a portion of air leaving air compressor 14 to enter heat exchangerl8.
  • the heat exchanger 18 may consist of two helical conduit coils 56 and 58, immersed in a heat transfer fluid occupying the chamber housing the helical coils 56 and 58.
  • expansion valve 20 Located in series with heat exchanger 18 by line 19 is expansion valve 20.
  • the expansion valve 20 comprises a valve which allows for quick expansion of a gas flowed through the valve.
  • Connected with expansion valve 20 by line 21 is liquefier 22.
  • Liquefler 22 may comprise a series of compressors and expansion valves located in area 24 of such liquefier 22.
  • Liquids removal tap 32 is located on the lower side of liquefier 22, and may be float controlled.
  • a float may be connected to a gravity seated valveso that as the liquid level rises, it raises the float and connected valve to drain certain liquidsfrom the liquefier 22.
  • the liquefier may be one of the well known types such as the Hampson-LindeiRegenerative Process or the Claude System of liquefying air both of which are described on Pages 4-58, 59, of MARKS MECHANICAL ENGINEERS HANDBOOK, Sixth Edition. Both of these liquefaction processes utilize successive steps of compression and expansion.
  • Area 26 of liquefier 22 contains a gas port 28 located on its upper side for removal of gaseous material.
  • gas port is a one way pressure operated valve.
  • liquid tap 30 Located on the lower end of area 26 is liquid tap 30.
  • Such liquid tap 30 may also be float valve operated in the same manner as liquid removal tap 32.
  • the gas port 28 is connected to helical coil 56 of heat exchanger 18 by line 29. Helical coil 56 extends through the heat exchanger 18 and connects with exit port 34.
  • Liquid tap 30 which also may be float valve operated as are liquids removal tap 32 and liquid tap 30 is located at the lower end of liquefier section 26 and connects with gasifier 60 through line 31.
  • Gasifier 60 comprises a chamber whichis constructed to provide for a controlled elevation in temperature. It may be a heavily insulated chamber having a liquid circulating therein in enclosed pipes whose temperature may be accurately controlled by an air conditioning system. Heat for such a system may be derived from the compressor or cold maybe derived from gases being vaporized
  • air is extracted from the atmosphere through air inlet l2 whereupon it is compressed in air compressor 14.
  • Theair exiting air compressor 14 flows through air line 66 which connects with wellhead 44.
  • a substantial portion of the air stream leaving air.compressor 14 flows through air tap 16.
  • Such flow is caused by a lower pressure in the initial portion of the system connected with air tap 16.
  • a sufficient amount of air is extracted at air tap l6 so that a portion of the compressed air can be utilized to operate the air liquefaction equipment located downstream from air tap 16.
  • This extracted air portion then flows through the heat exchanger 18, where the air is cooled by a cold nitrogen stream coming from liquefier 22 through line 29.
  • the air which is now cold enters liquefier 22 where inarea 24 it is subjected to the successive steps of compressing, cooling, and expansion until the air is liquefied.
  • the liquefier 22 is operated by utilizing the expansive powers of the extracted air portion.
  • compressed air is allowed to expand to drive pistons which supply energy for operation of the compressor in liquefier 22.
  • water vapor and carbon dioxide are the first to liquefy. They may be separated from the liquefier through the float operated valve of liquids removal tap 32. The water vapor and carbon dioxide may also be allowed to solidify before separation.
  • the liquefied air is then pumped to area 26 of liquefier 22, whereupon its temperature is raised above the boiling point of nitrogen, but is kept below the boiling point of oxygen.
  • the nitrogen boils from the liquid air in area 26 and exits through gas port 28.
  • the gasified nitrogen under itsown pressure then passes through line 29 to heat exchanger 18.
  • the cold nitrogen is used to cool the air passing through the heat exchanger which has beenextracted from line 66.
  • the nitrogen in passing through helical coil 56 cools the heat transfer fluid which surrounds coils 56 and 58, and such fluid in turn cools the air in helical coil 58.
  • the nitrogen is'then exhausted. through port 34 to the atmosphere.
  • liquid oxygen remainingafter the nitrogen has been boiled off is removed by gravity from liquid tap 30 which is a float operated valve located on the underside of area 26 of the liquefier 22.
  • This liquid stream of oxygen then enters gasifier 60 through line 31.
  • the gasifier allows controlled temperature elevation to permit the temperature to exceed the boiling point of oxygen. As the oxygen is boiled from the liquid in gasifier;
  • valve 68 into line 66 through oxygen inlet port 36, where it joins the main air stream entering wellbore l0.
  • This oxygen enriched air stream is then pumped down the annulus between casing 40 and tubing 42, whereupon it flows past heater 48 and enters formation 50 through perforations 49 in casing 40.
  • the oxygen enriched air starts to oxidize hydrocarbon fluids contained in the formation 50." Once sufficient oxidation has occurred, the formation fluids will commence to burn and the burning front will move away from the wellbore 10.
  • oxygen enrichment of the air stream entering wellbore 10 may be terminated, so that the full capacity of the air compressor 14 can be utilized to provide sufficient air to support the in situ combustion.
  • the downhole heater 48 is not always essential in this process of initiating in situ combustion. Some reservoirs will ignite using an oxygen enriched air stream which has not been heated. Other reservoirs may require that such oxygen enriched streambe heated before in situ combustion will commence. Heaters which may be employed can be of any conventional type, i.e.,
  • An advantage of the method of supplying oxygen to the formation described herein is the availability of excess compressor capacity for use in providing energy for the liquefaction of the air.
  • a large compressor is required to supply air to'support a flame front when the front covers a large area because of its distance from the wellbore. Accordingly, since only a small amount of air is needed for initiation of in situ combustion adjacent the wellbore, there is excess compressor capaci ty available for other purposes.
  • the above described process makes use of this capacity by using it to provide energy for liquefaction of air. It is not essential to the operation of this process to have a pure oxygen stream being injected into the air line 66. This lack of a purity requirement will result in a savings in equipment and operational costs.
  • the improvement comprising: separating a portion of the air stream being supplied to theformation; removing the oxygen from the separated air stream; and injecting the oxygen removed from the separated air stream into the air stages of compression and expansion of the air until the air is liquefied, and then boiling off the nitrogen component of the air.
  • the improvement comprising: separating a portion of the compressed air being supplied to the formation; removing the oxygen from the separated air portion; and injecting the oxygen removed from the separated air portion into the air stream being supplied to the formation.
  • Apparatus for initiating in situ combustion in an earth formation penetrated by a wellbore comprising gas conduit means connected to the wellbore for passing air into the wellbore and into the formation; means attached to the condui means for extracting a portion of the air stream from the gas conduit means; air liquefaction means connected with the extracti means; means

Abstract

The initiation of in situ combustion in formations penetrated by a wellbore is accomplished by extracting a portion of the air stream being injected into the formation, removing oxygen from the extracted air portion, and adding the oxygen to the air stream being injected into the formation.

Description

United States Patent [151 3,680,633
Bennett [4 Aug. 1, 1972 [54] SITU COMBUSTION INITIATION 3,055,422 9/1962 Schleicher et al. ..166/260 PROCESS 3,072,186 l/ 1963 Parker 166/260 [72] Inventor: John D. Bennett, Denton, Tex. Primary Ex aminer j a m es Leppink [73] Assignee: Sun Oil Company (Delaware), Dal- Attorney-George L. Church, Donald R. Johnson,
' las, Tex. Wilmer E. McCorquodale, Jr. and John E. Holder [22} Filed: Dec. 28, 1970 [57] ABSTRACT [211 App! 101388 The initiation of in situ combustion in formations penetrated by a wellbore is accomplished by extract [52] U.S. Cl ..l66/256, 166/75 ing a portion of the air stream being injected into the [51] Int. Cl ..E2lb 43/24, E21b 33/03 formation, removing oxygen from the extracted air [58] Field of Search ..l66/75, 256, 260, 257 portion, and adding the oxygen to the air stream being injected into the formation. [56] References Cited 1 l C l Dnwing Figure UNITED STATES PATENTS 2,588,296 3/1952 Russell ..l66/75 V COLD NITROGEN GAS EXPANSION l f- ZO/ VALVE col-D LIQUEFIER r N AIR 2 24 I 2 32 V 30 co a H2O gym 2(| |ou|o) EXCHANGER 3 fiu l4 I2 I AIR 3 AIR COMPRESSOR s4 PAIENTEOwc 11912 COLD NITROGEN GAS 4 5 H m 2 l. 4 N 8 I m 0 2 2 2 L 4 4 m w m. m m y f R l 6 n.VIBILI F l U E E 2 0 mm F 2 llE H M. lliytt U I Q 4 A 8 U 2 2 O 3 m w 0 6 3 w A l C u 2 w 2 R 0| 8 A 2 6 N N o E 8 4 V NM 9 3 W W v fi f E f m m R w m A H H R X 0 E S a mm M M 0 m C AIR 1N/Ji IL INVENTOR JOHN D. BENNETT A TTORNEY SITU COMBUSTION INITIATION PROCESS BACKGROUND OF THE INVENTION This invention relates to a method for initiating in situ combustion. In situ combustion is a process which involves burning hydrocarbon fluids contained in a formation. This process is employed for several purposes. The primary purpose of in situ combustion is to stimulate the recovery of hydrocarbon fluids. Another purpose of in situ combustion is to consolidate the formation adjacent the wellbore so that particles of the formation do not clog the well or damage well equipment.
Ordinarily in situ combustion involves several steps. Usually air is injected into the formation through an injection well. The injection pressure is maintained at a level to cause air to flow through the formation from the injection well to one or more producing wells, and it is injected at a sufficient rate to support a combustion reaction of a fraction of the oil in the formation. In order to initiate the combustion reaction in most oil bearing formations, it is necessary to inject heat along with the air. The heat is carried bythe air into the reservoir. where it contacts the formation fluids. By flowing a sufficient volume of hot air into the reservoir, the
1 crude oil in the vicinity of the injection well is heated to its ignition temperature and commences to burn. As the flame front of the ignited formation fluids moves away from the injection well, the heat and pressure created aids movement of unburned hydrocarbon fluids to production wells. The process just described is the most common process of reservoir stimulation by in situ combustion.
In a process of sand consolidation, the in situ combustion process usually operates quite difl'erently. In such a process, air is usually injected in wells adjacent the well having a sand consolidation problem, and heat is provided in the well having such a problem. Upon achieving the ignition of formation fluids, the flame front will move outwardly from the wellbore having the sand consolidation problem toward the source of air injected in the adjacent wells. This burning of reservoir fluids is continued until the area to be consolidated has been traversed. This process is ordinarily termed a reverse burn in situ combustion process. A characteristic of such a reverse burn is that a residue of coke is left on the particles making up the formation. This coke residue effectively bonds together the elements of the formation, thereby eliminating the deficiency in formation consolidation.
The most common methods of initiating in situ combustion in the formation is to apply heat by using downhole heaters. These heaters usually consist of downhole electrical heaters, gas burners, and catalytic reactors. Even with a high injection rate of a heated gas in the formation, several days are often necessary before combustion is initiated. Several days are needed in order to supply a sufficient amount of heat to initiate an oxygen-hydrocarbon burn in theformation. Because of the substantial cost of wellbore heating services, it is desirable to initiate in situ combustion as quickly as possible. Another reason for the lengthy time required for initiating the in situ combustion relates to a temperature limitation. In order to prevent well damage due to excessive heat, heater temperatures should be maintained below approximately 800 F. It is therefore an object of the present invention to provide an improved method of initiating in situ combustion.
SUMMARY OF THE INVENTION With these and other objects in view, thepresent invention includes injecting air into the formation, which together with hydrocarbon fluids contained in the formation comprises a fuel mixture. Oxygen is added to the air stream being injected into the .formation to make a more combustible fuelmixture. This oxygen is supplied by extracting a portion of the air being supplied to'the wellbore, liquefying such air, vaporizing the nitrogen, and'subsequently injecting theremaining oxygen into the air stream enteringtheformation.
BRIEF DESCRIPTION OF TI-IEDRAWINGS FIG. 1 is a cross section of a wellbore with a heater contained therein anda schematic illustration of an oxygen enriching system connected therewith.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the-FIGURE, a wellbore I0 is shown penetrating a formation 50.'The wellbore =10 comprises casing 40 extending from the surface 54 through the formation 50. Located within .casing 40 and extending from the surface to a point adjacent and above the formation 50 is tubing 42. At the lower end of tubing 42 is seating nipple 46 which is an annularflange for seating wellbore tools. Suspended in tubing 42 by line 52 is heater 48. Line 52 may be an armored electrical cable if the heater-48 is electrical or an armored thermocouple cable if the heater is catalytic, or a combination of the two. Heater-48 is suspended in the tubing by resting on seating nipple 46.
Wellhead 44 atop wellbore '10 has an airline 66 connected thereto through valve 38. Air compressor 14 having air inlet 12 is connected with air line 66 for providing air to the wellbore through the annular space between casing 40 and tubing'42. An air tap 16 located in air line 66 allows a portion of air leaving air compressor 14 to enter heat exchangerl8. The heat exchanger 18 may consist of two helical conduit coils 56 and 58, immersed in a heat transfer fluid occupying the chamber housing the helical coils 56 and 58. Located in series with heat exchanger 18 by line 19 is expansion valve 20. The expansion valve 20 comprises a valve which allows for quick expansion of a gas flowed through the valve. Connected with expansion valve 20 by line 21 is liquefier 22. Liquefler 22 may comprise a series of compressors and expansion valves located in area 24 of such liquefier 22.
Liquids removal tap 32 is located on the lower side of liquefier 22, and may be float controlled. In such a system, a float may be connected to a gravity seated valveso that as the liquid level rises, it raises the float and connected valve to drain certain liquidsfrom the liquefier 22. The liquefier may be one of the well known types such as the Hampson-LindeiRegenerative Process or the Claude System of liquefying air both of which are described on Pages 4-58, 59, of MARKS MECHANICAL ENGINEERS HANDBOOK, Sixth Edition. Both of these liquefaction processes utilize successive steps of compression and expansion.
Area 26 of liquefier 22 contains a gas port 28 located on its upper side for removal of gaseous material. Such gas port is a one way pressure operated valve. Located on the lower end of area 26 is liquid tap 30. Such liquid tap 30 may also be float valve operated in the same manner as liquid removal tap 32. The gas port 28 is connected to helical coil 56 of heat exchanger 18 by line 29. Helical coil 56 extends through the heat exchanger 18 and connects with exit port 34. Liquid tap 30 which also may be float valve operated as are liquids removal tap 32 and liquid tap 30 is located at the lower end of liquefier section 26 and connects with gasifier 60 through line 31. Gasifier 60 comprises a chamber whichis constructed to provide for a controlled elevation in temperature. It may be a heavily insulated chamber having a liquid circulating therein in enclosed pipes whose temperature may be accurately controlled by an air conditioning system. Heat for such a system may be derived from the compressor or cold maybe derived from gases being vaporized in area 26.
In the operation of the apparatus previously described, air is extracted from the atmosphere through air inlet l2 whereupon it is compressed in air compressor 14. Theair exiting air compressor 14 flows through air line 66 which connects with wellhead 44. A substantial portion of the air stream leaving air.compressor 14 flows through air tap 16. Such flow is caused by a lower pressure in the initial portion of the system connected with air tap 16. A sufficient amount of air is extracted at air tap l6 so that a portion of the compressed air can be utilized to operate the air liquefaction equipment located downstream from air tap 16. This extracted air portion then flows through the heat exchanger 18, where the air is cooled by a cold nitrogen stream coming from liquefier 22 through line 29. After the air leaves heat exchanger 18 through line 19 by the force supplied by compressor 14, it passes throughexpansion valve 20 where the air is quickly expanded in order to further reduce its temperature.
The air which is now cold enters liquefier 22 where inarea 24 it is subjected to the successive steps of compressing, cooling, and expansion until the air is liquefied. The liquefier 22 is operated by utilizing the expansive powers of the extracted air portion. The
. compressed air is allowed to expand to drive pistons which supply energy for operation of the compressor in liquefier 22. During liquefaction of the air, water vapor and carbon dioxide are the first to liquefy. They may be separated from the liquefier through the float operated valve of liquids removal tap 32. The water vapor and carbon dioxide may also be allowed to solidify before separation.
The liquefied air is then pumped to area 26 of liquefier 22, whereupon its temperature is raised above the boiling point of nitrogen, but is kept below the boiling point of oxygen. The nitrogen boils from the liquid air in area 26 and exits through gas port 28. The gasified nitrogen under itsown pressure then passes through line 29 to heat exchanger 18. In the heat exchanger, the cold nitrogen is used to cool the air passing through the heat exchanger which has beenextracted from line 66. The nitrogen in passing through helical coil 56 cools the heat transfer fluid which surrounds coils 56 and 58, and such fluid in turn cools the air in helical coil 58. The nitrogen is'then exhausted. through port 34 to the atmosphere. g
The liquid oxygen remainingafter the nitrogen has been boiled off, is removed by gravity from liquid tap 30 which is a float operated valve located on the underside of area 26 of the liquefier 22. This liquid stream of oxygen then enters gasifier 60 through line 31. The gasifier allows controlled temperature elevation to permit the temperature to exceed the boiling point of oxygen. As the oxygen is boiled from the liquid in gasifier;
60, it is removed through overhead outlet 33, and proceeds through valve 68 into line 66 through oxygen inlet port 36, where it joins the main air stream entering wellbore l0.
This oxygen enriched air stream is then pumped down the annulus between casing 40 and tubing 42, whereupon it flows past heater 48 and enters formation 50 through perforations 49 in casing 40. Upon entering the formation, the oxygen enriched air starts to oxidize hydrocarbon fluids contained in the formation 50." Once sufficient oxidation has occurred, the formation fluids will commence to burn and the burning front will move away from the wellbore 10. When gas analysis from adjacent wells indicate that in situ combustion has commenced, oxygen enrichment of the air stream entering wellbore 10 may be terminated, so that the full capacity of the air compressor 14 can be utilized to provide sufficient air to support the in situ combustion.
The downhole heater 48 is not always essential in this process of initiating in situ combustion. Some reservoirs will ignite using an oxygen enriched air stream which has not been heated. Other reservoirs may require that such oxygen enriched streambe heated before in situ combustion will commence. Heaters which may be employed can be of any conventional type, i.e.,
downhole gas burners or electrical and catalytic heaters.
An advantage of the method of supplying oxygen to the formation described herein is the availability of excess compressor capacity for use in providing energy for the liquefaction of the air. A large compressor is required to supply air to'support a flame front when the front covers a large area because of its distance from the wellbore. Accordingly, since only a small amount of air is needed for initiation of in situ combustion adjacent the wellbore, there is excess compressor capaci ty available for other purposes. The above described process makes use of this capacity by using it to provide energy for liquefaction of air. It is not essential to the operation of this process to have a pure oxygen stream being injected into the air line 66. This lack of a purity requirement will result in a savings in equipment and operational costs.
While particular embodiments of the presentinvention have been shown and described, it is apparent that changes and modifications may be made without departing from this invention in its broader aspects, and therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of this invention.
What is claimed is: I
1. In an in situ combustion process wherein air is supplied to a formation being ignited, the improvement comprising: separating a portion of the air stream being supplied to theformation; removing the oxygen from the separated air stream; and injecting the oxygen removed from the separated air stream into the air stages of compression and expansion of the air until the air is liquefied, and then boiling off the nitrogen component of the air.
3. The process of claim 2 including cooling the separated portion of the air stream by heat exchanging such separated air portion with the nitrogen boiled from the liquefied air.
4. The process of claim 1 including supplying heat to the formation being ignited.
5. In an in situ combustion initiation process where compressed air is supplied to the formation being ignited, the improvement comprising: separating a portion of the compressed air being supplied to the formation; removing the oxygen from the separated air portion; and injecting the oxygen removed from the separated air portion into the air stream being supplied to the formation.
6. The process of claim 5 wherein the oxygen is removed from the separated air portion by liquefying the air portion and boiling off the nitrogen component of the air.
7. The process of claim 5 wherein the expansive power of the compressed air portion is used to supply energy for the machinery to liquefy the air portion.
8. The process of claim 6 wherein the nitrogen boiled from the liquefied air is used to cool the separated air portion prior to liquefaction.
9. Apparatus for initiating in situ combustion in an earth formation penetrated by a wellbore compris gas conduit means connected to the wellbore for passing air into the wellbore and into the formation; means attached to the condui means for extracting a portion of the air stream from the gas conduit means; air liquefaction means connected with the extracti means; means

Claims (11)

1. In an in situ combustion process wherein air is supplied to a formation being ignited, the improvement comprising: separating a portion of the air stream being supplied to the formation; removing the oxygen from the separated air stream; and injecting the oxygen removed from the separated air stream into the air stream being supplied to the formation.
2. The process of claim 1 wherein the oxygen is removed from the separated air stream by successive stages of compression and expansion of the air until the air is liquefied, and then boiling off the nitrogen component of the air.
3. The process of claim 2 including cooling the separated portion of the air stream by heat exchanging such separated air portion with the nitrogen boiled from the liquefied air.
4. The process of claim 1 including supplying heat to the formation being ignited.
5. In an in situ combustion initiation process where compressed air is supplied to the formation being ignited, the improvement comprising: separating a portion of the compressed air being supplied to the formation; removing the oxygen from the separated air portion; and injecting the oxygen removed from the separated air portion into the air stream being supplied to the formation.
6. The process of claim 5 wherein the oxygen is removed from the separated air portion by liquefying the air portion and boiling off the nitrogen component of the air.
7. The process of claim 5 wherein the expansive power of the compressed air portion is used to supply energy for the machinery to liquefy the air portion.
8. The process of claim 6 wherein the nitrogen boiled from the liquefied air is used to cool the separated air portion prior to liquefaction.
9. Apparatus for initiating in situ combustion in an earth formation penetrated by a wellbore compris gas conduit means connected to the wellbore for passing air into the wellbore and into the formation; means attached to the condui means for extracting a portion of the air stream from the gas conduit means; air liquefaction means connected with the extracti means; means for boiling nitrogen from the liquid air which is in communication with the air liquefaction means; and means in communication with the air liquefaction means and attached to the conduit means for injecting into the gas conduit means the oxygen portion remaining after boiling the nitrogen from the air.
10. The apparatus of claim 9 including means positioned in the wellbore for heating the oxygen enriched air entering the formation.
11. The apparatus of claim 9 including heat exchanger means adjacent the air stream portion extraction means, and connected with the nitrogen boiling means.
US101888A 1970-12-28 1970-12-28 Situ combustion initiation process Expired - Lifetime US3680633A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10188870A 1970-12-28 1970-12-28

Publications (1)

Publication Number Publication Date
US3680633A true US3680633A (en) 1972-08-01

Family

ID=22286990

Family Applications (1)

Application Number Title Priority Date Filing Date
US101888A Expired - Lifetime US3680633A (en) 1970-12-28 1970-12-28 Situ combustion initiation process

Country Status (1)

Country Link
US (1) US3680633A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4393936A (en) * 1981-09-21 1983-07-19 Union Oil Company Of California Method for the enhanced recovery of oil and natural gas
US4498537A (en) * 1981-02-06 1985-02-12 Mobil Oil Corporation Producing well stimulation method - combination of thermal and solvent
US20020029881A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US20030075318A1 (en) * 2000-04-24 2003-04-24 Keedy Charles Robert In situ thermal processing of a coal formation using substantially parallel formed wellbores
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US20050092483A1 (en) * 2001-10-24 2005-05-05 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US7040397B2 (en) 2001-04-24 2006-05-09 Shell Oil Company Thermal processing of an oil shale formation to increase permeability of the formation
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2588296A (en) * 1946-02-15 1952-03-04 Aluminum Co Of America Gas treatment and apparatus therefor
US3055422A (en) * 1958-10-16 1962-09-25 Phillips Petroleum Co In situ combustion process
US3072186A (en) * 1958-08-11 1963-01-08 Phillips Petroleum Co Recovery of hydrocarbons by in situ combustion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2588296A (en) * 1946-02-15 1952-03-04 Aluminum Co Of America Gas treatment and apparatus therefor
US3072186A (en) * 1958-08-11 1963-01-08 Phillips Petroleum Co Recovery of hydrocarbons by in situ combustion
US3055422A (en) * 1958-10-16 1962-09-25 Phillips Petroleum Co In situ combustion process

Cited By (195)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498537A (en) * 1981-02-06 1985-02-12 Mobil Oil Corporation Producing well stimulation method - combination of thermal and solvent
US4393936A (en) * 1981-09-21 1983-07-19 Union Oil Company Of California Method for the enhanced recovery of oil and natural gas
US6736215B2 (en) 2000-04-24 2004-05-18 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6715547B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US20020033280A1 (en) * 2000-04-24 2002-03-21 Schoeling Lanny Gene In situ thermal processing of a coal formation with carbon dioxide sequestration
US20020034380A1 (en) * 2000-04-24 2002-03-21 Maher Kevin Albert In situ thermal processing of a coal formation with a selected moisture content
US20020036083A1 (en) * 2000-04-24 2002-03-28 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US20020038705A1 (en) * 2000-04-24 2002-04-04 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20020038706A1 (en) * 2000-04-24 2002-04-04 Etuan Zhang In situ thermal processing of a coal formation with a selected vitrinite reflectance
US20020040173A1 (en) * 2000-04-24 2002-04-04 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US20020038710A1 (en) * 2000-04-24 2002-04-04 Maher Kevin Albert In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US20020043405A1 (en) * 2000-04-24 2002-04-18 Vinegar Harold J. In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US20020043367A1 (en) * 2000-04-24 2002-04-18 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US20020043365A1 (en) * 2000-04-24 2002-04-18 Berchenko Ilya Emil In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US20020046837A1 (en) * 2000-04-24 2002-04-25 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US20020046832A1 (en) * 2000-04-24 2002-04-25 Etuan Zhang In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US20020050356A1 (en) * 2000-04-24 2002-05-02 Vinegar Harold J. In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US20020050357A1 (en) * 2000-04-24 2002-05-02 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US20020053436A1 (en) * 2000-04-24 2002-05-09 Vinegar Harold J. In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US20020057905A1 (en) * 2000-04-24 2002-05-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US20020062051A1 (en) * 2000-04-24 2002-05-23 Wellington Scott L. In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US20020062959A1 (en) * 2000-04-24 2002-05-30 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US20020084074A1 (en) * 2000-04-24 2002-07-04 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US20020104654A1 (en) * 2000-04-24 2002-08-08 Shell Oil Company In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US20030006039A1 (en) * 2000-04-24 2003-01-09 Etuan Zhang In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US20030019626A1 (en) * 2000-04-24 2003-01-30 Vinegar Harold J. In situ thermal processing of a coal formation with a selected hydrogen content and/or selected H/C ratio
US20030051872A1 (en) * 2000-04-24 2003-03-20 De Rouffignac Eric Pierre In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US20030075318A1 (en) * 2000-04-24 2003-04-24 Keedy Charles Robert In situ thermal processing of a coal formation using substantially parallel formed wellbores
US6581684B2 (en) 2000-04-24 2003-06-24 Shell Oil Company In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6588503B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In Situ thermal processing of a coal formation to control product composition
US6591907B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a coal formation with a selected vitrinite reflectance
US6591906B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6607033B2 (en) 2000-04-24 2003-08-19 Shell Oil Company In Situ thermal processing of a coal formation to produce a condensate
US6609570B2 (en) 2000-04-24 2003-08-26 Shell Oil Company In situ thermal processing of a coal formation and ammonia production
US20040015023A1 (en) * 2000-04-24 2004-01-22 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6688387B1 (en) 2000-04-24 2004-02-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6702016B2 (en) 2000-04-24 2004-03-09 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758B2 (en) 2000-04-24 2004-03-23 Shell Oil Company In situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation in reducing environment
US6712136B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712137B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6739393B2 (en) 2000-04-24 2004-05-25 Shell Oil Company In situ thermal processing of a coal formation and tuning production
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715549B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047B2 (en) 2000-04-24 2004-04-13 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722431B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of hydrocarbons within a relatively permeable formation
US6725921B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation using a distributed combustor
US6729397B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation and ammonia production
US6729395B2 (en) * 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6732796B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6732795B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6742589B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US20020033256A1 (en) * 2000-04-24 2002-03-21 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6742593B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6739394B2 (en) 2000-04-24 2004-05-25 Shell Oil Company Production of synthesis gas from a hydrocarbon containing formation
US6742587B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6745831B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745837B2 (en) * 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6745832B2 (en) 2000-04-24 2004-06-08 Shell Oil Company Situ thermal processing of a hydrocarbon containing formation to control product composition
US20040108111A1 (en) * 2000-04-24 2004-06-10 Vinegar Harold J. In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US6749021B2 (en) 2000-04-24 2004-06-15 Shell Oil Company In situ thermal processing of a coal formation using a controlled heating rate
US6752210B2 (en) 2000-04-24 2004-06-22 Shell Oil Company In situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268B2 (en) 2000-04-24 2004-07-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216B2 (en) 2000-04-24 2004-07-13 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886B2 (en) 2000-04-24 2004-07-20 Shell Oil Company In situ thermal processing of a coal formation with carbon dioxide sequestration
US6769485B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ production of synthesis gas from a coal formation through a heat source wellbore
US6769483B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6789625B2 (en) 2000-04-24 2004-09-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195B2 (en) 2000-04-24 2004-10-19 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688B2 (en) 2000-04-24 2004-11-23 Shell Oil Company In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6902004B2 (en) * 2000-04-24 2005-06-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a movable heating element
US20020029881A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US7086468B2 (en) * 2000-04-24 2006-08-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7040397B2 (en) 2001-04-24 2006-05-09 Shell Oil Company Thermal processing of an oil shale formation to increase permeability of the formation
US8608249B2 (en) 2001-04-24 2013-12-17 Shell Oil Company In situ thermal processing of an oil shale formation
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US20050092483A1 (en) * 2001-10-24 2005-05-05 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US7986869B2 (en) * 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Similar Documents

Publication Publication Date Title
US3680633A (en) Situ combustion initiation process
US2793696A (en) Oil recovery by underground combustion
US2584606A (en) Thermal drive method for recovery of oil
US3379248A (en) In situ combustion process utilizing waste heat
US3351132A (en) Post-primary thermal method of recovering oil from oil wells and the like
US3599714A (en) Method of recovering hydrocarbons by in situ combustion
US3013609A (en) Method for producing hydrocarbons in an in situ combustion operation
US3139928A (en) Thermal process for in situ decomposition of oil shale
US3110345A (en) Low temperature reverse combustion process
US2788071A (en) Oil recovery process
US4324291A (en) Viscous oil recovery method
Ursenbach et al. Air injection in heavy oil reservoirs-a process whose time has come (again)
US4078608A (en) Thermal oil recovery method
US3294167A (en) Thermal oil recovery
US2780449A (en) Thermal process for in-situ decomposition of oil shale
US4498537A (en) Producing well stimulation method - combination of thermal and solvent
US3948323A (en) Thermal injection process for recovery of heavy viscous petroleum
US20180010434A1 (en) Stimulation of light tight shale oil formations
US4262745A (en) Steam stimulation process for recovering heavy oil
Parrish et al. Laboratory study of a combination of forward combustion and waterflooding the cofcaw process
RU2060378C1 (en) Method for developing oil stratum
US2582148A (en) Method of recovering desirable liquefiable hydrocarbons
US3123134A (en) Free-gas phase initial pressure
US3040809A (en) Process for recovering viscous crude oil from unconsolidated formations
US2853136A (en) Process for the recovery of oil from subterranean reservoirs