US3683974A - Method for purging and filling multiple glazed units - Google Patents

Method for purging and filling multiple glazed units Download PDF

Info

Publication number
US3683974A
US3683974A US79077A US3683974DA US3683974A US 3683974 A US3683974 A US 3683974A US 79077 A US79077 A US 79077A US 3683974D A US3683974D A US 3683974DA US 3683974 A US3683974 A US 3683974A
Authority
US
United States
Prior art keywords
unit
gas
purging
space
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US79077A
Inventor
John L Stewart
Renato J Mazzoni
Lester F Schutrum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PPG Industries Inc
Original Assignee
PPG Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PPG Industries Inc filed Critical PPG Industries Inc
Application granted granted Critical
Publication of US3683974A publication Critical patent/US3683974A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/677Evacuating or filling the gap between the panes ; Equilibration of inside and outside pressure; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
    • E06B3/6775Evacuating or filling the gap during assembly

Definitions

  • This invention relates to a method for purging and filling multiple glazed, insulating units. More particularly, the present invention relates to an improved method for purging and filling all-glass multiple glazed units with a fluorocarbon gas and, thereafter, sealing the gas within the units to improve their insulation effectiveness, thus reducing heat loss due to indoor and outdoor temperature differentials.
  • fluorocarbon is intended to include all normally gaseous. fluorine containing hydrocarbons having one to four carbon atoms, including compounds which may contain other halogen and/or hydrogen atoms in addition to the fluorine present. Included among thefluorocarbon compounds that are contemplated are: tetrafluoromethane, trifluoromethane, chlorotrifluoromethane, hexafluoroethane, bromotrifluoromethane,
  • chlorodifluoromethane-chloropentafluoroethane chlorodifluoro-methane, chloropentafluoroethane, vinyl fluoride, vinylidene fluoride and mixtures thereof.
  • These compounds are sold as Freon fluorocarbons by E. I. DuPont DeNemours & Company.
  • the units have a least one pore opening either in a face or an edge of the unit through which air under pressure is introduced between the sheets to effect filleting and, also, which thereafter allows for equalization of the pressure of the air within the unit with atmospheric pressure during annealing and cooling of the unit.
  • additional treatment thereof includes purging and filling the unit with dry air or gas and hermetically sealing the unit.
  • this purging and filling operation has generally been accomplished while supporting the unit on edge in a vertical position and purging and filling the unit through a pore hole located at or near the bottom or supporting edge of the unit.
  • each unit to be purged and filled with a fluorocarbon gas is supported with a pore hole residing in the upper disposed region of the unit.
  • the fluorocarbon gas is then introduced or injected into the interior of the unit through the pore hole while the air within the unit is simultaneously displaced therefrom through the same pore hole.
  • FIG. 1 is a perspective of a plurality of vertically disposed all-glass, multiple glazed units being purged and filled in accordance with this invention.
  • FIG. 2 is a perspective of a plurality of horizontally disposed all-glass, multiple glazed units being purged and filled in accordance with this invention.
  • FIG. I Depicted in FIG. I are a plurality of all-glass, multi- 9 pie glazed units 10 comprised of a pair of glass sheets 12 and 14 that are welded together about their marginal edges. As illustrated, one of the glass sheets, 12, of each unit 10 is provided with a pore hole or purge hole 16 in a marginal edge portion thereof and in communication with the interior of the unit.
  • units 10 are each supported on edge in a vertical position on rack 18 so that the pore hole I6 is located in the upper disposed region of the unit. Also shown is a conduitor header 20 for the conduction of a fluorocarbon gas to the vicinity of rack 18 and units 10. Header 20 is provided with a plurality of flexible plastic tubes 22 of smaller outside diameter than the diameter of pore holes 16 and which, as shown, are inserted in pore holes 16 and suitably connected to the header 20 to conduct the fluorocarbon gas under pressure from the header to the interior of each of the multiple glazed units. As illustrated by the dashed arrows in FIG.
  • the fluorocarbon gas is conducted downwardly into the lower disposed region of units 10 to purge and fill each unit, and the air which is thereby displaced from the unit, illustrated by the solid arrows, escapes therefrom to the work area adjacent the units from the generally annular space between tubes 22 and the side walls of pore holes 16.
  • FIG. 2 Shown in FIG. 2 is an alternate embodiment of this invention wherein like numerals to those used in FIG. 1 have been employed to designate like parts throughout the same.
  • the units 1d are shown supported on one side thereof in a horizontal position on a suitable table or conveyor support 24 so that pore hole 16 is located in the upper glass sheet or upper disposed region of each unit.
  • the fluorocarbon gas is conducted to the lower disposed region of units 10 to purge and fill each unit and the air which is thereby displaced from the unit, illustrated by the solid arrows, escapes therefrom to the work area adjacent the units from the generally annular space between tubes 22 and the side walls of pore holes 16.
  • the improved purging and filling process of this invention provides upwards of 85 100 percent by volume of chlorodifluoromethane gas in the space between the glass sheets, at least three to four times faster than was possible when purging and filling by the conventional method.
  • percent concentration of gas within a unit was easily obtained with just 1.5 volume changes, an accomplishment not capable of being duplicated when purging and filling by the conventional method.
  • gas chromatographic analysis of air samples taken in the environmen surrounding the purging and filling operation will show that, as purgingand filling proceeds towards percent, the wastage or release of purging and filling gas to this environment is substantially less than when purging and filling by the conventional method. Thus, greater economy of operation is readily achieved pursuant to this invention.
  • a method for purging and filling a multiple glazed unit having a pair of glass sheets sealed together around their marginal edges to provide an air space between the sheets and a pore hole located in a marginal edge portion of the unit comprising supporting the unit with said pore hole located in an upper disposed region of the unit and injecting a fluorocarbon gas through said pore hole into said space while simultaneously displacing air from said space through said pore hole to the exterior of the unit.

Abstract

A method for purging and filling a multiple glazed unit with a fluorocarbon gas in which the unit is supported so that its pore hole is located in an upper disposed region of the unit and, while so supported, the gas is injected into the unit and air is simultaneously displaced therefrom.

Description

United States Patent Stewart et al. 1451 Aug. 15, 1972 METHOD FOR PURGING AND FILLING [56] References Cited MULTIPLE GLAZED UNITS UNITED STATES PATENTS [72] In entors: Jo n L- St ar Apo lo; Renato J. 2,875,792 3/1959 Moyer ..l4l/4 Mmvni, Tarenwmi Lester R 3,556,174 1/1971 Gibble et al ..53/112 R x schumlm New Kensmgm of 2,875,794 3/1959 Schmertz ..141/4 x 3,078,627 2/1963 Dunipace: et al ..65/58 X [73] Ass1gnee: PPG Industries, Inc., Pittsburgh, Pa. FOREIGN PATENTS OR APPLICATIONS [22] Flled: Oct. 8, 1970 980,477 1/1965 Great Britain ..l4l/4 [21] Appl. No.: 79,077 Y Related US. Application Data Primary ExaWmF'EdwaId Earls Attorney-Ch1sholm and Spencer [63] Contmuatron-m-part of Ser. No. 845,988, July 30, abandoned. [52] US. Cl. ..l41/4, 65/32, 65/58 A method for purging and filling a multiple glazed unit [51] Int. Cl. ..B65b 31/04 with a fluorocarbon gas in which the unit is supported Field of Search 112; so that its pore hole is located in an upper disposed region of the unit and, while so supported, the gas is injected into the unit and air is simultaneously displaced therefrom. I Y
6 Claims, 2 Drawing Figures Patented Aug. 15, 1972 INVENTOR5 JOHN L. STEWART IeEA/A O J. MAZZ 01W 5751c F. s ew/um UM cgm e fljww ATTORNEY .dichlorodifluoromethane, 1,1-difluoroethane,
METHOD FOR PURGING AND FILLING TWLE GLAZED UNITS CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part of application Ser. No. 845,988, filed July 30, 1969, now abandoned.
BACKGROUND OF THE INVENTION:
This invention relates to a method for purging and filling multiple glazed, insulating units. More particularly, the present invention relates to an improved method for purging and filling all-glass multiple glazed units with a fluorocarbon gas and, thereafter, sealing the gas within the units to improve their insulation effectiveness, thus reducing heat loss due to indoor and outdoor temperature differentials.
The term fluorocarbon, as used herein, is intended to include all normally gaseous. fluorine containing hydrocarbons having one to four carbon atoms, including compounds which may contain other halogen and/or hydrogen atoms in addition to the fluorine present. Included among thefluorocarbon compounds that are contemplated are: tetrafluoromethane, trifluoromethane, chlorotrifluoromethane, hexafluoroethane, bromotrifluoromethane,
chlorodifluoromethane-chloropentafluoroethane, chlorodifluoro-methane, chloropentafluoroethane, vinyl fluoride, vinylidene fluoride and mixtures thereof. These compounds are sold as Freon fluorocarbons by E. I. DuPont DeNemours & Company.
One commercially used process for making all-glass multiple glazed units is broadly disclosed in U.S. Pat. No. 2,624,979. This process proceeds by supporting two superposed sheets of glass, with the upper sheet slightly larger than the lower sheet, in slightly spaced relationship to each other, heating the margins of the upper sheet until they droop and become welded or fused with the margins of the lower sheet, pulling the upper sheet upwardly to provide a chamber between the sheets, and abruptly increasing the air pressure within the unit to effect filleting of the welded connection between the sheets. The units have a least one pore opening either in a face or an edge of the unit through which air under pressure is introduced between the sheets to effect filleting and, also, which thereafter allows for equalization of the pressure of the air within the unit with atmospheric pressure during annealing and cooling of the unit.
Subsequent to cooling the unit, additional treatment thereof includes purging and filling the unit with dry air or gas and hermetically sealing the unit. In the past, this purging and filling operation has generally been accomplished while supporting the unit on edge in a vertical position and purging and filling the unit through a pore hole located at or near the bottom or supporting edge of the unit.
It has been discovered, however, that when it is desired to purge and fill these units with a low conductive, fluorocarbon gas, use of the above-mentioned technique requires too great a time to displace the air from within theunit and excessive amounts of the purging and filling gas are wasted by release of this gas to the work area surrounding the unit.
The present invention isdirected toward ameliorab ing or overcoming the foregoing problems. In accordance with the present invention, each unit to be purged and filled with a fluorocarbon gas is supported with a pore hole residing in the upper disposed region of the unit. The fluorocarbon gas is then introduced or injected into the interior of the unit through the pore hole while the air within the unit is simultaneously displaced therefrom through the same pore hole. By proceeding in the above manner, it has been demonstrated that multiple glazed units can be purged and filled to provide upwards of percent by volume of a fluorocarbon gas in the space between the glass sheets at least three to four times faster and with minimal wastage or release of gas to the surrounding environment than was previously possible when purging and filling by the prior'art technique.
The foregoing and other objects, features and advantages of the present invention will become more apparent from the description that follows when taken in conjunction with the drawing, in which:
FIG. 1 is a perspective of a plurality of vertically disposed all-glass, multiple glazed units being purged and filled in accordance with this invention; and
FIG. 2 is a perspective of a plurality of horizontally disposed all-glass, multiple glazed units being purged and filled in accordance with this invention.
Depicted in FIG. I are a plurality of all-glass, multi- 9 pie glazed units 10 comprised of a pair of glass sheets 12 and 14 that are welded together about their marginal edges. As illustrated, one of the glass sheets, 12, of each unit 10 is provided with a pore hole or purge hole 16 in a marginal edge portion thereof and in communication with the interior of the unit.
In accordance with the present invention, units 10 are each supported on edge in a vertical position on rack 18 so that the pore hole I6 is located in the upper disposed region of the unit. Also shown is a conduitor header 20 for the conduction of a fluorocarbon gas to the vicinity of rack 18 and units 10. Header 20 is provided with a plurality of flexible plastic tubes 22 of smaller outside diameter than the diameter of pore holes 16 and which, as shown, are inserted in pore holes 16 and suitably connected to the header 20 to conduct the fluorocarbon gas under pressure from the header to the interior of each of the multiple glazed units. As illustrated by the dashed arrows in FIG. 1, the fluorocarbon gas is conducted downwardly into the lower disposed region of units 10 to purge and fill each unit, and the air which is thereby displaced from the unit, illustrated by the solid arrows, escapes therefrom to the work area adjacent the units from the generally annular space between tubes 22 and the side walls of pore holes 16.
Shown in FIG. 2 is an alternate embodiment of this invention wherein like numerals to those used in FIG. 1 have been employed to designate like parts throughout the same. In FIG. 2, the units 1d are shown supported on one side thereof in a horizontal position on a suitable table or conveyor support 24 so that pore hole 16 is located in the upper glass sheet or upper disposed region of each unit. As is again illustrated by the dashed arrows in FIG. 2, the fluorocarbon gas is conducted to the lower disposed region of units 10 to purge and fill each unit and the air which is thereby displaced from the unit, illustrated by the solid arrows, escapes therefrom to the work area adjacent the units from the generally annular space between tubes 22 and the side walls of pore holes 16.
To illustrate theimprovement achieved by the practice of the present invention, all-glass multiple glazed units of several different sizes were purged and filled on the same equipment using the conventional technique of purging and filling from the lower disposed region of the units and the improved technique of this invention of purging and filling from the upper disposed region of the units. For any given size unit, the air space thickness dimension from unit to unit was the same. The results of these tests are as follows, with the purging and filling technique in each case being indicated as conventional or improved in accordance with the foregoing description of these techniques:
TABLE I Purging and Filling with Chlorodifluoromethane Gas Purge Concentration Gas and of Purging Purging Line Fill Unit Size and Filling and Filling Pressure Time (Width X Gas in Unit Technique (psi) (min.) Length) by Volume) Conventional 40 2 16")(68 62.5 Conventional 4.0 6 16")(68" 64 Conventional 40 IO l6" 68" 65.5 Improved 40 2 l6" 68" Improved 4O 4 16"X68" lOO. Conventional 40 l l6'-3/l6" 49" 74.5 Conventional 40 5 1 6-3/1 6' X49 80.6 Conventional 40 I l6-3/l6" 49" I 84.5 Conventional 40 15 l6-3/l6" 49" 87.4 Conventional 50 l l6-3/l6" 49" 76.5 Conventional 50 l6-3/l6" 49 81. Conventional 50 10 l6-3/l6 49" 83.7 Conventional 50 l6-3/l6" 49" 84.5 Improved 25 5 l6-3/l6" 49" 100. Conventional 25 4 l6-l/2"X49" 72.3 Conventional 25 4 l6-ll2" 49 66. Improved 25 2.2 16-l/2"X49" 96. lmproved 25 2.2 l6-l/2" 93.8 Conventional 25 7.75 16")(68-7/8" 53.7 Conventional 25 7.75 16"X68-7/8" 54.5 Conventional 25 [0.5 16"X68-7/8" 55. Conventional 25 W5 16"X68-7/8, 54.4 Improved 25 3 16"X68-7/8" 95. Improved 25 3 16"X68-7/8" 94.8 Conventional 25 23.5 50"X65-l/4" 62.2 Conventional 25 23.5 50"X65-l/4 58.8 Conventional 25 29.5 50"X65-l/4" 50.6 Conventional 25 29.5 50"X65-l/4" 54.4 Improved 25 8.9 50"X65-l/4" 91. Improved 25 8.9 50"X65-l/4" 93.2
It will be evident from the foregoing that, for a given gas line pressure, the improved purging and filling process of this invention provides upwards of 85 100 percent by volume of chlorodifluoromethane gas in the space between the glass sheets, at least three to four times faster than was possible when purging and filling by the conventional method. In fact, using theimproved purging and filling process of this invention, it was found that, at a gas line pressure of 25 psi. or above, percent concentration of gas within a unit was easily obtained with just 1.5 volume changes, an accomplishment not capable of being duplicated when purging and filling by the conventional method. Moreover, in practicing the improved process of this invention gas chromatographic analysis of air samples taken in the environmen surrounding the purging and filling operation will show that, as purgingand filling proceeds towards percent, the wastage or release of purging and filling gas to this environment is substantially less than when purging and filling by the conventional method. Thus, greater economy of operation is readily achieved pursuant to this invention.
Although the present invention has been described with particular reference to the specific details of certain embodiments thereof, it is not intended that such details shall be regarded as limitations upon the scope of the invention, except insofar as included in the accompanying claims. For example, it will be evident that, so long as the pore hole is located in an upper disposed region of the unit, the general disposition of the multiple glazed unit itself can vary or be varied from the vertical and horizontal dispositions shown to any angular disposition therebetween.
We claim:
ll. A method for purging and filling a multiple glazed unit having a pair of glass sheets sealed together around their marginal edges to provide an air space between the sheets and a pore hole located in a marginal edge portion of the unit comprising supporting the unit with said pore hole located in an upper disposed region of the unit and injecting a fluorocarbon gas through said pore hole into said space while simultaneously displacing air from said space through said pore hole to the exterior of the unit.
2. The method according to claim 1 wherein said gas is injected into said space for a time and. at a rate sufficient to produce a concentration of gas within said space of between 85 to 100 percent by volume of gas based on the volume of the air space.
3. The method according to claim 2 which further includes the step of controlling said time and rate of gas injection to produce said gas concentration with 1.5 volumes of gas based on the volume of the air space.
4. The method according to claim 1 wherein said unit is vertically disposed.
5. The method according to claim 1 wherein said unit is horizontally disposed.
6. The method according to claim 1 wherein said unit is disposed at an angle between a vertical and a horizontal disposition.

Claims (6)

1. A method for purging and filling a multiple glazed unit having a pair of glass sheets sealed together around their marginal edges to provide an air space between the sheets and a pore hole located in a marginal edge portion of the unit comprising supporting the unit with said pore hole located in an upper disposed region of the unit and injecting a fluorocarbon gas through said pore hole into said space while simultaneously displacing air from said space through said pore hole to the exterior of the unit.
2. The method according to claim 1 wherein said gas is injected into said space for a time and at a rate sufficient to produce a concentration of gas within said space of between 85 to 100 percent by volume of gas based on the volume of the air space.
3. The method according to claim 2 which further includes the step of controlling said time and rate of gas injection to produce said gas concentration with 1.5 volumes of gas based on the volume of the air space.
4. The method according to claim 1 wherein said unit is vertically disposed.
5. The method according to claim 1 wherein said unit is horizontally disposed.
6. The method according to claim 1 wherein said unit is disposed at an angle between a vertical and a horizontal disposition.
US79077A 1970-10-08 1970-10-08 Method for purging and filling multiple glazed units Expired - Lifetime US3683974A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7907770A 1970-10-08 1970-10-08

Publications (1)

Publication Number Publication Date
US3683974A true US3683974A (en) 1972-08-15

Family

ID=22148273

Family Applications (1)

Application Number Title Priority Date Filing Date
US79077A Expired - Lifetime US3683974A (en) 1970-10-08 1970-10-08 Method for purging and filling multiple glazed units

Country Status (1)

Country Link
US (1) US3683974A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2474092A1 (en) * 1980-01-17 1981-07-24 Daimler Benz Ag METHOD FOR HEATING A MULTI-SHEET GLASS AND A HEATED MULTI-SHEET GLASS
US4369084A (en) * 1981-05-26 1983-01-18 Peter Lisec Apparatus for producing insulating glass filled with a gas other than air
US4570051A (en) * 1981-12-28 1986-02-11 Mitsubishi Nuclear Fuel Co. Ltd. Enclosing a gas in a nuclear reactor fuel rod
US4773453A (en) * 1987-04-14 1988-09-27 Dcl Glas-Consult Gmbh Procedure for filling insulating glass units
US4780164A (en) * 1986-11-20 1988-10-25 Cardinal Ig Company Method for producing gas-containing insulating glass assemblies
DE3901046A1 (en) * 1988-01-22 1989-08-03 Ppg Industries Inc Method and device for manufacturing an insulated multipane unit
US4886095A (en) * 1987-01-15 1989-12-12 Peter Lisec Process and apparatus for filling an insulating glass unit with filler gas
US4909874A (en) * 1989-03-30 1990-03-20 Cardinal Ig Company Method and apparatus for producing gas-containing insulating glass assemblies
US5017252A (en) * 1988-12-06 1991-05-21 Interpane Coatings, Inc. Method for fabricating insulating glass assemblies
US5080146A (en) * 1989-03-20 1992-01-14 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for filling thermal insulating systems
US5110337A (en) * 1990-02-28 1992-05-05 Peter Lisec Method and apparatus for filling the inner space of semifinished insulating glass panels with gas
US5139595A (en) * 1990-07-16 1992-08-18 Taylor Donald M Gas filling system for glazing panels
US5366574A (en) * 1988-05-04 1994-11-22 Lenhardt Maschinenbau Gmbh Process for assembling insulating glass panes which are filled with a gas other than air
US5792523A (en) * 1996-03-14 1998-08-11 Aga Aktiebolag Krypton gas mixture for insulated windows
US6221190B1 (en) * 1997-08-29 2001-04-24 Chugai Ro Co., Ltd. Method and apparatus for processing glass panel
US6622456B2 (en) 2001-11-06 2003-09-23 Truseal Telenologies, Inc. Method and apparatus for filling the inner space of insulating glass units with inert gases
WO2011031242A1 (en) * 2009-09-08 2011-03-17 CBS INSTITUT CELOVITE GRADBENE REŠITVE, d.o.o. Gas filled insulation construction panel
US20130061978A1 (en) * 2011-09-09 2013-03-14 Erdman Automation Corporation Apparatus for edge sealing and simultaneous gas filling of insulated glass units
US10113354B2 (en) 2013-12-31 2018-10-30 Cardinal Ig Company Multiple-pane insulating glazing unit assembly, gas filling, and pressing machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2875792A (en) * 1955-09-08 1959-03-03 Libbey Owens Ford Glass Co Multiple sheet glazing units
US2875794A (en) * 1956-05-10 1959-03-03 Libbey Owens Ford Glass Co Multiple sheet glazing units
US3078627A (en) * 1960-11-15 1963-02-26 Libbey Owens Ford Glass Co Method and apparatus for fabricating all-glass multiple sheet glazing units
GB980477A (en) * 1962-03-22 1965-01-13 Reunies De Lampes Electr Sa Fa Improvements in methods of filling electric tubes or the like with gas
US3556174A (en) * 1967-12-21 1971-01-19 Hunt Wesson Foods Inc Apparatus for exchanging atmosphere in the headspace of a container

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2875792A (en) * 1955-09-08 1959-03-03 Libbey Owens Ford Glass Co Multiple sheet glazing units
US2875794A (en) * 1956-05-10 1959-03-03 Libbey Owens Ford Glass Co Multiple sheet glazing units
US3078627A (en) * 1960-11-15 1963-02-26 Libbey Owens Ford Glass Co Method and apparatus for fabricating all-glass multiple sheet glazing units
GB980477A (en) * 1962-03-22 1965-01-13 Reunies De Lampes Electr Sa Fa Improvements in methods of filling electric tubes or the like with gas
US3556174A (en) * 1967-12-21 1971-01-19 Hunt Wesson Foods Inc Apparatus for exchanging atmosphere in the headspace of a container

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2474092A1 (en) * 1980-01-17 1981-07-24 Daimler Benz Ag METHOD FOR HEATING A MULTI-SHEET GLASS AND A HEATED MULTI-SHEET GLASS
US4369084A (en) * 1981-05-26 1983-01-18 Peter Lisec Apparatus for producing insulating glass filled with a gas other than air
US4570051A (en) * 1981-12-28 1986-02-11 Mitsubishi Nuclear Fuel Co. Ltd. Enclosing a gas in a nuclear reactor fuel rod
US4780164A (en) * 1986-11-20 1988-10-25 Cardinal Ig Company Method for producing gas-containing insulating glass assemblies
US4886095A (en) * 1987-01-15 1989-12-12 Peter Lisec Process and apparatus for filling an insulating glass unit with filler gas
US4773453A (en) * 1987-04-14 1988-09-27 Dcl Glas-Consult Gmbh Procedure for filling insulating glass units
DE3901046A1 (en) * 1988-01-22 1989-08-03 Ppg Industries Inc Method and device for manufacturing an insulated multipane unit
US5366574A (en) * 1988-05-04 1994-11-22 Lenhardt Maschinenbau Gmbh Process for assembling insulating glass panes which are filled with a gas other than air
US5017252A (en) * 1988-12-06 1991-05-21 Interpane Coatings, Inc. Method for fabricating insulating glass assemblies
US5080146A (en) * 1989-03-20 1992-01-14 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for filling thermal insulating systems
US4909874A (en) * 1989-03-30 1990-03-20 Cardinal Ig Company Method and apparatus for producing gas-containing insulating glass assemblies
US5110337A (en) * 1990-02-28 1992-05-05 Peter Lisec Method and apparatus for filling the inner space of semifinished insulating glass panels with gas
US5139595A (en) * 1990-07-16 1992-08-18 Taylor Donald M Gas filling system for glazing panels
US5792523A (en) * 1996-03-14 1998-08-11 Aga Aktiebolag Krypton gas mixture for insulated windows
US6221190B1 (en) * 1997-08-29 2001-04-24 Chugai Ro Co., Ltd. Method and apparatus for processing glass panel
US6622456B2 (en) 2001-11-06 2003-09-23 Truseal Telenologies, Inc. Method and apparatus for filling the inner space of insulating glass units with inert gases
WO2011031242A1 (en) * 2009-09-08 2011-03-17 CBS INSTITUT CELOVITE GRADBENE REŠITVE, d.o.o. Gas filled insulation construction panel
US20130061978A1 (en) * 2011-09-09 2013-03-14 Erdman Automation Corporation Apparatus for edge sealing and simultaneous gas filling of insulated glass units
US8905085B2 (en) * 2011-09-09 2014-12-09 Erdman Automation Corporation Apparatus for edge sealing and simultaneous gas filling of insulated glass units
US10113354B2 (en) 2013-12-31 2018-10-30 Cardinal Ig Company Multiple-pane insulating glazing unit assembly, gas filling, and pressing machine
US11168515B2 (en) 2013-12-31 2021-11-09 Cardinal Ig Company Multiple-pane insulating glazing unit assembly, gas filling, and pressing machine

Similar Documents

Publication Publication Date Title
US3683974A (en) Method for purging and filling multiple glazed units
US4780164A (en) Method for producing gas-containing insulating glass assemblies
US2939811A (en) Heat-insulating units for refrigerator cabinets
US6622456B2 (en) Method and apparatus for filling the inner space of insulating glass units with inert gases
GB1477583A (en) Plasma panel display device
US2700633A (en) Insulating structure and method of forming same
GB1489708A (en) Method of hot-working glass
US2213395A (en) Manufacture of multiple glass sheet glazing units
JPS5319181A (en) Low pressure reaction apparatus
US3735553A (en) Multiple glazed units
US2241411A (en) Refrigeration
US2453946A (en) Thermally insulated container with radiation shield and energy absorber
JPH09210290A (en) Method and device for manufacturing evacuated insulator
CN106586119A (en) Portable sealing machine
GB975539A (en) Fabrication of incandescent lamps
US1685666A (en) Method and apparatus for storing alkali metals
JPS6037650A (en) Method of producing tubular bulb
US994010A (en) Method of and apparatus for producing exhausted vessels.
US1894638A (en) Method of regulating the cooling effect of a refrigerant
JP2561373B2 (en) Liquid crystal display manufacturing equipment
SE8704056D0 (en) PROCEDURE AND DEVICE FOR GAS FILLING OF ISOLATOR
JPH0592136A (en) Adsorbent packing bag and production thereof
JPS5792554A (en) Heat insulating glass
CN220812196U (en) Neutral borosilicate glass tube fusion sealing device
US4773453A (en) Procedure for filling insulating glass units