US3684572A - Electroless nickel plating process for nonconductors - Google Patents

Electroless nickel plating process for nonconductors Download PDF

Info

Publication number
US3684572A
US3684572A US3684572DA US3684572A US 3684572 A US3684572 A US 3684572A US 3684572D A US3684572D A US 3684572DA US 3684572 A US3684572 A US 3684572A
Authority
US
United States
Prior art keywords
solution
surfactant
nickel
nonconductor
electroless nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Kirman Taylor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Application granted granted Critical
Publication of US3684572A publication Critical patent/US3684572A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/208Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • C23C18/26Roughening, e.g. by etching using organic liquids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating

Definitions

  • This invention relates to an electroless metal plating process for a nonconductor and more particularly to a process wherein a uniform metal coating is obtained on the surface of a nonconductor by treatment of the surface with a solution of aquaternary amine surfactant during the process.
  • the nonconductor surface is not completely covered with a uniform coating of metaLThere may be voids or discontinuities in the metal coating on the nonconductor. Further, the metal coating may be rough rather than smooth and the thickness of the coating variable.
  • cellent surfacecoverage of a nonconductor has been of the nonconductor during the processwith a solution of a quaternary amine surfactant where one radical is an alkyl having from about 10 to'about 20 carbon atoms and a second radical is an alkyl having about 10 to about 20 carbon atoms, benzyl or an alkyl benzyl radical.
  • a nonconductor is treated with a dilute solution of a quaternary amine surfactant, after etching and before catalyzing.
  • useful surfactants include N-alkyl (C1240%, C -50%, ammonium chloride such as Hyamine 3500 (Rohm and Haas C03, Philadelphia, Pennsylvania), n-alkyl (C -C dimethyl ethylbenzyl ammonium cyclohexyl sulfamate such as Onyxide 172 (Onyx Chemical 00., Jersey City, N.J.), dilauryl dimethyl ammonium chloride such as Aliquat 204 (General Mills, Kankakee, 111.), cetyl dimethyl benzyl ammonium chloride such as Ammonyx T (Onyx Chemical 00., Jersey City, N.J.).
  • the above surfactants are used to prepare dilute aqueous solutions containing from about 0.01 to about 0.1% by volume of active surfactant. These surfactant solutions can then be used to treatthe surface of the nonconductor after etching and before cat alyzing in the electroless plating process. Or they may be used in other steps of the process.
  • Advantages of the process of this invention include faster deposition of metal, more uniform deposition of metal, reduced operating temperatures in the oxidizing solution bath and electroless nickel bath. Further, use of the surfactant solution does not appear to adversely affect other steps in the process. Life tests on a plating line did not show any evidence of contamination or other adverse effects that might be attributed to the surfactant solution or its use.
  • the surfactant can also be dissolved in the reducing solution and the resulting solution of surfactant and reducing agent can be used as the reducing solution.
  • a surfactant solution after etching and before catalyzing the surface can be omitted when a solufurther improvements in plating results can be obtained using both a surfactant solution and a reducing solution containing a surfactant and reducing agent in this process.
  • a nonconductor surface for example, polypropylene (PP), acrylonitrile-butadienestyrene (ABS) or other polymeric material
  • PP polypropylene
  • ABS acrylonitrile-butadienestyrene
  • the surface is first etched or conditioned, usually by immersion in an oxidizing solution to make the surface hYdI'OPhiIlC-*U.S. Pat. 3,471,313, Saubestre et al., patented Oct. 7, 1969 discloses numerous oxidizing solutions useful for this purpose. There are also numerous commercial oxidizing solutions offered under proprietary names for this purpose.
  • a typical catalyst solution has the following composition:
  • catalyst solution A has been used to catalyze ABS and PP surfaces for metalizing.
  • the catalyst solution can be the palladium catalyst solu- Water to make 1 1.
  • the substrate surface is rinsed with water and then immersed in an electroless *metal plating bath;
  • Typical electroless metal plating baths have the following compositions: I
  • Electroless nickel bath A G./l. Nickel sulfate hexahydrate 31.3 Sodium acetate 3 Citric acid Sodium hypophosphite monohydrate 20 Water to make 1 1.
  • Electroless nickel bath B G./l. Nickel sulfate hexahydrate 26.3 Ammonium chloride 53.5 Sodium hypophosphite monohydrate 21.2
  • Electroless nickel bath B is from U.S. Pat. 3,488,166, Kovac et al., patented Jan. 6, 1970. There are also numerous commercial electroless nickel baths offered under proprietary names for this use.
  • one of the above quaternary amine surfactants can be dissolved in the above reducing solution and used in conjunction with the surfactant solution in the above described process or the surfactant solution omitted from the process and the solution of surfactant and reducing agent used alone.
  • nickel While the common practice is to refer to the deposits from the above hypophosphite containing electroless nickel bath as nickel, it is well known that the deposits are really a nickel phosphorus alloy.
  • nickel as used herein is understood to refer to this nickel phosing examples. These examples are given merely to illus- I ing sense. All references to temperature are F. unless otlierwiseindi ated. t
  • EXAMPLE 1 To demonstrate the increased rate of metal deposition and the greater uniformity of the metal deposit obtained by the use of these quaternary amine surfactants in the process of metallizing nonconductors, a number of pieces of injection molded acrylonitrile-butadiene-styrene (ABS) and polypropylene (PP) polymers which had been etched were metalized with and without the use of the surfactants and after 45 seconds immersion in the electroless nickel metalizing bath, the pieces wereremoved and the percent of thesurface of the nonconductor which was covered by the electroless nickel deposit was determined by visualobservation.
  • ABS injection molded acrylonitrile-butadiene-styrene
  • PP polypropylene
  • Sequence 1 I Catalyst solution A, room temperature, 2 min. Reducingg solution, room temperature, 1min. Nickel bath A or B, room temperature, 45 sec.
  • Sequence 2 Surfactant solution, room temperature, 2 min. Catalyst solution A, room temperature, 2 min. Reducing solution, room temperature, 1 min. Nickel bath A or B, room temperature, 45 sec.
  • surfactant solution is shown in the sequence above, the solution was prepared by dissolving sufiicient commercial quaternary amine surfactant in water to obtain a solution containing the percent by volume of active surfactant which is shown in the column under this heading in Tables 1 and 2.
  • this solution was prepared by adding an equivalent amount of the same surfactant to the reducingsolution as was used to prepare the surfactant solution.
  • Ammonyx T the solution can be prepared more easily if the surfactant is first dissolved using 1 volume to 2 volumes of ethanol and then added to either the reducing solution or to water to make up the surfactant solution.
  • Sequences 1 and 2 were used to plate ABS polymers and sequences 3 and 4 were used to plate PP polymers.
  • Table lv shows the percentage of the surface covered with nickel when nickel bath A was used to metalize the surface of the polymer as Well as the type and concentration of surfactant-used, the plating sequence used and the polymer which was metalized.
  • Table 2 shows'the same information for those examples where nickel bath -B was used tometalize the surface of the polymer.
  • Hyamjne 3500 A 0.05% by volume surfactant solution of Hyamjne 3500 was used in conjunction with a commercial system for plating polypropylene to plate injection molded PP chips and plaques. The sequence used to plate these parts was as follows:
  • Etching solution 175-185 F., 10-15 min.
  • Surfactant solution room temperature, 1-3 min.
  • Catalyst solution room temperature, 1-2 min.
  • Reducing solution room temperature, 1 min.
  • Catalyst solution room temperature, 1 min.
  • Electroless nickel bath 70-85 -F., 6 min.
  • step (e) 5. The process of claim 1 wherein from 0.0 1 to 0.1% by volume of the surfactant used in step (a) is also added to the reducing solution in step (e).

Abstract

THE USE OF A QUATERNARY AMINE SURFACTANT SOLUTION IN AN ELECTROLESS METAL PLATING PROCESS PRODUCES A UNIFORM COATING ON A NONCONDUCTOR SURFACE AND EXCELLENT SURFACE COVERAGE.

Description

United states Patent omce 3,684,572 Patented Aug. 15, 1972 6 Claims ABSTRACT OF THE DISCLOSURE The use of a quaternary amine surfactant solution in an electroless metal plating process produces a uniform coating on a nonconductor surface and excellent surface coverage.
BACKGROUND OF THE INVENTION (1) Field of the invention This invention relates to an electroless metal plating process for a nonconductor and more particularly to a process wherein a uniform metal coating is obtained on the surface of a nonconductor by treatment of the surface with a solution of aquaternary amine surfactant during the process.
(2) Description of the prior art In the process of metalizing a nonconductor surface such as polypropylene; acrylonitrile-butadiene-styrene or other plastics, the surface is first etched or conditioned usually by immersion in an oxidizing solution to make the surface hydrophilic. After the oxidizing treatment, the surface is then rinsed with water to remove excess oxidizing solution and then immersed in a catalyst solution. After treatment with the catalyst" solution, the surface is rinsed with water to remove excess catalyst solution and then immersed in a reducing solution to reduce the catalyst to metallic form after which the surface is rinsed with water and immersed in anelectroless metal plating bath to metalize the part. '1
Frequently, it is found that the nonconductor surface is not completely covered with a uniform coating of metaLThere may be voids or discontinuities in the metal coating on the nonconductor. Further, the metal coating may be rough rather than smooth and the thickness of the coating variable.
S MM R F THE I NVEN TION An electroless metal plating process, which gives exfound. The process produces uniform metal coating on a part molded from a nonconductor such; as polypropylene (PP), acrylonitrile-butadiene-styrene (ABS) or the like. Improved results are attributed to treatment of the surface I tion of surfactant and reducing agent is used. However,
cellent surfacecoverage of a nonconductor has been of the nonconductor during the processwith a solution of a quaternary amine surfactant where one radical is an alkyl having from about 10 to'about 20 carbon atoms and a second radical is an alkyl having about 10 to about 20 carbon atoms, benzyl or an alkyl benzyl radical.
It is an object of this invention to provide a surfactant solution for improving the coverage of a nonconductor when plated by an electroless nickel plating process. Another object of this invention is to provide an electroless plating process. A further object is toprovide an improved electroless plating process wherein the surface of the nonconductor is treated with a quaternary amine surfactant after etching and before catalyzing the surface to obtain a uniform metal coating. A further object is to provide uniform coverage of nonconductor surface with meta1. Other objects will become apparent fromthe detailed description given hereinafter. It is intended that this description and specific examples merely indicate preferred embodiments and are not given to limit this invention since various changes and modifications within the scope of this invention will become apparent to those skilled in the art. 7.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The surface of a nonconductor is treated with a dilute solution of a quaternary amine surfactant, after etching and before catalyzing. Useful surfactants include N-alkyl (C1240%, C -50%, ammonium chloride such as Hyamine 3500 (Rohm and Haas C03, Philadelphia, Pennsylvania), n-alkyl (C -C dimethyl ethylbenzyl ammonium cyclohexyl sulfamate such as Onyxide 172 (Onyx Chemical 00., Jersey City, N.J.), dilauryl dimethyl ammonium chloride such as Aliquat 204 (General Mills, Kankakee, 111.), cetyl dimethyl benzyl ammonium chloride such as Ammonyx T (Onyx Chemical 00., Jersey City, N.J.). The above surfactants are used to prepare dilute aqueous solutions containing from about 0.01 to about 0.1% by volume of active surfactant. These surfactant solutions can then be used to treatthe surface of the nonconductor after etching and before cat alyzing in the electroless plating process. Or they may be used in other steps of the process.
Advantages of the process of this invention include faster deposition of metal, more uniform deposition of metal, reduced operating temperatures in the oxidizing solution bath and electroless nickel bath. Further, use of the surfactant solution does not appear to adversely affect other steps in the process. Life tests on a plating line did not show any evidence of contamination or other adverse effects that might be attributed to the surfactant solution or its use. The surfactant can also be dissolved in the reducing solution and the resulting solution of surfactant and reducing agent can be used as the reducing solution. If desired, use of a surfactant solution after etching and before catalyzing the surface can be omitted when a solufurther improvements in plating results can be obtained using both a surfactant solution and a reducing solution containing a surfactant and reducing agent in this process.
In the process of metalizing :a nonconductor surface, for example, polypropylene (PP), acrylonitrile-butadienestyrene (ABS) or other polymeric material, the surface is first etched or conditioned, usually by immersion in an oxidizing solution to make the surface hYdI'OPhiIlC-*U.S. Pat. 3,471,313, Saubestre et al., patented Oct. 7, 1969 discloses numerous oxidizing solutions useful for this purpose. There are also numerous commercial oxidizing solutions offered under proprietary names for this purpose.
After thorough rinsing with water, the surface of the substrate is then immersed in one of the dilute solutions of cationic surfactants described above and then rinsed thoroughly with water. The substrate surface is then catalyzed by being immersed in a catalyst solution of a catalytic metal ion usually palladium ions obtained by dissolving a palladium salt in a solution of acid. Various concentrations of a palladium salt and hydrochloric acid can be used. A typical catalyst solution has the following composition:
Palladium chloride-01 g./l.-0.3 g./l. Hydrochloric acid-d0 ml./1.50 ml./l. Water to make 1 1.
(Reference: Goldie, William, Metallic Coating of Plastics, Middlesex, England: Electrochemical Publications Limited, 1968, pp. 39-52.) The following solution designated as catalyst solution A has been used to catalyze ABS and PP surfaces for metalizing.
3 Catalyst solution A G,./l. Palladium chloride 0.2 Hydrochloric acid 0.2
Water to make 1 l.
The catalyst solution can be the palladium catalyst solu- Water to make 1 1.
After removal from the reducing solution, the substrate surface is rinsed with water and then immersed in an electroless *metal plating bath;
Typical electroless metal plating baths have the following compositions: I
Electroless nickel bath A G./l. Nickel sulfate hexahydrate 31.3 Sodium acetate 3 Citric acid Sodium hypophosphite monohydrate 20 Water to make 1 1.
For use at a temperature of 75 to 85 F. and a pH of 8.5 to 8.7.
Electroless nickel bath B G./l. Nickel sulfate hexahydrate 26.3 Ammonium chloride 53.5 Sodium hypophosphite monohydrate 21.2
Water to make 1 1.
For use at room temperature, pH adjusted to 9 with NaOH.
Electroless nickel bath B is from U.S. Pat. 3,488,166, Kovac et al., patented Jan. 6, 1970. There are also numerous commercial electroless nickel baths offered under proprietary names for this use.
If desired, from about 0.01 to about 1.0% by weight of one of the above quaternary amine surfactants can be dissolved in the above reducing solution and used in conjunction with the surfactant solution in the above described process or the surfactant solution omitted from the process and the solution of surfactant and reducing agent used alone.
The ease with which extruded or molded plastic nonconductor surfaces are metalized varies from part to part or even from batch to batch. Reasons for this variation are not really known but have been attributed to variations such as mold design, gate size, mold temperature, melt temperature, etc. These variations are readily overcome by use of the process of this invention.
While the common practice is to refer to the deposits from the above hypophosphite containing electroless nickel bath as nickel, it is well known that the deposits are really a nickel phosphorus alloy. The term nickel as used herein is understood to refer to this nickel phosing examples. These examples are given merely to illus- I ing sense. All references to temperature are F. unless otlierwiseindi ated. t
EXAMPLE 1 To demonstrate the increased rate of metal deposition and the greater uniformity of the metal deposit obtained by the use of these quaternary amine surfactants in the process of metallizing nonconductors, a number of pieces of injection molded acrylonitrile-butadiene-styrene (ABS) and polypropylene (PP) polymers which had been etched were metalized with and without the use of the surfactants and after 45 seconds immersion in the electroless nickel metalizing bath, the pieces wereremoved and the percent of thesurface of the nonconductor which was covered by the electroless nickel deposit was determined by visualobservation.
After etching in a chromic acid-sulfuric acid etching solution, the followingsequences were used to metalize the surfaces. These sequences show type of solution used in treatment, temperature of treatment and time period of treatment. Surfaces of the pieces were rinsed with water between each step in the sequences.
Sequence 1 I Catalyst solution A, room temperature, 2 min. Reducingg solution, room temperature, 1min. Nickel bath A or B, room temperature, 45 sec.
Sequence 2 Surfactant solution, room temperature, 2 min. Catalyst solution A, room temperature, 2 min. Reducing solution, room temperature, 1 min. Nickel bath A or B, room temperature, 45 sec.
Sequence 3 Catalyst solution A, room temperature, 2 min. Reducing solution, room temperature, 1 min. Catalyst solution A, room temperature, 1 min. Reducing'solution, room temperature, 1 min. Nickel bath A or B, room temperature, 45 sec.
Sequence 4 Surfactant solution, room temperature, 2 min.
Where surfactant solution is shown in the sequence above, the solution was prepared by dissolving sufiicient commercial quaternary amine surfactant in water to obtain a solution containing the percent by volume of active surfactant which is shown in the column under this heading in Tables 1 and 2. In sequence 4, where use of reducing solution and surfactant is shown, this solution was prepared by adding an equivalent amount of the same surfactant to the reducingsolution as was used to prepare the surfactant solution. When Ammonyx T is used, the solution can be prepared more easily if the surfactant is first dissolved using 1 volume to 2 volumes of ethanol and then added to either the reducing solution or to water to make up the surfactant solution. Sequences 1 and 2 were used to plate ABS polymers and sequences 3 and 4 were used to plate PP polymers. Table lvshows the percentage of the surface covered with nickel when nickel bath A was used to metalize the surface of the polymer as Well as the type and concentration of surfactant-used, the plating sequence used and the polymer which was metalized. Table 2 shows'the same information for those examples where nickel bath -B was used tometalize the surface of the polymer.
TABLE 1.PERCENT OF SURFACE COVERED WITH ELECTROLESS NICKEL DEPOSIT AFTER 45 SEC. WHEN NICKEL BATH A WAS USED TO METALIZE THE SURFACE Percent by Percent of volume of Metalizing surface active sequence covered Surfactant used surfactant used Polymer with metal 1 ABS 5 2 ABS 100 1 ABS None 2 ABS 100 3 PP None 1 ABS 1O 2 ABS 100 1 ABS 2 ABS 9O 1 ABS 10 2 ABS 90 TABLE 2.PERCENT OF SURFACE COVERED WITH ELECTROLESS NICKEL DEPOSIT AFTER 45 Sec. WHEN NICKEL BATH B WAS USED TO METAL'IZE THE SURFACE The quaternary amne surfactant solutions listed below were used in conjunction with a commercial system for plating on ABS plastic to plate ABS panels. The following plating sequence was used:
Etching solution, 135-145 F., 6 min.
Surfactant solution, room temperature, 1-3 min.
Catalyst solution, 140 F., 1-3 min.
Reducing solution, room temperature, '1-2 min. Electroless nickel bath, 70-85 F., 1 min.
Surfaces of the panels were rinsed with water between each step in the sequence. When the surfactant solution step was omitted, only 10% of the surface was covered with nickel. When the surfactant step was included in the sequence, the following results were obtained:
Percent of Percent by s cc volume of covered with active nickel in Surfactant used surfactant 1 min.
Onyxide 172 0. 8 100 Ammonyx T 0. 25 80-95 Hyamine 3500- 0. 05 95-100 Aliquat 240 0. 75 95 EXAMPLE 3 A 0.05% by volume surfactant solution of Hyamjne 3500 was used in conjunction with a commercial system for plating polypropylene to plate injection molded PP chips and plaques. The sequence used to plate these parts was as follows:
Etching solution, 175-185 F., 10-15 min. Surfactant solution, room temperature, 1-3 min. Catalyst solution, room temperature, 1-2 min. Reducing solution, room temperature, 1 min. Catalyst solution, room temperature, 1 min. Electroless nickel bath, 70-85 -F., 6 min.
Surfaces of the parts were rinsed with water between each step in the sequence. When the surfactant solution was omitted from the above sequence, the nickel deposit did not completely cover the surface of the plastic and parts were unsuitable for subsequent electroplating. When the surfactant solution was included in the above sequence, the surface of plastic parts was completely covered with electroless nickel and the parts were suitable for subsequent electroplating.
What is claimed is:
1. In an electroless nickel plating process for a nonconductor wherein the noncondnctor substrate surface is oxidized to convert the surface to a hydrophilic state followed by water rinsing, the process which then comprises the steps of:
(a) treating the surface in an aqueous surfactant solution comprising from 0.01 to 0.1% by volume of a quaternary amine surfactant where one radical is an alkyl having from about 10 to about 20 carbon atoms and a second radical is selected from the group consisting of an alkyl having from about-10 to about 20 carbon atoms, benzyl and an alkyl benzyl radical, then (b) rinsing the surface with water to remove excess surfactant solution, thereafter (c) treating the surface in a palladium salt catalyst solution, then (d) .rinsing the surface with water to remove excess catalyst solution, thereafter (e) treating the surface in a reducing solution, thereafter (f rinsing the surface to remove excess reducing solution, and then (g) treating the surface in an electroless nickel plating bath to deposit nickel from the bath onto the surface.
2. The process of claim 1 wherein the noncondnctor is a polypropylene polymeric material.
3. The process of claim 1 wherein the noncondnctor is an acrylonitrile-butadiene-styrene polymeric material.
4. The process of claim 1 wherein the noncondnctor is immersed in an electroless nickel plating bath at a temperature of about 65 to about F.
5. The process of claim 1 wherein from 0.0 1 to 0.1% by volume of the surfactant used in step (a) is also added to the reducing solution in step (e).
6. The process of claim 1 wherein from 0.01 to 0.1% by volume of the surfactant used in step (a) is added to the reducing solution in step (e) and steps (a) and (b) are omitted.
References Cited UNITED STATES PATENTS 3,563,784 2/1971 Innes et al. 117--160 X 3,561,995 2/1971 Wu et al. 11747 3,095,373 6/196'3 'Blomfield 117-47 X 3,556,882 1/ 1971 Fishman et al 117-47 X 2,555,883 6/1951 Harvey et al.
3,338,726 8/ 1967 Berzins 106-1 3,485,643 12/ 1969 Zeblisky et a1 117-47 X 3,515,563 6/1970 Hodoley et al 117-'47 X 3,442,683 5/ 1969' Lenoble et al. 1 17160 X 3,437,507 4/1969 Jensen 117-1'6O X 3,467,540 9/ 1969 Schick ll7--2l3 X RALPH S. KENDALL, Primary Examiner.
C. WESTON, Assistant Examiner US. Cl. X.R.
117- 47 R, R, 213; 260--567.6 R
US3684572D 1970-07-13 1970-07-13 Electroless nickel plating process for nonconductors Expired - Lifetime US3684572A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US5456970A 1970-07-13 1970-07-13

Publications (1)

Publication Number Publication Date
US3684572A true US3684572A (en) 1972-08-15

Family

ID=21992009

Family Applications (1)

Application Number Title Priority Date Filing Date
US3684572D Expired - Lifetime US3684572A (en) 1970-07-13 1970-07-13 Electroless nickel plating process for nonconductors

Country Status (1)

Country Link
US (1) US3684572A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881049A (en) * 1971-12-08 1975-04-29 Kalle Ag Process for depositing copper layers on shaped articles of a polyimide
US3914126A (en) * 1973-02-12 1975-10-21 Xerox Corp Nickel oxide interlayers for photoconductive elements
DE2634232A1 (en) * 1976-07-30 1978-02-02 Licentia Gmbh Thin film resistors using electroless nickel-phosphorus layer - obtd. from aq. bath providing very low temp. coefft. of resistance
US4478883A (en) * 1982-07-14 1984-10-23 International Business Machines Corporation Conditioning of a substrate for electroless direct bond plating in holes and on surfaces of a substrate
US4639380A (en) * 1985-05-06 1987-01-27 International Business Machines Corporation Process for preparing a substrate for subsequent electroless deposition of a metal
EP0213542A1 (en) * 1985-08-23 1987-03-11 Schering Aktiengesellschaft Conditioning agent for the treatment of basic materials
US4720400A (en) * 1983-03-18 1988-01-19 W. L. Gore & Associates, Inc. Microporous metal-plated polytetrafluoroethylene articles and method of manufacture
US4910072A (en) * 1986-11-07 1990-03-20 Monsanto Company Selective catalytic activation of polymeric films
US4940609A (en) * 1987-12-23 1990-07-10 Basf Aktiengesellschaft Polymeric conditioner for pretreating nonmetallic surfaces for chemical metallization
US4997680A (en) * 1987-12-23 1991-03-05 Basf Aktiengesellschaft Polymeric conditioner for pretreating nonmetallic surfaces for chemical metallization
US5039550A (en) * 1990-01-23 1991-08-13 The United States Of America As Represented By The Secretary Of Commerce Colloidal processing method for coating ceramic reinforcing agents
US5075037A (en) * 1986-11-07 1991-12-24 Monsanto Company Selective catalytic activation of polymeric films
US6468672B1 (en) 2000-06-29 2002-10-22 Lacks Enterprises, Inc. Decorative chrome electroplate on plastics
US20040058071A1 (en) * 2002-09-24 2004-03-25 International Business Machines Corporation Colloidal seed formation for printed circuit board metallization
US20050218487A1 (en) * 2004-03-30 2005-10-06 Satoshi Kimura Method for manufacturing wiring substrate and method for manufacturing electronic device
US20060086620A1 (en) * 2004-10-21 2006-04-27 Chase Lee A Textured decorative plating on plastic components
US20120073978A1 (en) * 2009-06-08 2012-03-29 Basf Se Use of ionic liquids for the pretreatment of surfaces of plastics for metallization
US20140054788A1 (en) * 2011-03-08 2014-02-27 Japan Science And Technology Agency Method for fabricating nanogap electrodes, nanogap electrodes array, and nanodevice with the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881049A (en) * 1971-12-08 1975-04-29 Kalle Ag Process for depositing copper layers on shaped articles of a polyimide
US3914126A (en) * 1973-02-12 1975-10-21 Xerox Corp Nickel oxide interlayers for photoconductive elements
DE2634232A1 (en) * 1976-07-30 1978-02-02 Licentia Gmbh Thin film resistors using electroless nickel-phosphorus layer - obtd. from aq. bath providing very low temp. coefft. of resistance
US4478883A (en) * 1982-07-14 1984-10-23 International Business Machines Corporation Conditioning of a substrate for electroless direct bond plating in holes and on surfaces of a substrate
US4720400A (en) * 1983-03-18 1988-01-19 W. L. Gore & Associates, Inc. Microporous metal-plated polytetrafluoroethylene articles and method of manufacture
US4639380A (en) * 1985-05-06 1987-01-27 International Business Machines Corporation Process for preparing a substrate for subsequent electroless deposition of a metal
AT394213B (en) * 1985-08-23 1992-02-25 Schering Ag CONDITIONING OF BASE MATERIALS
EP0213542A1 (en) * 1985-08-23 1987-03-11 Schering Aktiengesellschaft Conditioning agent for the treatment of basic materials
US4910072A (en) * 1986-11-07 1990-03-20 Monsanto Company Selective catalytic activation of polymeric films
US5075037A (en) * 1986-11-07 1991-12-24 Monsanto Company Selective catalytic activation of polymeric films
US4940609A (en) * 1987-12-23 1990-07-10 Basf Aktiengesellschaft Polymeric conditioner for pretreating nonmetallic surfaces for chemical metallization
US4997680A (en) * 1987-12-23 1991-03-05 Basf Aktiengesellschaft Polymeric conditioner for pretreating nonmetallic surfaces for chemical metallization
US5039550A (en) * 1990-01-23 1991-08-13 The United States Of America As Represented By The Secretary Of Commerce Colloidal processing method for coating ceramic reinforcing agents
US6468672B1 (en) 2000-06-29 2002-10-22 Lacks Enterprises, Inc. Decorative chrome electroplate on plastics
US20040058071A1 (en) * 2002-09-24 2004-03-25 International Business Machines Corporation Colloidal seed formation for printed circuit board metallization
US6852152B2 (en) 2002-09-24 2005-02-08 International Business Machines Corporation Colloidal seed formulation for printed circuit board metallization
US20050042383A1 (en) * 2002-09-24 2005-02-24 International Business Machines Corporation Colloidal seed formation for printed circuit board metallization
US20050218487A1 (en) * 2004-03-30 2005-10-06 Satoshi Kimura Method for manufacturing wiring substrate and method for manufacturing electronic device
US7305761B2 (en) * 2004-03-30 2007-12-11 Seiko Epson Corporation Method for manufacturing wiring substrate
US20060086620A1 (en) * 2004-10-21 2006-04-27 Chase Lee A Textured decorative plating on plastic components
US20120073978A1 (en) * 2009-06-08 2012-03-29 Basf Se Use of ionic liquids for the pretreatment of surfaces of plastics for metallization
US9090966B2 (en) * 2009-06-08 2015-07-28 Basf Se Use of ionic liquids for the pretreatment of surfaces of plastics for metallization
US20140054788A1 (en) * 2011-03-08 2014-02-27 Japan Science And Technology Agency Method for fabricating nanogap electrodes, nanogap electrodes array, and nanodevice with the same

Similar Documents

Publication Publication Date Title
US3684572A (en) Electroless nickel plating process for nonconductors
US3011920A (en) Method of electroless deposition on a substrate and catalyst solution therefor
US6331239B1 (en) Method of electroplating non-conductive plastic molded products
US3817774A (en) Preparation of plastic substrates for electroless plating
US3437507A (en) Plating of substrates
US3438798A (en) Electroless plating process
US3597266A (en) Electroless nickel plating
GB2036755A (en) Accelerating solution and its use in a process for treating polymeric substrates prior to plating
US3698919A (en) Preparation of plastic substrates for electroless plating and solutions therefor
US2874072A (en) Autocatalytic copper plating process and solution
US4520046A (en) Metal plating on plastics
US3024134A (en) Nickel chemical reduction plating bath and method of using same
US3853590A (en) Electroless plating solution and process
US3178311A (en) Electroless plating process
US3485725A (en) Method of increasing the deposition rate of electroless solutions
US3423226A (en) Plating of non-metallic bodies
US4035227A (en) Method for treating plastic substrates prior to plating
US3537878A (en) Electroless plating process
US3698939A (en) Method and composition of platinum plating
US3751289A (en) Method of preparing surfaces for electroplating
US3674550A (en) Method of electroless deposition of a substrate and sensitizing solution therefor
US3672940A (en) Process for chemically depositing nickel on a synthetic resin base material
US3704156A (en) Catalyst solution for electroless plating on nonconductors
US3769061A (en) Pre-etch treatment of acrylonitrile-butadiene-styrene resins for electroless plating
US3697296A (en) Electroless gold plating bath and process