US3698202A - Control system for low temperature refrigeration system - Google Patents

Control system for low temperature refrigeration system Download PDF

Info

Publication number
US3698202A
US3698202A US171874A US3698202DA US3698202A US 3698202 A US3698202 A US 3698202A US 171874 A US171874 A US 171874A US 3698202D A US3698202D A US 3698202DA US 3698202 A US3698202 A US 3698202A
Authority
US
United States
Prior art keywords
evaporator
refrigerants
pressure
refrigerant
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US171874A
Inventor
Dale J Missimer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wickes Manufacturing Co
Original Assignee
Gulf and Western Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gulf and Western Industries Inc filed Critical Gulf and Western Industries Inc
Application granted granted Critical
Publication of US3698202A publication Critical patent/US3698202A/en
Assigned to WICKES MANUFACTURING COMPANY reassignment WICKES MANUFACTURING COMPANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GULF & WESTERN INC., A DE CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle

Definitions

  • ABSTRACT In a compression refrigeration cycle employing a mixture of refrigerants and a single compressor wherein low temperatures are reached by one or more vaporliquid separations in which the expanded and cooled liquid from each separation stage is evaporated and used to condense the vapors from that stage, high starting discharge pressures are avoided and rapid cool down to low temperature is achieved by incorporating a by-pass system for the throttling device feeding the evaporator which is responsive to predetermined operating characteristics of the cycle.
  • U.S. Pat. No. 3,203,194 issued Aug. 31, 1965 to A. Fuderer describes a compression refrigeration system involving the use of a mixture of refrigerants circulating in a single refrigeration circuit employing a single compressor.
  • the compressed mixture of refrigerant gasses undergoes a partial condensation in a first condensation stage and a liquid fraction, rich in the higher boiling refrigerant, is formed. Thereafter, the liquid fraction is separated from the remaining vapors and the vapors are transferred to a second condensation stage where they are condensed using the cold produced by the expansion and evaporation of the liquid component from the first condensation stage and by cold vapors returning to the compressor from the final evaporator.
  • the final refrigeration temperature is achieved by throttling and at least partially evaporating the condensate from the second stage of condensation.
  • the refrigeration circuit is closed by mixing the vapors, and any residual liquid leaving the final evaporator with the vapor formed by throttling the liquid rich in the higher boiling refrigerant and returning the vaporous mixture to the compressor.
  • staged charging techniques In ex perimental systems, such a result is avoided by staging the refrigerant charge to the system, thereby limiting the volume of refrigerant flow until such time as lower temperatures are achieved and the system develops the capacity for accepting additional refrigerant.
  • staged charging techniques is obviously impractical in commercial systems which require that the full charge of refrigerant be permanently sealed into the system.
  • Yet another object of the present invention is to provide a sealed compression refrigeration system containing a full refrigerant charge which is capable of rapidly achieving low temperatures without damage to compression equipment or other system components.
  • the by-pass system of the invention avoids excessive discharge pressures and results in more rapid cooling for several reasons.
  • the volume on the low pressure or suction side of the refrigeration cycle is greater than the volume on the high pressure or discharge side of the compressor.
  • the vapors are permitted to more easily flow to the low pressure or suction side of the cycle thereby increasing the pressure on the side of the system which has more volume.
  • a larger amount of the non-condensed low boiling point vapor fractions can be retained in the system at a lower discharge pressure.
  • the bypass system allows the partially condensed low boiling point vapors on the high pressure side of the cycle to flow at a higher rate than the flow rates which can be achieved when the final throttling device is not bypassed, thereby resulting in quicker cooling of the final evaporator.
  • the system appears to lower the partial vapor pressure of the evaporating condensate employed in the high pressure side of the cascade condenser. The lower partial pressure results in lower evaporating temperatures for the liquid and thus, condensation on the high pressure side of the cascade condenser commences sooner and at lower temperatures.
  • FIG. 1 is a schematic representation of a refrigeration system employing one form of the by-pass system of the invention.
  • FIG. 2 is a schematic representation of a modified form of the by-pass system shown in FIG. 1.
  • a mixture of two or more refrigerants having different boiling points is charged into a single closed refrigeration circuit generally identified as through a service valve 12 or other conventional charging means such as a tube, pipe, or the like which will be sealed after the charging step.
  • the amount of each refrigerant charged to the system may be predetermined by weight or, in the case of lower boiling point refrigerants, by allowing each refrigerant gas to circulate through the system until a predetermined partial pressure and a predetermined total pressure for the system are reached.
  • the vapors are aspirated by a compressor 14 and pass through line 16 to condenser 18 where partial condensation occurs. Condensation occurs by heat exchange with ambient air forced over condenser pipes 20 by a fan 22, or alternatively, condensation may be carried out using a readily available source of water.
  • the partially condensed refrigerant mixture flows through line 24 to an optional auxiliary condenser 26 where, after the system is in operation, further condensation may occur by heat exchange with the cooler vapors returning to compressor 14 from the final evaporator 28 through line 30.
  • the utilization of an auxiliary condenser is not critical to the refrigeration system but such additional heat exchange at this point and at other similar points throughout the system serve to improve thermodynamic efficiency.
  • the partially condensed refrigerant mixture leaves auxiliary condenser 26 through line 32 and passes to a vapor-liquid separator 34.
  • the liquid at this point is rich in the higher boiling refrigerant or refrigerants of the mixture. Nevertheless, each fraction will contain at least minor amounts of each of the refrigerants in the mixture.
  • the liquid separated in separator 34 passes through an optional dryer-strainer 36 where particulate matter is filtered from the stream and residual moisture is removed and then through a capillary tube 38 which throttles the liquid, i.e., the pressure on the liquid drops from the discharge pressure to the suction pressure.
  • a capillary tube is not critical and any expansion or throttling device such as a float valve, thermal expansion valve, or other device well known in the refrigeration art may be employed in lieu of capillary tube 38.
  • a portion of capillary tube 38 may be disposed in a heating exchange relationship at point 40 with line 30 through which cold vapors are returning to the compressor from the final evaporator 28.
  • a heat exchanger could be employed at point 40. Such an exchanger would be particularly useful where expansion or throttling was achieved by means of a valve or other throttling device located below strainer 36, rather than the capillary tube as shown.
  • the throttled, low pressure liquid emanating from capillary 38 is intermixed at point 42 with the cold returning vapors in line 30.
  • This liquid is evaporated in cascade condenser 44 and the absorption of heat causes the condensation of the low-boiling point vapor fraction which leaves separator 34 and passes through line 43 to cascade condenser 44.
  • the by-pass systems of the invention are closed and the final liquid fraction from cascade condenser 44 passes through a second optional dryer strainer 46, is throttled in capillary tube or other throttling device 48 and, if desired, further cooled by heat exchange with returning vapors in line 30 at exchange point 50.
  • the liquid at evaporator inlet 52 is at the coldest system temperature and essentially at the suction pressure and is partially or completely evaporated in evaporator 28 to achieve the final refrigeration temperature of the system.
  • the refrigeration circuit is closed by returning the vapors and any residual liquid from evaporator 28 through line 30 back to compressor 14, the vapor being mixed with additional refrigerant fractions, e.g., the expanded and evaporated higher boiling liquid fraction emanating from capillary 38, along its path of travel as previously described and the cycle is repeated.
  • additional refrigerant fractions e.g., the expanded and evaporated higher boiling liquid fraction emanating from capillary 38
  • the refrigeration system as described above is substantially identical to the system described in US. Pat. No. 3,203,194. It is capable of producing low refrigeration temperatures, when operating, utilizing mixtures of refrigerants having different boiling points with conventional compressors operating at compression ratios of less than 10: 1.
  • FIG. 1 also illustrates one form of the by-pass system of the invention.
  • This system includes valve 54 positioned near the outlet end of optional dryer-strainer 46 and line 56 which runs from valve 54 to the inlet 52 of evaporator 28.
  • valve 54 is closed and the refrigeration cycle operates as previously described.
  • the condensate leaving cascade condenser 44 passes through expansion device 48 and then through final evaporator 28.
  • valve 54 will be open and the vapors and condensate from cascade condenser 44 will pass through valve 54 and line 56 to the inlet end 52'of evaporator 28 thereby by-passing expansion device 48.
  • valve 54 may be either a temperature or pressure actuated valve of a construction generally well known to persons skilled in the art.
  • a typical pressure actuated valve which is useful in the system of the invention is designed to sense the upstream or compressor discharge pressure and open as this pressure increases above a pre-set level.
  • the discharge pressure of the system which acts to open the valve will be counterbalanced by a spring and atmospheric pressure acting in a downward or closing direction.
  • the port size of the valve will be selected so as to handle the vapor flow without permitting the outlet pressure from the valve to influence its operating characteristics while being small enough to avoid chattering.
  • valve seat and plug shape may be designed to permit a modulated flow rather than merely operating only at the full open or full closed position although the pressure range between the full open and pre-set shut-off positions will be relatively small, e.g., to 50 psi. While the operating range for the valve is not critical it may function to by-pass the final throttling step, as least in part, until the discharge pressure reaches a level of within 10 to 150 psi of the final discharge pressure of the system.
  • a typical temperature actuated valve which is useful in the system of the invention is designed to sense the refrigerant temperature leaving the final evaporator and shut-off when this temperature reaches within a pre-determined level, e.g., within 5 to 100 F., preferably 10 to F. of the final evaporator temperature for which the system is designed.
  • the thermal expansion valve will normally be installed in parallel with the capillary tube or other expansion device feeding the final evaporator and will have an oversized port or orifice, e.g., 3 to 5 times the size required for a standard duty thermal expansion valve.
  • valve will be set to function at a predetermined level based upon the operating characteristics of the refrigeration system in which it is employed. These characteristics will vary depending upon the nature of the refrigerants employed and the maximum safe operating pressure and compressor ratios for the compressor employed in the system. Typically a pressure actuated type would be wide open at discharge pressures above 300 psig and will close tight below 250 psig with a compressor suitable for air-conditioning with R- 22 refrigerant (about 2.5 cfm displacement per h.p.). For an air-conditioning range R-12 compressor having about 4 cfm displacement per h.p., the actuation range would be full open at 200 psig and closed at 160 psig discharge pressure.
  • Temperature actuated valves or more suitably temperaturesuction pressure thermal expansion valves which sense and control from superheat have a charge such that they remain open until the suction line leaving the evaporator is reduced to within 10 to 20 F. of the final low temperature.
  • Such a valve when installed in parallel with a thermal expansion valve used for final control of feed to the evaporator, will have a charge in the power assembly having a boiling point about 10 to 30 F. higher than that of the refrigerants exiting from the evaporator, when compared at the same suction pressures. This may involve the use of a mixed or cross charge in the by-pass valve power assembly.
  • FIG. 2 illustrates a slightly modified form of the bypass system.
  • a pair of complimentary temperature and/or pressure controlled solenoid actuated or modulating type valves 60 and 62 function as a by-pass control system.
  • valve 62 will be closed and valve 60 will be open so that the condensate leaving cascade condenser 44 travels through expansion device 48 and final evaporator 28 in the normal fashion.
  • valve 60 will be closed and valve 62 will remain open until such time as the solenoid operating valves 60 and 62 are energized, depending upon the operating charac teristics of the refrigeration cycle as previously discussed at which time valve 62 will close and valve 60 will open.
  • valve 62 With valve 62 in the open position and valve 60 in the closed position, the condensate leaving cascade condenser 44 will by-pass both expansion device 48 and final evaporator 28 and pass immediately to return line 30 at junction 64.
  • the solenoid valves may be actuated by the action of a temperature or pressure controller or by a suitable timing circuit. It is also evident that in lieu of two solenoid actuated valves a single three-way valve may be employed.
  • a storage freezer having a 4.5 cubic foot workspace volume and a capability of reaching F. was operated for the purpose of determining the effect of the by-pass system of the invention.
  • the freezer was first tested with a refrigeration cycle similar to that illustrated in FIG. 1 but not including the by-pass system.
  • the refrigerants employed were R-503, an azeotrope of trifluoromethane (R-23) and chlorotrifluoromethane (R-l3) and R-ll4, dichlorotetrafluoroethane.
  • the start-up pressure of the system was 350 psig and it took 90 minutes to reach a final evaporator temperature of l00 F.
  • the system had difficulty in starting up after each off cycle and on one occasion the cascade condenser went into selfrefrigeration.
  • the system described above was subsequently operated with a bypass control system including a thermal expansion valve having a suitably selected port size and a power assembly set up for 5 5 psig miximum operating pressure, and a cross-charged R-l3 charge, in parallel with the capillary tube feeding the final evaporator.
  • the maximum starting discharge pressure was normally only 280 psig.
  • the chamber reached 100 F. in 45 minutes.
  • a compression process for refrigeration using a mixture of refrigerants having different boiling points which process comprises the steps of compressing a vaporous mixture of refrigerants, partially condensing the compressed refrigerant vapors in a first condensation stage, separating the condensate into first liquid and first vapor phases, throttling said first liquid phase to a lower pressure, evaporating said throttled first liquid phase to absorb heat from and at least partially condense said separated first vapor phase, throttling the at least partially condensed vapors to a lower pressure, at least partially evaporating said throttled condensed vapors in an evaporator to produce the final refrigerating temperatures, mixing the refrigerant leaving said evaporator with the said throttled first liquid phase and closing the circuit by recycling the mixture of refrigerants to the compressing step, the improvement comprising by-passing the final throttling step feeding the evaporator when compression is commenced and continuing by by-pass said throttling step until the said refriger
  • each said intermediate cooling step comprising the steps of separating the condensate from said first condensation stage into a vapor phase and a liquid phase, throttling the liquid phase to a lower pressure; evaporating the throttled liquid phase to absorb heat from and at least partially condense the separated vapor phase and mixing the evaporated liquid phase with said mixture of refrigerants being recycled from said final evaporator to said compressing step.
  • said refrigerant mixture comprises two to six individual refrigerants.
  • a compression refrigeration apparatus comprismg:
  • a. compression means for compressing a vaporous mixture of refrigerants having different boiling points
  • condenser means for at least partially condensing said compressed refrigerant vapors
  • At least one intermediate cooling stage said stage comprising vapor-liquid separating means, throttling means for reducing the pressure on the separated liquid phase, heat exchanger means for at least partially condensing said separated vapor and evaporating said throttled liquid phase, circulation means for passing said at least partially condensed vapor to the next succeeding cooling stage and ClI'CLl atron means for returning sai evaporated liquid phase to said compressor means;
  • final throttling means for reducing the pressure of the at least partially condensed vapors from said intermediate cooling stage
  • e. evaporator means for at least partially evaporating said throttled condensed vapors to produce the final refrigerating temperature
  • bypass means interposed between said intermediate cooling stage and said evaporator said bypass means having an open position and a closed position and adapted to move between said positions in response to predetermined operating characteristics of the refrigerants;
  • recycling means for returning the at least partially evaporated refrigerant mixture to said compressor means.
  • valve is a thermal expansion valve which is actuated by the evaporator temperature and pressure.
  • the apparatus of claim 7 including a series of mixing means for joining the recycling refrigerant mixture emanating from said evaporator means with the throttled separated liquid from each of said successive intermediate cooling stages prior to reaching said compression means.
  • the apparatus of claim 7 further including at least one auxiliary condenser means for permitting heat exchange between said recycling refrigerant mixture and said at least partially condensed vapors.
  • the apparatus of claim 7 further including at least one heat exchange means for permitting an exchange of heat between said separated liquid and said recycling refrigerant mixture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

In a compression refrigeration cycle employing a mixture of refrigerants and a single compressor wherein low temperatures are reached by one or more vapor-liquid separations in which the expanded and cooled liquid from each separation stage is evaporated and used to condense the vapors from that stage, high starting discharge pressures are avoided and rapid cool down to low temperature is achieved by incorporating a by-pass system for the throttling device feeding the evaporator which is responsive to predetermined operating characteristics of the cycle.

Description

United States Patent Missimer [54] CONTROL SYSTEM FOR LOW TEMPERATURE REFRIGERATION SYSTEM [72] Inventor: Dale J. Missimer, San Anselmo,
Calif.
[73] Assignee: Gulf & Western Industries, Inc.,
New York, N.Y.
[22] Filed: Aug. 16, 1971 [21] Appl. No.: 171,874
[52] US. Cl. ..62/1l4, 62/197, 62/502 [51] Int. Cl ..F25b l/00 [58] Field 01 Search ..62/1l4, 197, 198, 502
[5 6] References Cited UNITED STATES PATENTS Podbielniak ..62/1 14 UX McGrath et a]. ..62/197 [45 1 Oct. 17, 1972 Coyne ..62/ l 97 Fuderer. ..62/1 14 Primary Examiner-William F. ODea Assistant Examiner-P. D. Ferguson Attorney-Morton Amster et al.
[57] ABSTRACT In a compression refrigeration cycle employing a mixture of refrigerants and a single compressor wherein low temperatures are reached by one or more vaporliquid separations in which the expanded and cooled liquid from each separation stage is evaporated and used to condense the vapors from that stage, high starting discharge pressures are avoided and rapid cool down to low temperature is achieved by incorporating a by-pass system for the throttling device feeding the evaporator which is responsive to predetermined operating characteristics of the cycle.
15 Claims, 2 Drawing Figures PATENTEDncI n 1912 SHEET 1 BF 2 ATTORNEYS PATENTEDnm 1 1 I972 sum 2 ur 2 INVENTOR. DALE J MISS/Mfr? ATTORNEYS CONTROL SYSTEM FOR LOW TEMPERATURE REFRIGERATION SYSTEM This invention relates to compression refrigeration systems. More particularly, the present invention is concerned with a novel control system for rapidly achieving ultra-low temperatures in compression refrigeration systems.
U.S. Pat. No. 3,203,194 issued Aug. 31, 1965 to A. Fuderer describes a compression refrigeration system involving the use of a mixture of refrigerants circulating in a single refrigeration circuit employing a single compressor. In this system, the compressed mixture of refrigerant gasses undergoes a partial condensation in a first condensation stage and a liquid fraction, rich in the higher boiling refrigerant, is formed. Thereafter, the liquid fraction is separated from the remaining vapors and the vapors are transferred to a second condensation stage where they are condensed using the cold produced by the expansion and evaporation of the liquid component from the first condensation stage and by cold vapors returning to the compressor from the final evaporator. The final refrigeration temperature is achieved by throttling and at least partially evaporating the condensate from the second stage of condensation. The refrigeration circuit is closed by mixing the vapors, and any residual liquid leaving the final evaporator with the vapor formed by throttling the liquid rich in the higher boiling refrigerant and returning the vaporous mixture to the compressor.
Co-pending commonly assigned US Pat. application, Ser. No. 4.3,l 08 filed June 3, 1970 and now abandoned, in the name of Dale Missimer and Daniel Lieberman and entitled Low Temperature Refrigeration System, aiso describes a compression refrigeration system utilizing a single refrigeration circuit which circulates a mixture of refrigerants. In that application, multiple intermediate cooling stages and multiple vapor liquid separation steps are employed to achieve ultimate low temperatures in the cryogenic range with conventional compression equipment operating at compression ratios of less than 10:1.
While the above-described systems are effective in achieving temperatures approaching the cryogenic range at low pressures and compression ratios when operating normally after having achieved temperatures in the range for which they were designed, a problem has existed with regard to the commercial packaging and design of sealed systems incorporating the above refrigeration concepts. Specifically, it has been found that when these systems operate at higher temperatures, for example during start-up from room temperature or during power off and standby conditions, the refrigerants employed exert substantially higher vapor pressures and there is an increased likelihood of reaching compressor discharge pressures and compression ratios which would damage the compressor. In ex perimental systems, such a result is avoided by staging the refrigerant charge to the system, thereby limiting the volume of refrigerant flow until such time as lower temperatures are achieved and the system develops the capacity for accepting additional refrigerant. The use of staged charging techniques is obviously impractical in commercial systems which require that the full charge of refrigerant be permanently sealed into the system.
An alternative method for controlling vapor discharge pressures is described in the Fuderer patent and involves the use of a pressure regulated vapor tank on the discharge side of the compressor. This vapor tank serves to take low boiling refrigerant vapors out of circulation when the pressure on the discharge side of the compressor becomes too high and to return some of those vapors to the refrigeration cycle as the pressure is reduced. The use of vapor tanks is unacceptable in many commercial operations since it severely reduces refrigerant flow through the system and thereby greatly increases the time required to reach the optimum temperature range for which the system is designed.
It is an object of the present invention to provide a novel control system for maintaining the compressor discharge pressures and compression ratios of compression refrigeration systems within the safe limits of the compressor being employed.
It is another object of this invention to provide a bypass system for rapid start-up of compression refrigeration systems employing multiple refrigerants and inter mediate cooling stages.
Yet another object of the present invention is to provide a sealed compression refrigeration system containing a full refrigerant charge which is capable of rapidly achieving low temperatures without damage to compression equipment or other system components.
It has now been discovered that excessive compressor discharge pressures and compression ratios can be avoided during periods of start-up and temperature pull-down by permitting uncondensed refrigerant vapors to return to the low pressure side of the refrigeration system without passing through the primary throttling device feeding the low temperature evaporator of the refrigeration cycle. It has also been discovered that the utilization of such by-pass systems results in the more rapid attainment of the normal operating conditions of the system.
While not wishing to be limited to any particular theory, it is presently believed that the by-pass system of the invention avoids excessive discharge pressures and results in more rapid cooling for several reasons. First, the volume on the low pressure or suction side of the refrigeration cycle is greater than the volume on the high pressure or discharge side of the compressor. Thus, eliminating the final throttling step, the vapors are permitted to more easily flow to the low pressure or suction side of the cycle thereby increasing the pressure on the side of the system which has more volume. As a result, a larger amount of the non-condensed low boiling point vapor fractions can be retained in the system at a lower discharge pressure. Second, the bypass system allows the partially condensed low boiling point vapors on the high pressure side of the cycle to flow at a higher rate than the flow rates which can be achieved when the final throttling device is not bypassed, thereby resulting in quicker cooling of the final evaporator. Moreover, since the larger flow of suction vapors to the compressor can more readily absorb the low boiling point rich vapors from the high pressure side of the system, the system appears to lower the partial vapor pressure of the evaporating condensate employed in the high pressure side of the cascade condenser. The lower partial pressure results in lower evaporating temperatures for the liquid and thus, condensation on the high pressure side of the cascade condenser commences sooner and at lower temperatures.
The invention will be further understood by reference to the accompanying drawings where:
FIG. 1 is a schematic representation of a refrigeration system employing one form of the by-pass system of the invention; and
FIG. 2 is a schematic representation of a modified form of the by-pass system shown in FIG. 1.
Referring specifically to FIG. 1, a mixture of two or more refrigerants having different boiling points is charged into a single closed refrigeration circuit generally identified as through a service valve 12 or other conventional charging means such as a tube, pipe, or the like which will be sealed after the charging step. The amount of each refrigerant charged to the system may be predetermined by weight or, in the case of lower boiling point refrigerants, by allowing each refrigerant gas to circulate through the system until a predetermined partial pressure and a predetermined total pressure for the system are reached.
Subsequent to the charging step the vapors are aspirated by a compressor 14 and pass through line 16 to condenser 18 where partial condensation occurs. Condensation occurs by heat exchange with ambient air forced over condenser pipes 20 by a fan 22, or alternatively, condensation may be carried out using a readily available source of water. The partially condensed refrigerant mixture flows through line 24 to an optional auxiliary condenser 26 where, after the system is in operation, further condensation may occur by heat exchange with the cooler vapors returning to compressor 14 from the final evaporator 28 through line 30. The utilization of an auxiliary condenser is not critical to the refrigeration system but such additional heat exchange at this point and at other similar points throughout the system serve to improve thermodynamic efficiency. The partially condensed refrigerant mixture leaves auxiliary condenser 26 through line 32 and passes to a vapor-liquid separator 34. The liquid at this point is rich in the higher boiling refrigerant or refrigerants of the mixture. Nevertheless, each fraction will contain at least minor amounts of each of the refrigerants in the mixture.
The liquid separated in separator 34 passes through an optional dryer-strainer 36 where particulate matter is filtered from the stream and residual moisture is removed and then through a capillary tube 38 which throttles the liquid, i.e., the pressure on the liquid drops from the discharge pressure to the suction pressure. The use of a capillary tube is not critical and any expansion or throttling device such as a float valve, thermal expansion valve, or other device well known in the refrigeration art may be employed in lieu of capillary tube 38. A portion of capillary tube 38 may be disposed in a heating exchange relationship at point 40 with line 30 through which cold vapors are returning to the compressor from the final evaporator 28. As noted previously, such an arrangement is not critical but serves to further cool the condensate and improve thermodynamic efficiency. In lieu of the heat exchange between capillary tube 38 and line 30 a heat exchanger could be employed at point 40. Such an exchanger would be particularly useful where expansion or throttling was achieved by means of a valve or other throttling device located below strainer 36, rather than the capillary tube as shown.
The throttled, low pressure liquid emanating from capillary 38 is intermixed at point 42 with the cold returning vapors in line 30. This liquid is evaporated in cascade condenser 44 and the absorption of heat causes the condensation of the low-boiling point vapor fraction which leaves separator 34 and passes through line 43 to cascade condenser 44.
When the system is operating normally, the by-pass systems of the invention are closed and the final liquid fraction from cascade condenser 44 passes through a second optional dryer strainer 46, is throttled in capillary tube or other throttling device 48 and, if desired, further cooled by heat exchange with returning vapors in line 30 at exchange point 50. The liquid at evaporator inlet 52 is at the coldest system temperature and essentially at the suction pressure and is partially or completely evaporated in evaporator 28 to achieve the final refrigeration temperature of the system. The refrigeration circuit is closed by returning the vapors and any residual liquid from evaporator 28 through line 30 back to compressor 14, the vapor being mixed with additional refrigerant fractions, e.g., the expanded and evaporated higher boiling liquid fraction emanating from capillary 38, along its path of travel as previously described and the cycle is repeated.
The refrigeration system as described above is substantially identical to the system described in US. Pat. No. 3,203,194. It is capable of producing low refrigeration temperatures, when operating, utilizing mixtures of refrigerants having different boiling points with conventional compressors operating at compression ratios of less than 10: 1.
FIG. 1 also illustrates one form of the by-pass system of the invention. This system includes valve 54 positioned near the outlet end of optional dryer-strainer 46 and line 56 which runs from valve 54 to the inlet 52 of evaporator 28. During normal operation, valve 54 is closed and the refrigeration cycle operates as previously described. Thus, the condensate leaving cascade condenser 44 passes through expansion device 48 and then through final evaporator 28. However, during start-up of the refrigeration cycle, valve 54 will be open and the vapors and condensate from cascade condenser 44 will pass through valve 54 and line 56 to the inlet end 52'of evaporator 28 thereby by-passing expansion device 48.
The selection of a particular flow control device for the by-pass system is not critical so long as it meets certain functional characteristics. Thus valve 54 may be either a temperature or pressure actuated valve of a construction generally well known to persons skilled in the art.
A typical pressure actuated valve which is useful in the system of the invention is designed to sense the upstream or compressor discharge pressure and open as this pressure increases above a pre-set level. In a typical pressure actuated valve the discharge pressure of the system which acts to open the valve will be counterbalanced by a spring and atmospheric pressure acting in a downward or closing direction. Moreover, the port size of the valve will be selected so as to handle the vapor flow without permitting the outlet pressure from the valve to influence its operating characteristics while being small enough to avoid chattering. In preferred valve arrangements, the valve seat and plug shape may be designed to permit a modulated flow rather than merely operating only at the full open or full closed position although the pressure range between the full open and pre-set shut-off positions will be relatively small, e.g., to 50 psi. While the operating range for the valve is not critical it may function to by-pass the final throttling step, as least in part, until the discharge pressure reaches a level of within 10 to 150 psi of the final discharge pressure of the system.
A typical temperature actuated valve which is useful in the system of the invention is designed to sense the refrigerant temperature leaving the final evaporator and shut-off when this temperature reaches within a pre-determined level, e.g., within 5 to 100 F., preferably 10 to F. of the final evaporator temperature for which the system is designed. The thermal expansion valve will normally be installed in parallel with the capillary tube or other expansion device feeding the final evaporator and will have an oversized port or orifice, e.g., 3 to 5 times the size required for a standard duty thermal expansion valve.
Irrespective of which type of by-pass valve is selected the valve will be set to function at a predetermined level based upon the operating characteristics of the refrigeration system in which it is employed. These characteristics will vary depending upon the nature of the refrigerants employed and the maximum safe operating pressure and compressor ratios for the compressor employed in the system. Typically a pressure actuated type would be wide open at discharge pressures above 300 psig and will close tight below 250 psig with a compressor suitable for air-conditioning with R- 22 refrigerant (about 2.5 cfm displacement per h.p.). For an air-conditioning range R-12 compressor having about 4 cfm displacement per h.p., the actuation range would be full open at 200 psig and closed at 160 psig discharge pressure.
Temperature actuated valves, or more suitably temperaturesuction pressure thermal expansion valves which sense and control from superheat have a charge such that they remain open until the suction line leaving the evaporator is reduced to within 10 to 20 F. of the final low temperature. Such a valve, when installed in parallel with a thermal expansion valve used for final control of feed to the evaporator, will have a charge in the power assembly having a boiling point about 10 to 30 F. higher than that of the refrigerants exiting from the evaporator, when compared at the same suction pressures. This may involve the use of a mixed or cross charge in the by-pass valve power assembly.
FIG. 2 illustrates a slightly modified form of the bypass system. In this arrangement a pair of complimentary temperature and/or pressure controlled solenoid actuated or modulating type valves 60 and 62 function as a by-pass control system. During normal operation valve 62 will be closed and valve 60 will be open so that the condensate leaving cascade condenser 44 travels through expansion device 48 and final evaporator 28 in the normal fashion. However, during start-up, valve 60 will be closed and valve 62 will remain open until such time as the solenoid operating valves 60 and 62 are energized, depending upon the operating charac teristics of the refrigeration cycle as previously discussed at which time valve 62 will close and valve 60 will open. With valve 62 in the open position and valve 60 in the closed position, the condensate leaving cascade condenser 44 will by-pass both expansion device 48 and final evaporator 28 and pass immediately to return line 30 at junction 64. It will be evident to those persons skilled in the art that the solenoid valves may be actuated by the action of a temperature or pressure controller or by a suitable timing circuit. It is also evident that in lieu of two solenoid actuated valves a single three-way valve may be employed.
While the by-pass system of the invention has been schematically represented with respect to the refrigeration cycle illustrated in Fuderer US. Pat. No. 3,203,194 it will be obvious to those persons skilled in the art that the system is equally applicable to refrigeration systems utilizing multiple vapor-liquid separators, multiple cascade condensers, and any desired number of refrigerants provided only that the boiling points of the individual refrigerants in the mixture are sufficiently far apart to permit a reasonable separation into distinct liquid and vapor phases at each stage of the system. Such systems and refrigerants are described in co-pending commonly assigned U.S. application, Ser. No. 43,108, filed June 30, 1970 and include refrigerant mixtures wherein each refrigerant in the mixture will differ in boiling point from the next closest boiling refrigerant by 40 to 250 F preferably F. Any of the well-known refrigerants set forth in standard refrigerant tables and charts may be employed.
The invention will be further understood by reference to the following illustrative example:
A storage freezer having a 4.5 cubic foot workspace volume and a capability of reaching F. was operated for the purpose of determining the effect of the by-pass system of the invention. The freezer was first tested with a refrigeration cycle similar to that illustrated in FIG. 1 but not including the by-pass system. The refrigerants employed were R-503, an azeotrope of trifluoromethane (R-23) and chlorotrifluoromethane (R-l3) and R-ll4, dichlorotetrafluoroethane. The start-up pressure of the system was 350 psig and it took 90 minutes to reach a final evaporator temperature of l00 F. In addition, in repeated tests the system had difficulty in starting up after each off cycle and on one occasion the cascade condenser went into selfrefrigeration.
The system described above was subsequently operated with a bypass control system including a thermal expansion valve having a suitably selected port size and a power assembly set up for 5 5 psig miximum operating pressure, and a cross-charged R-l3 charge, in parallel with the capillary tube feeding the final evaporator. The maximum starting discharge pressure was normally only 280 psig. The chamber reached 100 F. in 45 minutes.
Similar tests on the same system with a by-pass system comprising a pressure actuated valve resulted in pull-down to -l00 F. in 60 minutes at starting discharge pressures up to approximately 300 psig.
Having thus described the general nature as well as preferred embodiments of the invention and true scope will now be pointed out in the appended claims:
What is claimed is:
1. In a compression process for refrigeration using a mixture of refrigerants having different boiling points which process comprises the steps of compressing a vaporous mixture of refrigerants, partially condensing the compressed refrigerant vapors in a first condensation stage, separating the condensate into first liquid and first vapor phases, throttling said first liquid phase to a lower pressure, evaporating said throttled first liquid phase to absorb heat from and at least partially condense said separated first vapor phase, throttling the at least partially condensed vapors to a lower pressure, at least partially evaporating said throttled condensed vapors in an evaporator to produce the final refrigerating temperatures, mixing the refrigerant leaving said evaporator with the said throttled first liquid phase and closing the circuit by recycling the mixture of refrigerants to the compressing step, the improvement comprising by-passing the final throttling step feeding the evaporator when compression is commenced and continuing by by-pass said throttling step until the said refrigerants reach a predetermined operating condition.
2. The process of claim 1 wherein said final throttling step is by-passed until the discharge pressure is 10 to 150 psi more than the final discharge pressure of said process.
3. The process of claim 1 wherein said final throttling step is by-passed until the temperature of the refrigerant in said evaporator is within 5 to 100 F. of the lowest evaporator temperature for said process.
4. The process of claim 1 including at least one additional intermediate cooling stage subsequent to said first condensation stage and prior to separating the condensate into first liquid and first vapor phases, each said intermediate cooling step comprising the steps of separating the condensate from said first condensation stage into a vapor phase and a liquid phase, throttling the liquid phase to a lower pressure; evaporating the throttled liquid phase to absorb heat from and at least partially condense the separated vapor phase and mixing the evaporated liquid phase with said mixture of refrigerants being recycled from said final evaporator to said compressing step.
5. The process of claim 1 wherein said refrigerant mixture comprises two to six individual refrigerants.
6. The process of claim 1 in which any separated liquid phase is cooled by an exchange of heat with said recycling refrigerant returning to the compressing step prior to said evaporation of said separated and throttled liquid.
7. A compression refrigeration apparatus comprismg:
a. compression means for compressing a vaporous mixture of refrigerants having different boiling points;
b. condenser means for at least partially condensing said compressed refrigerant vapors;
c. at least one intermediate cooling stage, said stage comprising vapor-liquid separating means, throttling means for reducing the pressure on the separated liquid phase, heat exchanger means for at least partially condensing said separated vapor and evaporating said throttled liquid phase, circulation means for passing said at least partially condensed vapor to the next succeeding cooling stage and ClI'CLl atron means for returning sai evaporated liquid phase to said compressor means;
d. final throttling means for reducing the pressure of the at least partially condensed vapors from said intermediate cooling stage;
e. evaporator means for at least partially evaporating said throttled condensed vapors to produce the final refrigerating temperature;
f. by-pass means interposed between said intermediate cooling stage and said evaporator said bypass means having an open position and a closed position and adapted to move between said positions in response to predetermined operating characteristics of the refrigerants; and
g. recycling means for returning the at least partially evaporated refrigerant mixture to said compressor means.
8. The apparatus of claim 7 wherein said by-pass means is a pressure actuated valve.
9. The apparatus of claim 8 wherein said valve is responsive to the discharge pressure of said apparatus.
10. The apparatus of claim 7 wherein said by-pass means is a temperature responsive valve.
11. The apparatus of claim 10 wherein said valve is a thermal expansion valve which is actuated by the evaporator temperature and pressure.
12. The apparatus of claim 7 which includes two to five successive intermediate cooling stages.
13. The apparatus of claim 7 including a series of mixing means for joining the recycling refrigerant mixture emanating from said evaporator means with the throttled separated liquid from each of said successive intermediate cooling stages prior to reaching said compression means.
14. The apparatus of claim 7 further including at least one auxiliary condenser means for permitting heat exchange between said recycling refrigerant mixture and said at least partially condensed vapors.
15. The apparatus of claim 7 further including at least one heat exchange means for permitting an exchange of heat between said separated liquid and said recycling refrigerant mixture.

Claims (15)

1. In a compression process for refrigeration using a mixture of refrigerants having different boiling points which process comprises the steps of compressing a vaporous mixture of refrigerants, partially condensing the compressed refrigerant vapors in a first condensation stage, separating the condensate into first liquid and first vapor phases, throttling said first liquid phase to a lower pressure, evaporating said throttled first liquid phase to absorb heat from and at least partially condense said separated first vapor phase, throttling the at least partially condensed vapors to a lower pressure, at least partially evaporating said throttled condensed vapors in an evaporator to produce the final refrigerating temperatures, mixing the refrigerant leaving said evaporator with the said throttled first liquid phase and closing the circuit by recycling the mixture of refrigerants to the compressing step, the improvement comprising by-passing the final throttling step feeding the evaporator when compression is commenced and continuing by by-pass said throttling step until the said refrigerants reach a predetermined operating condition.
2. The process of claim 1 wherein said final throttling step is by-passed until the discharge pressure is 10 to 150 psi more than the final discharge pressure of said process.
3. The process of claim 1 wherein said final throttling step is by-passed until the temperature of the refrigerant in said evaporator is within 5* to 100* F. of the lowest evaporator temperature for said process.
4. The process of claim 1 including at least one additional intermediate cooling stage subsequent to said first condensation stage and prior to separating the condensate into first liquid and first vapor phases, each said intermediate cooling step comprising the steps of separating the condensate from said first condensation stage into a vapor phase and a liquid phase, throttling the liquid phase to a lower pressure; evaporating the throttled liquid phase to absorb heat from and at least partially condense the separated vapor phase and mixing the evaporated liquid phase with said mixture of refrigerants being recycled from said final evaporator to said compressing step.
5. The process of claim 1 wherein said refRigerant mixture comprises two to six individual refrigerants.
6. The process of claim 1 in which any separated liquid phase is cooled by an exchange of heat with said recycling refrigerant returning to the compressing step prior to said evaporation of said separated and throttled liquid.
7. A compression refrigeration apparatus comprising: a. compression means for compressing a vaporous mixture of refrigerants having different boiling points; b. condenser means for at least partially condensing said compressed refrigerant vapors; c. at least one intermediate cooling stage, said stage comprising vapor-liquid separating means, throttling means for reducing the pressure on the separated liquid phase, heat exchanger means for at least partially condensing said separated vapor and evaporating said throttled liquid phase, circulation means for passing said at least partially condensed vapor to the next succeeding cooling stage, and circulation means for returning said evaporated liquid phase to said compressor means; d. final throttling means for reducing the pressure of the at least partially condensed vapors from said intermediate cooling stage; e. evaporator means for at least partially evaporating said throttled condensed vapors to produce the final refrigerating temperature; f. by-pass means interposed between said intermediate cooling stage and said evaporator said by-pass means having an open position and a closed position and adapted to move between said positions in response to predetermined operating characteristics of the refrigerants; and g. recycling means for returning the at least partially evaporated refrigerant mixture to said compressor means.
8. The apparatus of claim 7 wherein said by-pass means is a pressure actuated valve.
9. The apparatus of claim 8 wherein said valve is responsive to the discharge pressure of said apparatus.
10. The apparatus of claim 7 wherein said by-pass means is a temperature responsive valve.
11. The apparatus of claim 10 wherein said valve is a thermal expansion valve which is actuated by the evaporator temperature and pressure.
12. The apparatus of claim 7 which includes two to five successive intermediate cooling stages.
13. The apparatus of claim 7 including a series of mixing means for joining the recycling refrigerant mixture emanating from said evaporator means with the throttled separated liquid from each of said successive intermediate cooling stages prior to reaching said compression means.
14. The apparatus of claim 7 further including at least one auxiliary condenser means for permitting heat exchange between said recycling refrigerant mixture and said at least partially condensed vapors.
15. The apparatus of claim 7 further including at least one heat exchange means for permitting an exchange of heat between said separated liquid and said recycling refrigerant mixture.
US171874A 1971-08-16 1971-08-16 Control system for low temperature refrigeration system Expired - Lifetime US3698202A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17187471A 1971-08-16 1971-08-16

Publications (1)

Publication Number Publication Date
US3698202A true US3698202A (en) 1972-10-17

Family

ID=22625477

Family Applications (1)

Application Number Title Priority Date Filing Date
US171874A Expired - Lifetime US3698202A (en) 1971-08-16 1971-08-16 Control system for low temperature refrigeration system

Country Status (1)

Country Link
US (1) US3698202A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3768273A (en) * 1972-10-19 1973-10-30 Gulf & Western Industries Self-balancing low temperature refrigeration system
US3872682A (en) * 1974-03-18 1975-03-25 Northfield Freezing Systems In Closed system refrigeration or heat exchange
US4230470A (en) * 1977-01-21 1980-10-28 Hitachi, Ltd. Air conditioning system
EP0207230A2 (en) * 1985-06-28 1987-01-07 Marin Tek, Inc. Fast cycle water vapor cryopump
EP0248296A2 (en) * 1986-05-23 1987-12-09 Energiagazdálkodási Részvénytársaság Method for increasing the coefficient of performance of hybrid refrigeration machines or heat pumps
US4763486A (en) * 1987-05-06 1988-08-16 Marin Tek, Inc. Condensate diversion in a refrigeration system
US5237828A (en) * 1989-11-22 1993-08-24 Nippondenso Co., Ltd. Air-conditioner for an automobile with non-azeotropic refrigerant mixture used to generate "cool head" and "warm feet" profile
US5337572A (en) * 1993-05-04 1994-08-16 Apd Cryogenics, Inc. Cryogenic refrigerator with single stage compressor
US6363737B1 (en) * 2000-03-07 2002-04-02 Robby D. Raney Heat exchanger and method of use therefor
US20050086950A1 (en) * 2003-10-28 2005-04-28 Ajay Khatri Closed cycle refrigeration system and mixed component refrigerant
US20070074524A1 (en) * 2005-09-30 2007-04-05 Tupis Jeffery A Cooling system methods and apparatus for a refrigeration device
CN101893343A (en) * 2010-06-24 2010-11-24 中国科学院理化技术研究所 Polybasic mixture throttling refrigerating machine with deeply separated refrigerant and lubricating oil
US20140165635A1 (en) * 2011-11-07 2014-06-19 Mitsubishi Electric Corporation Air-conditioning apparatus
US20170146280A1 (en) * 2015-11-24 2017-05-25 General Electric Company Stand-Alone Ice Making Appliances

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2041725A (en) * 1934-07-14 1936-05-26 Walter J Podbielniak Art of refrigeration
US2675683A (en) * 1954-04-20 Control means fob refrigeration
US3203194A (en) * 1962-12-01 1965-08-31 Hoechst Ag Compression process for refrigeration
US3285030A (en) * 1964-11-02 1966-11-15 Gen Electric Refrigeration system including high pressure limit control means

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2675683A (en) * 1954-04-20 Control means fob refrigeration
US2041725A (en) * 1934-07-14 1936-05-26 Walter J Podbielniak Art of refrigeration
US3203194A (en) * 1962-12-01 1965-08-31 Hoechst Ag Compression process for refrigeration
US3285030A (en) * 1964-11-02 1966-11-15 Gen Electric Refrigeration system including high pressure limit control means

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3768273A (en) * 1972-10-19 1973-10-30 Gulf & Western Industries Self-balancing low temperature refrigeration system
US3872682A (en) * 1974-03-18 1975-03-25 Northfield Freezing Systems In Closed system refrigeration or heat exchange
US4230470A (en) * 1977-01-21 1980-10-28 Hitachi, Ltd. Air conditioning system
EP0207230A2 (en) * 1985-06-28 1987-01-07 Marin Tek, Inc. Fast cycle water vapor cryopump
EP0207230A3 (en) * 1985-06-28 1989-07-26 Marin Tek, Inc. Fast cycle water vapor cryopump
EP0248296A2 (en) * 1986-05-23 1987-12-09 Energiagazdálkodási Részvénytársaság Method for increasing the coefficient of performance of hybrid refrigeration machines or heat pumps
EP0248296A3 (en) * 1986-05-23 1988-05-25 Energiagazdalkodasi Intezet Method and device for increasing the coefficient of performance of hybrid refrigeration machines or heat pumps
US4967566A (en) * 1986-05-23 1990-11-06 Energiagazdalkodasi Intezet Process and apparatus to improve the power factor of compressor-operated (hybrid) refrigerators or heat pumps functioning with solution cycle
US4763486A (en) * 1987-05-06 1988-08-16 Marin Tek, Inc. Condensate diversion in a refrigeration system
US5237828A (en) * 1989-11-22 1993-08-24 Nippondenso Co., Ltd. Air-conditioner for an automobile with non-azeotropic refrigerant mixture used to generate "cool head" and "warm feet" profile
US5337572A (en) * 1993-05-04 1994-08-16 Apd Cryogenics, Inc. Cryogenic refrigerator with single stage compressor
US6363737B1 (en) * 2000-03-07 2002-04-02 Robby D. Raney Heat exchanger and method of use therefor
US20050086950A1 (en) * 2003-10-28 2005-04-28 Ajay Khatri Closed cycle refrigeration system and mixed component refrigerant
US7114347B2 (en) 2003-10-28 2006-10-03 Ajay Khatri Closed cycle refrigeration system and mixed component refrigerant
US20070074524A1 (en) * 2005-09-30 2007-04-05 Tupis Jeffery A Cooling system methods and apparatus for a refrigeration device
US7673463B2 (en) * 2005-09-30 2010-03-09 General Electric Company Cooling system methods and apparatus for a refrigeration device
CN101893343A (en) * 2010-06-24 2010-11-24 中国科学院理化技术研究所 Polybasic mixture throttling refrigerating machine with deeply separated refrigerant and lubricating oil
CN101893343B (en) * 2010-06-24 2012-08-15 中国科学院理化技术研究所 Polybasic mixture throttling refrigerating machine with deeply separated refrigerant and lubricating oil
US20140165635A1 (en) * 2011-11-07 2014-06-19 Mitsubishi Electric Corporation Air-conditioning apparatus
US9759460B2 (en) * 2011-11-07 2017-09-12 Mitsubishi Electric Corporation Air-conditioning apparatus
US20170146280A1 (en) * 2015-11-24 2017-05-25 General Electric Company Stand-Alone Ice Making Appliances

Similar Documents

Publication Publication Date Title
US3698202A (en) Control system for low temperature refrigeration system
US3768273A (en) Self-balancing low temperature refrigeration system
US3733845A (en) Cascaded multicircuit,multirefrigerant refrigeration system
AU713444B2 (en) Dual inlet oil separator for a chiller
WO2004044503A2 (en) Refrigeration system with bypass subcooling and component size de-optimization
WO1990007683A1 (en) Trans-critical vapour compression cycle device
JPH01273959A (en) Air conditioner for vehicle
JPH06272998A (en) Refrigerator
US2807943A (en) Heat pump including means for controlling effective refrigerant charge
JPH10160268A (en) Air conditioner
JP2711879B2 (en) Low temperature refrigerator
JP2814697B2 (en) Refrigeration cycle device
JPH07198215A (en) Freezer
JP3368692B2 (en) Refrigeration system using non-azeotropic refrigerant mixture
KR0146329B1 (en) A refrigeration apparatus
JP2574545B2 (en) Refrigeration cycle device
JP2002162122A (en) Air conditioner
JP3281438B2 (en) Air conditioner
JP2532754B2 (en) Refrigeration cycle equipment
EP4022231A1 (en) Integrated cold storage system and a method for performing cold storage
JPS5938566A (en) Refrigerator
JPH08210716A (en) Refrigerator
JPS59210268A (en) Refrigerator
JPS5974465A (en) Cascade type refrigerator
JPH04281164A (en) Refrigerating device

Legal Events

Date Code Title Description
AS Assignment

Owner name: WICKES MANUFACTURING COMPANY, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GULF & WESTERN INC., A DE CORP.;REEL/FRAME:005240/0473

Effective date: 19890227