US3700380A - Surface or lining compatible with blood or other tissue - Google Patents

Surface or lining compatible with blood or other tissue Download PDF

Info

Publication number
US3700380A
US3700380A US77289A US3700380DA US3700380A US 3700380 A US3700380 A US 3700380A US 77289 A US77289 A US 77289A US 3700380D A US3700380D A US 3700380DA US 3700380 A US3700380 A US 3700380A
Authority
US
United States
Prior art keywords
blood
tissue
pockets
lining
prosthetic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US77289A
Inventor
Sotiris Kitrilakis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tecna Corp
Wells Fargo Bank NA
Original Assignee
Tecna Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tecna Corp filed Critical Tecna Corp
Application granted granted Critical
Publication of US3700380A publication Critical patent/US3700380A/en
Assigned to CROCKER NATIONAL BANK reassignment CROCKER NATIONAL BANK ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: THORATEC LABORATORIES CORPORATION A CA CORP.
Assigned to CROCKER NATIONAL BANK reassignment CROCKER NATIONAL BANK SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THORATEC LABORATORIES CORPORATION A CA CORP
Assigned to WELLS FARGO BANK N.A. reassignment WELLS FARGO BANK N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BIOTEX INDUSTRIES INCORPORATED MERCOR INCORPORATED, THORATEC LABORATORIES INCORPORATED, THORATEC MEDICAL INCORPORATED
Assigned to BELL, CHRISTY W., GLENN, PAUL F., BRADLEY RESOURCES COMPANY, A NEW YORK GENERAL PARTNERSHIP reassignment BELL, CHRISTY W. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THORATEC LABORATORIES CORPORATION, A CORP. OF CA.
Assigned to GLENN, PAUL F., ( GLENN ), BRADLEY RESOURCES COMPANY ("BRADLEY"), A NEW YORK GENERAL PARTNERSHIP, BELL, CHRISTY W., ( BELL ) reassignment GLENN, PAUL F., ( GLENN ) SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THORATEC LABORATORIES CORPORATION, A CA CORP.
Anticipated expiration legal-status Critical
Assigned to HILL, J. DONALD, BRADLEY RESOURCES COMPANY, BELL, CHRISTY W., GLENN, PAUL F. reassignment HILL, J. DONALD SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WELLS FARGO BANK N.A., A NATIONAL BANKING ASSOCIATION
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • A61M39/0247Semi-permanent or permanent transcutaneous or percutaneous access sites to the inside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0077Special surfaces of prostheses, e.g. for improving ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out

Definitions

  • ABSTRACT A surface or lining containing microcavities for anchoring pseudointimal growth within blood handling prostheses such as vascular grafts, heart assist pumps, artificial hearts, extracorporeal devices, and the like to form a thin, stable autologous lining.
  • the surface is also compatible with other living tissue and promotes tissue adhesion to percutaneous leads, catheters, cannulae, etc., which inhibits bacterial penetration and consequent infection.
  • This invention relates generally to surfaces and linings compatible with blood or other living tissue and to a method of making the same, and more particularly to a lining for blood-carrying prostheses andtissue-adhering surfaces for implanted devices.
  • porous materials primarily Dacron and Teflon
  • fabricatedas woven or knitted tubes and used as arterial grafts (replacement segments of bloodvessels) in patients with vascular disease or aortic aneurisms.
  • These prostheses develop a relatively thin pseudointimal lining over a period of weeks which remains stable and satisfactory for anindefinite period in many patients.
  • the lining is formed by the ingrowth of tissue through the porous material and the deposition of fibrin and cellular material from the blood. It covers these grafts in a few days with a biologic lining which is bloodmompatible and prevents significant blood trauma and thrombus orthrombo-embolic formation.
  • non-porous or impermeable prostheses such as arterial grafts and blood pumps have also been fabricated with anchoring surfaces of a fibrous nature to promote the formation of a pseudointimal lining. It has been observed that fibrin cells from the blood are deposited on the anchoring surface, forming small areas of pseudointima which gradually increase in size.
  • Such linings are compatible with blood to the extent that blood trauma has been tolerable and thrombo-embolism has been virtually eliminated in well-designed prostheses.
  • the biologic material may not deposit uniformly. Thicker deposits occur in portions where excessive growth takes place.
  • the anchoring substrates found in prior art have comprised loose-knit Dacron cloth backed with silicone rubber, or Nylon and Dacron velour backed with silicone rubber. Another type of substrate which has been used employs Dacron fibers embedded in a polyurethane adhesive to form a flocked surface.
  • a rapidly-developing pseudointima on a thin anchoring substrate would considerably reduce the interim risks of blood trauma, thrombus formation, and thromboemboli as well as the problem of potential failure resulting from thick cellular deposits on criticalsurfaces (e.g., pumpbladder, valve shunt).
  • Adherence to the biologic lining is dependent on both surface chemical and surface mechanical properties. The configuration is most critical, yet no presently used surfaces are satisfactory in this respect; the knitted or woven cloths or flocked surfaces cannot be made sufficiently thin and still retain good adhesive characteristics.
  • the woven, knitted, or matted fibrous surfaces are extremely difficult to apply uniformly to irregular surfaces such as the valves and tubing of blood pumps. They are also difficult to apply satisfactorily to flexing surfaces as in blood pumping chambers because their indistensibility along the surface leads to shear and tensile stresses which can cause the pump chambers to fail or the fibers to separate from the chamber surface.
  • Percutaneous leads or prosthetic devices in contact with tissue have a history similar to that for bloodcarrying devices. These devices have until recently used smooth, inert flexible or rigid surfaces in contact with tissues (skin, subcutaneous tissue, or internal organs or tissue).
  • tissue skin, subcutaneous tissue, or internal organs or tissue.
  • adhesion of the tissue to the surface had been inadequate, resulting in relative motion and a consequent substantial risk of complete removal of percutaneous leads (catheters, cannulae) or damage to internal organs.
  • Another problem is the substantial risk and incidence of infection with percutaneous leads by bacteria penetrating the interface between tissue and lead into the patient, with localized infections frequently followed by more serious systemic infections if the local infections are not diagnosed or adequately treated.
  • a lining or surface containing a plurality of microcavities or pockets which is compatible with blood and living tissue and forms a tenacious base or anchor for pseudointima] growth and tissue ingrowth and yet provide normal metabolic processes to the cells.
  • the microcavities are formed by providing particles or fibers in the base material and thereafter removing the particles or fibers leaving microcavities.
  • the surface or lining containing microcavities or pockets in accordance with the present invention is formed by applying fibrous, or particulate or granular material to the surface which is to contain microcavities, while the surface is soft, causing the surface to set up, cure or harden with the fibers or granules partially or wholly incorporated therein, and thereafter using a solvent which dissolves the fibers or particles leaving a surface which contains microcavities at the location where the fibers or particles were embedded.
  • the size and shape of the microcavities can be controlled by the selection of the size and shape of the fibers, particles or granules.
  • the density or surface distribution of these pores or pockets can be controlled in the manufacturing process by regulating the particle distribution.
  • FIG. 1A there is shown a substrate which forms the prosthetic device.
  • a layer 12 for example, silicon rubber, heat curing polyurethane or solvent evaporation polyurethane is applied and adheres to the surface of a substrate, FIG. 1B.
  • the layer 12 is in its soft or tacky state but can be hardened by a curing ambient depending upon the material used. Fibers may be flocked or otherwise applied to the tacky surface 12 as shown in FIG. 1C whereby the fibers are randomly embedded in the layer 12. Thereafter, the layer 12 is hardened by solvent evaporation, irradiation heating or the like, FIG. 1D.
  • a solvent which serves to selectively etch or dissolve the fibers leaving the layer 12 is applied.
  • the fibers are dissolved leaving a plurality of microcavities 14 in the layer or surface 12.
  • the surface is then sterilized as, for example, by washing and autoclaving.
  • the substrate may be a metal or metal alloy such as stainless steel, aluminum, ferrous-nickel, titanium, a rigid plastic such as polypropylene, Teflon, Nylon and polycarbonate or an elastomer such as silicon rubber, polyurethane and natural rubber.
  • a metal or metal alloy such as stainless steel, aluminum, ferrous-nickel, titanium, a rigid plastic such as polypropylene, Teflon, Nylon and polycarbonate or an elastomer such as silicon rubber, polyurethane and natural rubber.
  • the adhesive layer 12 may be silicon rubber, polyurethane, or solvent-evaporation polyurethane as previously described.
  • the fibers applied may be Nylon, Dacron or acetate.
  • acetic acid may be employed for selectively dissolving the Nylon or Dacron while the acetate may be selectively dissolved by acetone or methyl ethyl ketone.
  • the foregoing are merely examples of suitable material for the substrate and for the flocking fibers.
  • the selection of the substrate as being either rigid or an elastomer depends upon the use for which the prostheses or implanted device is to be put.
  • the layer is selected whereby it is compatible with the blood or other living cells with which it will be in intimate contact and for which it will provide the base for growth of cells or depositions and adhesion of organized cellular linings.
  • FIG. 2 there is shown a method of forming microcavities by employing particles or granules 16 rather than fibrous material 13.
  • the particles 16 may be NaCl crystals of a selected size or shape distribution.
  • the embedded particles or granules may be dissolved with distilled water leaving a plurality of irregularly shaped microcavities 17. The layer is then sterilized.
  • the depth of the microactivities is between 0.002 and 0.020 inches. This provides a relatively thin pseudointima for adequate diffusion of nutrients from the flowing blood, minimal tissue stress during operation. In a blood pump this thin lining will not interfere with proper pump valve function, and presents minimal tissue or lining stress due to pumping chamber flexure.
  • FIG. 3 there is shown a sketch of a device including an enclosed volume.
  • the steps in forming such a device would be to fonn the outer wall hardened and is prevented from adhering to the mold by suitable mold release compound.
  • the outer surface layer 29 is applied over the surface.
  • the molded object 29 is removed from the mold along with layer 27 and the embedded particles 28 which then, in turn, are dissolved leaving a plurality of internal microcavities 31.
  • an improved surface or lining and method of forming same with microcavities which are controllably spaced and interconnected.
  • Such cavities permit the supply of 0 nutrients from the adjacent cells or from the bloodstream to penetrate easily through the lining and into the cavities to nourish the cells within the cavities from many directions, for example, three or more directions whereby to provide an improved anchoring surface for use in prostheses or any type of device which is in contact with blood.
  • the depth and size of the microcavities can be controlled by the fiber length and size or the particle size and shape.
  • the openings are of uniform density but may be randomly angled with some holes interconnectin gbelow the surface. This structure provides good adhesion to the non-cellular coagulum and fibrin-cellular constituents which form the pseudoendothelium.
  • microcavities has several advantages. Whereas in prior art methods the flocked fibers are not tightly adhered to the surface and some may separate and form emboli or nucleate thromboembolisms, the negative flock or cavities are an integral part of the prostheses device. Good cellular interface adhesion is obtained by pseudointimal growth or ingrowth of internal tissue or skin and subcutaneous tissue. Therefore no interface separation in the prostheses will occur. Furthermore, good tissue adhesion in a percutaneous lead device provides an interface sealed against bacterial infection. The microcavity surface can be made extremely thin without the difficulties encountered using the flock, woven, knitted, or other fiber techniques, where very small diameter or very short fibers must be used and which are difficult to work with.
  • the microcavity surface of the present invention is particularly well suited as an external coating for percutaneous lead devices such as tubes, shunts, cannulae insulated wire and various other tubular or mass, ener gy, and information transport devices which provide an external connection to a point beneath the skin.
  • percutaneous lead devices such as tubes, shunts, cannulae insulated wire and various other tubular or mass, ener gy, and information transport devices which provide an external connection to a point beneath the skin.
  • Such lead devices are used as access to the circulating blood and as linkages to implanted devices such as blood pumps.
  • the skin and subcutaneous tissue grows into the microcavities to provide a tenacious adhesion with the exposed surface of the lead device. This results in safety, appearance, and comfort for the patient and also in the formation of the bacterial seal at the interface of the tissue and microcavity surface which is extremely efiective in the prevention of infection caused by bacteria penetrating the body along the interface.
  • Tube 32 includes an outer wall containing a plurality of microcavities 36 of the aforementioned type. Microcavities 36 may either be incorporated directly into the outer surface of tube 32 or may be applied in an adhesive layer.
  • the lead tube material is preferably flexible to reduce tissue shear and tensile stresses caused by body movement or external binding of the tube. Shear stresses may be further reduced by orienting the tube generally parallel to the skin surface for a substantial extent in the subcutaneous tissue.
  • microcavity surface of the present invention is as an external lining on the surfaces of implanted prostheses which encourages the formation of a thin adherent tissue envelope.
  • tissue forming this envelope has somewhat different characteristics than skin and subcutaneous tissue, it grows into the lining in essentially the same manner.
  • the envelope prevents damage to surrounding organs and tissue, is fully compatible with the body and body fluids, and substantially lowers the risk of infection at the prosthesis surface by preventing stagnant pockets of fluid at the interface. Such tissue encapsulation also improves fixation and support of the prosthesis and protects the same against damage.
  • a prosthetic device having a tissue or blood-compatible flexible surface adapted to receive ingrowth of living cells from an interfacing region of tissue or blood, said surface including a plurality of adjacent substantially discrete pockets defined by walls which extend into said surface, said pockets having openings which face outwardly in the direction of said region of tissue or blood to provide means to accommodate a number of living cells, the walls of said pockets extending inwardly to a depth in the range of .002 to .020
  • prosthetic device as in claim 1 in which said prosthetic device is a hollow blood handling device with said surface in contact with the blood whereby blood cells entering into said pockets are nourished from the blood adjacent said surface.

Abstract

A surface or lining containing microcavities for anchoring pseudointimal growth within blood handling prostheses such as vascular grafts, heart assist pumps, artificial hearts, extracorporeal devices, and the like to form a thin, stable autologous lining. The surface is also compatible with other living tissue and promotes tissue adhesion to percutaneous leads, catheters, cannulae, etc., which inhibits bacterial penetration and consequent infection. A method of forming a lining or surface containing microcavities.

Description

United States Patent Kitrilakis [54] I SURFACE OR LINING COMPATIBLE WITH BLOOD OR OTHER TISSUE [72] Inventor: Sotiris Kitrilakis, Berkeley, Calif. [73] Assignee: Teena Corporation, Berkeley, Calif.
[22] Filed: Oct. 1, 1970 [21] Appl. No.: 77,289
[52] US. Cl. ..3/1, 128/334 R [5 1] Int. Cl. ..A6lf 01/00 [58] Field of Search...128/334 R, 334 C, 348, 350 R, 128/92; 3/1,DIG. 1, 13; 161/117, 164
[56] References Cited UNITED STATES PATENTS 3,605,123 9/1971 Hahn ..3/1 3,314,420 4/ 1967 Smith et a] ..128/92 2,688,139 9/1954 Jardon ..128/92 R 3,447,161 6/1969 Weikel ..128/348 X 3,462,765 8/1969 Swanson ..3/1
[4 Oct. 24, 1972 4/ 1970 Sheridan 128/348 OTHER PUBLICATIONS Ersek et al.- Trans. Amer. Soc. Artif. lnter. Orgs. Vol. XV- June 1969- pp. 267- 271 Primary Examiner-Dalton L. Truluck Attorney-Flew, l-lohbach, Test, Albritton & Herbert [57] ABSTRACT A surface or lining containing microcavities for anchoring pseudointimal growth within blood handling prostheses such as vascular grafts, heart assist pumps, artificial hearts, extracorporeal devices, and the like to form a thin, stable autologous lining. The surface is also compatible with other living tissue and promotes tissue adhesion to percutaneous leads, catheters, cannulae, etc., which inhibits bacterial penetration and consequent infection. A method of forming a lining or surface containing microcavities.
7 Claims, 5 Drawing Figures PATENTEDBET24 m2 3700.300
- sum 1 OF 2 INVENTOR. WW SOTIRIS KITRILAKIS W Z14 5 2 440%; W
' ATTORNEYS PATENTEDUBT24 I912 3. 700.380
SHEET 2 UF 2 I INVENTOR.
3| SOTlRIS KITRILAKIS f ATTORNEYS BACKGROUND OF THE INVENTION This invention relates generally to surfaces and linings compatible with blood or other living tissue and to a method of making the same, and more particularly to a lining for blood-carrying prostheses andtissue-adhering surfaces for implanted devices.
The majority of blood-handling devices (catheters, blood pumps, hemodializers, blood oxygenators) have historically been fabricated from materials (e.g., silicone rubber, polypropylene, polytetrafluoroethylene) which are made very smooth andinert to avoid blood damage and thrombus formation. Such materials or surfaces are classified as antithrombogenic substances. Much efforthas been devoted in the past and is currentlybeing expended to'develop improved, satisfactory antithrombogenic surfaces but with only limited success. The effective prevention of all thrombus formation, thromboemboli, and blood trauma in devices formed of such materials-has not been realized. Other materials (hydrogels, anionic cellulose) produce less complications, but have physical properties which are inadequate for many applications. n the other hand some success has been achieved with the useof porous materials (primarily Dacron and Teflon) fabricatedas woven or knitted tubes and used as arterial grafts (replacement segments of bloodvessels) in patients with vascular disease or aortic aneurisms. These prostheses develop a relatively thin pseudointimal lining over a period of weeks which remains stable and satisfactory for anindefinite period in many patients. The lining is formed by the ingrowth of tissue through the porous material and the deposition of fibrin and cellular material from the blood. It covers these grafts in a few days with a biologic lining which is bloodmompatible and prevents significant blood trauma and thrombus orthrombo-embolic formation.
Recently, in the past few years, non-porous or impermeable prostheses such as arterial grafts and blood pumps have also been fabricated with anchoring surfaces of a fibrous nature to promote the formation of a pseudointimal lining. It has been observed that fibrin cells from the blood are deposited on the anchoring surface, forming small areas of pseudointima which gradually increase in size. Such linings are compatible with blood to the extent that blood trauma has been tolerable and thrombo-embolism has been virtually eliminated in well-designed prostheses. However, in devices having complex shapes as with blood pump valves or flexing surfaces the biologic material may not deposit uniformly. Thicker deposits occur in portions where excessive growth takes place. These thicker deposits may die from lack of nourishment and detach to form thromboemboli or may accumulate at the valves and interfere with the valve function. The thick lining may also reduce blood flow in the smaller passages. In prosthetic devices which have flexing elements, the thick biologic deposits may prevent proper flexure and eventually cause failure. These problems occur despite the use of large quantities of anticoagulating drugs in an effort to prevent the formation of a thicker layer. The anchoring substrates found in prior art have comprised loose-knit Dacron cloth backed with silicone rubber, or Nylon and Dacron velour backed with silicone rubber. Another type of substrate which has been used employs Dacron fibers embedded in a polyurethane adhesive to form a flocked surface.
The methods of anchoringbiologic materials in the prior art have not been entirely satisfactory. Velour and flocking fibers from. relatively thick substrates and as a result the. fibrin-cellular lining is also thick since it continues to form and does not stabilize until the fibers are essentially completely covered. A much thinner but adherent anchoring surface or substrate is highly desirable.
.A very thin substrate results in a more rapid coverage by biologic materials (cellsandfibrin) which stabilizes early and which differentiates or forms pseudointima much more quickly. Athin pseudointimal lining which forms rapidly is desirable to shorten or avoid the period of anticoagulant treatment. The underlying cells nearest the prosthesis are adequately nourished from the blood stream if the biologic lining is thin, and the shear and bending (tensile and compressive) stresses in the lining are reduced. A rapidly-developing pseudointima on a thin anchoring substrate would considerably reduce the interim risks of blood trauma, thrombus formation, and thromboemboli as well as the problem of potential failure resulting from thick cellular deposits on criticalsurfaces (e.g., pumpbladder, valve shunt). Adherence to the biologic lining is dependent on both surface chemical and surface mechanical properties. The configuration is most critical, yet no presently used surfaces are satisfactory in this respect; the knitted or woven cloths or flocked surfaces cannot be made sufficiently thin and still retain good adhesive characteristics. The woven, knitted, or matted fibrous surfaces are extremely difficult to apply uniformly to irregular surfaces such as the valves and tubing of blood pumps. They are also difficult to apply satisfactorily to flexing surfaces as in blood pumping chambers because their indistensibility along the surface leads to shear and tensile stresses which can cause the pump chambers to fail or the fibers to separate from the chamber surface.
Percutaneous leads or prosthetic devices in contact with tissue have a history similar to that for bloodcarrying devices. These devices have until recently used smooth, inert flexible or rigid surfaces in contact with tissues (skin, subcutaneous tissue, or internal organs or tissue). One problem with this approach is that adhesion of the tissue to the surface had been inadequate, resulting in relative motion and a consequent substantial risk of complete removal of percutaneous leads (catheters, cannulae) or damage to internal organs.
Another problem is the substantial risk and incidence of infection with percutaneous leads by bacteria penetrating the interface between tissue and lead into the patient, with localized infections frequently followed by more serious systemic infections if the local infections are not diagnosed or adequately treated.
Recently various fibrous materials (e.g., Dacron velouis, Teflon felt) have been adhered to the percutaneous leads in an effort to solve both of these problems. This has generally resulted in improved adhesion and fixation, but only moderately decreased risks of infection. The bacteria have been able to penetrate the interface between the tissue and fibrous anchoring surface and also the one between the lead and anchoring surface either because the tissue has not been able to penetrate the fibrous layer and block bacterial influx, or because tissue adhesion to the fibrous layer and lead has been inadequate to prevent bacterial penetration. As with the pseudointimal lining, a thin layer of tissue on the prosthesis anchoring surface must be made to-penetrate and adhere to all exposed surface materials by proper surface treatment and by the mechanical configuration of the surface. Existing surfaces are generally either too thick, such as the flocking type, or do not lend themselves to fabrication of complex shapes, such as the woven fabric type.
SUMMARY OF THE INVENTION AND OBJECTS In accordance with the present invention, there is provided a lining or surface containing a plurality of microcavities or pockets which is compatible with blood and living tissue and forms a tenacious base or anchor for pseudointima] growth and tissue ingrowth and yet provide normal metabolic processes to the cells. The microcavities are formed by providing particles or fibers in the base material and thereafter removing the particles or fibers leaving microcavities.
It is an object of the present invention to provide a surface which forms a thin substrate capable of tenacious anchoring of subsequent cell deposition and ingrowth.
The foregoing and other objects will be more clearly apparent from the following description when taken in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS DESCRIPTION OF THE PREFERRED EMBODIMENT In general, the surface or lining containing microcavities or pockets in accordance with the present invention is formed by applying fibrous, or particulate or granular material to the surface which is to contain microcavities, while the surface is soft, causing the surface to set up, cure or harden with the fibers or granules partially or wholly incorporated therein, and thereafter using a solvent which dissolves the fibers or particles leaving a surface which contains microcavities at the location where the fibers or particles were embedded. The size and shape of the microcavitiescan be controlled by the selection of the size and shape of the fibers, particles or granules. The density or surface distribution of these pores or pockets can be controlled in the manufacturing process by regulating the particle distribution.
Referring particularly to FIG. 1, there are shown the steps of forming a surface containing microcavities. In FIG. 1A there is shown a substrate which forms the prosthetic device. A layer 12, for example, silicon rubber, heat curing polyurethane or solvent evaporation polyurethane is applied and adheres to the surface of a substrate, FIG. 1B. The layer 12 is in its soft or tacky state but can be hardened by a curing ambient depending upon the material used. Fibers may be flocked or otherwise applied to the tacky surface 12 as shown in FIG. 1C whereby the fibers are randomly embedded in the layer 12. Thereafter, the layer 12 is hardened by solvent evaporation, irradiation heating or the like, FIG. 1D. Finally a solvent which serves to selectively etch or dissolve the fibers leaving the layer 12 is applied. The fibers are dissolved leaving a plurality of microcavities 14 in the layer or surface 12. The surface is then sterilized as, for example, by washing and autoclaving.
The materials used for the substrate, base material or layer, fibers and solvents are not necessarily inert or tissue compatible. By way of example, the substrate may be a metal or metal alloy such as stainless steel, aluminum, ferrous-nickel, titanium, a rigid plastic such as polypropylene, Teflon, Nylon and polycarbonate or an elastomer such as silicon rubber, polyurethane and natural rubber.
The adhesive layer 12 may be silicon rubber, polyurethane, or solvent-evaporation polyurethane as previously described.
The fibers applied may be Nylon, Dacron or acetate. In the event that Nylon or Dacron is employed, acetic acid may be employed for selectively dissolving the Nylon or Dacron while the acetate may be selectively dissolved by acetone or methyl ethyl ketone.
It will, of course, be apparent that the foregoing are merely examples of suitable material for the substrate and for the flocking fibers. The selection of the substrate as being either rigid or an elastomer depends upon the use for which the prostheses or implanted device is to be put. Furthermore, the layer is selected whereby it is compatible with the blood or other living cells with which it will be in intimate contact and for which it will provide the base for growth of cells or depositions and adhesion of organized cellular linings.
In FIG. 2 there is shown a method of forming microcavities by employing particles or granules 16 rather than fibrous material 13. For example, the particles 16 may be NaCl crystals of a selected size or shape distribution. The embedded particles or granules may be dissolved with distilled water leaving a plurality of irregularly shaped microcavities 17. The layer is then sterilized.
Typically, the depth of the microactivities is between 0.002 and 0.020 inches. This provides a relatively thin pseudointima for adequate diffusion of nutrients from the flowing blood, minimal tissue stress during operation. In a blood pump this thin lining will not interfere with proper pump valve function, and presents minimal tissue or lining stress due to pumping chamber flexure.
The above described processes are particularly suitable for use in devices which have irregular or enclosed surfaces. For example, in FIG. 3 there is shown a sketch of a device including an enclosed volume. The steps in forming such a device would be to fonn the outer wall hardened and is prevented from adhering to the mold by suitable mold release compound. When the layer is hardened, the outer surface layer 29 is applied over the surface. Thereafter, the molded object 29 is removed from the mold along with layer 27 and the embedded particles 28 which then, in turn, are dissolved leaving a plurality of internal microcavities 31.
Thus, it is seen that there has been provided an improved surface or lining and method of forming same with microcavities which are controllably spaced and interconnected. Such cavities permit the supply of 0 nutrients from the adjacent cells or from the bloodstream to penetrate easily through the lining and into the cavities to nourish the cells within the cavities from many directions, for example, three or more directions whereby to provide an improved anchoring surface for use in prostheses or any type of device which is in contact with blood.
The depth and size of the microcavities can be controlled by the fiber length and size or the particle size and shape. The openings are of uniform density but may be randomly angled with some holes interconnectin gbelow the surface. This structure provides good adhesion to the non-cellular coagulum and fibrin-cellular constituents which form the pseudoendothelium.
This type of formation of microcavities has several advantages. Whereas in prior art methods the flocked fibers are not tightly adhered to the surface and some may separate and form emboli or nucleate thromboembolisms, the negative flock or cavities are an integral part of the prostheses device. Good cellular interface adhesion is obtained by pseudointimal growth or ingrowth of internal tissue or skin and subcutaneous tissue. Therefore no interface separation in the prostheses will occur. Furthermore, good tissue adhesion in a percutaneous lead device provides an interface sealed against bacterial infection. The microcavity surface can be made extremely thin without the difficulties encountered using the flock, woven, knitted, or other fiber techniques, where very small diameter or very short fibers must be used and which are difficult to work with.
The microcavity surface of the present invention is particularly well suited as an external coating for percutaneous lead devices such as tubes, shunts, cannulae insulated wire and various other tubular or mass, ener gy, and information transport devices which provide an external connection to a point beneath the skin. Such lead devices are used as access to the circulating blood and as linkages to implanted devices such as blood pumps. The skin and subcutaneous tissue grows into the microcavities to provide a tenacious adhesion with the exposed surface of the lead device. This results in safety, appearance, and comfort for the patient and also in the formation of the bacterial seal at the interface of the tissue and microcavity surface which is extremely efiective in the prevention of infection caused by bacteria penetrating the body along the interface.
Referring to FIG. 5, one embodiment of the percutaneous lead device of the invention is illustrated in the form of a hollow lead tube 32 in an implanted position after penetration through skin 33 and subcutaneous tissue 34. Tube 32 includes an outer wall containing a plurality of microcavities 36 of the aforementioned type. Microcavities 36 may either be incorporated directly into the outer surface of tube 32 or may be applied in an adhesive layer. The lead tube material is preferably flexible to reduce tissue shear and tensile stresses caused by body movement or external binding of the tube. Shear stresses may be further reduced by orienting the tube generally parallel to the skin surface for a substantial extent in the subcutaneous tissue.
Another application of the microcavity surface of the present invention, not shown, is as an external lining on the surfaces of implanted prostheses which encourages the formation of a thin adherent tissue envelope. Although the tissue forming this envelope has somewhat different characteristics than skin and subcutaneous tissue, it grows into the lining in essentially the same manner. The envelope prevents damage to surrounding organs and tissue, is fully compatible with the body and body fluids, and substantially lowers the risk of infection at the prosthesis surface by preventing stagnant pockets of fluid at the interface. Such tissue encapsulation also improves fixation and support of the prosthesis and protects the same against damage.
I claim:
1. A prosthetic device having a tissue or blood-compatible flexible surface adapted to receive ingrowth of living cells from an interfacing region of tissue or blood, said surface including a plurality of adjacent substantially discrete pockets defined by walls which extend into said surface, said pockets having openings which face outwardly in the direction of said region of tissue or blood to provide means to accommodate a number of living cells, the walls of said pockets extending inwardly to a depth in the range of .002 to .020
inches to provide anchoring but not of such shape or size as to prevent essentially normal transfer of nutrients to said living cells in said pockets from said adjacent area of tissue or blood.
2. A prosthetic device as in claim 1 in which said prosthetic device is a hollow blood handling device with said surface in contact with the blood whereby blood cells entering into said pockets are nourished from the blood adjacent said surface.
3. A prosthetic device as in claim 1 in which the entire device is flexible.
4. A prosthetic device as in claim 1 wherein said device is rigid and the surface is part of a layer applied to the device.
5. A prosthetic device as in claim 3 wherein the surface is part of a layer applied to the flexible device.
6. A prosthetic device as in claim 1 wherein said device is an elongated device with said surface on the outside adapted to penetrate the skin and receive ingrowth of cells.
7. A prosthetic device as in claim 1 wherein the size and shape of said pockets have a predetermined distribution.

Claims (7)

1. A prosthetic device having a tissue or blood-compatible flexible surface adapted to receive ingrowth of living cells from an interfacing region of tissue or blood, said surface including a plurality of adjacent substantially discrete pockets defined by walls which extend into said surface, said pockets having openings which face outwardly in the direction of said region of tissue or blood to provide means to accommodate a number of living cells, the walls of said pockets extending inwardly to a depth in the range of .002 to .020 inches to provide anchoring but not of such shape or size as to prevent essentially normal transfer of nutrients to said living cells in said pockets from said adjacent area of tissue or blood.
2. A prosthetic device as in claim 1 in which said prosthetic device is a hollow blood handling device with said surface in contact with the blood whereby blood cells entering into said pockets are nourished from the blood adjacent said surface.
3. A prosthetic device as in claim 1 in which the entire device is flexible.
4. A prosthetic device as in claim 1 wherein said device is rigid and the surface is part of a layer applied to the device.
5. A prosthetic device as in claim 3 wherein the surface is part of a layer applied to the flexible device.
6. A prosthetic device as in claim 1 wherein said device is an elongated device with said surface on the outside adapted to penetrate the skin and receive ingrowth of cells.
7. A prosthetic device as in claim 1 wherein the size and shape of said pockets have a predetermined distribution.
US77289A 1970-10-01 1970-10-01 Surface or lining compatible with blood or other tissue Expired - Lifetime US3700380A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7728970A 1970-10-01 1970-10-01

Publications (1)

Publication Number Publication Date
US3700380A true US3700380A (en) 1972-10-24

Family

ID=22137199

Family Applications (1)

Application Number Title Priority Date Filing Date
US77289A Expired - Lifetime US3700380A (en) 1970-10-01 1970-10-01 Surface or lining compatible with blood or other tissue

Country Status (10)

Country Link
US (1) US3700380A (en)
JP (1) JPS5149359B1 (en)
CA (1) CA940451A (en)
CH (1) CH551185A (en)
DE (1) DE2149027A1 (en)
FR (1) FR2109931A5 (en)
GB (1) GB1347791A (en)
IT (1) IT945980B (en)
NL (1) NL7113418A (en)
SE (1) SE383475B (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923939A (en) * 1974-06-07 1975-12-02 Alza Corp Process for improving release kinetics of a monolithic drug delivery device
US3938528A (en) * 1973-05-11 1976-02-17 Investors In Ventures, Inc. Implanting and splicing articles and methods for living beings
US4173689A (en) * 1976-02-03 1979-11-06 University Of Utah Synthetic polymer prosthesis material
US4177228A (en) * 1977-07-15 1979-12-04 Kilcher-Chemie Ag Method of production of a micro-porous membrane for filtration plants
US4284275A (en) * 1979-10-11 1981-08-18 Fletcher Herbert E Polyurethane gripping material
EP0047231A2 (en) * 1980-08-28 1982-03-10 Astra Meditec AB Vascular prosthesis and method of producing it
US4439391A (en) * 1979-06-26 1984-03-27 International Paper Company Polymeric sheets
US4458366A (en) * 1975-05-09 1984-07-10 Macgregor David C Artificial implantable blood pump
US4459252A (en) * 1975-05-09 1984-07-10 Macgregor David C Method of forming a small bore flexible vascular graft involving eluting solvent-elutable particles from a polymeric tubular article
WO1985005548A1 (en) * 1984-05-31 1985-12-19 Adrian Kantrowitz Percutaneous access device and method for implanting same
WO1986002824A1 (en) * 1984-11-07 1986-05-22 Dan Lundgren Element for controlled growth into surgically intervened areas
US4859383A (en) * 1987-06-01 1989-08-22 Bio Med Sciences, Inc. Process of producing a composite macrostructure of organic and inorganic materials
EP0332371A1 (en) * 1988-03-07 1989-09-13 Dow Corning Wright Corporation Method for forming hollow, porous-surfaced elastomeric bodies
US4906423A (en) * 1987-10-23 1990-03-06 Dow Corning Wright Methods for forming porous-surfaced polymeric bodies
US4960425A (en) * 1987-05-27 1990-10-02 Mentor Corporation Textured surface frosthesis implants
US4971076A (en) * 1987-09-25 1990-11-20 Barbara Densert Method of ventilating the middle ear by means of a ventilation tube which can be applied in the tympanic membrane
US5022942A (en) * 1987-05-27 1991-06-11 Mentor Corporation Method of making textured surface prosthesis implants
EP0710468A2 (en) * 1994-11-01 1996-05-08 Mentor Corporation Method of texturing soft tissue implant using a porous mandrel and implants made thereby
US5549860A (en) * 1989-10-18 1996-08-27 Polymedica Industries, Inc. Method of forming a vascular prosthesis
USRE35391E (en) * 1984-08-30 1996-12-03 Brauman; Daniel Implantable prosthetic devices
US5653747A (en) * 1992-12-21 1997-08-05 Corvita Corporation Luminal graft endoprostheses and manufacture thereof
US5674285A (en) * 1986-11-04 1997-10-07 Medical Products Development, Inc. Mammary implant having shell with unitary rough-textured outer layer
US5848987A (en) * 1996-04-30 1998-12-15 Medtronic, Inc. Microtextured catheter and method for preventing catheter fluid reflux
US5855598A (en) * 1993-10-21 1999-01-05 Corvita Corporation Expandable supportive branched endoluminal grafts
EP0914918A2 (en) * 1997-05-30 1999-05-12 Schneider (Usa) Inc. Porous tubular prostheses and method for making the same co-spraying water soluble and water insoluble fibrous components onto a rotating mandrel
US5948018A (en) * 1993-10-21 1999-09-07 Corvita Corporation Expandable supportive endoluminal grafts
US5958314A (en) * 1994-02-04 1999-09-28 Draenert; Klaus Process for the preparation of porous material
EP0984741A1 (en) * 1997-05-23 2000-03-15 Donald P. Griffith A modular prosthetic conduit and method of surgical implantation
US6436135B1 (en) 1974-10-24 2002-08-20 David Goldfarb Prosthetic vascular graft
US6605116B2 (en) 2001-04-03 2003-08-12 Mentor Corporation Reinforced radius mammary prostheses and soft tissue expanders
US20030195613A1 (en) * 1996-12-30 2003-10-16 Sorin Biomedica Cardio S.P.A. Stent for angioplasty and associated production process
US6770024B1 (en) 2000-03-28 2004-08-03 Stony Brook Surgical Innovations, Inc. Implantable counterpulsation cardiac assist device
US20050137669A1 (en) * 2003-12-09 2005-06-23 Mohan Krishnan Endocardial lead for a left heart chamber
US6939377B2 (en) 2000-08-23 2005-09-06 Thoratec Corporation Coated vascular grafts and methods of use
US7361158B1 (en) * 1999-09-24 2008-04-22 Medicinvent, Llc Catheter including textured interface
US20080167724A1 (en) * 2006-12-18 2008-07-10 Med Institute, Inc. Stent graft with releasable therapeutic agent and soluable coating
US20080237166A1 (en) * 2007-03-27 2008-10-02 Electrolux Home Products, Inc. Glide rack
US20090138067A1 (en) * 1993-10-21 2009-05-28 Leonard Pinchuk Expandable supportive branched endoluminal grafts
US20100042211A1 (en) * 2008-08-13 2010-02-18 Allergan, Inc. Soft filled prosthesis shell with discrete fixation surfaces
US20100042212A1 (en) * 2008-08-13 2010-02-18 Allergan, Inc. Soft Filled Prosthesis Shell With Discrete Fixation Surfaces
US20110196489A1 (en) * 2010-02-05 2011-08-11 Allergan, Inc. Biocompatible structures and compositions
WO2013048978A1 (en) * 2011-09-26 2013-04-04 Allergan, Inc. Silicone implant with imprinted texture
US8546458B2 (en) 2010-12-07 2013-10-01 Allergan, Inc. Process for texturing materials
US8679279B2 (en) 2010-11-16 2014-03-25 Allergan, Inc. Methods for creating foam-like texture
US8679570B2 (en) 2010-04-27 2014-03-25 Allergan, Inc. Foam-like materials and methods for producing same
US8685296B2 (en) 2010-05-11 2014-04-01 Allergan, Inc. Porogen compositions, method of making and uses
US8697763B2 (en) 2010-01-28 2014-04-15 Allergan, Inc. Processes for making porous implantable materials
US8764581B2 (en) 2010-08-13 2014-07-01 Nike, Inc. Systems and methods for manufacturing a golf ball
US8801782B2 (en) 2011-12-15 2014-08-12 Allergan, Inc. Surgical methods for breast reconstruction or augmentation
US8877822B2 (en) 2010-09-28 2014-11-04 Allergan, Inc. Porogen compositions, methods of making and uses
US8889751B2 (en) 2010-09-28 2014-11-18 Allergan, Inc. Porous materials, methods of making and uses
US9044897B2 (en) 2010-09-28 2015-06-02 Allergan, Inc. Porous materials, methods of making and uses
US9138310B2 (en) 2007-11-05 2015-09-22 Allergan, Inc. Soft prosthesis shell texturing method
US9138308B2 (en) 2010-02-03 2015-09-22 Apollo Endosurgery, Inc. Mucosal tissue adhesion via textured surface
US9138309B2 (en) 2010-02-05 2015-09-22 Allergan, Inc. Porous materials, methods of making and uses
US9205577B2 (en) 2010-02-05 2015-12-08 Allergan, Inc. Porogen compositions, methods of making and uses
US9539086B2 (en) 2014-05-16 2017-01-10 Allergan, Inc. Soft filled prosthesis shell with variable texture
US9688006B2 (en) 2012-12-13 2017-06-27 Allergan, Inc. Device and method for making a variable surface breast implant
US9848972B2 (en) 2008-08-13 2017-12-26 Allergan, Inc. Dual plane breast implant
US10092392B2 (en) 2014-05-16 2018-10-09 Allergan, Inc. Textured breast implant and methods of making same
US11202853B2 (en) 2010-05-11 2021-12-21 Allergan, Inc. Porogen compositions, methods of making and uses

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101984A (en) * 1975-05-09 1978-07-25 Macgregor David C Cardiovascular prosthetic devices and implants with porous systems
US4034751A (en) * 1975-11-24 1977-07-12 International Paper Company Polymeric sheets as synthetic medical dressings or coverings for wounds
US4175557A (en) * 1975-11-24 1979-11-27 International Paper Company Polymeric sheets
US4289125A (en) 1976-11-01 1981-09-15 International Paper Company Polymeric sheets
DE3943412A1 (en) * 1989-12-30 1991-07-11 Braun Melsungen Ag TRANSCUTANE IMPLANT CATHETER
FR2737664B1 (en) * 1995-08-08 1998-12-24 Vascor Inc PROCESS FOR THE PRODUCTION OF A HEMOCOMPATIBLE IMPLANTABLE DEVICE, AND IMPLANTABLE DEVICE THUS PRODUCED

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2688139A (en) * 1950-03-09 1954-09-07 American Optical Corp Anatomical replacement means
US3314420A (en) * 1961-10-23 1967-04-18 Haeger Potteries Inc Prosthetic parts and methods of making the same
US3447161A (en) * 1966-08-01 1969-06-03 Avco Corp Disinfectant dispensing percutaneous connector
US3462765A (en) * 1967-01-06 1969-08-26 Dow Corning Surgically implantable prosthetic joint
US3508554A (en) * 1968-11-04 1970-04-28 David S Sheridan Medico-surgical tubes having frosted surface
US3605123A (en) * 1969-04-29 1971-09-20 Melpar Inc Bone implant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2688139A (en) * 1950-03-09 1954-09-07 American Optical Corp Anatomical replacement means
US3314420A (en) * 1961-10-23 1967-04-18 Haeger Potteries Inc Prosthetic parts and methods of making the same
US3447161A (en) * 1966-08-01 1969-06-03 Avco Corp Disinfectant dispensing percutaneous connector
US3462765A (en) * 1967-01-06 1969-08-26 Dow Corning Surgically implantable prosthetic joint
US3508554A (en) * 1968-11-04 1970-04-28 David S Sheridan Medico-surgical tubes having frosted surface
US3605123A (en) * 1969-04-29 1971-09-20 Melpar Inc Bone implant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ersek et al. Trans. Amer. Soc. Artif. Inter. Orgs. Vol. XV June 1969 pp. 267 271 *

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938528A (en) * 1973-05-11 1976-02-17 Investors In Ventures, Inc. Implanting and splicing articles and methods for living beings
US3923939A (en) * 1974-06-07 1975-12-02 Alza Corp Process for improving release kinetics of a monolithic drug delivery device
US6436135B1 (en) 1974-10-24 2002-08-20 David Goldfarb Prosthetic vascular graft
US4458366A (en) * 1975-05-09 1984-07-10 Macgregor David C Artificial implantable blood pump
US4459252A (en) * 1975-05-09 1984-07-10 Macgregor David C Method of forming a small bore flexible vascular graft involving eluting solvent-elutable particles from a polymeric tubular article
US4173689A (en) * 1976-02-03 1979-11-06 University Of Utah Synthetic polymer prosthesis material
US4177228A (en) * 1977-07-15 1979-12-04 Kilcher-Chemie Ag Method of production of a micro-porous membrane for filtration plants
US4439391A (en) * 1979-06-26 1984-03-27 International Paper Company Polymeric sheets
US4284275A (en) * 1979-10-11 1981-08-18 Fletcher Herbert E Polyurethane gripping material
US4729766A (en) * 1980-08-28 1988-03-08 Astra Meditec Aktiebolag Vascular prosthesis and method in producing it
EP0047231A2 (en) * 1980-08-28 1982-03-10 Astra Meditec AB Vascular prosthesis and method of producing it
EP0047231A3 (en) * 1980-08-28 1982-03-31 Astra Meditec Ab Vascular prosthesis and method in producing it
US4634422A (en) * 1984-05-31 1987-01-06 Adrian Kantrowitz Percutaneous access device and method for implanting same
WO1985005548A1 (en) * 1984-05-31 1985-12-19 Adrian Kantrowitz Percutaneous access device and method for implanting same
USRE35391E (en) * 1984-08-30 1996-12-03 Brauman; Daniel Implantable prosthetic devices
US4752294A (en) * 1984-11-07 1988-06-21 Dan Lundgren Element for controlled growth into surgically intervened areas
AU583814B2 (en) * 1984-11-07 1989-05-11 Guidor Ab Prosthetic element for controlled growth into surgically intervened areas
WO1986002824A1 (en) * 1984-11-07 1986-05-22 Dan Lundgren Element for controlled growth into surgically intervened areas
US5674285A (en) * 1986-11-04 1997-10-07 Medical Products Development, Inc. Mammary implant having shell with unitary rough-textured outer layer
US4960425A (en) * 1987-05-27 1990-10-02 Mentor Corporation Textured surface frosthesis implants
US5022942A (en) * 1987-05-27 1991-06-11 Mentor Corporation Method of making textured surface prosthesis implants
US4859383A (en) * 1987-06-01 1989-08-22 Bio Med Sciences, Inc. Process of producing a composite macrostructure of organic and inorganic materials
US4971076A (en) * 1987-09-25 1990-11-20 Barbara Densert Method of ventilating the middle ear by means of a ventilation tube which can be applied in the tympanic membrane
US4906423A (en) * 1987-10-23 1990-03-06 Dow Corning Wright Methods for forming porous-surfaced polymeric bodies
US4892544A (en) * 1988-03-07 1990-01-09 Dow Corning Wright Corporation Methods for forming hollow, porous-surfaced elastomeric bodies
EP0332371A1 (en) * 1988-03-07 1989-09-13 Dow Corning Wright Corporation Method for forming hollow, porous-surfaced elastomeric bodies
US5549860A (en) * 1989-10-18 1996-08-27 Polymedica Industries, Inc. Method of forming a vascular prosthesis
US5653747A (en) * 1992-12-21 1997-08-05 Corvita Corporation Luminal graft endoprostheses and manufacture thereof
US5871538A (en) * 1992-12-21 1999-02-16 Corvita Corporation Luminal graft endoprotheses and manufacture thereof
US20090138067A1 (en) * 1993-10-21 2009-05-28 Leonard Pinchuk Expandable supportive branched endoluminal grafts
US6165212A (en) * 1993-10-21 2000-12-26 Corvita Corporation Expandable supportive endoluminal grafts
US5855598A (en) * 1993-10-21 1999-01-05 Corvita Corporation Expandable supportive branched endoluminal grafts
US6309413B1 (en) 1993-10-21 2001-10-30 Corvita Corporation Expandable supportive endoluminal grafts
US5948018A (en) * 1993-10-21 1999-09-07 Corvita Corporation Expandable supportive endoluminal grafts
US5958314A (en) * 1994-02-04 1999-09-28 Draenert; Klaus Process for the preparation of porous material
US6221477B1 (en) 1994-02-04 2001-04-24 Klaus Draenert Material and process for producing the same
EP0710468A2 (en) * 1994-11-01 1996-05-08 Mentor Corporation Method of texturing soft tissue implant using a porous mandrel and implants made thereby
EP0710468A3 (en) * 1994-11-01 1996-06-12 Mentor Corp
US5848987A (en) * 1996-04-30 1998-12-15 Medtronic, Inc. Microtextured catheter and method for preventing catheter fluid reflux
US7739781B2 (en) 1996-12-30 2010-06-22 Sorin Biomedica Cardio S.R.L Process for producing a stent for angioplasty
US7946019B2 (en) 1996-12-30 2011-05-24 Sorin Biomedica Cardio S.R.L. Process for producing a stent for angioplasty
US20030195613A1 (en) * 1996-12-30 2003-10-16 Sorin Biomedica Cardio S.P.A. Stent for angioplasty and associated production process
US6638302B1 (en) * 1996-12-30 2003-10-28 Sorin Biomedica Cardio S.P.A. Stent for angioplasty and associated production process
US20100216376A1 (en) * 1996-12-30 2010-08-26 Sorin Biomedica Cardio S.R.L. Process for producing a stent for angioplasty
US7607208B2 (en) 1996-12-30 2009-10-27 Sorin Biomedica Cardio S.R.L. Method of making a medicated stent
US20070151093A1 (en) * 1996-12-30 2007-07-05 Maria Curcio Stent for angioplasty and associated production process
EP0984741A4 (en) * 1997-05-23 2002-06-12 Donald P Griffith A modular prosthetic conduit and method of surgical implantation
EP0984741A1 (en) * 1997-05-23 2000-03-15 Donald P. Griffith A modular prosthetic conduit and method of surgical implantation
EP0914918A2 (en) * 1997-05-30 1999-05-12 Schneider (Usa) Inc. Porous tubular prostheses and method for making the same co-spraying water soluble and water insoluble fibrous components onto a rotating mandrel
EP0914918A3 (en) * 1997-05-30 2001-02-14 Schneider (Usa) Inc. Porous tubular prostheses and method for making the same co-spraying water soluble and water insoluble fibrous components onto a rotating mandrel
US7361158B1 (en) * 1999-09-24 2008-04-22 Medicinvent, Llc Catheter including textured interface
US20040236171A1 (en) * 2000-03-28 2004-11-25 Rastegar Jahangir S. Implantable counterpulsation cardiac assist device
US8286656B2 (en) 2000-03-28 2012-10-16 Pptt Llc Implantable counterpulsation cardiac assist device
US7481760B2 (en) 2000-03-28 2009-01-27 Pptt Llc Implantable counterpulsation cardiac assist device
US20090118568A1 (en) * 2000-03-28 2009-05-07 Pptt Llc Implantable counterpulsation cardiac assist device
US6770024B1 (en) 2000-03-28 2004-08-03 Stony Brook Surgical Innovations, Inc. Implantable counterpulsation cardiac assist device
US6939377B2 (en) 2000-08-23 2005-09-06 Thoratec Corporation Coated vascular grafts and methods of use
US6605116B2 (en) 2001-04-03 2003-08-12 Mentor Corporation Reinforced radius mammary prostheses and soft tissue expanders
US20050137669A1 (en) * 2003-12-09 2005-06-23 Mohan Krishnan Endocardial lead for a left heart chamber
US20080167724A1 (en) * 2006-12-18 2008-07-10 Med Institute, Inc. Stent graft with releasable therapeutic agent and soluable coating
US9474833B2 (en) 2006-12-18 2016-10-25 Cook Medical Technologies Llc Stent graft with releasable therapeutic agent and soluble coating
US20080237166A1 (en) * 2007-03-27 2008-10-02 Electrolux Home Products, Inc. Glide rack
US9138310B2 (en) 2007-11-05 2015-09-22 Allergan, Inc. Soft prosthesis shell texturing method
US10765501B2 (en) 2008-08-13 2020-09-08 Allergan, Inc. Dual plane breast implant
US9848972B2 (en) 2008-08-13 2017-12-26 Allergan, Inc. Dual plane breast implant
US8506627B2 (en) 2008-08-13 2013-08-13 Allergan, Inc. Soft filled prosthesis shell with discrete fixation surfaces
US9918829B2 (en) 2008-08-13 2018-03-20 Allergan, Inc. Soft filled prosthesis shell with discrete fixation surfaces
US10675144B2 (en) 2008-08-13 2020-06-09 Allergan, Inc. Soft filled prosthesis shell with discrete fixation surfaces
US9138311B2 (en) 2008-08-13 2015-09-22 Allergan, Inc. Soft filled prosthesis shell with discrete fixation surfaces
US20100042212A1 (en) * 2008-08-13 2010-02-18 Allergan, Inc. Soft Filled Prosthesis Shell With Discrete Fixation Surfaces
US9393106B2 (en) 2008-08-13 2016-07-19 Allergan, Inc. Soft filled prosthesis shell with discrete fixation surfaces
US20100042211A1 (en) * 2008-08-13 2010-02-18 Allergan, Inc. Soft filled prosthesis shell with discrete fixation surfaces
US8697763B2 (en) 2010-01-28 2014-04-15 Allergan, Inc. Processes for making porous implantable materials
US9138308B2 (en) 2010-02-03 2015-09-22 Apollo Endosurgery, Inc. Mucosal tissue adhesion via textured surface
US10391199B2 (en) 2010-02-05 2019-08-27 Allergan, Inc. Porous materials, methods of making and uses
US10624997B2 (en) 2010-02-05 2020-04-21 Allergan, Inc. Porogen compositions, methods of making and uses
US9072821B2 (en) 2010-02-05 2015-07-07 Allergan, Inc. Biocompatible structures and compositions
US9138309B2 (en) 2010-02-05 2015-09-22 Allergan, Inc. Porous materials, methods of making and uses
US9205577B2 (en) 2010-02-05 2015-12-08 Allergan, Inc. Porogen compositions, methods of making and uses
US20110196489A1 (en) * 2010-02-05 2011-08-11 Allergan, Inc. Biocompatible structures and compositions
US8679570B2 (en) 2010-04-27 2014-03-25 Allergan, Inc. Foam-like materials and methods for producing same
US8685296B2 (en) 2010-05-11 2014-04-01 Allergan, Inc. Porogen compositions, method of making and uses
US11202853B2 (en) 2010-05-11 2021-12-21 Allergan, Inc. Porogen compositions, methods of making and uses
US8764581B2 (en) 2010-08-13 2014-07-01 Nike, Inc. Systems and methods for manufacturing a golf ball
US9044897B2 (en) 2010-09-28 2015-06-02 Allergan, Inc. Porous materials, methods of making and uses
US8877822B2 (en) 2010-09-28 2014-11-04 Allergan, Inc. Porogen compositions, methods of making and uses
US9522502B2 (en) 2010-09-28 2016-12-20 Allergan, Inc. Porous materials, methods of making and uses
US9593224B2 (en) 2010-09-28 2017-03-14 Allergan, Inc. Porogen compositions, methods of making and uses
US8889751B2 (en) 2010-09-28 2014-11-18 Allergan, Inc. Porous materials, methods of making and uses
US9155613B2 (en) 2010-11-16 2015-10-13 Allergan, Inc. Methods for creating foam-like texture
US8679279B2 (en) 2010-11-16 2014-03-25 Allergan, Inc. Methods for creating foam-like texture
US8546458B2 (en) 2010-12-07 2013-10-01 Allergan, Inc. Process for texturing materials
WO2013048978A1 (en) * 2011-09-26 2013-04-04 Allergan, Inc. Silicone implant with imprinted texture
US8801782B2 (en) 2011-12-15 2014-08-12 Allergan, Inc. Surgical methods for breast reconstruction or augmentation
US9688006B2 (en) 2012-12-13 2017-06-27 Allergan, Inc. Device and method for making a variable surface breast implant
US10864661B2 (en) 2012-12-13 2020-12-15 Allergan, Inc. Device and method for making a variable surface breast implant
US9808338B2 (en) 2014-05-16 2017-11-07 Allergan, Inc. Soft filled prosthesis shell with variable texture
US10092392B2 (en) 2014-05-16 2018-10-09 Allergan, Inc. Textured breast implant and methods of making same
US10350055B2 (en) 2014-05-16 2019-07-16 Allergan, Inc. Textured breast implant and methods of making same
US9539086B2 (en) 2014-05-16 2017-01-10 Allergan, Inc. Soft filled prosthesis shell with variable texture

Also Published As

Publication number Publication date
DE2149027A1 (en) 1972-04-06
CH551185A (en) 1974-07-15
IT945980B (en) 1973-05-10
NL7113418A (en) 1972-04-05
JPS5149359B1 (en) 1976-12-25
SE383475B (en) 1976-03-15
GB1347791A (en) 1974-02-27
CA940451A (en) 1974-01-22
FR2109931A5 (en) 1972-05-26

Similar Documents

Publication Publication Date Title
US3700380A (en) Surface or lining compatible with blood or other tissue
US5569463A (en) Medical device polymer
US5423886A (en) Cyclically deformable haemocompatible and biocompatible devices coated with biocompatible carbonaceous material
US4687482A (en) Vascular prosthesis
US4704130A (en) Biocompatible microporous polymeric materials and methods of making same
US4753652A (en) Biomaterial implants which resist calcification
US5207706A (en) Method and means for gold-coating implantable intravascular devices
US5171261A (en) Vascular prosthesis, manufacturing method of the same, and substrate for vascular prothesis
US5464438A (en) Gold coating means for limiting thromboses in implantable grafts
US3453194A (en) Anticoagulant surfaces produced by radiation grafting heparin to a silicone substrate
CN101300037A (en) Hemocompatible composite material and its process of manufacture
US20050143810A1 (en) Cardiovascular implant, method and device for its production, and its provision for surgery
Graham et al. Neo-intimal development on textured biomaterial surfaces during clinical use of an implantable left ventricular assist device
Liotta et al. A pseudoendocardium for implantable blood pumps
SE462416B (en) SKIN OR MUSHROOMS
US5049393A (en) Anti-thrombogenic elastomer and objects and prostheses made therefrom
EP0246638A2 (en) Biologically modified synthetic grafts
US5380589A (en) Biotextured surfaces
Brais et al. Tissue acceptance of materials implanted within the circulatory system
Lelkes et al. Endothelialization of the luminal sac in artificial cardiac prostheses: a challenge for both biologists and engineers
Whalen et al. A new method of in vivo screening of thromboresistant biomaterials utilizing flow measurement
Hayashi et al. Effects of implantation on the mechanical properties of the polyurethane diaphragm of left ventricular assist devices
Hasegawa et al. Use of copolymer graft developed to serve in venous prostheses
KR102131101B1 (en) Method for preparation of ePTFE-based artificial vessels with enhanced hemocompatibility via selective plasma etching
EP1140241B1 (en) Cardiovascular protheses with a stable endothelial cell surface

Legal Events

Date Code Title Description
AS Assignment

Owner name: CROCKER NATIONAL BANK, ONE MONTGOMERY ST., SAN FRA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:THORATEC LABORATORIES CORPORATION A CA CORP.;REEL/FRAME:004066/0838

Effective date: 19821201

AS Assignment

Owner name: CROCKER NATIONAL BANK,CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:THORATEC LABORATORIES CORPORATION A CA CORP;REEL/FRAME:004339/0427

Effective date: 19841207

Owner name: CROCKER NATIONAL BANK ONE MONTGOMERY ST., SAN FRAN

Free format text: SECURITY INTEREST;ASSIGNOR:THORATEC LABORATORIES CORPORATION A CA CORP;REEL/FRAME:004339/0427

Effective date: 19841207

AS Assignment

Owner name: WELLS FARGO BANK N.A., 420 MONTGOMERY STREET, SAN

Free format text: SECURITY INTEREST;ASSIGNORS:THORATEC LABORATORIES INCORPORATED;THORATEC MEDICAL INCORPORATED;BIOTEX INDUSTRIES INCORPORATED MERCOR INCORPORATED;REEL/FRAME:004681/0966

Effective date: 19870122

AS Assignment

Owner name: BRADLEY RESOURCES COMPANY, A NEW YORK GENERAL PART

Free format text: SECURITY INTEREST;ASSIGNOR:THORATEC LABORATORIES CORPORATION, A CORP. OF CA.;REEL/FRAME:005049/0326

Effective date: 19880616

Owner name: GLENN, PAUL F.

Free format text: SECURITY INTEREST;ASSIGNOR:THORATEC LABORATORIES CORPORATION, A CORP. OF CA.;REEL/FRAME:005049/0326

Effective date: 19880616

Owner name: BELL, CHRISTY W.

Free format text: SECURITY INTEREST;ASSIGNOR:THORATEC LABORATORIES CORPORATION, A CORP. OF CA.;REEL/FRAME:005049/0326

Effective date: 19880616

AS Assignment

Owner name: GLENN, PAUL F., ( GLENN )

Free format text: SECURITY INTEREST;ASSIGNOR:THORATEC LABORATORIES CORPORATION, A CA CORP.;REEL/FRAME:004926/0506

Effective date: 19880616

Owner name: BRADLEY RESOURCES COMPANY ("BRADLEY"), A NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:THORATEC LABORATORIES CORPORATION, A CA CORP.;REEL/FRAME:004926/0506

Effective date: 19880616

Owner name: BELL, CHRISTY W., ( BELL )

Free format text: SECURITY INTEREST;ASSIGNOR:THORATEC LABORATORIES CORPORATION, A CA CORP.;REEL/FRAME:004926/0506

Effective date: 19880616

AS Assignment

Owner name: GLENN, PAUL F.

Free format text: SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK N.A., A NATIONAL BANKING ASSOCIATION;REEL/FRAME:005250/0202

Effective date: 19890628

Owner name: BRADLEY RESOURCES COMPANY

Free format text: SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK N.A., A NATIONAL BANKING ASSOCIATION;REEL/FRAME:005250/0202

Effective date: 19890628

Owner name: HILL, J. DONALD

Free format text: SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK N.A., A NATIONAL BANKING ASSOCIATION;REEL/FRAME:005250/0202

Effective date: 19890628

Owner name: BELL, CHRISTY W.

Free format text: SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK N.A., A NATIONAL BANKING ASSOCIATION;REEL/FRAME:005250/0202

Effective date: 19890628

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)