US3704198A - Nonwoven polypropylene mats of increased strip tensile strength - Google Patents

Nonwoven polypropylene mats of increased strip tensile strength Download PDF

Info

Publication number
US3704198A
US3704198A US865089A US3704198DA US3704198A US 3704198 A US3704198 A US 3704198A US 865089 A US865089 A US 865089A US 3704198D A US3704198D A US 3704198DA US 3704198 A US3704198 A US 3704198A
Authority
US
United States
Prior art keywords
mat
tensile strength
nonwoven
mats
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US865089A
Inventor
James S Prentice
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Application granted granted Critical
Publication of US3704198A publication Critical patent/US3704198A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24826Spot bonds connect components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent

Definitions

  • the strip tensile strength of nonwoven mats of polypropylene fibers having a diameter from about 1 to about microns is increased, for example, to strengths greater than 4000 m., by fuse-bonding, as by calendering or point-bonding, at least a portion of the fibers of the mat at temperatures Within the range from about 250 F. to about 325 F., preferably, from about 280 F. to about 315 F., while the mat is subjected to pressure sufiicient to prevent shrinkage of the fibers in the mat.
  • the present invention is directed to nonwoven mats of polypropylene fibers having a diameter from about 1 to about 10 microns and to a method for treating such mats so that they have high strip tensile strength.
  • the strip tensile strength of nonwoven mats of polypropylene fibers having diameters from about 1 to about 10 microns is increased by fusebonding, as by point-bonding or by calendering, at least a portion of the fibers of the mat at a temperature within the range from about 250 F. to about 325 F., while maintaining pressure on the nonwoven mats sufiicient to prevent shrinkage of the fibers while they are exposed to the fuse-bonding temperatures.
  • the nonwoven mats so treated have fusion-bonds throughout their thickness, and may have strip tensile strengths greater than 4000 m., preferably, greater than 5000 or even 6000 m.
  • FIG. 1 is a schematic perspective view of an overall melt blowing process
  • FIG. 2 is a detailed view in longitudinal cross section of a die which may be used in the melt blowing process
  • FIG. 3 is a schematic view of a press used to increase the strip tensile strength of a nonwoven mat of polypropylene fibers of diameters from about 1 to about 10 microns;
  • FIG. 3A is a schematic view of calender rolls which may be used instead of the press of FIG. 3.
  • a polypropylene resin is introduced into a pellet hopper 1 of an extruder 2.
  • the resin is forced through the extruder 2 into a die head 3 by a drive 4.
  • the die head 3 may contain heating plates 5 which may control the temperature in the die head 3.
  • the polypropylene resin is then forced out of a row of die openings 6 in the die head 3 into a gas stream which attenuates the resin into fiber 7 which are collected on a moving collecting device 8 such as a drum 9 to form a continuous mat 10.
  • the gas stream which attenuates the polypropylene is supplied through gas jets 11 and 12 respectively, which are seen more clearly in FIG. 2.
  • the gas slots 11 and 12 are supplied with a hot gas, preferably air, by gas lines 13 and 14 respectively.
  • the process may be further understood by considering the details of the die head 3 which is more fully set forth in FIG. 2.
  • the die head 3 is made up of an upper die plate 15 and a lower die plate 16.
  • the polypropylene resin is introduced in the back of the die plates 15 and 16 through an inlet 17 as it is forced through the extruder 2 into the back of the die head 3.
  • the polypropylene then goes into a chamber 18 between the upper and lower die plates 15 and 16 respectively.
  • the facing of the die plate 16 may have milled grooves 19 which terminate in the die openings 6. It is understood, of course, that the milled grooves may be in the lower die plate 16, in the upper die plate 15, or that grooves may be milled in both plates 15 and 16. Still further.
  • the grooves may be drilled to produce the die openings 6.
  • An upper gas cover plate 20 and a lower gas cover plate 21 are connected to the upper die plate and lower die plate 15 and 16 respectively to provide an upper air chamber 22 and a lower air chamber 23 which terminate in the gas slots 11 and 12 respectively.
  • the hot gas is supplied through inlet 24 in upper gas cover plate 20 and inlet 25 in lower gas cover plate 21.
  • Suitable bafliing means (not shown) may be provided in both the upper air chamber 22 and lower air chamber 23 to provide a uniform rflow of air through the gas slots 11 and 12 respectively.
  • the die head 3 may contain heating means 5 for heating both the polypropylene and air in the die head 3.
  • the characteristics of the nonwoven polypropylene mats produced by the melt blowing process will vary considerably depending upon the particular process conditions used.
  • the characteristics of the nonwoven polypropylene mats are affected in large part by the air flow rates used relative to the rate of resin throughput in the melt blowing process and by the distance of the take-up device from the die openings in the die head.
  • the air rates are high and the pounds of air to pounds of polypropylene extruded through the die head are high (suitably greater than about 140, desirably 150, and preferably in excess of 200 lbs. air/lbs. of polymer for polypropylene)
  • the polypropylene fibers in the nonwoven mat are such that generally the mat has a high zero span tensile strength.
  • the fibers at the higher air rates appear to be drawn, and are much finer fibers as evidenced by their small diameters, which range from 1 to microns.
  • One of the other process variables in the melt blowing process which materially affects the characteristics of the nonwoven polypropylene mat is the distance of the take-up device from the die openings and the die head.
  • the collecting device is between 1 and 6 inches from the die openings, there is evidence of considerable self-bonding of the fibers as they are laid down in the nonwoven mat. At distances greater than 6 inches between the die openings and collector device, some self-bonding still occurs but the amount of self-bonding decreases with distance.
  • self bonding herein means thermal bonding of one fiber to another in the melt blowing process as the nonwoven thermoplastic polymer mats are formed.
  • the strip tensile strength of the polypropylene mats as produced by the melt blowing process is greatest in those mats having the highest degree of self-bonding; but as the self-bonding decreases, the mat is comprised essentially of entangled fibers and the strip tensile strength materially decreases.
  • the tensile strength of the fibers in the melt blown nonwoven mat are found by measuring the zero span tensile strengths of the mats, a measurement which utilizes the same general procedure employed to obtain the strip tensile strength of the mats.
  • the procedure for obtaining strip tensile strength and zero span tensile strength are those in ASTM procedure D-828-60, with the exception that to measure the strip tensile strength the clamps are set apart at a distance of two inches, using an elongation rate of 250% /min., but to measure the zero span tensile strength, the clamps are not separated by any distance.
  • the strip tensile strength of melt blown nonwoven mats of polypropylene fibers are generally lower than desirable for load bearing applications, even though the zero span tensile strengths of the mats may be quite high.
  • the principal object of the present invention is to make the strip tensile strength of a nonwoven mat approach, and even more desirably, attain or exceed the zero span tensile strength of that mat.
  • the strip tensile strength of nonwoven mats of polypropylene fibers having diameters between about 1-10 microns is increased by fuse bonding the nonwoven mat at temperatures within the range from about 250 F. to about 325 F., preferably from about 280 F. to about 315 F., while compressing the mat sufiiciently to prevent shrinkage of the fibers in the mat.
  • the fuse-bonding process may be accomplished by applying a spaced pattern of heat to the mat to melt discrete portions of the mat and to fuse a portion of the fibers in the mat.
  • this is termed "point-bonding.
  • the fuse-bonding may be effected by a general fusion of the fibers by applying an unbroken pattern of heat to the mat, such as by calendering.
  • application of sufficient pressure to the nonwoven mat to prevent shrinkage of the fibers in the mat is indicated by a lack of difference in the size of the mat before and after fuse-bonding and by a lack of decrease in the zero span tensile strength of the nonwoven mat.
  • a heated press 30 may be used in the fuse-bonding process to increase the strip tensile strengths of the melt blown nonwoven mats.
  • the press 30 comprises a plate 31 and a plate 32.
  • the plate 31 has a plurality of spaced apart projections 33 which terminate in flat lands 34 that are spaced in a design or pattern.
  • the spacing of the projections 33, the total surface of the flat lands 34 and the pattern of the projections 33 of the plate 31 will partially determine the degree to which the fibers of the nonwoven mats are point-bonded.
  • the spacing of the projections 33 and the pattern may vary greatly although suitable patterns are rectilinear or diagonal grids. Suitable spacing for the projections 33 is between about inch and inch.
  • the depth to which the projections 33 will penetrate the nonwoven sheet may be controlled by the use of spacers or shims placed between plate 31 and plate 32.
  • the plate 32 may have a flat surface which would come in contact with the lands 34 of the projections 33 of plate 31 or the plate 32 may also have projections which are aligned with the projections of plate 31 so that the lands of the projections of plate 32 would contact the lands 34 of the projections of plate 31.
  • the deeper penetration of the projections 33 into the nonwoven mats is desired.
  • Each of the plates 31 and 32 may be heated independently so that the temperatures of the plates are not necessarily the same.
  • spacer sheets between the nonwoven mats and the plates 31 and 32 of the press to prevent the nonwoven mat from sticking to the plates either during or subsequent to the fuse-bonding operation.
  • Suitable spacer sheet material which may be employed include insulating materials such as tissue paper, ordinary paper and the like or heat conducting materials such as aluminum foil and the like. The conducting spacer sheets are preferred since the additional heat increases the fusing of the fibers in the fuse-bonding process.
  • calender rolls 40 and 41 are shown which may be employed instead of the press 30.
  • the calender roll 40 may have projections which terminate in flat lands which may be patterned in a wide variety of forms, such as a diagonal grid (not shown).
  • spacer sheets may also be used to prevent the nonwoven mats from sticking to the calender rolls.
  • the fusion-bonded nonwoven mat of polypropylene fibers suitably has a thickness within the range of from about 1 to about 25 mils, preferably less than about 10 mils.
  • Basis weight may vary from about 10 gmJm. to 300 or more -gm./m.
  • the fusionbonds which occur throughout the thickness of the nonwoven mat are discrete points in an essentially spaced pattern along its length and breadth or else occur continuously along its length and breadth in an essentially unbroken pattern.
  • the strip tensile strength of the fusionbonded mat is high, greater than about 4000 m., desirably greater than 5000 m., and preferably in excess of 6000 m.
  • the tear resistance of the fusion-bonded mat is low, generally less than 200 dm. rarely if ever as great as 300 dmF.
  • the fusion-bonded mats by virtue of their high strength, which may exceed the zero span tensile strength of the untreated mat, are highly useful as fabrics for load bearing applications, such as tapes, reinforcing liners, carpet backing and the like.
  • load bearing applications such as tapes, reinforcing liners, carpet backing and the like.
  • a special application involves their use as components in laminates to which they con? tribute high strip tensile strength.
  • fusion-bonded nonwoven mats of the present invention and the fusion-bonding process are further illustrated by the specific examples hereinafter following. These examples utilize non-woven mats of melt blown polypropylene fibers produced by the melt blowing process illustrated in FIGS. 1 and 2 of the drawings with the specific 6 temperatures ranging from 200 to 320 F. under a roller pressure of 700 pounds per linear inch at a line speed of 20 feet/minute, using a three-roll calender. The results are tabulated in Table 11.
  • the specific nonwoven mat characteristics are also set forth in Table I as to basis weight, zero span tensile strength and the 2 degree of uniformity of the mat in terms of the zero span tensile strength by the ratio of the cross direction to machine direction (CD/ MD).
  • the fiber diameter of the mats ranged between about 1 to about microns, usually between about 1 to 5 microns.
  • calender roll temperatures of 250 F. or greater were effective in increasing the strip tensile strength of nonwoven mat A.
  • the lack of decrease, indeed, even an increase, of zero span tensile strength at the highest calender roll temperature as well as at an intermediate temperature shows that sufficient pressure was applied to prevent shrinkage of the fibres of the mat.
  • Nonwoven mats B-H made under melt blowing conditions which produce fibers that have a diameter between about 1 to 10 microns (see Table I), were point-bonded at elevated temperatures to fuse-bond the fibers of the mat.
  • the fuse-bonding was accomplished utilizing a press wherein the temperatures of the plates of the press are separately controlled. The temperatures of the plates are set-forth in Table II, the upper plate being a smooth surfaced plate and the lower plate having projections arranged in a spaced pattern.
  • the fuse-bonding was carried out for 10 seconds, with the mats being closed to a spacing of 0.005 inch between the smooth-surfaced upper plate and the lands of the projections on the lower plate.
  • Example 6 Except for Example 6, two sheets of tissue paper were used between the nonwoven mats and the lower plate, and one sheet of foil was used between the nonwoven mats and the upper Lbs. air/lb. polymer--.- 233 21; 2 plate.
  • Example 6 had two sheets of foil between it and 6 the lower plate and two sheets of foil between it and the Basis weight (gm-[1113) 0 6 5 53 upper plate.
  • the point-bonded nonwoven mats as shown gggg g tensile (111-) 32 ggg 5,69 in Table 111, exhibited high strip tensile strengths. The strip tensile strengths were greatly increased from the strip tensile strength of the untreated mat.
  • a nonwoven mat of polypropylene fibers having diameters from about 1 to about 10 microns, said mat having fusion-bonds throughout its thickness, the strip tensile strength of the mat being greater than about 4000 m. and the tear resistance of the mat being no greater than about 300 dm..
  • the nonwoven mat of claim 1 having a thickness within the range of from about 1 to about 25 mils.
  • the nonwoven mat of claim 1 having a basis weight from about g./m. to about 300 g./m.

Abstract

THE STRIP TENSILE STRENGTH OF NONWOVEN MATS OF POLYPROPYLENE FIBERS HAVING A DIAMETER FROM ABOUT 1 TO ABOUT 10 MICRONS IS INCREASED, FOR EXAMPLE, TO STRENGTHS GREATER THAN 4000 M., BY FUSE-BONDING, AS BY CALENDERING OR POINT-BOILING, AT LEAST A PORTION OF THE FIBERS OF THE MAT AT TEMPERATURES WITHIN THE RANGE FROM ABOUT 250*F. TO

ABOUT 325*F., PREFERABLY, FROM ABOUT 280*F. TO ABOUT 315*F., WHILE THE MAT IS SUBJECTED TO PRESSURE SUFFICIENT TO PREVENT SHRINKAGE OF THE FIBERS IN THE MAT.

Description

1972 J. 5. PRENTICE NONWOVEN POLYPROPYLENE MATS 0F INCREASED STRIP TENSILE STRENGTH Filed 001;. 9, 1969 FIG. I.
' INVENTOR.
JAMES S. PRENTICE,
BY Mfg ATTORNEY.
United States Patent 3,704,198 NONWOVEN POLYPROPYLENE MATS 0F INCREASED STRIP TENSILE STRENGTH James S. Prentice, Baytown, Tex., assignor to Esso Research and Engineering Company Filed Oct. 9, 1969, Ser. No. 865,089 Int. Cl. D0411 3/14 US. Cl. 161148 7 Claims ABSTRACT OF THE DISCLOSURE The strip tensile strength of nonwoven mats of polypropylene fibers having a diameter from about 1 to about microns is increased, for example, to strengths greater than 4000 m., by fuse-bonding, as by calendering or point-bonding, at least a portion of the fibers of the mat at temperatures Within the range from about 250 F. to about 325 F., preferably, from about 280 F. to about 315 F., while the mat is subjected to pressure sufiicient to prevent shrinkage of the fibers in the mat.
BACKGROUND OF THE INVENTION (1) Field of the invention The present invention is directed to nonwoven mats of polypropylene fibers having a diameter from about 1 to about 10 microns and to a method for treating such mats so that they have high strip tensile strength.
(2) Prior art US. Pat. 3,276,944; Wente, Van A., Super-Fine Thermoplastics, Industrial and Engineeirng Chemistry, vol. 48, No. 8 (.1956), pp. 1342-1346.
SUMMARY OF THE INVENTION In this invention, the strip tensile strength of nonwoven mats of polypropylene fibers having diameters from about 1 to about 10 microns is increased by fusebonding, as by point-bonding or by calendering, at least a portion of the fibers of the mat at a temperature within the range from about 250 F. to about 325 F., while maintaining pressure on the nonwoven mats sufiicient to prevent shrinkage of the fibers while they are exposed to the fuse-bonding temperatures. The nonwoven mats so treated have fusion-bonds throughout their thickness, and may have strip tensile strengths greater than 4000 m., preferably, greater than 5000 or even 6000 m.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic perspective view of an overall melt blowing process;
FIG. 2 is a detailed view in longitudinal cross section of a die which may be used in the melt blowing process;
FIG. 3 is a schematic view of a press used to increase the strip tensile strength of a nonwoven mat of polypropylene fibers of diameters from about 1 to about 10 microns; and
FIG. 3A is a schematic view of calender rolls which may be used instead of the press of FIG. 3.
7 3,704,198 Patented Nov. 28, 1972 DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1 of the drawings, a polypropylene resin is introduced into a pellet hopper 1 of an extruder 2. The resin is forced through the extruder 2 into a die head 3 by a drive 4. The die head 3 may contain heating plates 5 which may control the temperature in the die head 3. The polypropylene resin is then forced out of a row of die openings 6 in the die head 3 into a gas stream which attenuates the resin into fiber 7 which are collected on a moving collecting device 8 such as a drum 9 to form a continuous mat 10. The gas stream which attenuates the polypropylene is supplied through gas jets 11 and 12 respectively, which are seen more clearly in FIG. 2. The gas slots 11 and 12 are supplied with a hot gas, preferably air, by gas lines 13 and 14 respectively.
The process may be further understood by considering the details of the die head 3 which is more fully set forth in FIG. 2. The die head 3 is made up of an upper die plate 15 and a lower die plate 16. The polypropylene resin is introduced in the back of the die plates 15 and 16 through an inlet 17 as it is forced through the extruder 2 into the back of the die head 3. The polypropylene then goes into a chamber 18 between the upper and lower die plates 15 and 16 respectively. The facing of the die plate 16 may have milled grooves 19 which terminate in the die openings 6. It is understood, of course, that the milled grooves may be in the lower die plate 16, in the upper die plate 15, or that grooves may be milled in both plates 15 and 16. Still further. if a single plate is used in place of the upper and lower die plates, the grooves may be drilled to produce the die openings 6. An upper gas cover plate 20 and a lower gas cover plate 21 are connected to the upper die plate and lower die plate 15 and 16 respectively to provide an upper air chamber 22 and a lower air chamber 23 which terminate in the gas slots 11 and 12 respectively. The hot gas is supplied through inlet 24 in upper gas cover plate 20 and inlet 25 in lower gas cover plate 21. Suitable bafliing means (not shown) may be provided in both the upper air chamber 22 and lower air chamber 23 to provide a uniform rflow of air through the gas slots 11 and 12 respectively. The die head 3 may contain heating means 5 for heating both the polypropylene and air in the die head 3.
The characteristics of the nonwoven polypropylene mats produced by the melt blowing process will vary considerably depending upon the particular process conditions used. The characteristics of the nonwoven polypropylene mats are affected in large part by the air flow rates used relative to the rate of resin throughput in the melt blowing process and by the distance of the take-up device from the die openings in the die head. In the melt blowing process, when the air rates are high and the pounds of air to pounds of polypropylene extruded through the die head are high (suitably greater than about 140, desirably 150, and preferably in excess of 200 lbs. air/lbs. of polymer for polypropylene) the polypropylene fibers in the nonwoven mat are such that generally the mat has a high zero span tensile strength. The fibers at the higher air rates appear to be drawn, and are much finer fibers as evidenced by their small diameters, which range from 1 to microns.
One of the other process variables in the melt blowing process which materially affects the characteristics of the nonwoven polypropylene mat is the distance of the take-up device from the die openings and the die head. When the collecting device is between 1 and 6 inches from the die openings, there is evidence of considerable self-bonding of the fibers as they are laid down in the nonwoven mat. At distances greater than 6 inches between the die openings and collector device, some self-bonding still occurs but the amount of self-bonding decreases with distance. The term self bonding herein means thermal bonding of one fiber to another in the melt blowing process as the nonwoven thermoplastic polymer mats are formed. The strip tensile strength of the polypropylene mats as produced by the melt blowing process is greatest in those mats having the highest degree of self-bonding; but as the self-bonding decreases, the mat is comprised essentially of entangled fibers and the strip tensile strength materially decreases.
Another factor in the strip tensile strength of the melt blown mat is the tensile strength of the fiber itself. The tensile strength of the fibers in the melt blown nonwoven mat are found by measuring the zero span tensile strengths of the mats, a measurement which utilizes the same general procedure employed to obtain the strip tensile strength of the mats. The procedure for obtaining strip tensile strength and zero span tensile strength are those in ASTM procedure D-828-60, with the exception that to measure the strip tensile strength the clamps are set apart at a distance of two inches, using an elongation rate of 250% /min., but to measure the zero span tensile strength, the clamps are not separated by any distance. In both instances, the results are reported in meters, the unit resulting when the force necessary to break the mat, measured in grams, is divided by the width of the sample, measured in meters, all of which is divided by the basis weight of the sample in terms of gm./m. The process variables used in the melt blowing process to obtain mats of high zero span tensile strength result in low tear resistances in those mats, as measured by a standard Elmendorf tear strength tester in accordance with ASTM procedure D-689-62.
The strip tensile strength of melt blown nonwoven mats of polypropylene fibers are generally lower than desirable for load bearing applications, even though the zero span tensile strengths of the mats may be quite high. The principal object of the present invention is to make the strip tensile strength of a nonwoven mat approach, and even more desirably, attain or exceed the zero span tensile strength of that mat.
in accordance with this invention, the strip tensile strength of nonwoven mats of polypropylene fibers having diameters between about 1-10 microns is increased by fuse bonding the nonwoven mat at temperatures within the range from about 250 F. to about 325 F., preferably from about 280 F. to about 315 F., while compressing the mat sufiiciently to prevent shrinkage of the fibers in the mat.
The fuse-bonding process may be accomplished by applying a spaced pattern of heat to the mat to melt discrete portions of the mat and to fuse a portion of the fibers in the mat. Herein, this is termed "point-bonding. Alternatively, the fuse-bonding may be effected by a general fusion of the fibers by applying an unbroken pattern of heat to the mat, such as by calendering. In the fuse-bonding process, application of sufficient pressure to the nonwoven mat to prevent shrinkage of the fibers in the mat is indicated by a lack of difference in the size of the mat before and after fuse-bonding and by a lack of decrease in the zero span tensile strength of the nonwoven mat.
Referring to FIG. 3, a heated press 30 may be used in the fuse-bonding process to increase the strip tensile strengths of the melt blown nonwoven mats. The press 30 comprises a plate 31 and a plate 32. The plate 31 has a plurality of spaced apart projections 33 which terminate in flat lands 34 that are spaced in a design or pattern. The spacing of the projections 33, the total surface of the flat lands 34 and the pattern of the projections 33 of the plate 31 will partially determine the degree to which the fibers of the nonwoven mats are point-bonded. The spacing of the projections 33 and the pattern may vary greatly although suitable patterns are rectilinear or diagonal grids. Suitable spacing for the projections 33 is between about inch and inch. The depth to which the projections 33 will penetrate the nonwoven sheet may be controlled by the use of spacers or shims placed between plate 31 and plate 32. The plate 32 may have a flat surface which would come in contact with the lands 34 of the projections 33 of plate 31 or the plate 32 may also have projections which are aligned with the projections of plate 31 so that the lands of the projections of plate 32 would contact the lands 34 of the projections of plate 31. To obtain higher increases in the strip tensile strengths of the nonwoven mats, the deeper penetration of the projections 33 into the nonwoven mats is desired. Each of the plates 31 and 32 may be heated independently so that the temperatures of the plates are not necessarily the same.
In the fuse-bonding process of the nonwoven mats, it is convenient to use spacer sheets between the nonwoven mats and the plates 31 and 32 of the press to prevent the nonwoven mat from sticking to the plates either during or subsequent to the fuse-bonding operation. Suitable spacer sheet material which may be employed include insulating materials such as tissue paper, ordinary paper and the like or heat conducting materials such as aluminum foil and the like. The conducting spacer sheets are preferred since the additional heat increases the fusing of the fibers in the fuse-bonding process.
For the continuous production of the nonwoven mats of improved higher strip tensile strengths, it is advantagcous to carry out the fuse-bonding process by calendering the nonwoven mats under heating conditions which effect fiber-to-fiber fusion under pressure suflicient to prevent shrinkage of the fibers of the nonwoven mat. Referring to FIG. 3A, calender rolls 40 and 41 are shown which may be employed instead of the press 30. The calender roll 40 may have projections which terminate in flat lands which may be patterned in a wide variety of forms, such as a diagonal grid (not shown). In the calen dering operation to carry out the fuse-bonding, spacer sheets may also be used to prevent the nonwoven mats from sticking to the calender rolls.
The fusion-bonded nonwoven mat of polypropylene fibers suitably has a thickness within the range of from about 1 to about 25 mils, preferably less than about 10 mils. Basis weight may vary from about 10 gmJm. to 300 or more -gm./m. Depending on the degree and manner in which fusion-bonding is accomplished, the fusionbonds which occur throughout the thickness of the nonwoven mat are discrete points in an essentially spaced pattern along its length and breadth or else occur continuously along its length and breadth in an essentially unbroken pattern. The strip tensile strength of the fusionbonded mat is high, greater than about 4000 m., desirably greater than 5000 m., and preferably in excess of 6000 m. The tear resistance of the fusion-bonded mat is low, generally less than 200 dm. rarely if ever as great as 300 dmF.
The fusion-bonded mats, by virtue of their high strength, which may exceed the zero span tensile strength of the untreated mat, are highly useful as fabrics for load bearing applications, such as tapes, reinforcing liners, carpet backing and the like. A special application involves their use as components in laminates to which they con? tribute high strip tensile strength.
The fusion-bonded nonwoven mats of the present invention and the fusion-bonding process are further illustrated by the specific examples hereinafter following. These examples utilize non-woven mats of melt blown polypropylene fibers produced by the melt blowing process illustrated in FIGS. 1 and 2 of the drawings with the specific 6 temperatures ranging from 200 to 320 F. under a roller pressure of 700 pounds per linear inch at a line speed of 20 feet/minute, using a three-roll calender. The results are tabulated in Table 11.
TABLE IL-EXAMPLE 1 Calender roll temperatures F.):
Upper 70 200 225 250 275 287 300 310 320 Lower 70 147 165 185 205 206 220 230 240 Fuse-bonded mat properties:
Strip tensile (m.) 2,346 2,250 2, 150 2,600 3,100 4,900 5, 600 B, 600
Tear resistance (dm.')---- 44 22 29 Zero span tensile (m.) 5, 490 6, 560 7, 130
operating conditions as set forth in Table I. The specific nonwoven mat characteristics are also set forth in Table I as to basis weight, zero span tensile strength and the 2 degree of uniformity of the mat in terms of the zero span tensile strength by the ratio of the cross direction to machine direction (CD/ MD). The fiber diameter of the mats ranged between about 1 to about microns, usually between about 1 to 5 microns.
TABLE I Met Nos A B C D Melt blowing conditions:
Polypropylene MFR 0.6 0.0 0.0 0.6 30
Extruder temp. F Die temp F.) Polymer rate (gm./mi Apparent viscosity (poises).-
Kolymertrate (gnzJnzi p aren viscosi y polses Air tlow (lbs./min.) 4.32 4.2;: 3. 3.36
As shown by Table II, calender roll temperatures of 250 F. or greater were effective in increasing the strip tensile strength of nonwoven mat A. The lack of decrease, indeed, even an increase, of zero span tensile strength at the highest calender roll temperature as well as at an intermediate temperature shows that sufficient pressure was applied to prevent shrinkage of the fibres of the mat.
That the point-bonding technique is efiective to increase the strip tensile strength of other nonwoven mats produced in the same manner as nonwoven mat A of Example l is illustrated by Examples 2-8.
EXAMPLES 2-8 Nonwoven mats B-H, made under melt blowing conditions which produce fibers that have a diameter between about 1 to 10 microns (see Table I), were point-bonded at elevated temperatures to fuse-bond the fibers of the mat. The fuse-bonding was accomplished utilizing a press wherein the temperatures of the plates of the press are separately controlled. The temperatures of the plates are set-forth in Table II, the upper plate being a smooth surfaced plate and the lower plate having projections arranged in a spaced pattern. The fuse-bonding was carried out for 10 seconds, with the mats being closed to a spacing of 0.005 inch between the smooth-surfaced upper plate and the lands of the projections on the lower plate. Except for Example 6, two sheets of tissue paper were used between the nonwoven mats and the lower plate, and one sheet of foil was used between the nonwoven mats and the upper Lbs. air/lb. polymer--.- 233 21; 2 plate. Example 6 had two sheets of foil between it and 6 the lower plate and two sheets of foil between it and the Basis weight (gm-[1113) 0 6 5 53 upper plate. The point-bonded nonwoven mats, as shown gggg g tensile (111-) 32 ggg 5,69 in Table 111, exhibited high strip tensile strengths. The strip tensile strengths were greatly increased from the strip tensile strength of the untreated mat.
TABLE III Example Nos 2 3 4 5 6 7 8 pper Lower- B C D E F G H Fuse-bonded mat properties:
Strip tensile (m.) Tear resistance (dm!) 108 EXAMPLE 1 Having fully and particularly described the fusion- This example illustrates how the strip tensile strength 7 0 bonded nonwoven sheet and the processes involved in of a nonwoven mat is increased by fuse-bonding the mat.
Samples of nonwoven mat A, made under melt blowing conditions which produce fibers that have a diameter from about lto 10 microns (see Table I), were calendered once by passing them through heated calendering rolls at this invention and having set out the best modes thereof, it will be appreciated that alterations and changes may be made by those skilled in the art which are nevertheless within the spirit and scope of the invention, as defined by the appended claims.
I claim:
1. A nonwoven mat of polypropylene fibers having diameters from about 1 to about 10 microns, said mat having fusion-bonds throughout its thickness, the strip tensile strength of the mat being greater than about 4000 m. and the tear resistance of the mat being no greater than about 300 dm..
2. The nonwoven mat of claim 1 in which said fusionbonds occur in an essentially spaced pattern in said mat.
3. The nonwoven mat of claim 1 in which said fusionbonds occur continuously in an essentially unbroken pattern in said mat.
4. The nonwoven mat of claim 1 having a thickness within the range of from about 1 to about 25 mils.
5. The nonwoven mat of claim 1 in which the polypropylene fibers have diameters of from about 1 to about 5 microns.
6. The nonwoven mat of claim 1 in which the strip tensile strength exceeds 5000 meters and in which the tear resistance is less than about 200 dm..
7. The nonwoven mat of claim 1 having a basis weight from about g./m. to about 300 g./m.
8 References Cited UNITED STATES PATENTS 3,276,944 10/ 1966 Levy 161-450 3,532,800 10/1970 Wyly et a1 161140 X 2,988,469 6/1961 Watson 161150 X 3,341,394 9/ 1967 Kinney 161-150 X 3,510,389 5/1970 Olson 161150 X 3,516,899 6/1970 Saunders 161-148 3,532,589 10/1970 David 161-150 US. Cl. X.R. 16l-150,
US865089A 1969-10-09 1969-10-09 Nonwoven polypropylene mats of increased strip tensile strength Expired - Lifetime US3704198A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86508969A 1969-10-09 1969-10-09

Publications (1)

Publication Number Publication Date
US3704198A true US3704198A (en) 1972-11-28

Family

ID=25344685

Family Applications (1)

Application Number Title Priority Date Filing Date
US865089A Expired - Lifetime US3704198A (en) 1969-10-09 1969-10-09 Nonwoven polypropylene mats of increased strip tensile strength

Country Status (1)

Country Link
US (1) US3704198A (en)

Cited By (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787265A (en) * 1972-03-24 1974-01-22 Celanese Corp Process and apparatus for producing fibrous structures
US3839139A (en) * 1972-06-26 1974-10-01 Unitika Ltd Light-occluding and water-permeable sheet
US3847676A (en) * 1972-12-21 1974-11-12 Grace W R & Co Battery separator manufacturing process
US3870567A (en) * 1972-12-21 1975-03-11 Grace W R & Co Battery separator manufacturing process
US3907604A (en) * 1969-10-09 1975-09-23 Exxon Research Engineering Co Nonwoven mat battery separators
US3916447A (en) * 1972-04-24 1975-11-04 Kimberly Clark Co Low cost, absorbent, clinging, aqueous liquid barrier protective covering
US4000967A (en) * 1971-06-03 1977-01-04 Exxon Research And Engineering Company Wettable non-woven structures and components thereof
US4003758A (en) * 1972-12-21 1977-01-18 W. R. Grace & Co. Battery separator with porous body and fused rib
US4041203A (en) * 1972-09-06 1977-08-09 Kimberly-Clark Corporation Nonwoven thermoplastic fabric
US4042740A (en) * 1974-09-20 1977-08-16 Minnesota Mining And Manufacturing Company Reinforced pillowed microfiber webs
US4048364A (en) * 1974-12-20 1977-09-13 Exxon Research And Engineering Company Post-drawn, melt-blown webs
US4713068A (en) * 1986-10-31 1987-12-15 Kimberly-Clark Corporation Breathable clothlike barrier having controlled structure defensive composite
US4713069A (en) * 1986-10-31 1987-12-15 Kimberly-Clark Corporation Baffle having zoned water vapor permeability
US4758239A (en) * 1986-10-31 1988-07-19 Kimberly-Clark Corporation Breathable barrier
US4767825A (en) * 1986-12-22 1988-08-30 Kimberly-Clark Corporation Superabsorbent thermoplastic compositions and nonwoven webs prepared therefrom
US4806598A (en) * 1986-12-22 1989-02-21 Kimberly-Clark Corporation Thermoplastic polymer blends and nonwoven webs prepared therefrom
US4818600A (en) * 1987-12-09 1989-04-04 Kimberly-Clark Corporation Latex coated breathable barrier
US4820577A (en) * 1986-12-22 1989-04-11 Kimberly-Clark Corporation Meltblown superabsorbent thermoplastic compositions
US4847141A (en) * 1986-12-22 1989-07-11 Kimberly-Clark Corporation Superabsorbent thermoplastic compositions and nonwoven webs prepared therefrom
US4857251A (en) * 1988-04-14 1989-08-15 Kimberly-Clark Corporation Method of forming a nonwoven web from a surface-segregatable thermoplastic composition
US4894280A (en) * 1987-12-21 1990-01-16 Kimberly-Clark Corporation Flexible, tear resistant composite sheet material and a method for producing the same
US4940626A (en) * 1988-05-26 1990-07-10 The James River Corporation Meltblown wiper incorporating a silicone surfactant
US4963638A (en) * 1988-02-26 1990-10-16 Kimberly-Clark Corporation Superabsorbent thermoplastic compositions and nonwoven webs prepared therefrom
US4988560A (en) * 1987-12-21 1991-01-29 Minnesota Mining And Manufacturing Company Oriented melt-blown fibers, processes for making such fibers, and webs made from such fibers
US5021288A (en) * 1990-01-04 1991-06-04 The Dow Chemical Company Microfibers of syndiotactic vinyl aromatic polymers, nonwoven mats of the microfibers
US5085920A (en) * 1990-04-30 1992-02-04 Kimberly-Clark Corporation Nonwoven wipe having improved grease release
US5100435A (en) * 1990-12-04 1992-03-31 Kimberly-Clark Corporation Meltblown nonwoven webs made from epoxy/pcl blends
US5141699A (en) * 1987-12-21 1992-08-25 Minnesota Mining And Manufacturing Company Process for making oriented melt-blown microfibers
US5145727A (en) * 1990-11-26 1992-09-08 Kimberly-Clark Corporation Multilayer nonwoven composite structure
US5149576A (en) * 1990-11-26 1992-09-22 Kimberly-Clark Corporation Multilayer nonwoven laminiferous structure
DE4130006A1 (en) * 1991-09-10 1993-03-11 Silver Plastics Gmbh & Co Kg General purpose cleaning cloth - comprises bonded fabric contg. mixt. of LLDPE and homo-polypropylene@ microfibres, with cationic surfactant as disinfectant
US5240479A (en) * 1991-05-17 1993-08-31 Donaldson Company, Inc. Pleated filter media having a continuous bead of adhesive between layers of filtering material
US5244947A (en) * 1991-12-31 1993-09-14 Kimberly-Clark Corporation Stabilization of polyolefin nonwoven webs against actinic radiation
US5244723A (en) * 1992-01-03 1993-09-14 Kimberly-Clark Corporation Filaments, tow, and webs formed by hydraulic spinning
US5244525A (en) * 1987-11-02 1993-09-14 Kimberly-Clark Corporation Methods for bonding, cutting and printing polymeric materials using xerographic printing of IR absorbing material
US5283023A (en) * 1992-01-03 1994-02-01 Kimberly-Clark Corporation Method of imparting delayed wettability to a nonwoven web
US5300167A (en) * 1992-01-03 1994-04-05 Kimberly-Clark Method of preparing a nonwoven web having delayed antimicrobial activity
US5342335A (en) * 1991-12-19 1994-08-30 Kimberly-Clark Corporation Nonwoven web of poly(vinyl alcohol) fibers
US5344862A (en) * 1991-10-25 1994-09-06 Kimberly-Clark Corporation Thermoplastic compositions and nonwoven webs prepared therefrom
US5369858A (en) * 1989-07-28 1994-12-06 Fiberweb North America, Inc. Process for forming apertured nonwoven fabric prepared from melt blown microfibers
US5382703A (en) * 1992-11-06 1995-01-17 Kimberly-Clark Corporation Electron beam-graftable compound and product from its use
US5455074A (en) * 1992-12-29 1995-10-03 Kimberly-Clark Corporation Laminating method and products made thereby
US5478224A (en) * 1994-02-04 1995-12-26 Illinois Tool Works Inc. Apparatus for depositing a material on a substrate and an applicator head therefor
US5494855A (en) * 1994-04-06 1996-02-27 Kimberly-Clark Corporation Thermoplastic compositions and nonwoven webs prepared therefrom
EP0701010A1 (en) 1990-10-17 1996-03-13 Exxon Chemical Patents Inc. Meltblowing Die
US5512358A (en) * 1993-09-22 1996-04-30 Kimberly-Clark Corporation Multi-component polymeric strands including a butene polymer and nonwoven fabric and articles made therewith
US5554435A (en) * 1994-01-31 1996-09-10 Hercules Incorporated Textile structures, and their preparation
US5567372A (en) * 1993-06-11 1996-10-22 Kimberly-Clark Corporation Method for preparing a nonwoven web containing antimicrobial siloxane quaternary ammonium salts
US5582632A (en) * 1994-05-11 1996-12-10 Kimberly-Clark Corporation Corona-assisted electrostatic filtration apparatus and method
US5582907A (en) * 1994-07-28 1996-12-10 Pall Corporation Melt-blown fibrous web
US5618622A (en) * 1995-06-30 1997-04-08 Kimberly-Clark Corporation Surface-modified fibrous material as a filtration medium
US5641822A (en) * 1989-09-18 1997-06-24 Kimberly-Clark Corporation Surface-segregatable compositions and nonwoven webs prepared therefrom
US5643653A (en) * 1993-04-29 1997-07-01 Kimberly-Clark Corporation Shaped nonwoven fabric
US5656361A (en) * 1996-07-23 1997-08-12 Kimberly-Clark Worldwide, Inc. Multiple application meltblown nonwoven wet wipe and method
US5667750A (en) * 1994-10-12 1997-09-16 Kimberly-Clark Corporation Process of making a nonwoven web
US5688465A (en) * 1996-05-13 1997-11-18 Kimberly-Clark Worldwide, Inc. Method of corona treating a hydrophobic sheet material
US5696191A (en) * 1989-09-18 1997-12-09 Kimberly-Clark Worldwide, Inc. Surface-segregatable compositions and nonwoven webs prepared therefrom
US5698481A (en) * 1994-10-12 1997-12-16 Kimberly-Clark Worldwide, Inc. Sterilization wrap material
US5700531A (en) * 1995-11-17 1997-12-23 Kimberly-Clark Worldwide, Inc. Pull-activated container
US5733603A (en) * 1996-06-05 1998-03-31 Kimberly-Clark Corporation Surface modification of hydrophobic polymer substrate
US5738745A (en) * 1995-11-27 1998-04-14 Kimberly-Clark Worldwide, Inc. Method of improving the photostability of polypropylene compositions
US5741564A (en) * 1995-06-22 1998-04-21 Kimberly-Clark Worldwide, Inc. Stretch-activated container
US5773120A (en) * 1997-02-28 1998-06-30 Kimberly-Clark Worldwide, Inc. Loop material for hook-and-loop fastening system
US5780369A (en) * 1997-06-30 1998-07-14 Kimberly-Clark Worldwide, Inc. Saturated cellulosic substrate
US5800866A (en) * 1996-12-06 1998-09-01 Kimberly-Clark Worldwide, Inc. Method of preparing small particle dispersions
US5801106A (en) * 1996-05-10 1998-09-01 Kimberly-Clark Worldwide, Inc. Polymeric strands with high surface area or altered surface properties
US5803106A (en) * 1995-12-21 1998-09-08 Kimberly-Clark Worldwide, Inc. Ultrasonic apparatus and method for increasing the flow rate of a liquid through an orifice
US5868153A (en) * 1995-12-21 1999-02-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid flow control apparatus and method
US5882573A (en) * 1997-09-29 1999-03-16 Illinois Tool Works Inc. Adhesive dispensing nozzles for producing partial spray patterns and method therefor
US5902540A (en) * 1996-10-08 1999-05-11 Illinois Tool Works Inc. Meltblowing method and apparatus
US5904298A (en) * 1996-10-08 1999-05-18 Illinois Tool Works Inc. Meltblowing method and system
US5925712A (en) * 1996-08-16 1999-07-20 Kimberly-Clark Worldwide, Inc. Fusible printable coating for durable images
US5932299A (en) * 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US5993943A (en) * 1987-12-21 1999-11-30 3M Innovative Properties Company Oriented melt-blown fibers, processes for making such fibers and webs made from such fibers
US6020277A (en) * 1994-06-23 2000-02-01 Kimberly-Clark Corporation Polymeric strands with enhanced tensile strength, nonwoven webs including such strands, and methods for making same
US6036467A (en) * 1994-06-23 2000-03-14 Kimberly-Clark Worldwide, Inc. Apparatus for ultrasonically assisted melt extrusion of fibers
US6046378A (en) * 1995-03-14 2000-04-04 Kimberly-Clark Worldwide, Inc. Wettable article
US6051180A (en) * 1998-08-13 2000-04-18 Illinois Tool Works Inc. Extruding nozzle for producing non-wovens and method therefor
US6053424A (en) * 1995-12-21 2000-04-25 Kimberly-Clark Worldwide, Inc. Apparatus and method for ultrasonically producing a spray of liquid
US6060410A (en) * 1998-04-22 2000-05-09 Gillberg-Laforce; Gunilla Elsa Coating of a hydrophobic polymer substrate with a nonstoichiometric polyelectrolyte complex
US6074869A (en) * 1994-07-28 2000-06-13 Pall Corporation Fibrous web for processing a fluid
US6120888A (en) * 1997-06-30 2000-09-19 Kimberly-Clark Worldwide, Inc. Ink jet printable, saturated hydroentangled cellulosic substrate
US6162535A (en) * 1996-05-24 2000-12-19 Kimberly-Clark Worldwide, Inc. Ferroelectric fibers and applications therefor
US6197406B1 (en) 1998-08-31 2001-03-06 Illinois Tool Works Inc. Omega spray pattern
US6242041B1 (en) 1997-11-10 2001-06-05 Mohammad W. Katoot Method and composition for modifying the surface of an object
WO2001046029A2 (en) 1999-12-20 2001-06-28 Kimberly-Clark Worldwide, Inc. Filtering cap for bottled fluids
US20020030008A1 (en) * 2000-03-31 2002-03-14 Kimberly-Clark Worldwide, Inc. Multi-component filter design
EP1194626A1 (en) * 1999-06-16 2002-04-10 First Quality Nonwovens, Inc. Improved method of making media of controlled porosity and product thereof
US6380264B1 (en) 1994-06-23 2002-04-30 Kimberly-Clark Corporation Apparatus and method for emulsifying a pressurized multi-component liquid
US6450417B1 (en) 1995-12-21 2002-09-17 Kimberly-Clark Worldwide Inc. Ultrasonic liquid fuel injection apparatus and method
US6543700B2 (en) 2000-12-11 2003-04-08 Kimberly-Clark Worldwide, Inc. Ultrasonic unitized fuel injector with ceramic valve body
US6573205B1 (en) 1999-01-30 2003-06-03 Kimberly-Clark Worldwide, Inc. Stable electret polymeric articles
US6571960B2 (en) * 2000-05-01 2003-06-03 Kimberly-Clark Worldwide, Inc. Faucet-mounted water filtration device
US6578596B1 (en) * 2000-04-18 2003-06-17 Stratasys, Inc. Apparatus and method for thermoplastic extrusion
US20030119410A1 (en) * 1999-06-16 2003-06-26 Hassan Bodaghi Method of making media of controlled porosity and product thereof
US6602554B1 (en) 2000-01-14 2003-08-05 Illinois Tool Works Inc. Liquid atomization method and system
US20030203691A1 (en) * 2002-04-30 2003-10-30 Kimberly-Clark Worldwide, Inc. Nonwoven materials having surface features
US20030203162A1 (en) * 2002-04-30 2003-10-30 Kimberly-Clark Worldwide, Inc. Methods for making nonwoven materials on a surface having surface features and nonwoven materials having surface features
US6663027B2 (en) 2000-12-11 2003-12-16 Kimberly-Clark Worldwide, Inc. Unitized injector modified for ultrasonically stimulated operation
US20040009725A1 (en) * 2002-07-02 2004-01-15 Kimberly-Clark Worldwide, Inc. Composition and method for treating fibers and nonwoven substrates
US6680021B1 (en) 1996-07-16 2004-01-20 Illinois Toolworks Inc. Meltblowing method and system
US20040118546A1 (en) * 2002-12-19 2004-06-24 Bakken Andrew Peter Non-woven through air dryer and transfer fabrics for tissue making
US20040121680A1 (en) * 2002-12-23 2004-06-24 Kimberly-Clark Worldwide, Inc. Compositions and methods for treating lofty nonwoven substrates
US6759356B1 (en) 1998-06-30 2004-07-06 Kimberly-Clark Worldwide, Inc. Fibrous electret polymeric articles
DE10302079A1 (en) * 2003-01-21 2004-08-05 Corovin Gmbh Process and assembly to produce a bulk layer of synthetic fleece has a mechanical thread compression unit positioned between thread bundling unit and conical outlet
US6875315B2 (en) 2002-12-19 2005-04-05 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US20050133971A1 (en) * 2003-12-23 2005-06-23 Haynes Bryan D. Meltblown die having a reduced size
US20050161214A1 (en) * 2004-01-27 2005-07-28 Morten Myhre Rotationally locked wear sleeve for through-tubing drilling and completion
DE10005454B4 (en) * 2000-02-08 2005-08-18 Papierfabrik Schoeller & Hoesch Gmbh & Co. Kg Single layer, both sides abrasive fleece and process for its production
US20060003150A1 (en) * 2004-06-30 2006-01-05 Kimberly-Clark Worldwide, Inc. Treatment of substrates for improving ink adhesion to substrates
US7141142B2 (en) 2003-09-26 2006-11-28 Kimberly-Clark Worldwide, Inc. Method of making paper using reformable fabrics
US20070099530A1 (en) * 2005-10-27 2007-05-03 Kimberly-Clark Worldwide, Inc. Nonwoven fabric and fastening system that include an auto-adhesive material
US20070134478A1 (en) * 2003-12-20 2007-06-14 Corovin Gmbh Polyethylene-based, soft nonwoven fabric
US20070135777A1 (en) * 2005-12-14 2007-06-14 Kimberly-Clark Worldwide, Inc. Therapeutic article including a personal care composition and methods of making the therapeutic article
DE102008005466A1 (en) 2008-01-21 2009-07-23 Fiberweb Berlin Gmbh polymer mixture
US7798434B2 (en) 2006-12-13 2010-09-21 Nordson Corporation Multi-plate nozzle and method for dispensing random pattern of adhesive filaments
EP1259207B2 (en) 2000-03-02 2011-01-12 Paul Hartmann Aktiengesellschaft Single-use absorbent sanitary article
WO2011144752A2 (en) 2010-05-21 2011-11-24 Fiberweb Corovin Gmbh Extruded polymer product and method for making the same
US8074902B2 (en) 2008-04-14 2011-12-13 Nordson Corporation Nozzle and method for dispensing random pattern of adhesive filaments
US20120068374A1 (en) * 2004-01-22 2012-03-22 Saertex France Method for making a reinforcement provided with at least one adhesive surface capable of being repositioned and resulting reinforcement
US8236385B2 (en) 2005-04-29 2012-08-07 Kimberly Clark Corporation Treatment of substrates for improving ink adhesion to the substrates
WO2012126605A2 (en) 2011-03-18 2012-09-27 Metz Paul-Friedrich Composite film and fibre of keratins and cellulose
US20140265019A1 (en) * 2013-03-15 2014-09-18 I-Chung Liao Manufacturing method of an activated-carbon Filter Element
WO2015171707A1 (en) * 2014-05-07 2015-11-12 Biax-Fiberfilm A non-woven web
US9303334B2 (en) 2014-05-07 2016-04-05 Biax-Fiberfilm Apparatus for forming a non-woven web
US9309612B2 (en) 2014-05-07 2016-04-12 Biax-Fiberfilm Process for forming a non-woven web
US20160263591A1 (en) * 2015-03-10 2016-09-15 Bum Je WOO Purge gas injection plate and manufacturing method thereof
WO2018227069A1 (en) 2017-06-08 2018-12-13 Ascend Performance Materials Operations Llc Polyamide nanofiber nonwovens
WO2019237018A1 (en) 2018-06-08 2019-12-12 Ascend Performance Materials Operations Llc Tunable nanofiber nonwoven products
US10633774B2 (en) 2014-05-07 2020-04-28 Biax-Fiberfilm Corporation Hybrid non-woven web and an apparatus and method for forming said web
WO2020132002A1 (en) 2018-12-18 2020-06-25 Ascend Performance Materials Operations Llc Antimicrobial nonwoven polyamides with zinc content
WO2020223638A1 (en) 2019-05-01 2020-11-05 Ascend Performance Materials Operations Llc Filter media comprising polyamide nanofiber layer
WO2021127306A1 (en) 2019-12-18 2021-06-24 Ascend Performance Materials Operations Llc Processes for producing fiber and fabrics with zinc content
WO2021216540A1 (en) 2020-04-21 2021-10-28 Ascend Performance Materials Operations Llc Filters and facemasks having antimicrobial or antiviral properties
WO2022040578A1 (en) 2020-08-21 2022-02-24 Ascend Performance Materials Operations Llc Filter media structures
DE112005003176B4 (en) 2004-12-23 2022-03-03 Kimberly-Clark Worldwide, Inc. Apparatus for forming meltblown material
WO2022094321A1 (en) 2020-10-30 2022-05-05 Ascend Performance Materials Operations Llc Polyamide nonwovens in sound absorbing multi-layer composites
US11376534B2 (en) 2017-06-08 2022-07-05 Ascend Performance Materials Operations Llc Polyamide nanofiber nonwovens for filters
US11447893B2 (en) 2017-11-22 2022-09-20 Extrusion Group, LLC Meltblown die tip assembly and method
US11598026B2 (en) 2014-05-07 2023-03-07 Biax-Fiberfilm Corporation Spun-blown non-woven web
WO2023043998A1 (en) 2021-09-16 2023-03-23 Ascend Performance Materials Operations Llc Antiodor and antimicrobial layers in absorbent materials
WO2023086213A1 (en) 2021-11-13 2023-05-19 Ascend Performance Materials Operations Llc Wet wipes with zinc loading
WO2023114921A1 (en) 2021-12-17 2023-06-22 Ascend Performance Materials Operations Llc Bicomponent fabrics
WO2023220630A1 (en) 2022-05-10 2023-11-16 Ascend Performance Materials Operations Llc Alkali-treated fabrics/fibers/staples with improved antimicrobial properties
WO2024026341A1 (en) 2022-07-27 2024-02-01 Ascend Performance Materials Operations Llc Bicomponent fabrics with short fibers

Cited By (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907604A (en) * 1969-10-09 1975-09-23 Exxon Research Engineering Co Nonwoven mat battery separators
US4000967A (en) * 1971-06-03 1977-01-04 Exxon Research And Engineering Company Wettable non-woven structures and components thereof
US3787265A (en) * 1972-03-24 1974-01-22 Celanese Corp Process and apparatus for producing fibrous structures
US3916447A (en) * 1972-04-24 1975-11-04 Kimberly Clark Co Low cost, absorbent, clinging, aqueous liquid barrier protective covering
US3839139A (en) * 1972-06-26 1974-10-01 Unitika Ltd Light-occluding and water-permeable sheet
US4041203A (en) * 1972-09-06 1977-08-09 Kimberly-Clark Corporation Nonwoven thermoplastic fabric
US3870567A (en) * 1972-12-21 1975-03-11 Grace W R & Co Battery separator manufacturing process
US4003758A (en) * 1972-12-21 1977-01-18 W. R. Grace & Co. Battery separator with porous body and fused rib
US3847676A (en) * 1972-12-21 1974-11-12 Grace W R & Co Battery separator manufacturing process
US4042740A (en) * 1974-09-20 1977-08-16 Minnesota Mining And Manufacturing Company Reinforced pillowed microfiber webs
US4048364A (en) * 1974-12-20 1977-09-13 Exxon Research And Engineering Company Post-drawn, melt-blown webs
US4713068A (en) * 1986-10-31 1987-12-15 Kimberly-Clark Corporation Breathable clothlike barrier having controlled structure defensive composite
US4713069A (en) * 1986-10-31 1987-12-15 Kimberly-Clark Corporation Baffle having zoned water vapor permeability
US4758239A (en) * 1986-10-31 1988-07-19 Kimberly-Clark Corporation Breathable barrier
US4767825A (en) * 1986-12-22 1988-08-30 Kimberly-Clark Corporation Superabsorbent thermoplastic compositions and nonwoven webs prepared therefrom
US4820577A (en) * 1986-12-22 1989-04-11 Kimberly-Clark Corporation Meltblown superabsorbent thermoplastic compositions
US4847141A (en) * 1986-12-22 1989-07-11 Kimberly-Clark Corporation Superabsorbent thermoplastic compositions and nonwoven webs prepared therefrom
US4806598A (en) * 1986-12-22 1989-02-21 Kimberly-Clark Corporation Thermoplastic polymer blends and nonwoven webs prepared therefrom
US5244525A (en) * 1987-11-02 1993-09-14 Kimberly-Clark Corporation Methods for bonding, cutting and printing polymeric materials using xerographic printing of IR absorbing material
US4818600A (en) * 1987-12-09 1989-04-04 Kimberly-Clark Corporation Latex coated breathable barrier
US4894280A (en) * 1987-12-21 1990-01-16 Kimberly-Clark Corporation Flexible, tear resistant composite sheet material and a method for producing the same
US4988560A (en) * 1987-12-21 1991-01-29 Minnesota Mining And Manufacturing Company Oriented melt-blown fibers, processes for making such fibers, and webs made from such fibers
US5141699A (en) * 1987-12-21 1992-08-25 Minnesota Mining And Manufacturing Company Process for making oriented melt-blown microfibers
US5993943A (en) * 1987-12-21 1999-11-30 3M Innovative Properties Company Oriented melt-blown fibers, processes for making such fibers and webs made from such fibers
US4963638A (en) * 1988-02-26 1990-10-16 Kimberly-Clark Corporation Superabsorbent thermoplastic compositions and nonwoven webs prepared therefrom
US4857251A (en) * 1988-04-14 1989-08-15 Kimberly-Clark Corporation Method of forming a nonwoven web from a surface-segregatable thermoplastic composition
US4940626A (en) * 1988-05-26 1990-07-10 The James River Corporation Meltblown wiper incorporating a silicone surfactant
US5369858A (en) * 1989-07-28 1994-12-06 Fiberweb North America, Inc. Process for forming apertured nonwoven fabric prepared from melt blown microfibers
US5696191A (en) * 1989-09-18 1997-12-09 Kimberly-Clark Worldwide, Inc. Surface-segregatable compositions and nonwoven webs prepared therefrom
US5641822A (en) * 1989-09-18 1997-06-24 Kimberly-Clark Corporation Surface-segregatable compositions and nonwoven webs prepared therefrom
AU628703B2 (en) * 1990-01-04 1992-09-17 Dow Chemical Company, The Microfibers of syndiotactic vinyl aromatic polymers, nonwoven mats of the microfibers and melt-blowing process for the production thereof
US5021288A (en) * 1990-01-04 1991-06-04 The Dow Chemical Company Microfibers of syndiotactic vinyl aromatic polymers, nonwoven mats of the microfibers
US5085920A (en) * 1990-04-30 1992-02-04 Kimberly-Clark Corporation Nonwoven wipe having improved grease release
EP0701010A1 (en) 1990-10-17 1996-03-13 Exxon Chemical Patents Inc. Meltblowing Die
US5178932A (en) * 1990-11-26 1993-01-12 Kimberly-Clark Corporation Three-layer nonwoven composite structure
US5145727A (en) * 1990-11-26 1992-09-08 Kimberly-Clark Corporation Multilayer nonwoven composite structure
US5149576A (en) * 1990-11-26 1992-09-22 Kimberly-Clark Corporation Multilayer nonwoven laminiferous structure
US5178931A (en) * 1990-11-26 1993-01-12 Kimberly-Clark Corporation Three-layer nonwoven laminiferous structure
US5100435A (en) * 1990-12-04 1992-03-31 Kimberly-Clark Corporation Meltblown nonwoven webs made from epoxy/pcl blends
US5240479A (en) * 1991-05-17 1993-08-31 Donaldson Company, Inc. Pleated filter media having a continuous bead of adhesive between layers of filtering material
DE4130006A1 (en) * 1991-09-10 1993-03-11 Silver Plastics Gmbh & Co Kg General purpose cleaning cloth - comprises bonded fabric contg. mixt. of LLDPE and homo-polypropylene@ microfibres, with cationic surfactant as disinfectant
US5344862A (en) * 1991-10-25 1994-09-06 Kimberly-Clark Corporation Thermoplastic compositions and nonwoven webs prepared therefrom
US5413655A (en) * 1991-10-25 1995-05-09 Kimberly-Clark Corporation Thermoplastic compositions and nonwoven webs prepared therefrom
US5342335A (en) * 1991-12-19 1994-08-30 Kimberly-Clark Corporation Nonwoven web of poly(vinyl alcohol) fibers
US5445785A (en) * 1991-12-19 1995-08-29 Kimberly-Clark Corporation Method of preparing a nonwoven web of poly(vinyl alcohol) fibers
US5244947A (en) * 1991-12-31 1993-09-14 Kimberly-Clark Corporation Stabilization of polyolefin nonwoven webs against actinic radiation
US5283023A (en) * 1992-01-03 1994-02-01 Kimberly-Clark Corporation Method of imparting delayed wettability to a nonwoven web
US5300167A (en) * 1992-01-03 1994-04-05 Kimberly-Clark Method of preparing a nonwoven web having delayed antimicrobial activity
US5244723A (en) * 1992-01-03 1993-09-14 Kimberly-Clark Corporation Filaments, tow, and webs formed by hydraulic spinning
US5382703A (en) * 1992-11-06 1995-01-17 Kimberly-Clark Corporation Electron beam-graftable compound and product from its use
US5455074A (en) * 1992-12-29 1995-10-03 Kimberly-Clark Corporation Laminating method and products made thereby
US5578369A (en) * 1992-12-29 1996-11-26 Kimberly-Clark Corporation Laminating method and products made thereby
US5643653A (en) * 1993-04-29 1997-07-01 Kimberly-Clark Corporation Shaped nonwoven fabric
US5854147A (en) * 1993-06-11 1998-12-29 Kimberly-Clark Worldwide, Inc. Non-woven web containing antimicrobial siloxane quaternary ammonium salts
US5853641A (en) * 1993-06-11 1998-12-29 Kimberly-Clark Worldwide, Inc. Method for preparing polyolefin fibers containing antimicrobial siloxane quarternary ammonium salts
US5567372A (en) * 1993-06-11 1996-10-22 Kimberly-Clark Corporation Method for preparing a nonwoven web containing antimicrobial siloxane quaternary ammonium salts
US5569732A (en) * 1993-06-11 1996-10-29 Kimberly-Clark Corporation Antimicrobial siloxane quaternary ammonium salts
US5853883A (en) * 1993-06-11 1998-12-29 Kimberly-Clark Worldwide, Inc. Polyolefin fibers containing antimicrobial siloxane quaternary ammonium salts
US5777010A (en) * 1993-06-11 1998-07-07 Kimberly-Clark Worldwide, Inc. Melt-extrudable compositions containing antimicrobial siloxane quaternary ammonium salts
US5512358A (en) * 1993-09-22 1996-04-30 Kimberly-Clark Corporation Multi-component polymeric strands including a butene polymer and nonwoven fabric and articles made therewith
US5554435A (en) * 1994-01-31 1996-09-10 Hercules Incorporated Textile structures, and their preparation
US5478224A (en) * 1994-02-04 1995-12-26 Illinois Tool Works Inc. Apparatus for depositing a material on a substrate and an applicator head therefor
US5494855A (en) * 1994-04-06 1996-02-27 Kimberly-Clark Corporation Thermoplastic compositions and nonwoven webs prepared therefrom
US5582632A (en) * 1994-05-11 1996-12-10 Kimberly-Clark Corporation Corona-assisted electrostatic filtration apparatus and method
US6380264B1 (en) 1994-06-23 2002-04-30 Kimberly-Clark Corporation Apparatus and method for emulsifying a pressurized multi-component liquid
US6395216B1 (en) 1994-06-23 2002-05-28 Kimberly-Clark Worldwide, Inc. Method and apparatus for ultrasonically assisted melt extrusion of fibers
US6020277A (en) * 1994-06-23 2000-02-01 Kimberly-Clark Corporation Polymeric strands with enhanced tensile strength, nonwoven webs including such strands, and methods for making same
US6036467A (en) * 1994-06-23 2000-03-14 Kimberly-Clark Worldwide, Inc. Apparatus for ultrasonically assisted melt extrusion of fibers
US5586997A (en) * 1994-07-28 1996-12-24 Pall Corporation Bag filter
US5582907A (en) * 1994-07-28 1996-12-10 Pall Corporation Melt-blown fibrous web
US5652050A (en) * 1994-07-28 1997-07-29 Pall Corporation Fibrous web for processing a fluid
US5846438A (en) * 1994-07-28 1998-12-08 Pall Corporation Fibrous web for processing a fluid
US6074869A (en) * 1994-07-28 2000-06-13 Pall Corporation Fibrous web for processing a fluid
US5744548A (en) * 1994-10-12 1998-04-28 Kimberly-Clark Worldwide, Inc. Melt-extrudable thermoplastic polypropylene composition and nonwoven web prepared therefrom
US5698294A (en) * 1994-10-12 1997-12-16 Kimberly-Clark Worldwide, Inc. Sterilization wrap material
US5698481A (en) * 1994-10-12 1997-12-16 Kimberly-Clark Worldwide, Inc. Sterilization wrap material
US5667750A (en) * 1994-10-12 1997-09-16 Kimberly-Clark Corporation Process of making a nonwoven web
US6046378A (en) * 1995-03-14 2000-04-04 Kimberly-Clark Worldwide, Inc. Wettable article
US6403858B1 (en) 1995-03-14 2002-06-11 Kimberly-Clark Worldwide, Inc. Wettable article
US5839608A (en) * 1995-06-22 1998-11-24 Kimberly-Clark Worldwide, Inc. Stretch-activated container
US5741564A (en) * 1995-06-22 1998-04-21 Kimberly-Clark Worldwide, Inc. Stretch-activated container
US5618622A (en) * 1995-06-30 1997-04-08 Kimberly-Clark Corporation Surface-modified fibrous material as a filtration medium
US5700531A (en) * 1995-11-17 1997-12-23 Kimberly-Clark Worldwide, Inc. Pull-activated container
US5738745A (en) * 1995-11-27 1998-04-14 Kimberly-Clark Worldwide, Inc. Method of improving the photostability of polypropylene compositions
US6450417B1 (en) 1995-12-21 2002-09-17 Kimberly-Clark Worldwide Inc. Ultrasonic liquid fuel injection apparatus and method
US5803106A (en) * 1995-12-21 1998-09-08 Kimberly-Clark Worldwide, Inc. Ultrasonic apparatus and method for increasing the flow rate of a liquid through an orifice
US6315215B1 (en) 1995-12-21 2001-11-13 Kimberly-Clark Worldwide, Inc. Apparatus and method for ultrasonically self-cleaning an orifice
US5868153A (en) * 1995-12-21 1999-02-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid flow control apparatus and method
US6659365B2 (en) 1995-12-21 2003-12-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid fuel injection apparatus and method
US6053424A (en) * 1995-12-21 2000-04-25 Kimberly-Clark Worldwide, Inc. Apparatus and method for ultrasonically producing a spray of liquid
US5932299A (en) * 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US5801106A (en) * 1996-05-10 1998-09-01 Kimberly-Clark Worldwide, Inc. Polymeric strands with high surface area or altered surface properties
US5688465A (en) * 1996-05-13 1997-11-18 Kimberly-Clark Worldwide, Inc. Method of corona treating a hydrophobic sheet material
US6858551B1 (en) 1996-05-24 2005-02-22 Kimberly-Clark Worldwide, Inc. Ferroelectric fibers and applications therefor
US6162535A (en) * 1996-05-24 2000-12-19 Kimberly-Clark Worldwide, Inc. Ferroelectric fibers and applications therefor
US5998023A (en) * 1996-06-05 1999-12-07 Kimberly-Clark Worldwide, Inc. Surface modification of hydrophobic polymer substrate
US5733603A (en) * 1996-06-05 1998-03-31 Kimberly-Clark Corporation Surface modification of hydrophobic polymer substrate
US6680021B1 (en) 1996-07-16 2004-01-20 Illinois Toolworks Inc. Meltblowing method and system
US5656361A (en) * 1996-07-23 1997-08-12 Kimberly-Clark Worldwide, Inc. Multiple application meltblown nonwoven wet wipe and method
US6033739A (en) * 1996-08-16 2000-03-07 Kimberly-Clark Worldwide, Inc. Fusible printing coating for durable images
US5962149A (en) * 1996-08-16 1999-10-05 Kimberly-Clark Worldwide, Inc. Fusible printable coating for durable images
US5925712A (en) * 1996-08-16 1999-07-20 Kimberly-Clark Worldwide, Inc. Fusible printable coating for durable images
US6074597A (en) * 1996-10-08 2000-06-13 Illinois Tool Works Inc. Meltblowing method and apparatus
US5904298A (en) * 1996-10-08 1999-05-18 Illinois Tool Works Inc. Meltblowing method and system
US5902540A (en) * 1996-10-08 1999-05-11 Illinois Tool Works Inc. Meltblowing method and apparatus
US6890167B1 (en) 1996-10-08 2005-05-10 Illinois Tool Works Inc. Meltblowing apparatus
US5800866A (en) * 1996-12-06 1998-09-01 Kimberly-Clark Worldwide, Inc. Method of preparing small particle dispersions
US5773120A (en) * 1997-02-28 1998-06-30 Kimberly-Clark Worldwide, Inc. Loop material for hook-and-loop fastening system
US6120888A (en) * 1997-06-30 2000-09-19 Kimberly-Clark Worldwide, Inc. Ink jet printable, saturated hydroentangled cellulosic substrate
US5780369A (en) * 1997-06-30 1998-07-14 Kimberly-Clark Worldwide, Inc. Saturated cellulosic substrate
US5882573A (en) * 1997-09-29 1999-03-16 Illinois Tool Works Inc. Adhesive dispensing nozzles for producing partial spray patterns and method therefor
US6242041B1 (en) 1997-11-10 2001-06-05 Mohammad W. Katoot Method and composition for modifying the surface of an object
US6060410A (en) * 1998-04-22 2000-05-09 Gillberg-Laforce; Gunilla Elsa Coating of a hydrophobic polymer substrate with a nonstoichiometric polyelectrolyte complex
US6759356B1 (en) 1998-06-30 2004-07-06 Kimberly-Clark Worldwide, Inc. Fibrous electret polymeric articles
US6051180A (en) * 1998-08-13 2000-04-18 Illinois Tool Works Inc. Extruding nozzle for producing non-wovens and method therefor
US6200635B1 (en) 1998-08-31 2001-03-13 Illinois Tool Works Inc. Omega spray pattern and method therefor
US6197406B1 (en) 1998-08-31 2001-03-06 Illinois Tool Works Inc. Omega spray pattern
US6461430B1 (en) 1998-08-31 2002-10-08 Illinois Tool Works Inc. Omega spray pattern and method therefor
US20030207642A1 (en) * 1999-01-30 2003-11-06 Myers David Lewis Stable electret polymeric articles
US6893990B2 (en) 1999-01-30 2005-05-17 Kimberly Clark Worldwide, Inc. Stable electret polymeric articles
US6573205B1 (en) 1999-01-30 2003-06-03 Kimberly-Clark Worldwide, Inc. Stable electret polymeric articles
EP1194626A4 (en) * 1999-06-16 2002-12-04 First Quality Nonwovens Inc Improved method of making media of controlled porosity and product thereof
US20030119410A1 (en) * 1999-06-16 2003-06-26 Hassan Bodaghi Method of making media of controlled porosity and product thereof
EP1194626A1 (en) * 1999-06-16 2002-04-10 First Quality Nonwovens, Inc. Improved method of making media of controlled porosity and product thereof
WO2001046029A2 (en) 1999-12-20 2001-06-28 Kimberly-Clark Worldwide, Inc. Filtering cap for bottled fluids
US6602554B1 (en) 2000-01-14 2003-08-05 Illinois Tool Works Inc. Liquid atomization method and system
DE10005454B4 (en) * 2000-02-08 2005-08-18 Papierfabrik Schoeller & Hoesch Gmbh & Co. Kg Single layer, both sides abrasive fleece and process for its production
EP1259207B2 (en) 2000-03-02 2011-01-12 Paul Hartmann Aktiengesellschaft Single-use absorbent sanitary article
US20020030008A1 (en) * 2000-03-31 2002-03-14 Kimberly-Clark Worldwide, Inc. Multi-component filter design
US6578596B1 (en) * 2000-04-18 2003-06-17 Stratasys, Inc. Apparatus and method for thermoplastic extrusion
US6571960B2 (en) * 2000-05-01 2003-06-03 Kimberly-Clark Worldwide, Inc. Faucet-mounted water filtration device
US6663027B2 (en) 2000-12-11 2003-12-16 Kimberly-Clark Worldwide, Inc. Unitized injector modified for ultrasonically stimulated operation
US6543700B2 (en) 2000-12-11 2003-04-08 Kimberly-Clark Worldwide, Inc. Ultrasonic unitized fuel injector with ceramic valve body
US6880770B2 (en) 2000-12-11 2005-04-19 Kimberly-Clark Worldwide, Inc. Method of retrofitting an unitized injector for ultrasonically stimulated operation
US20030203162A1 (en) * 2002-04-30 2003-10-30 Kimberly-Clark Worldwide, Inc. Methods for making nonwoven materials on a surface having surface features and nonwoven materials having surface features
US20030203691A1 (en) * 2002-04-30 2003-10-30 Kimberly-Clark Worldwide, Inc. Nonwoven materials having surface features
US7018945B2 (en) 2002-07-02 2006-03-28 Kimberly-Clark Worldwide, Inc. Composition and method for treating fibers and nonwoven substrates
US20040009725A1 (en) * 2002-07-02 2004-01-15 Kimberly-Clark Worldwide, Inc. Composition and method for treating fibers and nonwoven substrates
US6875315B2 (en) 2002-12-19 2005-04-05 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US20040118546A1 (en) * 2002-12-19 2004-06-24 Bakken Andrew Peter Non-woven through air dryer and transfer fabrics for tissue making
US6878238B2 (en) 2002-12-19 2005-04-12 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
EP1950343A1 (en) 2002-12-19 2008-07-30 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US7294238B2 (en) 2002-12-19 2007-11-13 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US20040121680A1 (en) * 2002-12-23 2004-06-24 Kimberly-Clark Worldwide, Inc. Compositions and methods for treating lofty nonwoven substrates
DE10302079A1 (en) * 2003-01-21 2004-08-05 Corovin Gmbh Process and assembly to produce a bulk layer of synthetic fleece has a mechanical thread compression unit positioned between thread bundling unit and conical outlet
DE10302079B4 (en) * 2003-01-21 2006-04-20 Corovin Gmbh Apparatus and method for making crimped spunbond fibers or crimped meltblown nonwoven filaments of molten thermoplastic material
US7141142B2 (en) 2003-09-26 2006-11-28 Kimberly-Clark Worldwide, Inc. Method of making paper using reformable fabrics
US20090136606A1 (en) * 2003-12-20 2009-05-28 Fiberweb Corovin Gmbh Device for the manufacture of polyethylene-based, soft nonwoven fabric
EP2218811A1 (en) 2003-12-20 2010-08-18 Fiberweb Corovin GmbH Polyethylene-based, soft nonwoven fabric
US20070134478A1 (en) * 2003-12-20 2007-06-14 Corovin Gmbh Polyethylene-based, soft nonwoven fabric
EP2341174A1 (en) 2003-12-20 2011-07-06 Fiberweb Corovin GmbH Polyethylene-based, soft nonwoven fabric
US8420557B2 (en) 2003-12-20 2013-04-16 Fiberweb Corovin Gmbh Polyethylene-based, soft nonwoven fabric
US20090133813A1 (en) * 2003-12-20 2009-05-28 Fiberweb Corovin Gmbh Method for the manufacture of polyethylene-based, soft nonwoven fabric
US6972104B2 (en) 2003-12-23 2005-12-06 Kimberly-Clark Worldwide, Inc. Meltblown die having a reduced size
US20050133971A1 (en) * 2003-12-23 2005-06-23 Haynes Bryan D. Meltblown die having a reduced size
US20120068374A1 (en) * 2004-01-22 2012-03-22 Saertex France Method for making a reinforcement provided with at least one adhesive surface capable of being repositioned and resulting reinforcement
US20050161214A1 (en) * 2004-01-27 2005-07-28 Morten Myhre Rotationally locked wear sleeve for through-tubing drilling and completion
US20060003150A1 (en) * 2004-06-30 2006-01-05 Kimberly-Clark Worldwide, Inc. Treatment of substrates for improving ink adhesion to substrates
DE112005003176B4 (en) 2004-12-23 2022-03-03 Kimberly-Clark Worldwide, Inc. Apparatus for forming meltblown material
US8236385B2 (en) 2005-04-29 2012-08-07 Kimberly Clark Corporation Treatment of substrates for improving ink adhesion to the substrates
US20070099530A1 (en) * 2005-10-27 2007-05-03 Kimberly-Clark Worldwide, Inc. Nonwoven fabric and fastening system that include an auto-adhesive material
US8562774B2 (en) 2005-10-27 2013-10-22 Kimberly-Clark Worldwide, Inc. Method of forming a nonwoven fabric and fastening system that include an auto-adhesive material
US8034430B2 (en) 2005-10-27 2011-10-11 Kimberly-Clark Worldwide, Inc. Nonwoven fabric and fastening system that include an auto-adhesive material
US7713252B2 (en) 2005-12-14 2010-05-11 Kimberly-Clark Worldwide, Inc. Therapeutic article including a personal care composition and methods of making the therapeutic article
US20070135777A1 (en) * 2005-12-14 2007-06-14 Kimberly-Clark Worldwide, Inc. Therapeutic article including a personal care composition and methods of making the therapeutic article
US7798434B2 (en) 2006-12-13 2010-09-21 Nordson Corporation Multi-plate nozzle and method for dispensing random pattern of adhesive filaments
DE102008005466A1 (en) 2008-01-21 2009-07-23 Fiberweb Berlin Gmbh polymer mixture
US8435600B2 (en) 2008-04-14 2013-05-07 Nordson Corporation Method for dispensing random pattern of adhesive filaments
US8074902B2 (en) 2008-04-14 2011-12-13 Nordson Corporation Nozzle and method for dispensing random pattern of adhesive filaments
WO2011144752A2 (en) 2010-05-21 2011-11-24 Fiberweb Corovin Gmbh Extruded polymer product and method for making the same
WO2012126605A2 (en) 2011-03-18 2012-09-27 Metz Paul-Friedrich Composite film and fibre of keratins and cellulose
US20140265019A1 (en) * 2013-03-15 2014-09-18 I-Chung Liao Manufacturing method of an activated-carbon Filter Element
US9168704B2 (en) * 2013-03-15 2015-10-27 I-Chung Liao Manufacturing method of an activated-carbon filter element
WO2015171707A1 (en) * 2014-05-07 2015-11-12 Biax-Fiberfilm A non-woven web
US9309612B2 (en) 2014-05-07 2016-04-12 Biax-Fiberfilm Process for forming a non-woven web
US9303334B2 (en) 2014-05-07 2016-04-05 Biax-Fiberfilm Apparatus for forming a non-woven web
CN106715774A (en) * 2014-05-07 2017-05-24 双轴-纤维膜公司 A non-woven web
US11598026B2 (en) 2014-05-07 2023-03-07 Biax-Fiberfilm Corporation Spun-blown non-woven web
US10633774B2 (en) 2014-05-07 2020-04-28 Biax-Fiberfilm Corporation Hybrid non-woven web and an apparatus and method for forming said web
CN106715774B (en) * 2014-05-07 2020-08-11 双轴-纤维膜公司 Nonwoven web
US20160263591A1 (en) * 2015-03-10 2016-09-15 Bum Je WOO Purge gas injection plate and manufacturing method thereof
US10358736B2 (en) * 2015-03-10 2019-07-23 Bum Je WOO Purge gas spraying plate for fume removing of a semiconductor manufacturing apparatus
US11376534B2 (en) 2017-06-08 2022-07-05 Ascend Performance Materials Operations Llc Polyamide nanofiber nonwovens for filters
US11674247B2 (en) 2017-06-08 2023-06-13 Ascend Performance Materials Operations Llc Polyamide nanofiber nonwovens
EP4159909A1 (en) 2017-06-08 2023-04-05 Ascend Performance Materials Operations LLC Polyamide nanofiber nonwovens
WO2018227069A1 (en) 2017-06-08 2018-12-13 Ascend Performance Materials Operations Llc Polyamide nanofiber nonwovens
US11578438B2 (en) 2017-06-08 2023-02-14 Ascend Performance Materials Operations Llc Polyamide nanofiber nonwovens for acoustic applications
US10662561B2 (en) 2017-06-08 2020-05-26 Ascend Performance Materials Operations Llc Polyamide nanofiber nonwovens
US11421359B2 (en) 2017-06-08 2022-08-23 Ascend Performance Materials Operations Llc Polyamide nanofiber nonwovens
US11447893B2 (en) 2017-11-22 2022-09-20 Extrusion Group, LLC Meltblown die tip assembly and method
US11111614B2 (en) 2018-06-08 2021-09-07 Ascend Performance Materials Operations Llc Method for tuning characteristics of a polyamide nanofiber nonwoven
WO2019237018A1 (en) 2018-06-08 2019-12-12 Ascend Performance Materials Operations Llc Tunable nanofiber nonwoven products
US11758909B2 (en) 2018-12-18 2023-09-19 Ascend Performance Materials Operations Llc Antimicrobial nonwoven polyamides with zinc content
WO2020132002A1 (en) 2018-12-18 2020-06-25 Ascend Performance Materials Operations Llc Antimicrobial nonwoven polyamides with zinc content
WO2020223638A1 (en) 2019-05-01 2020-11-05 Ascend Performance Materials Operations Llc Filter media comprising polyamide nanofiber layer
WO2021127306A1 (en) 2019-12-18 2021-06-24 Ascend Performance Materials Operations Llc Processes for producing fiber and fabrics with zinc content
WO2021216540A1 (en) 2020-04-21 2021-10-28 Ascend Performance Materials Operations Llc Filters and facemasks having antimicrobial or antiviral properties
WO2022040578A1 (en) 2020-08-21 2022-02-24 Ascend Performance Materials Operations Llc Filter media structures
WO2022094321A1 (en) 2020-10-30 2022-05-05 Ascend Performance Materials Operations Llc Polyamide nonwovens in sound absorbing multi-layer composites
WO2023043998A1 (en) 2021-09-16 2023-03-23 Ascend Performance Materials Operations Llc Antiodor and antimicrobial layers in absorbent materials
WO2023086213A1 (en) 2021-11-13 2023-05-19 Ascend Performance Materials Operations Llc Wet wipes with zinc loading
WO2023114921A1 (en) 2021-12-17 2023-06-22 Ascend Performance Materials Operations Llc Bicomponent fabrics
WO2023220630A1 (en) 2022-05-10 2023-11-16 Ascend Performance Materials Operations Llc Alkali-treated fabrics/fibers/staples with improved antimicrobial properties
WO2024026341A1 (en) 2022-07-27 2024-02-01 Ascend Performance Materials Operations Llc Bicomponent fabrics with short fibers

Similar Documents

Publication Publication Date Title
US3704198A (en) Nonwoven polypropylene mats of increased strip tensile strength
US3715251A (en) Laminated non-woven sheet
US3650866A (en) Increasing strip tensile strength of melt blown nonwoven polypropylene mats of high tear resistance
US3795571A (en) Laminated non-woven sheet
US4078124A (en) Laminated non-woven sheet
US3907604A (en) Nonwoven mat battery separators
US3755527A (en) Process for producing melt blown nonwoven synthetic polymer mat having high tear resistance
US4035219A (en) Bonding of structures
GB1339952A (en) Non-woven material
US3532589A (en) Differentially bonded non-woven sheet
US3169899A (en) Nonwoven fiberous sheet of continuous strand material and the method of making same
US4151023A (en) Method for the production of a nonwoven fabric
US3695967A (en) Method of preparing air-permeable laminate
US4342813A (en) Method for the production of a fused nonwoven fabric
US4315965A (en) Method of making nonwoven fabric and product made thereby having both stick bonds and molten bonds
US3442740A (en) Process for producing a bonded non-woven sheet
US4247318A (en) Process for making security paper from film-fibril sheets
US3383273A (en) Flexible sheet material
EP0591609B1 (en) Nonwoven bonding technique
US3617417A (en) Process for forming a bonded nonwoven fabric
US3510389A (en) Spot-bonded nonwoven fabric
US3660555A (en) Method of bonding nonwoven textile fabrics
US4310591A (en) Security paper from film-fibril sheets
US4518658A (en) Waterproof membrane with fuse bonded non-woven reinforcement
US3455772A (en) Non-woven reinforced blown rubber underpad