US3722858A - Flow regulating device - Google Patents

Flow regulating device Download PDF

Info

Publication number
US3722858A
US3722858A US00098311A US3722858DA US3722858A US 3722858 A US3722858 A US 3722858A US 00098311 A US00098311 A US 00098311A US 3722858D A US3722858D A US 3722858DA US 3722858 A US3722858 A US 3722858A
Authority
US
United States
Prior art keywords
sleeve
opening
cavity
bore
flow regulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00098311A
Inventor
M Sugimoto
Y Moriyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3722858A publication Critical patent/US3722858A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/045Compensating for variations in viscosity or temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/04Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having cylindrical surfaces; Packings therefor
    • F16K5/0407Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having cylindrical surfaces; Packings therefor with particular plug arrangements, e.g. particular shape or built-in means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/08Details
    • F16K5/10Means for additional adjustment of the rate of flow

Abstract

A flow regulating valve for hydraulic systems including a housing having inlet and outlet ports and a port crossing bore, a sleeve mounted in the bore of the housing and provided with a first opening communicating with the inlet port and a second opening on the opposite side communicating with the outlet port, the walls of the second opening forming knife edges at the inner surface of the sleeve and sloping outwardly to the outer surface of the sleeve, a throttle spool mounted in the sleeve and provided with a cavity of decreasing size communicating at its larger end with the first opening of the sleeve and at its smaller end with the second opening of the sleeve, and means for relatively moving said sleeve and throttle spool to adjust the size of a sharp-edged orifice defined by overlap of the smaller end of the cavity with the second opening of the sleeve.

Description

aten n 1 Mates Sugimoto et a1.
[54] FLOW REGULATING DEVICE [75] Inventors: Masashi Sugimoto, Nagoya; Yoshiki Moriyama, Okazaki, both of Japan [73] Assignee: Norio Nomura, Anjo-shi, Japan [22] Filed: Dec. 15, 1970 [21] Appl. No.: 98,311
[30] Foreign Application Priority Data Dec. 29, 1969 Japan ..44/1407 [52] U.S. Cl. "251/209, 251/175, 251/212 [51] Int. Cl. ..F16k 5/10, F161: 5/18 [58] Field of Search ..251/209, 208, 175, 212; 137/6253 [56] References Cited UNITED STATES PATENTS 2,115,675 4/1938 Tremmel ..251/209 1,638,152 8/1927 Gabriel..... ..251/209 1,141,276 6/1915 Smith ..251/209 X 3,298,396 1/1967 Gressman et al. ..251/209 X 948,036 2/1910 Best ..251/209 X 2,564,223 8/1951 Longl... ..251/209 Fallon ..25 11209 X FOREIGN PATENTS OR APPLICATIONS 197,051 4/1958 Austria ..137/625.3
Primary Examiner-Arnold Rosenthal Attorney-Berman, Davidson & Berman [57] ABSTRACT A flow regulating valve for hydraulic systems including a housing having inlet and outlet ports anda port crossing bore, a sleeve mounted in the bore of the housing and provided with a first opening communicating with the inlet port and a second opening on the opposite side communicating with the outlet port,
' the walls of the second opening forming knife edges at 5 Claims, 8 Drawing Figures Patented March 27, 1973 3,722,858
INVENTORS, MASASH/ sum/14070,
YOJH/K/ Mom mMA,
ATTORNEY8.
FLOW REGULATING DEVICE BACKGROUND OF THE INVENTION 1 FIELD OF THE INVENTION The present invention relates to a flow regulating valve for use in pressure fluid, or hydraulic systems, such as hydraulically operated apparatus, machine tools, and the like, and more particularly to a flow regulating valve which is capable of maintaining a constant flow at a uniform rate regardless of changes of viscosity of the operating fluid by changes of ambient temperature.
2. DESCRIPTION OF THE PRIOR ART Hydraulic systems for apparatus and machine tools of recent design have been reduced in dimension, and these require small diameter, high pressure, hydraulic actuators and flow regulating valves capable of controlling precisely very small flow rates of operating fluid, regardless of changes in ambient temperature.
In the prior art, a flow regulating valve has been introduced which tries to meet the above requirements, and which comprises two hollow cylinders coaxially coupled to each other tightly, but slidably, or rotatably. One of the cylinders is provided with an opening in the circumference, the opening being a curved triangle forming an isoceles triangle when the cylinder surface is developed into a plane. Each side of the triangular opening terminates as a knife edge. The other cylinder has an oblong opening on the circumference and each side of the oblong is also knife edged. When the two hollow cylinders are rotated with respect to each other, the triangular and oblong openings overlap to form an orifice having its complete outline bounded by a sharp edge, the rate of flow of the pressure fluid being controlled by changes in the size of this sharp-edged orifice.
The conventional flow regulating valve briefly described above, however, has a drawback in that there is considerable leakage of operating fluid from portions of the device other than the sharp-edged orifice, said other portions including the circumferential space extending from the sharp-edged orifice between the two hollow cylinders. Moreover, the amount of leakage is greatly affected by changes in the rate of flow of the operating fluid through the sharp-edged orifice. It is very difficult to precisely control flow rates of the operating fluid because of the leakage, particularly when a very low flow rate of the fluid to be passed is determined by a small opening of the sharp-edged orifice.
a further disadvantage of the above-described conventional flow regulating valve is that the opening in one cylinder is formed with knife edges at the bases of sloping walls which are tapered wider toward the inlet port side. Consequently, the slopes of the knife edge walls become the main wetted perimeters in controlling low flow rates of the operating fluid. This increases the undesirable effect of changing the flow due to the viscosity of the operating fluid moving along the knife edge slops, and prevents precise control of low rates of flow of pressure fluid through the valve.
SUMMARY OF THE INVENTION The present invention provides a flow regulating valve which is capable of maintaining a substantially precisely regulated flow rate regardless of changes in viscosity of the pressure fluid caused by changes of ambient temperature, and regardless of high, or low, rates of flow of the pressure fluid. The valve embodies a housing having inlet and outlet ports, a hollow sleeve within the housing and having openings in communication with said ports, and a throttle spool mounted within the sleeve and provided with a cavity of decreasing size communicating at its larger end with the inlet opening of the sleeve, and at its smaller end with the outlet opening of the sleeve, so that relative movement of the sleeve and throttle spool serves to adjust the size of a sharp-edged orifice defined by the overlap of the reduced end of the cavity of the spool with the outlet opening of the sleeve. With this construction, the defects and disadvantages of the above described conventional valve are overcome, and precise regulation of the flow of the pressure fluid is attained.
A first important object of the invention is, therefore, to provide a flow regulating valve which is capable of minimizing the leakage of operating fluid from portions of the valve other than its sharp-edged orifice, so that a substantially constant and precisely regulated pressure fluid flow is obtained with good temperature compensating effect, and regardless of changes of ambient temperature, and even at very low rate of flow of the pressure fluid through the device.
It is a second important object of the invention to provide a flow regulating valve, having the above mentioned characteristics, wherein the effect of the viscosity of the operating fluid, flowing along the wetted perimeters of the sharp-edge orifice, or changes of such viscosity, is much lessened, or minimized, in controlling the rate of flow of the pressurefluid through the valve.
Another important object of the invention is to provide a flow regulating valve, having the above mentioned characteristics, wherein adjustment of the flow of the operating fluid can easily be accomplished and wherein no re-adjustment is required due to changes in viscosity of the pressure fluid.
A still further object of the invention is to provide a flow regulating valve, having the above described characteristics, whose construction is much simplified and thereby the cost of fabrication is greatly lowered, while the efficiency of operation is considerably increased.
BRIEF DESCRIPTION OF THE DRAWING The novel features that are considered characteristic of the invention are set forth with particularity in the appended claims. The invention, itself, however, both as to its organization and its method of operation, together with additional objects and advantages thereof, will best be understood from the following description of a specific embodiment when read in connection with the accompanying drawing, wherein like reference characters indicate like parts throughout the several Figures, and in which:
FIG. 1 is a central vertical section of a preferred embodiment of the present invention;
FIG. 2 is a fragmentary, enlarged, sectional view of the embodiment shown in FIG. 1;
FIG. 3 is a cross-sectional view taken along line 3-3 of FIG. 1, and looking in the direction of the arrows;
FIG. 4 is a perspective view of the throttle spool forming the core of the regulator shown in FIG. 1;
FIG. is a perspective view of the sleeve which surrounds the throttle spool of FIG. 4;
FIG. 6 depicts a cross-sectional view corresponding to FIG. 3, but with the throttle spool turned so that the sharp-edged orifice defined by the throttle spool and sleeve has the smallest opening thereof;
FIG. 7 is a fragmentary perspective view to an enlarged scale of the sharp-edged orifice corresponding with the condition shown in FIG. 6; and
FIG. 8 is a cross-sectional view corresponding to FIG. 3, but with the throttle spool turned so that the sharp-edged orifice defined by the spool and sleeve has the largest opening thereof.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawing, and more Particularly to FIGS. 1 3, the regulating valve, according to the present invention, comprises a housing 1 provided with an inlet port A at the upper side, an outlet port B at the lower side, and a stepped cylindrical bore 2 communicating with the inlet and outlet ports. A sleeve 3, of pipe-shape, is mounted within the bore 2 of the'housing and fixedly secured by a key 5. The sleeve has an axial bore 4, and as best shown in FIG. 5, a collar 3a at one end, a round hole 6 which opens to inlet port A of the housing through one side, and a triangular opening 7 cut through the wall of the sleeve, at the side opposite the round hole 6, so as to communicate with the outlet port B of the housing. All three sides 8 of the triangular opening 7 taper inwardly from the outer surface to the inner surface of the sleeve 3 to form knife edges at the inner surface of the sleeve, as best shown in FIG. 7.
A solid, cylindrical throttle spool 9, which is best shown in FIG. 4, is rotatably engaged within the axial bore 4 of the sleeve 3. The throttle spool is provided with a small diameter portion 10 at one end, a cylindrical cavity 11 with a spherical end portion passing from one side toward the other, and a circular hole 12 tapering inwardly from the spherical end portion of cavity 1 l to form a knife edge opening 13 at said other side of the spool. The pressure plate 14, having a hole 15 concentric with the axis of the throttle spool, is secured on the housing 1 to fix the axial positions of the sleeve 3 and the throttle spool 9. An adjusting dial 17 is secured by a pin 16 tothe small diameter portion l0 of the throttle spool 9, said Small diameter portion 10 jutting out of the housing 1 through the hole 15 of the pressure plate 14.
The tapered hole 12, of the spool 9, and the triangular opening 7, of the sleeve 3, overlap, as seen in FIG. 7, to form a sharp-edged orifice R, whose size is adjustable by turning the throttle spool by means of the dial 17. Unnumbered O-rings are provided, as shown in FIG. 1, to seal the throttle spool to the sleeve and the sleeve to the housing so as to prevent leakage of pres-- sure fluid therefrom and restrict the flow of pressure fluid to the ports, openings and orifices mentioned above. The ports and orifices in the housing, sleeve and throttle spool are so designed as to have the sleeve 3 and the throttle spool 9 urged toward the outlet port B of the housing 1 by pressure fluid delivered into the cavity 11 from the Inlet port A.
The above described regulator operates in the following manner. Pressure fluid delivered to the inlet port A, of the housing, flows into the round hole 6 of the sleeve 3, and into the cavity 11, of the throttle spool 9. The pressure fluid is finally discharged through the outlet port B of the housing after the quantity per unit time, or rate of flow, is reduced by the hole 12 tapering inwardly from the spherical cavity at the bottom end of cavity 11 into the knife edge opening 13, and the sharpedged orifice R, defined by overlap of opening 13 with the triangular knife-edged hole 7 in the sleeve 3. The quantity of pressure fluid discharged from the outlet port B in a given unit of time is controlled by rotation of the adjusting dial 17 to change the size of the orifice R. The pressure fluid urges the sleeve 3 and the throttle spool 9 toward the outlet port B, and at the outlet port B side, the spaces between the cylindrical bore 2 of the housing and the outer surface of the sleeve 3, and between the bore 4 of the sleeve 3 and the throttle spool 9 become very small to minimize possible leakage from places other than the sharp-edged orifice R.
The sloping sides 8, of the triangular opening 7, which terminate in knife edges, form the major wetted perimetrical edges along whose lengths the pressure fluid contacts the orifice R. Since these walls 8 taper, or widen toward the outlet port B, the effect of the viscosity of the pressure fluid on the rate of flOw through the device is minimized. Similarly, the effect of the viscosity of the pressure fluid in controlling the rate of flOw while the pressure fluid moves along the tapered sidewall of the hole 22 in the throttle spool, is also very small since the wetted perimeter of this tapered hole and its knife edge 13 is very small in area. Consequently, very precise adjustment can be made to the rate of flow of the pressure fluid even when such rate is extremely small, as for example, between 30cc. and cc. per minute.
FIG. 7 depicts the position of the various parts and the size of the sharp-edged orifice R when a very small rate of flow of the pressure fluid, as from 30cc. 100cc. per minute, passes out through outlet port B.
FIG. 8 depicts the size of the sharp-edged orifice R when it is largest and the flow rate Of the pressure fluid is greatest. It is obvious that in discharging'pressure fluid at a maximum rate, the same precise adjustment as for low flow rate is obtainable since the effects of viscosity and of leakage, from places other than through the sharp-edged orifice R, are smaller, the sleeve 3 and the throttle spool 9 being urged with greater force toward the outlet port B, as shown in FIG. 8
Although a certain specific embodiment of the invention has been shown and described, it is obvious that many modifications thereof are possible. The invention, therefore, is not intended to be restricted to the exact showing of the drawing and description thereof, but is considered to include reasonable and obvious equivalents.
What is claimed is:
l. A flow regulating valve for pressure fluid systems, comprising a housing having inlet and outlet ports and a bore crossing said ports, a sleeve mounted in said bore and provided with a first opening in 'one side communicatingwith said inlet port and a triangular opening in the opposite side communicating with said outlet port, said triangular opening having tapered walls sloping outwardly toward the outlet port and terminating in knife edges at the inner surface of the sleeve, a throttle spool mounted movably in the bore of said sleeve and having a cavity of decreasing size passing through the spool for communicating at its larger end with said inlet port and said first opening of the sleeve, and at its reduced end with said outlet port and said triangular opening of the sleeve, said cavity terminating in its reduced end in a hole of circular shape, and means for relatively moving said throttle spool and sleeve with respect to one another to form a sharp-edged orifice of adjustable size defined by the overlap of said circular hole at the reduced end of said cavity with said triangular opening of the sleeve, said throttle spool being urged toward the outlet port side of the sleeve by fluid pressure acting essentially on said cavity of the throttle spool.
2. A flow regulating valve according to claim' 1, wherein said bore of said housing is cylindrical, said sleeve being also cylindrical with a cylindrical bore therein, said throttle spool being a cylinder, and said means for relatively moving said sleeve and throttle spool comprises means for rotating one with respect to the other.
3. A flow regulating valve as set forth in claim 1, wherein said sleeve is fixed unmovably within said housing and said throttle spool is movable within said bore of said sleeve.
4. A flow regulating valve according to claim 1, wherein said circular hole at the reduced end of the throttle cavity is defined by a knife edge.
5. A flow regulating valve according to claim 4, wherein said cavity of said throttle spool is cylindrical for a major portion of its volume and decreases in size for a minor portion of its volume terminating in said circularhole, the knife edge of said circular hole being formed by an annular slope tapering inwardly toward said outlet port of the housing.

Claims (5)

1. A flow regulating valve for pressure fluid systems, comprising a housing having inlet and outlet ports and a bore crossing said ports, a sleeve mounted in said bore and provided with a first opening in one side communicating with said inlet port and a triangular opening in the opposite side communicating with said outlet port, said triangular opening having tapered walls sloping outwardly toward the outlet port and terminating in knife edges at the inner surface of the sleeve, a throttle spool mounted movably in the bore of said sleeve and having a cavity of decreasing size passing through the spool for communicating at its larger end with said inlet port and said first opening of the sleeve, and at its reduced end with said outlet port and said triangular opening of the sleeve, said cavity terminating in its reduced end in a hole of circular shape, and means for relatively moving said throttle spool and sleeve with respect to one another to form a sharp-edged orifice of adjustable size defined by the overlap of said circular hole at the reduced end of said cavity with said triangular opening of the sleeve, said throttle spool being urged toward the outlet port side of the sleeve by fluid pressure acting essentially on said cavity of the throttle spool.
2. A flow regulating valve according to claim 1, wherein said bore of said housing is cylindrical, said sleeve being also cylindrical with a cylindrical bore therein, said throttle spool being a cylinder, and said means for relatively moving said sleeve and throttle spool comprises means for rotating one with respect to the other.
3. A flow regulating valve as set forth in claim 1, wherein said sleeve is fixed unmovably within said housing and said throttle spool is movable within said bore of said sleeve.
4. A flow regulating valve according to claim 1, wherein said circular hole at the reduced end of the throttle cavity is defined by a knife edge.
5. A flow regulating valve according to claim 4, wherein said cavity of said throttle spool is cylindrical for a major portion of its volume and decreases in size for a minor portion of its volume terminating in said circular hole, the knife edge of said circular hole being formed by an annular slope tapering inwardly toward said outlet port of the housing.
US00098311A 1969-12-29 1970-12-15 Flow regulating device Expired - Lifetime US3722858A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP45001407A JPS5241486B1 (en) 1969-12-29 1969-12-29

Publications (1)

Publication Number Publication Date
US3722858A true US3722858A (en) 1973-03-27

Family

ID=11500623

Family Applications (1)

Application Number Title Priority Date Filing Date
US00098311A Expired - Lifetime US3722858A (en) 1969-12-29 1970-12-15 Flow regulating device

Country Status (5)

Country Link
US (1) US3722858A (en)
JP (1) JPS5241486B1 (en)
DE (1) DE2063589C3 (en)
FR (1) FR2074423A5 (en)
GB (1) GB1291659A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2532411A1 (en) * 1982-08-31 1984-03-02 Bosch Gmbh Robert Fluid heat exchanger unit
US5755683A (en) * 1995-06-07 1998-05-26 Deka Products Limited Partnership Stopcock valve
US5817068A (en) * 1995-02-27 1998-10-06 Urrutia; Hector Apparatus for controlling flow of biological/medical fluids to and from a patient
US6165154A (en) * 1995-06-07 2000-12-26 Deka Products Limited Partnership Cassette for intravenous-line flow-control system
US6364857B1 (en) 1995-06-07 2002-04-02 Deka Products Limited Partnership Cassette for intravenous-line flow-control system
US6464667B1 (en) 1997-08-22 2002-10-15 Deka Products Limited Partnership Method and cassette for delivering intravenous drugs
US6709417B1 (en) 1995-06-07 2004-03-23 Deka Products Limited Partnership Valve for intravenous-line flow-control system
US20050095141A1 (en) * 2003-10-30 2005-05-05 Deka Products Limited Partnership System and method for pumping fluid using a pump cassette
US20050095576A1 (en) * 2003-10-30 2005-05-05 Deka Products Limited Partnership System, device, and method for mixing a substance with a liquid
US20060008359A1 (en) * 2004-07-09 2006-01-12 Masafumi Ito Variable displacement compressor
US20060245881A1 (en) * 2005-02-04 2006-11-02 Biggerstaff Jimmy M Priority hydraulic flow diverter control assembly
US20070107787A1 (en) * 2005-11-17 2007-05-17 Moretz Technology, Llc Rotary shift valve for automatic transmission systems
US20100025603A1 (en) * 2008-08-01 2010-02-04 Brian Burlage Apparatus to control a fluid flow characteristic of fluid regulator bypass valves
US7662139B2 (en) 2003-10-30 2010-02-16 Deka Products Limited Partnership Pump cassette with spiking assembly
CN103277529A (en) * 2013-06-21 2013-09-04 合肥力威汽车油泵有限公司 Loading valve for hydraulic part test bench
US20160305556A1 (en) * 2013-12-13 2016-10-20 Hilti Aktiengesellschaft Metering valve for diamond drilling
US10294450B2 (en) 2015-10-09 2019-05-21 Deka Products Limited Partnership Fluid pumping and bioreactor system
US11299705B2 (en) 2016-11-07 2022-04-12 Deka Products Limited Partnership System and method for creating tissue
CN115854937A (en) * 2023-02-24 2023-03-28 山西聚贤石墨新材料有限公司 Graphite electrode detection device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3201020C2 (en) * 1982-01-15 1983-12-22 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Rotary valve device for controlling flowing media, in particular for metering the flow rates of fuel-rich gases in ramjet rocket engines
TW541405B (en) * 2001-08-15 2003-07-11 Amada Co Ltd Directional control valve

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2532411A1 (en) * 1982-08-31 1984-03-02 Bosch Gmbh Robert Fluid heat exchanger unit
US5817068A (en) * 1995-02-27 1998-10-06 Urrutia; Hector Apparatus for controlling flow of biological/medical fluids to and from a patient
US5755683A (en) * 1995-06-07 1998-05-26 Deka Products Limited Partnership Stopcock valve
US6165154A (en) * 1995-06-07 2000-12-26 Deka Products Limited Partnership Cassette for intravenous-line flow-control system
US6364857B1 (en) 1995-06-07 2002-04-02 Deka Products Limited Partnership Cassette for intravenous-line flow-control system
US6709417B1 (en) 1995-06-07 2004-03-23 Deka Products Limited Partnership Valve for intravenous-line flow-control system
US20070085049A1 (en) * 1997-08-22 2007-04-19 Deka Research And Development Stopcock Valve
US6464667B1 (en) 1997-08-22 2002-10-15 Deka Products Limited Partnership Method and cassette for delivering intravenous drugs
US20040176724A1 (en) * 1997-08-22 2004-09-09 Kamen Dean L, Cassette and method for drug preparation and delivery
US9408966B2 (en) 1997-08-22 2016-08-09 Deka Products Limited Partnership System and method for drug preparation and delivery
US7214210B2 (en) 1997-08-22 2007-05-08 Deka Products Limited Partnership Cassette and method for drug preparation and delivery
US20050095152A1 (en) * 2003-10-30 2005-05-05 Deka Products Limited Partnership Door locking mechanism
US7632080B2 (en) 2003-10-30 2009-12-15 Deka Products Limited Partnership Bezel assembly for pneumatic control
US20050095154A1 (en) * 2003-10-30 2005-05-05 Deka Products Limited Partnership Bezel assembly for pneumatic control
US20050095576A1 (en) * 2003-10-30 2005-05-05 Deka Products Limited Partnership System, device, and method for mixing a substance with a liquid
US20050095141A1 (en) * 2003-10-30 2005-05-05 Deka Products Limited Partnership System and method for pumping fluid using a pump cassette
US8158102B2 (en) 2003-10-30 2012-04-17 Deka Products Limited Partnership System, device, and method for mixing a substance with a liquid
US20050095153A1 (en) * 2003-10-30 2005-05-05 Deka Products Limited Partnership Pump cassette bank
US20050094483A1 (en) * 2003-10-30 2005-05-05 Deka Products Limited Partnership Two-stage mixing system, apparatus, and method
US7662139B2 (en) 2003-10-30 2010-02-16 Deka Products Limited Partnership Pump cassette with spiking assembly
US7354190B2 (en) 2003-10-30 2008-04-08 Deka Products Limited Partnership Two-stage mixing system, apparatus, and method
US7461968B2 (en) 2003-10-30 2008-12-09 Deka Products Limited Partnership System, device, and method for mixing liquids
US20050094485A1 (en) * 2003-10-30 2005-05-05 Deka Products Limited Partnership System, device, and method for mixing liquids
US7632078B2 (en) 2003-10-30 2009-12-15 Deka Products Limited Partnership Pump cassette bank
US20060008359A1 (en) * 2004-07-09 2006-01-12 Masafumi Ito Variable displacement compressor
US7530797B2 (en) * 2004-07-09 2009-05-12 Kabushiki Kaisha Toyota Jidoshokki Variable displacement compressor
US20060245881A1 (en) * 2005-02-04 2006-11-02 Biggerstaff Jimmy M Priority hydraulic flow diverter control assembly
US7927060B2 (en) * 2005-02-04 2011-04-19 Bayne Machine Works, Inc. Priority hydraulic flow diverter control assembly
US20070107787A1 (en) * 2005-11-17 2007-05-17 Moretz Technology, Llc Rotary shift valve for automatic transmission systems
CN102105729B (en) * 2008-08-01 2013-06-26 费希尔控制国际公司 Apparatus to control a fluid flow characteristic of fluid regulator bypass valves
US8087638B2 (en) * 2008-08-01 2012-01-03 Fisher Controls International, Llc Apparatus to control a fluid flow characteristic of fluid regulator bypass valves
US20100025603A1 (en) * 2008-08-01 2010-02-04 Brian Burlage Apparatus to control a fluid flow characteristic of fluid regulator bypass valves
CN103277529A (en) * 2013-06-21 2013-09-04 合肥力威汽车油泵有限公司 Loading valve for hydraulic part test bench
US20160305556A1 (en) * 2013-12-13 2016-10-20 Hilti Aktiengesellschaft Metering valve for diamond drilling
US10294450B2 (en) 2015-10-09 2019-05-21 Deka Products Limited Partnership Fluid pumping and bioreactor system
US10808218B2 (en) 2015-10-09 2020-10-20 Deka Products Limited Partnership Fluid pumping and bioreactor system
US11299705B2 (en) 2016-11-07 2022-04-12 Deka Products Limited Partnership System and method for creating tissue
US11939566B2 (en) 2016-11-07 2024-03-26 Deka Products Limited Partnership System and method for creating tissue
CN115854937A (en) * 2023-02-24 2023-03-28 山西聚贤石墨新材料有限公司 Graphite electrode detection device

Also Published As

Publication number Publication date
DE2063589B2 (en) 1974-10-17
FR2074423A5 (en) 1971-10-01
JPS5241486B1 (en) 1977-10-19
GB1291659A (en) 1972-10-04
DE2063589A1 (en) 1971-07-08
DE2063589C3 (en) 1975-06-05

Similar Documents

Publication Publication Date Title
US3722858A (en) Flow regulating device
US3120243A (en) Flow regulating valve with extended movement
US4203465A (en) Precision pressure control valve
US2020773A (en) Deflection variator
US4976283A (en) Fluid flow regulator
US3322145A (en) Adjustable constant flow valve
US3448755A (en) Non-scald mixing valve
US4926906A (en) Spool valve
US4627573A (en) Pressure compensator/emitter
US3478776A (en) Pressure regulating device for fluid dispensing systems
US4244389A (en) Flow control valve
US5054517A (en) One-way restrictor
US4095611A (en) Modulating flow control valve assembly
US4715579A (en) Radiator valve incorporating presetting means
US4286749A (en) Automatic fluid mixing valves
EP0224584B1 (en) Pressure compensated restrictive flow regulator cartridge
US5084964A (en) Aluminum die casting
US3896844A (en) Fluid flow regulating apparatus
US5427139A (en) Metering valve with adjustable floating piston and pin assembly
US4562864A (en) Single handle mixing valve with outlet selection
JPH08270806A (en) Automatic pressure regulating valve
US6540205B1 (en) Fine-adjustment flow control valve
US20030121548A1 (en) Liquid pressure regulator with built-in antidrainage valve
US3298393A (en) Check valve having throttling passage
US3752182A (en) Pressure compensated flow control valve