US3731679A - Infusion system - Google Patents

Infusion system Download PDF

Info

Publication number
US3731679A
US3731679A US00081926A US3731679DA US3731679A US 3731679 A US3731679 A US 3731679A US 00081926 A US00081926 A US 00081926A US 3731679D A US3731679D A US 3731679DA US 3731679 A US3731679 A US 3731679A
Authority
US
United States
Prior art keywords
fluid
channel
catheter
motor
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00081926A
Inventor
J Wilhelmson
T Weichselbaum
V Braun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sherwood Medical Co
Original Assignee
Sherwood Medical Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sherwood Medical Industries Inc filed Critical Sherwood Medical Industries Inc
Application granted granted Critical
Publication of US3731679A publication Critical patent/US3731679A/en
Assigned to SHERWOOD MEDICAL COMPANY reassignment SHERWOOD MEDICAL COMPANY MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SHERWOOD MEDICAL INDUSTRIES INC. (INTO)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
    • H02P7/2913Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16831Monitoring, detecting, signalling or eliminating infusion flow anomalies
    • A61M5/16854Monitoring, detecting, signalling or eliminating infusion flow anomalies by monitoring line pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/15Detection of leaks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/01Motorized syringe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/12Pressure infusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/13Infusion monitoring

Definitions

  • INFUSION SYSTEM [451 May 8, 1973 INFUSION SYSTEM [75] Inventors: Jack L. Wilhelmson, Fenton; Theodore E. Weichselbaum, St. Louis; Vernon F. Braun, Berkeley,
  • ABSTRACT A portable infusion system uses a disposable piston type syringe as a positive displacement pump.
  • the syringe piston is reciprocally driven by a bidirectional DC motor under control of a battery powered circuit. Different selectable rates of pumping are maintained by controlling the width of bidirectional DC pulses coupled to the DC motor and by monitoring the motor back EMF during the off-time of the pulses.
  • a disposable two-way valve connects the syringe pump with a fluid source and a catheter.
  • Safety circuits protect against deleterious conditions such as the passage of an air bubble or an over-pressure condition.
  • a solution bottle is usually hung above a patient to allow gravity feed of fluid through disposable venoclysis tubing to a catheter inserted in the vein of the patient.
  • Transportation of the patient is difficult because the solution bottle must always be located above the patient, requiring an attendant to hold the solution bottle.
  • periodic monitoring of the process is required, utilizing valuable personnel time. Despite periodic monitoring, certain malfunctions can occur which may go unattended for lack of a suitable indication of the malfunction. For example, during an injection, it is possible for a needle to become displaced from its position in a vein and become lodged in a muscle.
  • a novel portable positive displacement pumping system replaces the gravity feed system typically used for transfusions and injections.
  • the solution bottle may be located at any reasonable height with regard to the patient.
  • a novel battery powered control circuit for the pump system includes a number of safety circuits which automatically monitor for deleterious conditions, such as passage of air bubbles or the dislodgement of the intravenous needle into a muscle, eliminating the requirement that an attendant periodically monitor the process. Sterile conditions are easily maintained because the positive displacement pumping system uses a disposable syringe and a disposable twoway valve which can be discarded after use with each patient and replaced with a new sterile syringe and valve.
  • Such apparatus is not usable in an infusion system, since air bubbles may be passed to the patient, and other serious malfunctions might occur which could not be automatically cured. Also, such apparatus does not permit priming of the syringe, nor is accurate control possible, as is essential in an infusion system.
  • the applicants novel control circuit for driving the novel pumping system includes a unique DC motor drive which can be used to accurately drive loads other than pumps.
  • the drive automatically compensates for variations in the load, long term aging of batteries for powering the control circuit, and detection of deleterious conditions associated with the driven load.
  • Bidirectional motor movement is accomplished by a simple reversing circuit controlled by movement of the motor armature.
  • the control circuit uses the known techniques of driving the DC motor by variable width pulses, and monitoring the back EMF across the motor during the off-time of the pulses to control the on-time width of the pulses.
  • a pair of such circuits has heretofore been required when driving a motor in both forward and reverse directions.
  • the applicants control circuit accomplishes the same degree of control while substantially simplifying the circuit.
  • One object of this invention is the provision of an improved infusion system in which the sterile parts in contact with the fluid being pumped are disposable and readily replaceable with new sterile parts.
  • Another object of this invention is the provision of an improved control circuit for driving a DC motor through a bidirectional cycle of operation.
  • Yet another object of this invention is the provision of improved pump means driven by a DC motor and feedback means for modifying the operation of a control circuit in accordance with external conditions related to the operation of the pump.
  • FIG. 1 is a perspective illustration of an infusion system incorporating the pumping system of the present invention
  • FIG. 2 is an exploded view of the pumping system, with the syringe pump being illustrated for clarity as located on the opposite side of the pump housing shown in FIG. 1;
  • FIG. 3 is a partly plan and partly sectional view of a disposable valve with embedded electrodes
  • FIG. 4 is a sectional view taken along lines 4-4 of FIG. 3;
  • FIG. Si is a plan view taken along lines 55 of FIG. 4;
  • FIG. 6 is a schematic diagram of the control circuit for the pump system.
  • FIG. 1 a portable infusion system is illustrated for pumping fluids such as blood from a solution bottle 20 to a catheter 21 inserted into the vein of a patient. Fluid transfer is accomplished by a pumping apparatus 24 held by a caddy assembly 26 mounted to a rail 28 of a bed for the patient. The caddy 26 also removably holds the solution bottle 20, which can be located at any reasonable altitude with respect to the patient.
  • Solution bottle 20 is of conventional construction, and includes a cap 30 having an air valve 31 and an output port 32 for fluid transfer.
  • Disposable venoclysis tubing 34 couples the port 32 to an input port 36 in a disposable two-way valve 40 which forms a part of the pump apparatus 24.
  • Pump apparatus 24 uses as a pump chamber a conventional disposable syringe 42 having a slidable piston 44 which can be reciprocated to pump fluid within a hollow syringe barrel coupled with the two-way valve 40 which includes an outlet or output port 46 connected by venoclysis tubing 50 with a conventional Y connector 52 for medication introduction.
  • the output of the Y connector 52 is coupled by additional disposable venoclysis tubing 54 to the catheter 21.
  • the control circuit for pump apparatus 24, seen in detail in FIG. 3, is completely contained within the housing for the pump apparatus, and can be either externally or internally powered.
  • input port 36 admits fluids from solution bottle into the syringe barrel.
  • the valve in output port 46 is closed at this time.
  • the input port 36 is closed and the output port 46 is opened, pumping the solution through venoclysis tubing 52 and 54 to the catheter 21.
  • the novel pumping apparatus 24 is seen in exploded view in FIG. 2.
  • a sterile, positive displacement pump is economically formed by using a conventional disposable syringe 42 in combination with a unique disposable valve 40, to be described.
  • Syringe 42 includes a gasket 70 fixedly mounted to the piston 44 for movement within a hollow barrel 72 which has a single fluid opening terminating in a needle connector 74.
  • the syringe includes extending finger grip arms 76, which in the present invention are held by base means for the pump apparatus 24.
  • Syringe 42 and valve 40 are removably held by housing means in order to allow disposal after use with each patient and replacement with a new presteriled syringe and valve.
  • a lower molded case 90 includes a pair of upstanding arms 92 each having a slot channel 94 which slidably receives one of the extensions 76 of the syringe.
  • Lower case 90 also includes an upstanding post 100 having a concave surface 102 for holding the valve 40 when it is mated to the syringe 42, and for making electrical contact with electrodes embedded in the valve.
  • a pair of female electrical sockets 106 in surface 102 receive air bubble detector electrodes, as will appear, and a female socket 108 (not illustrated in FIG. 2), which may be separate from case 90 or similarly molded in a portion thereof, receives an over-pressure detector electrode.
  • the sockets 106 and 108 are connectedby wires to the circuit of FIG. 3 which is contained within the hollow case 90.
  • the mechanical drive arrangement for piston 44 consists of a bidirectional DC motor 120 having an armature shaft 121 with an integral motor gear 122.
  • the motor gear 122 meshes with an idler gear 126 rotatable about an idler shaft 128 rigidly attached to a pinion gear 130.
  • the pinion gear 130 meshes with a drive gear 132 which is fixedly attached to the shaft ofajackscrew 134.
  • a syringe cylinder carrier 140 includes a gripping head 142 having an opening therein for slidably receiving the head 45 of piston 44.
  • the carrier 140 has an internally threaded central opening for engaging the threads of the jackscrew 134 to cause the carrier to act as a drive nut on the jackscrew.
  • Carrier 140 When DC motor 120 is energized by voltage of predetermined polarity, the two-stage spur reduction gears rotate jackscrew 134 and cause the carrier 140 and attached cylinder 44 to be driven in a forward stroke.
  • Carrier 140 includes a protrusion 150 with a permanent magnet which extends downward for magnetically actuating a sealed forward stroke limit switch 152 and a sealed reverse stroke limit switch 154, mounted to a circuit board 156 which contains the circuit of FIG. 3.
  • the carrier 140 is driven in a forward stroke direction until protrusion 150 is directly over limit switch 152, at which time the circuit of FIG. 3 reverses the polarity of voltage to DC motor in order to rotate armature 121 in a reverse direction.
  • the carrier and cylinder 44 are now longitudinally moved through a back stroke until the protrusion is directly over limit switch 154, at which time the circuit of FIG. 3 again reverses the polarity of voltage to DC motor 120. While magnetically actuated proximity switches are preferred, a mechanical switch arrangement could alternately be used, actuated by mechanical engagement with protrusion 150.
  • Batteries 160 are rechargeable, sealed nickel-cadmium batteries which allow the pump apparatus to be powered either from an external AC source, or internally powered in order to allow the unit to be completely portable. If the unit is constructed for portable use only, the batteries 160 may be conventional 1.5 volt D size.
  • the DC batteries 160 are housed within a battery retainer cylinder 162 molded in lower case 90. Electrical connection is made through a battery contact spring 164 and a contact on a battery retainer cap 165 which threads into the battery retainer cylinder wall to allow replacement of the batteries when necessary.
  • Case 170 includes a window 172 through which indicia on a thumbwheel knob 174 may be observed in order to allow'operator selection of different rates of pumping fluid.
  • the indicia on wheel 174 directly indicate pump rate, such as one liter of fluid per one, two, three, etc., hours.
  • a different range of pump rates may be provided by replacing syringe 42 with a syringe of different capacity, and knob 174 may be so marked with alternate indicia.
  • a syringe prime switch 176 allows an operator to override the setting selected by wheel 174 in order to rapidly reciprocate the piston 44 when first priming the syringe 42 to eliminate air bubbles. During the time the switch 176 is actuated, the air bubble protector circuit is disabled.
  • the disposable valve assembly 40 is illustrated in detail in FIGS. 3-5.
  • the assembly is economically formed by using a pair of identically manufactured valve units mated in opposite fluid flow directions with a central fluid channel unit 192 so that one valve unit 190 forms input port 36 and the other valve unit 190 forms output port 46.
  • Each valve unit 190 includes a fluid input port having a tapered conical wall 194 which directs fluid to a check valve 195 formed of flexible, resilient material such as rubber.
  • Check valve 195 is formed by a hollow center portion with an integral tapering nose 196 terminating in a rectangular slit opening 197 which passes fluid to an output port defined by a tubular wall 200 which also serves to anchor the hollow center portion of the check valve.
  • the check valve 195 is of conventional construction and allows fluid flow in a direction from the input port defined by conical wall 194 to the output port defined by the tubular wall 200, but collapses to block fluid flow in an opposite direction.
  • the central fluid channel unit 192 includes an input fluid channel 202 into which is inserted the output port of the valve unit 190 which forms input port 36.
  • Opposite input fluid channel 202 is an output fluid port or channel 203 having a conical wall which receives the tapered syringe connector 94.
  • Contiguous with fluid channels 202 and 203 are an output fluid channel 204 and a closed fluid channel 206.
  • Channel 204 terminates in a neck portion 208 of reduced diameter which mates with the input port of the check valve 190 which serves as the output port 46 for passing fluid flow to the catheter.
  • a pair of metal rods or electrodes 212 extend through the wall of the valve assembly and into the fluid channel 204.
  • the electrodes 212 are spaced apart approximately 0.25 inches, and are placed ahead of the output functioning check valve 195.
  • fluid of 0.001 percent salinity or higher is present between the electrodes 212, the fluid completes a resistance path of sufficiently low impedance to allow the circuit of FIG. 6 to continue to operate.
  • an air bubble of predetermined size passes the electrodes, the impedance rises and breaks the circuit to cause the forward stroke of the pump to terminate.
  • the closed fluid channel 206 forms a pressure detector.
  • a cap 217 closes the end of fluid channel 206, trapping air between the cap 217 and the fluid which enters the channel 206.
  • a single metal rod or electrode 220 is embedded through the wall of the valve assembly and into the fluid channel 206.
  • electrodes 212 and 220 are an integral part of the valve assembly 40, rather than a part of the syringe 42.
  • a conventional disposable syringe of low cost may be used as the pump.
  • the valve assembly itself may be economically molded of plastic, except for the pair of check valves 190 which may be molded of rubber.
  • the externally extending ends of the metal electrodes 212 and 220 are directly inserted in the female sockets 106 and 108, respectively, as previously described.
  • Control Circuit The control circuit for the pump assembly is illustrated in detail in FIG. 5.
  • DC power is provided between a DC potential line 248 and a source of reference potential or ground 250.
  • a plug 256 may be inserted into the external AC source so as to couple 115 volt AC to a stepdown transformer 258.
  • the transformer is connected through a full wave diode rectifier to a line 260 connectable through a socket with line 248.
  • the rechargeable batteries 160 form a filter capacitor for the full wave rectified AC voltage, reducing the ripple of the voltage on DC line 248. If desired, an additional filter capacitor 262 may be provided.
  • the stepdown transformer 258 and full wave rectifier may be housed within the plug 256, and connected through a two'line cord to the socket receptacle on the pump assembly.
  • the line plug is simply removed from the receptacle on the pump assembly, allowing the previously recharged batteries 160 to thereafter power the control circuit.
  • DC motor 120 is a shunt wound permanent magnet motor which rotates in a forward direction when current flows from a terminal 260 to a terminal 262, and rotates in a reverse direction when current flows from terminal 262 to terminal 260.
  • the motor is driven by pulses having a less than percent duty cycle.
  • the motor acts as a generator or tachometer, and the back EMF across the terminals is sensed and stored in order to control the duty cycle of the drive pulses.
  • An electronic reversing switch including transistors 265, 266, 267, 268, 269, and 270 forms a double-pole, double-throw switch.
  • Transistors 265 and 268 are synchronously driven conductive to pass current in a forward direction through motor 120.
  • transistors 266 and 267 may be synchronously driven conductive to complete a reverse current path for motor 120 to drive the motor through its reverse or back stroke.
  • transistors 265 and 268 are on, current passes from a positive line 275 through transistor 265 to terminal 260 of motor 120, through motor 120 and out terminal 262 to transistor 268, and thence to ground 250.
  • a reversing switch driver When the forward limit of travel is reached, as indicated by the permanent magnet on protrusion actuating limit switch 154, a reversing switch driver, to be described, turns transistors 265 and 268 off and transistors 266 and 267 on. Current then flows from the positive line 275 through transistor 266 to terminal 262, and thence through motor 120 and out terminal 260 to transistor 267 and thence to ground 250.
  • the reversing switch driver consisting of transistors 280, 281, 282, and 283, acts as a regenerative bistable switch useful to obtain the heavy drive capability which is necessary when using low supply voltage, such as 3.0 volts from the pair of batteries 160.
  • Transistors 280 and 283 drive each other into saturation when magnetic protrusion 150 actuates switch 152 at the end of a back stroke, grounding the base of transistor 282.
  • transistors 282 and 281 drive each other into saturation when magnetic protrusion 150 actuates the switch 154, grounding the base of transistor 283 at the forward stroke limit of travel.
  • transistor 281 When transistor 281 saturates, current flows from its emitter to base and through a resistor 290 to the base of transistor 267 to provide drive for the reversing switch. At the same time, the voltage at the collector of transistor 281 rises to the potential of line 275, back biasing transistors 269 and 265. Transistor 282 is also saturated at this time, causing current to flow through the emitter-base of transistor 266, through a resistor 292 and via a line 293 to the collector of transistor 282 and thence to ground 250. This provides drive for the other half of the reversing switch. Since the collector voltage of transistor 282 is at approximately ground potential, no current flows through a resistor 295 to transistor 270, nor transistor 268.
  • transistors 280 and 283 act similar to the above described operation for transistors 281 and 282, providing drive for transistors 265 and 269, and transistors 268 and 270, as will be explained with reference to the bubble detector circuit.
  • transistor 270 is driven on by pulses having approximately a 25 percent duty cycle.
  • the drive pulses for minimum motor speed had a four millisecond on-time out of a sixteen millisecond interval, producing a sixty hertz frequency.
  • the duty cycle during the forward stroke is adjustable, as will appear, and is controlled by a forward stroke control.
  • the reverse stroke always occurs at maximum speed since transistors 266 and 267 are fully saturated during reverse motor movement.
  • a battery voltage variation compensation circuit is responsive to decreased battery voltage to decrease the off-time of the pulses controlled by the forward stroke control, thus increasing speed in the forward stroke in order to maintain the selected rate of pumping.
  • the forward stroke control includes transistors 300, 301, 302, 303, and 304, connected basically as an unsymmetrical astable multivibrator.
  • thumbwheel knob 174 is connected to the wiper 310 of multi-position switches 312.
  • Wiper 310 is connected to any one of a plurality of resistors 315 each having a different resistance value.
  • a master OFF switch 316 when actuated connects the wiper 310 to DC line 248, via prime switch 176.
  • the on-time of the duty cycle is determined by the time period transistors 301 and 303 are saturated and transistors 302 and 304 are turned off.
  • Transistor 300 acts as a controlled current source that discharges capacitor 317 during the time it holds transistor 304 turned off.
  • transistor 303 is turned on by current flowing from its base and through a resistor 320 and conducting transistor 301 to ground 250.
  • Transistor 303 drives transistor 270 of the reversing switch driver through a resistor 322.
  • the on-time of the duty cycle which controls the forward stroke of the motor is determined by saturation of transistor 303.
  • the off-time of the duty cycle is controlled by satura tion of transistor 304, at which time transistors 301 and 303 are turned off. This off-time is determined by the capacitance value of a capacitor 325, the voltage to which the capacitor 325 is allowed to charge during the prior on-time, and the resistance values of a pair of series connected resistors 327 and 328.
  • the allowable voltage to which capacitor 325 is allowed to charge is set by the battery voltage variation compensation circuit, to be explained.
  • the detailed operation of the forward stroke control circuit is as follows. Assume transistor 301 has just turned on with capacitor 317 fully charged and capaci tor 325 fully discharged. When transistor 301 saturates, the negative terminal of capacitor 317 has a negative voltage equal to the supply potential. For this example, it will be assumed that the supply potential from batteries 160 is at maximum potential, or 3.0 volts. Current now flows from the +3.0 volt supply and through switches 316, 176 and 310 to the selected resistor 315 and thence through transistor 300 to discharge capacitor 317.
  • capacitor 317 When the negative terminal of capacitor 317 reaches 1.2 volts (the base-emitter drop of transistors 302 and 304), transistors 302 and 304 are turned on, turning transistor 301 off and recharging capacitor 317 to supply voltage through a resistor 330. Capacitor 325 discharges through the series resistors 327 and 328 until the base-emitter voltage of transistor 301 is reached, at which time transistor 301 turns on and the cycle is repeated.
  • the pulse coupled to the DC motor has an approximately 25 percent off-time at the maximum infusion rate selectable by switch 310. Due to mechanical inertia, the motor continues to turn and generates a back EMF proportional to the angular velocity of the armature. This voltage is sensed by a velocity feedback circuit and stored in order to control transistor 300 and adjust the on-time of the pulses to compensate for variations in load. Thus, various fluids and syringes may be used without effecting to any significant extent the calibration of thumbwheel knob 174.
  • transistor 265 is on, connecting terminal 260 to the supply voltage at line 275.
  • transistor 270 is off, blocking transistor 268 and disconnecting ground 250 from the motor terminal 262.
  • the back EMF across the motor terminal is now coupled through a resistor 335 and a pair of series connected diodes 336 and 337 to a capacitor 340 connected to ground 250.
  • the capacitor 340 charges to a potential that is the sum of the supply voltage and the voltage generated by the motor.
  • transistor 270 is driven into conduction, driving transistor 268 into conduction and hence connecting motor terminal 262 to approximately ground potential, back biasing the diodes 336 and 337.
  • the voltage charge across capacitor 340 is now used to control the base drive of transistors 300, establishing ,an on-time duration proportional to the voltage across the capacitor.
  • a resistor 342 allows the voltage across capacitor 340 to slowly leak off. Since the emitter of transistor 300 is referenced to the DC supply voltage, the current through transistor 300 is dependent solely on the back EMF across the DC motor, eliminating the effect of supply voltage variations.
  • the control circuit also includes a number of special circuits described in the following sections.
  • the bubble detector circuit includes the bubble detector electrodes 212 and transistors 350 and 351.
  • the current passing through the fluid is on the order of 10 microamps or less thereby creating no hazard of electrolysis or other hazard to the patient.
  • the current that charges capacitor 353 causes a current of at least 200 times magnitude to flow from the supply, through the emitter-collector of transistor 350, through a resistor 357 and into the base of transistor 351.
  • the motor 120 stos on the forward stroke.
  • Prime switch 176 in the forward stroke control circuit is used to override this shut-off during syringe priming.
  • the combination of the bubble detector circuit and the placement of the electrodes 212 and 220 in the two-way valve assembly 40 creates a fail safe apparatus which detectsair leaks caused by a defect in the pump assembly itself.
  • the electrodes 212 are located in the pressure side of the fluid channel, between the pair of check valves 195. Should the metal electrodes 212 not be completely surrounded by the plastic material forming the wall of the valve channel, as might occur due to dropping of the valve assembly, for example, an air passageway or void would be created which would allow air to seep from the atmosphere into the fluid channel 204. If the electrodes 212 were located in input port 36 upstream of the check valve 195, the electrode located furthest downstream could leak air during a back stroke operation. 1f the bubble should pass the check valve 195, it would escape detection by the bubble detector circuit.
  • the electrodes 212 are located in a region which has high pressure during a forward stroke.
  • the pressure in channel 204 is in excess of atmospheric pressure, therefore an air passageway adjacent either electrode 212 merely causes fluid to seep out of the channel 204, but does not create an air bubble within the channel.
  • a low pressure region is formed in fluid channel 204, allowing air to seep from the atmosphere into the channel 204.
  • the bubble will travel upstream towards the pump port 203, so that the bubble will again have to pass the electrodes 212 during the forward stroke. This allows the air bubble to be detected in the same manner as if the bubble had been drawn in from the fluid supply.
  • the bubble detector control circuit serves the dual purposes of providing a safety device to prevent accidental passage of an air bubble, and also automatically shuts off the pumping apparatus when all the fluid in the solution bottle is used up.
  • air is introduced into the solution bottle and is pumped to the valve assembly 40.
  • the current path is broken and motor operation is terminated, turning off the pumping system.
  • This circuit consisting of transistors 370 and 371, is responsive to decreases in the battery voltage to decrease the off-time of the pulses in the forward stroke control.
  • the back stroke is not controlled and will vary in speed with voltage variations. The time lost on the back stroke is gained by speeding up the motor on the forward stroke.
  • Transistor 371 acts as an ideal diode, establishing a reference voltage of approximately 0.6 volts at its collector, which is coupled in series through a resistor 376 and a resistor 377 to a line coupled through switch 316 with the positive potential line 248.
  • a resistor 380 in series with the emitter of transistor 370, and a resistor 382 in series between the collector of transistor 370 and ground 250.
  • the collector of transistor 370 is directly coupled to the junction between transistor 304 and capacitor 325. As the battery supply voltage lowers, the current through resistor 380 changes linearly.
  • transistor 370 This causes the collector voltage of transistor 370 to rise linearly at a rate established by the ratio of resistor 380 to resistor 382 and a resistor 384 in series between the collectors of transistors 303 and 304.
  • the voltage at the base of transistor 370 also varies, but at reduced ratio.
  • the circuit constants were chosen so that the voltage on the collector of transistor 370 and hence also transistor 304 lowered as the battery voltage lowered by a ratio of 1.5, that is, 0.1 volt battery variation produced 0.15 volts less charge on capacitor 325. While this ratio produced the correct compensation, other ratios may be utilized for other loads driven by the motor.
  • the range of the battery voltage compensation circuit is such that battery voltages down to approximately 2.0 volts may be tolerated, representing a decrease of 33 percent from the full battery voltage of 3.0 volts.
  • a battery supply voltage of less than 2.0 volts indicates that the batteries must be replaced or recharged in order to maintain the calibrated accuracy of the pumping apparatus.
  • a low battery indicator circuit is formed by integrated circuit NOT gates 390 and 391 for energizing a low battery indicator lamp 393.
  • a divider formed by resistors 395 and 396 in series between ground 250 and the supply line via switch 316 and line 248 produces a voltage above 0.8 volts at the junction between resistors 395 and 396 which causes NOT gate 390 to saturate, turning NOT gate 391 off and thus maintaining the lamp 393 off.
  • gate 390 When the supply voltage drops to 2.0 volts, gate 390 turns off, causing gate 391 to turn on and hence energize the lamp indicator 393.
  • the indicator lamp 393 is desirably located beneath a window in the upper case of the pump assembly so as to be visible by an operator.
  • Over-Pressure Detector This circuit is formed by integrated circuit gates 400, 401 and a transistor 372. Gates 400 and 401 are connected to form a bistable multivibrator. During normal operation (no over-pressure condition), gate 401 is on and transistor 372 is off. To insure this state, a capacitor 405 is made five times as large as a capacitor 406. When the control circuit is first energized, the capacitor 405 holds one input of gate 400 low long enough to set the bistable with gate 401 saturated and gate 400 off.
  • a circuit path is formed from one input of gate 400 to the supply voltage line 275 via transistor 350 and the electrode 212 connected through resistor 352 to the base thereof, saturating gate 400 and turning gate 401 off.
  • This turns transistor 372 on, turning off transistor 351 which in turn opens the bias path for transistors 269 and 265. This stops the system on the forward stroke.
  • the over-pressure detector circuit may be reset by turning the control circuit off and back on, causing capacitor 405 to again saturate gate 401.
  • This circuit consists of transistors 310 and 41 1 which control energization of a visual indicator, such as a light emitting diode (LED) 413.
  • a visual indicator such as a light emitting diode (LED) 413.
  • LED light emitting diode
  • a light emitting diode is used rather than an incandescent lamp due to its low power consumption.
  • transistor 351 is turned off. This in turn biases off transistor 410, ungrounding ajunction formed between a resistor 415 and a diode 416 connected in series between the anode of LED 413 and the base of transistor 41].
  • the transistor 41] is thus forward biased, creating a current path for the LED 413 to ground through a resistor 420 and the collector-emitter junction, of the conducting transistor 411.
  • the LED 413 is located adjacent a jewel lens mounted in case 170 in order to give a visual indication of a circuit shutoff caused by the detectm of an air bubble or an overpressure condition.
  • a positive displacement pumping system having disposable parts, comprising: a self-contained source of DC power; disposable syringe means having a barrel and a piston movable in said barrel along a path to move fluid within the barrel, said barrel having a fluid passage opening; disposable valve means having a pump port in fluid communication with said passage opening, input port means connected with said fluid source for passing fluid to said barrel, and output port means for connection with said catheter for passing fluid to said catheter; base means removably holding said syringe means and said valve means to allow disposal after use with a patient; a holding member removably connected to said piston and mounted on said base for reciprocal movement along said path; motor means energized by said DC power source for reciprocating said holding member and said piston, said motor means including gear means connected to said holding member to effect reciprocal movement of said holding member in response to rotation of said gear means, and a DC motor for rotating said gear means, means for selecting one of a
  • said DC motor is a bidirectional DC motor having an armature shaft rotatable in opposite directions when opposite polarity current is coupled to the DC motor, said gear means converting rotational movement of said armature shaft into translational movement which drives said holding member, and circuit means for periodically reversing the polarity of current passed from said DC power source to said DC motor.
  • valve means ineludes sensing means for detecting the presence of an air bubble, and safety means responsive to detection of an air bubble for terminating the operation of said motor means.
  • over-pressure means for detecting when the pressure of fluid passed to said catheter exceeds a predetermined maximum, and indicator means actuated when said predetermined maximum is exceeded for providing an alarm indication.
  • a pumping system comprising a source of fluid capable of passing electricity, a valve assembly having a fluid channel with an outlet adapted for connection with the catheter means for directing the flow of said fluid to the catheter means, fluid pump means including a chamber connected in fluid communication with said fluid source and said fluid channel, and drive means in said chamber actuable to effect movement of fluid from said fluid source and pump fluid through said fluid channel to the catheter means, unidirectional valve means connected in fluid communication with said fluid channel to permit fluid flow from said fluid channel to the catheter and prevent fluid flow from the catheter to said fluid channel, said fluid channel including a fluid passageway having a fluid opening contiguous with said fluid channel for admitting fluid into said passageway a distance determined by the pressure of the fluid in said fluid channel, and a pair of electrode means located within said fluid channel and having extensions connectable with an external circuit, at least one of said pair of electrode means being located in said passageway a predetermined distance from said fluid opening so that the presence of fluid at said last named electrode means indicates a
  • the pumping system of claim further including third electrode means in said channel adjacent the other of said pair of electrodes, nd circuit means responsive to the presence of an air bubble between said third and other electrode means to provide a signal indicative thereof.
  • a pumping system comprising a source of fluid capable of conducting electricity, a syringe having a barrel and a reciprocal plunger slidable in said barrel for moving fluid into and out of said barrel, a valve assembly having a fluid source inlet connected to said source of fluid, a pressure fluid inlet-connected to said syringe barrel and in fluid communication with said fluid source inlet, and a channel connected in fluid communication with said pressure fluid inlet and having an outlet connectable with the catheter, first valve means connected in fluid communication with said source of fluid to pennit fluid flow from said source to said syringe barrel and to prevent return fluid flow from said syringe barrel to said fluid source, second valve means connected in fluid communication with said channel to permit fluid flow from said channel to the catheter and prevent return fluid flow from the catheter to said channel, and means for reciprocating said plunger to draw fluid from said source into said barrel through said pressure fluid inlet during movement thereof in one direction and supply pressurized fluid to said channel from said
  • circuit means includes a second electrode disposed in said channel incontact with the fluid therein.
  • the infusion system of claim a further including a pair of closely spaced electrodes in said channel and normally bridged by the fluid to normally provide a predetermined value of impedance between said pair of electrodes, and circuit means connected to said pair of electrodes and responsive to a change in said value of impedance upon the occurrence of the presence of an air bubble between said electrodes to interrupt the reciprocation of said plunger.

Abstract

A portable infusion system uses a disposable piston type syringe as a positive displacement pump. The syringe piston is reciprocally driven by a bidirectional DC motor under control of a battery powered circuit. Different selectable rates of pumping are maintained by controlling the width of bidirectional DC pulses coupled to the DC motor and by monitoring the motor back EMF during the off-time of the pulses. A disposable two-way valve connects the syringe pump with a fluid source and a catheter. Safety circuits protect against deleterious conditions such as the passage of an air bubble or an over-pressure condition.

Description

United States Patent 091 Wilhelmson et al.
[451 May 8, 1973 INFUSION SYSTEM [75] Inventors: Jack L. Wilhelmson, Fenton; Theodore E. Weichselbaum, St. Louis; Vernon F. Braun, Berkeley,
[21] Appl. No.: 81,926
[52] U.S. Cl......l28/214 F, 128/214 E, 128/DIG. 12, l28/DIG. l, l28/DIG. 13, 417/45, 417/411 [51] Int. Cl. ..A6lm 05/00 [58] Field oiSearch ..128/2l3,214R,214 E, 128/214 F, 214 B, 214.2, 218 R, 218 A, 230,
234, 273, DIG. 1, DIG. 12, DIG. 13, DIG. 3,
3,515,966 6/1970 De Valroger et al. ....417/411 X 3,648,694 3/1972 Mogos et al ..128/214 F FOREIGN PATENTS OR APPLICATIONS 232,476 2/1969 U.S.S.R ..128/214 E OTHER PUBLICATIONS Blum et al. A Method of Continuous Arterial infusion, Surgery, 1948, pp. 30-35.
Primary Examiner-Dalton L. Truluck Attorney-Hofgren, Wegner, Allen, Stellman & Mc- Cord [57] ABSTRACT A portable infusion system uses a disposable piston type syringe as a positive displacement pump. The syringe piston is reciprocally driven by a bidirectional DC motor under control of a battery powered circuit. Different selectable rates of pumping are maintained by controlling the width of bidirectional DC pulses coupled to the DC motor and by monitoring the motor back EMF during the off-time of the pulses. A disposable two-way valve connects the syringe pump with a fluid source and a catheter. Safety circuits protect against deleterious conditions such as the passage of an air bubble or an over-pressure condition.
10 Claims, 6 Drawing Figures PATENTEDHAY 81975 SHEET 1 BF 3 INVENTORS flog Z Z/Ze/rrzao'n ile ATTORNEYS INFUSION SYSTEM This invention relates to an improved pumping system and an improved control circuit, particularly adapted for use in an infusion system.
During typical blood transfusions and intravenous injections, a solution bottle is usually hung above a patient to allow gravity feed of fluid through disposable venoclysis tubing to a catheter inserted in the vein of the patient. Transportation of the patient is difficult because the solution bottle must always be located above the patient, requiring an attendant to hold the solution bottle. Even when the patient is located in a hospital, periodic monitoring of the process is required, utilizing valuable personnel time. Despite periodic monitoring, certain malfunctions can occur which may go unattended for lack of a suitable indication of the malfunction. For example, during an injection, it is possible for a needle to become displaced from its position in a vein and become lodged in a muscle.
In accordance with the present invention, a novel portable positive displacement pumping system replaces the gravity feed system typically used for transfusions and injections. As a result, the solution bottle may be located at any reasonable height with regard to the patient. A novel battery powered control circuit for the pump system includes a number of safety circuits which automatically monitor for deleterious conditions, such as passage of air bubbles or the dislodgement of the intravenous needle into a muscle, eliminating the requirement that an attendant periodically monitor the process. Sterile conditions are easily maintained because the positive displacement pumping system uses a disposable syringe and a disposable twoway valve which can be discarded after use with each patient and replaced with a new sterile syringe and valve.
Some attempts have been made to use disposable piston type syringes for pumping fluids at fixed locations. For example, it has been proposed to drive the piston of a syringe by an AC motor connected to an external AC line source. To control the rate of pumping, adjustment is made of the length of the drive stroke for the piston. Such apparatus is not usable in an infusion system, since air bubbles may be passed to the patient, and other serious malfunctions might occur which could not be automatically cured. Also, such apparatus does not permit priming of the syringe, nor is accurate control possible, as is essential in an infusion system.
The applicants novel control circuit for driving the novel pumping system includes a unique DC motor drive which can be used to accurately drive loads other than pumps. The drive automatically compensates for variations in the load, long term aging of batteries for powering the control circuit, and detection of deleterious conditions associated with the driven load. Bidirectional motor movement is accomplished by a simple reversing circuit controlled by movement of the motor armature. The control circuit uses the known techniques of driving the DC motor by variable width pulses, and monitoring the back EMF across the motor during the off-time of the pulses to control the on-time width of the pulses. However, a pair of such circuits has heretofore been required when driving a motor in both forward and reverse directions. The applicants control circuit accomplishes the same degree of control while substantially simplifying the circuit.
One object of this invention is the provision of an improved infusion system in which the sterile parts in contact with the fluid being pumped are disposable and readily replaceable with new sterile parts.
Another object of this invention is the provision of an improved control circuit for driving a DC motor through a bidirectional cycle of operation.
Yet another object of this invention is the provision of improved pump means driven by a DC motor and feedback means for modifying the operation of a control circuit in accordance with external conditions related to the operation of the pump.
Further objects and features of the invention will be apparent from the following specification, and from the drawings, in which:
FIG. 1 is a perspective illustration of an infusion system incorporating the pumping system of the present invention;
FIG. 2 is an exploded view of the pumping system, with the syringe pump being illustrated for clarity as located on the opposite side of the pump housing shown in FIG. 1;
FIG. 3 is a partly plan and partly sectional view of a disposable valve with embedded electrodes;
FIG. 4 is a sectional view taken along lines 4-4 of FIG. 3;
FIG. Sis a plan view taken along lines 55 of FIG. 4;
and
FIG. 6 is a schematic diagram of the control circuit for the pump system.
While an illustrative embodiment of the invention is shown in the drawings and will be described in detail herein, the invention is susceptible of embodiment in many different forms and it should be understood that the present disclosure is to be considered as an exemplitication of the principles of the invention and is not intended to limit the invention to the embodiment illustrated.
GENERAL DESCRIPTION Turning to FIG. 1, a portable infusion system is illustrated for pumping fluids such as blood from a solution bottle 20 to a catheter 21 inserted into the vein of a patient. Fluid transfer is accomplished by a pumping apparatus 24 held by a caddy assembly 26 mounted to a rail 28 of a bed for the patient. The caddy 26 also removably holds the solution bottle 20, which can be located at any reasonable altitude with respect to the patient.
Solution bottle 20 is of conventional construction, and includes a cap 30 having an air valve 31 and an output port 32 for fluid transfer. Disposable venoclysis tubing 34 couples the port 32 to an input port 36 in a disposable two-way valve 40 which forms a part of the pump apparatus 24.
Pump apparatus 24 uses as a pump chamber a conventional disposable syringe 42 having a slidable piston 44 which can be reciprocated to pump fluid within a hollow syringe barrel coupled with the two-way valve 40 which includes an outlet or output port 46 connected by venoclysis tubing 50 with a conventional Y connector 52 for medication introduction. The output of the Y connector 52 is coupled by additional disposable venoclysis tubing 54 to the catheter 21.
The control circuit for pump apparatus 24, seen in detail in FIG. 3, is completely contained within the housing for the pump apparatus, and can be either externally or internally powered. During a back stroke, in which the syringe piston 44 is driven away from the valve 40, input port 36 admits fluids from solution bottle into the syringe barrel. The valve in output port 46 is closed at this time. During a forward stroke, in which piston 44 is driven towards the valve 40, the input port 36 is closed and the output port 46 is opened, pumping the solution through venoclysis tubing 52 and 54 to the catheter 21.
The novel pumping apparatus 24 is seen in exploded view in FIG. 2. A sterile, positive displacement pump is economically formed by using a conventional disposable syringe 42 in combination with a unique disposable valve 40, to be described. Syringe 42 includes a gasket 70 fixedly mounted to the piston 44 for movement within a hollow barrel 72 which has a single fluid opening terminating in a needle connector 74. The syringe includes extending finger grip arms 76, which in the present invention are held by base means for the pump apparatus 24.
Syringe 42 and valve 40 are removably held by housing means in order to allow disposal after use with each patient and replacement with a new presteriled syringe and valve. A lower molded case 90 includes a pair of upstanding arms 92 each having a slot channel 94 which slidably receives one of the extensions 76 of the syringe. Lower case 90 also includes an upstanding post 100 having a concave surface 102 for holding the valve 40 when it is mated to the syringe 42, and for making electrical contact with electrodes embedded in the valve. A pair of female electrical sockets 106 in surface 102 receive air bubble detector electrodes, as will appear, and a female socket 108 (not illustrated in FIG. 2), which may be separate from case 90 or similarly molded in a portion thereof, receives an over-pressure detector electrode. The sockets 106 and 108 are connectedby wires to the circuit of FIG. 3 which is contained within the hollow case 90.
The mechanical drive arrangement for piston 44 consists of a bidirectional DC motor 120 having an armature shaft 121 with an integral motor gear 122. The motor gear 122 meshes with an idler gear 126 rotatable about an idler shaft 128 rigidly attached to a pinion gear 130. The pinion gear 130 meshes with a drive gear 132 which is fixedly attached to the shaft ofajackscrew 134. A syringe cylinder carrier 140 includes a gripping head 142 having an opening therein for slidably receiving the head 45 of piston 44. The carrier 140 has an internally threaded central opening for engaging the threads of the jackscrew 134 to cause the carrier to act as a drive nut on the jackscrew.
When DC motor 120 is energized by voltage of predetermined polarity, the two-stage spur reduction gears rotate jackscrew 134 and cause the carrier 140 and attached cylinder 44 to be driven in a forward stroke. Carrier 140 includes a protrusion 150 with a permanent magnet which extends downward for magnetically actuating a sealed forward stroke limit switch 152 and a sealed reverse stroke limit switch 154, mounted to a circuit board 156 which contains the circuit of FIG. 3. The carrier 140 is driven in a forward stroke direction until protrusion 150 is directly over limit switch 152, at which time the circuit of FIG. 3 reverses the polarity of voltage to DC motor in order to rotate armature 121 in a reverse direction. The carrier and cylinder 44 are now longitudinally moved through a back stroke until the protrusion is directly over limit switch 154, at which time the circuit of FIG. 3 again reverses the polarity of voltage to DC motor 120. While magnetically actuated proximity switches are preferred, a mechanical switch arrangement could alternately be used, actuated by mechanical engagement with protrusion 150.
Power for the DC motor 120 and the control circuit is obtained from a self-contained DC power source, as a pair of series connected DC batteries 160. Desirably, batteries 160 are rechargeable, sealed nickel-cadmium batteries which allow the pump apparatus to be powered either from an external AC source, or internally powered in order to allow the unit to be completely portable. If the unit is constructed for portable use only, the batteries 160 may be conventional 1.5 volt D size. The DC batteries 160 are housed within a battery retainer cylinder 162 molded in lower case 90. Electrical connection is made through a battery contact spring 164 and a contact on a battery retainer cap 165 which threads into the battery retainer cylinder wall to allow replacement of the batteries when necessary.
An upper case mates with the lower case 90 to enclose the drive train assembly and the batteries 1 60. Case 170 includes a window 172 through which indicia on a thumbwheel knob 174 may be observed in order to allow'operator selection of different rates of pumping fluid. Desirably, the indicia on wheel 174 directly indicate pump rate, such as one liter of fluid per one, two, three, etc., hours. A different range of pump rates may be provided by replacing syringe 42 with a syringe of different capacity, and knob 174 may be so marked with alternate indicia. A syringe prime switch 176 allows an operator to override the setting selected by wheel 174 in order to rapidly reciprocate the piston 44 when first priming the syringe 42 to eliminate air bubbles. During the time the switch 176 is actuated, the air bubble protector circuit is disabled.
Disposable Valve Assembly The disposable valve assembly 40 is illustrated in detail in FIGS. 3-5. The assembly is economically formed by using a pair of identically manufactured valve units mated in opposite fluid flow directions with a central fluid channel unit 192 so that one valve unit 190 forms input port 36 and the other valve unit 190 forms output port 46.
Each valve unit 190 includes a fluid input port having a tapered conical wall 194 which directs fluid to a check valve 195 formed of flexible, resilient material such as rubber. Check valve 195 is formed by a hollow center portion with an integral tapering nose 196 terminating in a rectangular slit opening 197 which passes fluid to an output port defined by a tubular wall 200 which also serves to anchor the hollow center portion of the check valve. The check valve 195 is of conventional construction and allows fluid flow in a direction from the input port defined by conical wall 194 to the output port defined by the tubular wall 200, but collapses to block fluid flow in an opposite direction.
The central fluid channel unit 192 includes an input fluid channel 202 into which is inserted the output port of the valve unit 190 which forms input port 36. Opposite input fluid channel 202 is an output fluid port or channel 203 having a conical wall which receives the tapered syringe connector 94. Contiguous with fluid channels 202 and 203 are an output fluid channel 204 and a closed fluid channel 206. Channel 204 terminates in a neck portion 208 of reduced diameter which mates with the input port of the check valve 190 which serves as the output port 46 for passing fluid flow to the catheter.
To detect the presence of anair bubble in the fluid channel, a pair of metal rods or electrodes 212 extend through the wall of the valve assembly and into the fluid channel 204. The electrodes 212 are spaced apart approximately 0.25 inches, and are placed ahead of the output functioning check valve 195. When fluid of 0.001 percent salinity or higher is present between the electrodes 212, the fluid completes a resistance path of sufficiently low impedance to allow the circuit of FIG. 6 to continue to operate. When an air bubble of predetermined size passes the electrodes, the impedance rises and breaks the circuit to cause the forward stroke of the pump to terminate.
To detect an over-pressure condition, as is caused when the catheter becomes lodged in a muscle, the closed fluid channel 206 forms a pressure detector. A cap 217 closes the end of fluid channel 206, trapping air between the cap 217 and the fluid which enters the channel 206. A single metal rod or electrode 220 is embedded through the wall of the valve assembly and into the fluid channel 206. When an over-pressure condition occurs, the pressure of the fluid within central channel unit 192 further compresses the trapped air and allows fluid to further enter the closed channel 206 until it contacts the electrode 220, thereby completing a circuit through the fluid to one of the electrodes 212 in order to indicate an over-pressure condition.
. Desirably, electrodes 212 and 220 are an integral part of the valve assembly 40, rather than a part of the syringe 42. As a result, a conventional disposable syringe of low cost may be used as the pump. The valve assembly itself may be economically molded of plastic, except for the pair of check valves 190 which may be molded of rubber. The externally extending ends of the metal electrodes 212 and 220 are directly inserted in the female sockets 106 and 108, respectively, as previously described.
Control Circuit The control circuit for the pump assembly is illustrated in detail in FIG. 5. DC power is provided between a DC potential line 248 and a source of reference potential or ground 250. When external 115 volt AC is available, a plug 256 may be inserted into the external AC source so as to couple 115 volt AC to a stepdown transformer 258. The transformer is connected through a full wave diode rectifier to a line 260 connectable through a socket with line 248. The rechargeable batteries 160 form a filter capacitor for the full wave rectified AC voltage, reducing the ripple of the voltage on DC line 248. If desired, an additional filter capacitor 262 may be provided. The stepdown transformer 258 and full wave rectifier may be housed within the plug 256, and connected through a two'line cord to the socket receptacle on the pump assembly. When the pump assembly is to be used independent of the external AC source, the line plug is simply removed from the receptacle on the pump assembly, allowing the previously recharged batteries 160 to thereafter power the control circuit.
DC motor 120 is a shunt wound permanent magnet motor which rotates in a forward direction when current flows from a terminal 260 to a terminal 262, and rotates in a reverse direction when current flows from terminal 262 to terminal 260. As will appear, the motor is driven by pulses having a less than percent duty cycle. During the off-time of the pulses, the motor acts as a generator or tachometer, and the back EMF across the terminals is sensed and stored in order to control the duty cycle of the drive pulses.
An electronic reversing switch, including transistors 265, 266, 267, 268, 269, and 270 forms a double-pole, double-throw switch. Transistors 265 and 268 are synchronously driven conductive to pass current in a forward direction through motor 120. Alternatively, transistors 266 and 267 may be synchronously driven conductive to complete a reverse current path for motor 120 to drive the motor through its reverse or back stroke. When transistors 265 and 268 are on, current passes from a positive line 275 through transistor 265 to terminal 260 of motor 120, through motor 120 and out terminal 262 to transistor 268, and thence to ground 250. When the forward limit of travel is reached, as indicated by the permanent magnet on protrusion actuating limit switch 154, a reversing switch driver, to be described, turns transistors 265 and 268 off and transistors 266 and 267 on. Current then flows from the positive line 275 through transistor 266 to terminal 262, and thence through motor 120 and out terminal 260 to transistor 267 and thence to ground 250.
The reversing switch driver, consisting of transistors 280, 281, 282, and 283, acts as a regenerative bistable switch useful to obtain the heavy drive capability which is necessary when using low supply voltage, such as 3.0 volts from the pair of batteries 160. Transistors 280 and 283 drive each other into saturation when magnetic protrusion 150 actuates switch 152 at the end of a back stroke, grounding the base of transistor 282. Alternatively, transistors 282 and 281 drive each other into saturation when magnetic protrusion 150 actuates the switch 154, grounding the base of transistor 283 at the forward stroke limit of travel.
When transistor 281 saturates, current flows from its emitter to base and through a resistor 290 to the base of transistor 267 to provide drive for the reversing switch. At the same time, the voltage at the collector of transistor 281 rises to the potential of line 275, back biasing transistors 269 and 265. Transistor 282 is also saturated at this time, causing current to flow through the emitter-base of transistor 266, through a resistor 292 and via a line 293 to the collector of transistor 282 and thence to ground 250. This provides drive for the other half of the reversing switch. Since the collector voltage of transistor 282 is at approximately ground potential, no current flows through a resistor 295 to transistor 270, nor transistor 268. When the opposite stable state of the bistable is set by magnetic protrusion 150, transistors 280 and 283 act similar to the above described operation for transistors 281 and 282, providing drive for transistors 265 and 269, and transistors 268 and 270, as will be explained with reference to the bubble detector circuit.
During the forward stroke, transistor 270 is driven on by pulses having approximately a 25 percent duty cycle. For one circuit which was constructed, the drive pulses for minimum motor speed had a four millisecond on-time out of a sixteen millisecond interval, producing a sixty hertz frequency. The duty cycle during the forward stroke is adjustable, as will appear, and is controlled by a forward stroke control.
The reverse stroke always occurs at maximum speed since transistors 266 and 267 are fully saturated during reverse motor movement. As the DC voltage from bat teries 160 slowly drops with age and use, lesser voltage is passed through the reverse stroke transistors 266 and 267to the DC motor 120, resulting in a decreased speed of movement. As will appear, a battery voltage variation compensation circuit is responsive to decreased battery voltage to decrease the off-time of the pulses controlled by the forward stroke control, thus increasing speed in the forward stroke in order to maintain the selected rate of pumping.
The forward stroke control includes transistors 300, 301, 302, 303, and 304, connected basically as an unsymmetrical astable multivibrator. To allow selection of different rates of pumping, thumbwheel knob 174 is connected to the wiper 310 of multi-position switches 312. Wiper 310 is connected to any one of a plurality of resistors 315 each having a different resistance value. A master OFF switch 316 when actuated connects the wiper 310 to DC line 248, via prime switch 176. When the thumbwheel 174 is rotated to cause the wiper 310 of switch 312 to contact one particular resistor 315, a path is formed from DC line 248, through actuated switch 316 and unactuated switch 176 to wiper 310, and thence through the selected resistor 315 to the emitter of transistor 300. The collector of transistor 300 is connected through a capacitor 317 and thence through the collector-emitter of transistor 301 to ground 250. The duty cycle of the pulse coupled to transistor 270 is determined by the capacitance of capacitor 317, the selected value of resistor 315, and the voltage at the base of transistor 300 (from the velocity feedback circuit as will appear).
The on-time of the duty cycle is determined by the time period transistors 301 and 303 are saturated and transistors 302 and 304 are turned off. Transistor 300 acts as a controlled current source that discharges capacitor 317 during the time it holds transistor 304 turned off. When transistor 301 turns on, transistor 303 is turned on by current flowing from its base and through a resistor 320 and conducting transistor 301 to ground 250. Transistor 303 drives transistor 270 of the reversing switch driver through a resistor 322. Thus, the on-time of the duty cycle which controls the forward stroke of the motor is determined by saturation of transistor 303.
The off-time of the duty cycle is controlled by satura tion of transistor 304, at which time transistors 301 and 303 are turned off. This off-time is determined by the capacitance value of a capacitor 325, the voltage to which the capacitor 325 is allowed to charge during the prior on-time, and the resistance values of a pair of series connected resistors 327 and 328. The allowable voltage to which capacitor 325 is allowed to charge is set by the battery voltage variation compensation circuit, to be explained.
The detailed operation of the forward stroke control circuit is as follows. Assume transistor 301 has just turned on with capacitor 317 fully charged and capaci tor 325 fully discharged. When transistor 301 saturates, the negative terminal of capacitor 317 has a negative voltage equal to the supply potential. For this example, it will be assumed that the supply potential from batteries 160 is at maximum potential, or 3.0 volts. Current now flows from the +3.0 volt supply and through switches 316, 176 and 310 to the selected resistor 315 and thence through transistor 300 to discharge capacitor 317. When the negative terminal of capacitor 317 reaches 1.2 volts (the base-emitter drop of transistors 302 and 304), transistors 302 and 304 are turned on, turning transistor 301 off and recharging capacitor 317 to supply voltage through a resistor 330. Capacitor 325 discharges through the series resistors 327 and 328 until the base-emitter voltage of transistor 301 is reached, at which time transistor 301 turns on and the cycle is repeated.
During the forward stroke, the pulse coupled to the DC motor has an approximately 25 percent off-time at the maximum infusion rate selectable by switch 310. Due to mechanical inertia, the motor continues to turn and generates a back EMF proportional to the angular velocity of the armature. This voltage is sensed by a velocity feedback circuit and stored in order to control transistor 300 and adjust the on-time of the pulses to compensate for variations in load. Thus, various fluids and syringes may be used without effecting to any significant extent the calibration of thumbwheel knob 174.
During the forward stroke, transistor 265 is on, connecting terminal 260 to the supply voltage at line 275. During the off portion of the forward stroke pulse, transistor 270 is off, blocking transistor 268 and disconnecting ground 250 from the motor terminal 262. The back EMF across the motor terminal is now coupled through a resistor 335 and a pair of series connected diodes 336 and 337 to a capacitor 340 connected to ground 250. The capacitor 340 charges to a potential that is the sum of the supply voltage and the voltage generated by the motor.
During the on-time of the forward stroke control, transistor 270 is driven into conduction, driving transistor 268 into conduction and hence connecting motor terminal 262 to approximately ground potential, back biasing the diodes 336 and 337. The voltage charge across capacitor 340 is now used to control the base drive of transistors 300, establishing ,an on-time duration proportional to the voltage across the capacitor. A resistor 342 allows the voltage across capacitor 340 to slowly leak off. Since the emitter of transistor 300 is referenced to the DC supply voltage, the current through transistor 300 is dependent solely on the back EMF across the DC motor, eliminating the effect of supply voltage variations.
The control circuit also includes a number of special circuits described in the following sections.
Bubble Detector The bubble detector circuit includes the bubble detector electrodes 212 and transistors 350 and 351.
When fluids having a conductivity equal to a salinity of 0.001 percent or greater are present between electrodes 212 which are spaced 0.25 inches apart, the resistance therebetween is on the order of 200 kilohms orv lower. This causes current to flow from the supply line 275, through the emitter-base of transistor 350, through a resistor 352, as 10 kilohms, to one electrode 212 and thence through the fluid to the other electrode 212 to charge a capacitor 353, as 1.0 microfarads. Capacitor 353 is discharged by the forward stroke control circuit through a diode 355. The time constants are chosen such that capacitor 353 is never charged to more than 0.1 volts unless the forward stroke control circuit fails. If the forward stroke control circuit fails in such a way that the forward stroke would be at full supply voltage across the motor 120, capacitor 353 charges to supply voltage and turns transistor 350 off.
A This terminates operation. Thus, the patient is protected from excessive infusion rates which otherwise might be caused by failure of critical parts in the circuit. The current passing through the fluid is on the order of 10 microamps or less thereby creating no hazard of electrolysis or other hazard to the patient.
The current that charges capacitor 353 causes a current of at least 200 times magnitude to flow from the supply, through the emitter-collector of transistor 350, through a resistor 357 and into the base of transistor 351. This forward biases transistor 351, creating a path to ground through the transistor 351 and a resistor 358 connected to the base of transistor 269, thereby allowing drive for transistors 269 and 265 to flow when the transistors 269 and 265 are turned on by the reversing switch driver circuit. When an air bubble or cavity is present between the electrodes 212, the current path is broken and transistor 351 is biased off. Therefore, the motor 120 stos on the forward stroke. Prime switch 176 in the forward stroke control circuit is used to override this shut-off during syringe priming.
The combination of the bubble detector circuit and the placement of the electrodes 212 and 220 in the two-way valve assembly 40 creates a fail safe apparatus which detectsair leaks caused by a defect in the pump assembly itself. Referring to FIG. 4, the electrodes 212 are located in the pressure side of the fluid channel, between the pair of check valves 195. Should the metal electrodes 212 not be completely surrounded by the plastic material forming the wall of the valve channel, as might occur due to dropping of the valve assembly, for example, an air passageway or void would be created which would allow air to seep from the atmosphere into the fluid channel 204. If the electrodes 212 were located in input port 36 upstream of the check valve 195, the electrode located furthest downstream could leak air during a back stroke operation. 1f the bubble should pass the check valve 195, it would escape detection by the bubble detector circuit.
To prevent such an occurrence, the electrodes 212 are located in a region which has high pressure during a forward stroke. During the forward stroke, the pressure in channel 204 is in excess of atmospheric pressure, therefore an air passageway adjacent either electrode 212 merely causes fluid to seep out of the channel 204, but does not create an air bubble within the channel. During the back stroke, a low pressure region is formed in fluid channel 204, allowing air to seep from the atmosphere into the channel 204. Regardless of the electrode 212 which leaks air, the bubble will travel upstream towards the pump port 203, so that the bubble will again have to pass the electrodes 212 during the forward stroke. This allows the air bubble to be detected in the same manner as if the bubble had been drawn in from the fluid supply.
The bubble detector control circuit serves the dual purposes of providing a safety device to prevent accidental passage of an air bubble, and also automatically shuts off the pumping apparatus when all the fluid in the solution bottle is used up. At the end of the supply of fluid, air is introduced into the solution bottle and is pumped to the valve assembly 40. When the air reaches the point where the two sensing electrodes 212 are placed, the current path is broken and motor operation is terminated, turning off the pumping system.
Battery Voltage Variation Compensation This circuit, consisting of transistors 370 and 371, is responsive to decreases in the battery voltage to decrease the off-time of the pulses in the forward stroke control. As previously described, the back stroke is not controlled and will vary in speed with voltage variations. The time lost on the back stroke is gained by speeding up the motor on the forward stroke.
Transistor 371 acts as an ideal diode, establishing a reference voltage of approximately 0.6 volts at its collector, which is coupled in series through a resistor 376 and a resistor 377 to a line coupled through switch 316 with the positive potential line 248. In shunt with resistors 376 and 377 and transistor 371 is a resistor 380 in series with the emitter of transistor 370, and a resistor 382 in series between the collector of transistor 370 and ground 250. The collector of transistor 370 is directly coupled to the junction between transistor 304 and capacitor 325. As the battery supply voltage lowers, the current through resistor 380 changes linearly. This causes the collector voltage of transistor 370 to rise linearly at a rate established by the ratio of resistor 380 to resistor 382 and a resistor 384 in series between the collectors of transistors 303 and 304. The voltage at the base of transistor 370 also varies, but at reduced ratio.
For the particular motor driven mechanism which was constructed, the circuit constants were chosen so that the voltage on the collector of transistor 370 and hence also transistor 304 lowered as the battery voltage lowered by a ratio of 1.5, that is, 0.1 volt battery variation produced 0.15 volts less charge on capacitor 325. While this ratio produced the correct compensation, other ratios may be utilized for other loads driven by the motor. The range of the battery voltage compensation circuit is such that battery voltages down to approximately 2.0 volts may be tolerated, representing a decrease of 33 percent from the full battery voltage of 3.0 volts.
For the circuit constants disclosed above, a battery supply voltage of less than 2.0 volts indicates that the batteries must be replaced or recharged in order to maintain the calibrated accuracy of the pumping apparatus. A low battery indicator circuit is formed by integrated circuit NOT gates 390 and 391 for energizing a low battery indicator lamp 393. When the supply voltage is above 2.0 volts, a divider formed by resistors 395 and 396 in series between ground 250 and the supply line via switch 316 and line 248 produces a voltage above 0.8 volts at the junction between resistors 395 and 396 which causes NOT gate 390 to saturate, turning NOT gate 391 off and thus maintaining the lamp 393 off. When the supply voltage drops to 2.0 volts, gate 390 turns off, causing gate 391 to turn on and hence energize the lamp indicator 393. The indicator lamp 393 is desirably located beneath a window in the upper case of the pump assembly so as to be visible by an operator.
Over-Pressure Detector This circuit is formed by integrated circuit gates 400, 401 and a transistor 372. Gates 400 and 401 are connected to form a bistable multivibrator. During normal operation (no over-pressure condition), gate 401 is on and transistor 372 is off. To insure this state, a capacitor 405 is made five times as large as a capacitor 406. When the control circuit is first energized, the capacitor 405 holds one input of gate 400 low long enough to set the bistable with gate 401 saturated and gate 400 off.
When fluid reaches electrode 220, indicating an over-pressure condition, a circuit path is formed from one input of gate 400 to the supply voltage line 275 via transistor 350 and the electrode 212 connected through resistor 352 to the base thereof, saturating gate 400 and turning gate 401 off. This turns transistor 372 on, turning off transistor 351 which in turn opens the bias path for transistors 269 and 265. This stops the system on the forward stroke. The over-pressure detector circuit may be reset by turning the control circuit off and back on, causing capacitor 405 to again saturate gate 401.
Bubble and Over-Pressure Indicator This circuit consists of transistors 310 and 41 1 which control energization of a visual indicator, such as a light emitting diode (LED) 413. Desirably, a light emitting diode is used rather than an incandescent lamp due to its low power consumption. When an air bubble or an over-pressure condition is detected by the circuits previously described, transistor 351 is turned off. This in turn biases off transistor 410, ungrounding ajunction formed between a resistor 415 and a diode 416 connected in series between the anode of LED 413 and the base of transistor 41]. The transistor 41] is thus forward biased, creating a current path for the LED 413 to ground through a resistor 420 and the collector-emitter junction, of the conducting transistor 411. The LED 413 is located adjacent a jewel lens mounted in case 170 in order to give a visual indication ofa circuit shutoff caused by the detectm of an air bubble or an overpressure condition.
For some applications, it may be desirable to include less than the number of individual circuits described above, or to include various combinations thereof, as will be apparent to one skilled in the art.
We claim:
1. In a portable infusion system for transferring fluid from a fluid source to a catheter, a positive displacement pumping system having disposable parts, comprising: a self-contained source of DC power; disposable syringe means having a barrel and a piston movable in said barrel along a path to move fluid within the barrel, said barrel having a fluid passage opening; disposable valve means having a pump port in fluid communication with said passage opening, input port means connected with said fluid source for passing fluid to said barrel, and output port means for connection with said catheter for passing fluid to said catheter; base means removably holding said syringe means and said valve means to allow disposal after use with a patient; a holding member removably connected to said piston and mounted on said base for reciprocal movement along said path; motor means energized by said DC power source for reciprocating said holding member and said piston, said motor means including gear means connected to said holding member to effect reciprocal movement of said holding member in response to rotation of said gear means, and a DC motor for rotating said gear means, means for selecting one of a plurality of rates of pumping including generator means for generating DC drive pulses having different duty cycles selectable to effect different rates of pumping, circuit means for coupling said DC drive pulses to said DC motor, and voltage variation compensation means including means responsive to decreasing voltage from said DC power source for increasing the duty cycle of at least some of said DC drive pulses.
2. The system of claim 1 wherein said DC motor is a bidirectional DC motor having an armature shaft rotatable in opposite directions when opposite polarity current is coupled to the DC motor, said gear means converting rotational movement of said armature shaft into translational movement which drives said holding member, and circuit means for periodically reversing the polarity of current passed from said DC power source to said DC motor.
3. The system of claim 1 wherein said valve means ineludes sensing means for detecting the presence of an air bubble, and safety means responsive to detection of an air bubble for terminating the operation of said motor means.
4. The system of claim 1 including over-pressure means for detecting when the pressure of fluid passed to said catheter exceeds a predetermined maximum, and indicator means actuated when said predetermined maximum is exceeded for providing an alarm indication.
5. In an infusion system for transferring fluid to catheter means, a pumping system comprising a source of fluid capable of passing electricity, a valve assembly having a fluid channel with an outlet adapted for connection with the catheter means for directing the flow of said fluid to the catheter means, fluid pump means including a chamber connected in fluid communication with said fluid source and said fluid channel, and drive means in said chamber actuable to effect movement of fluid from said fluid source and pump fluid through said fluid channel to the catheter means, unidirectional valve means connected in fluid communication with said fluid channel to permit fluid flow from said fluid channel to the catheter and prevent fluid flow from the catheter to said fluid channel, said fluid channel including a fluid passageway having a fluid opening contiguous with said fluid channel for admitting fluid into said passageway a distance determined by the pressure of the fluid in said fluid channel, and a pair of electrode means located within said fluid channel and having extensions connectable with an external circuit, at least one of said pair of electrode means being located in said passageway a predetermined distance from said fluid opening so that the presence of fluid at said last named electrode means indicates a predetermined fluid pressure condition.
6. The pumping system of claim further including third electrode means in said channel adjacent the other of said pair of electrodes, nd circuit means responsive to the presence of an air bubble between said third and other electrode means to provide a signal indicative thereof.
7. The pumping system of claim 5 wherein said fluid passageway has a closed end opposite said fluid opening for trapping a compressible gas between said closed end and the fluid admitted trough said fluid opening, said last named electrode means being surrounded by said compressible gas when the pressure of fluid in said fluid channel means is less than said predetermined pressure condition.
8. In an infusion system for transferring fluid to catheter means, a pumping system comprising a source of fluid capable of conducting electricity, a syringe having a barrel and a reciprocal plunger slidable in said barrel for moving fluid into and out of said barrel, a valve assembly having a fluid source inlet connected to said source of fluid, a pressure fluid inlet-connected to said syringe barrel and in fluid communication with said fluid source inlet, and a channel connected in fluid communication with said pressure fluid inlet and having an outlet connectable with the catheter, first valve means connected in fluid communication with said source of fluid to pennit fluid flow from said source to said syringe barrel and to prevent return fluid flow from said syringe barrel to said fluid source, second valve means connected in fluid communication with said channel to permit fluid flow from said channel to the catheter and prevent return fluid flow from the catheter to said channel, and means for reciprocating said plunger to draw fluid from said source into said barrel through said pressure fluid inlet during movement thereof in one direction and supply pressurized fluid to said channel from said barrel during movement thereof in the opposite direction to transfer the fluid to the catheter, said valve assembly including a pressure chamber connected at one end in fluid communication with said channel and closed at the opposite end thereof, an electrode within said chamber, gas disposed in said chamber normally between said electrode and said one end to prevent contact between said fluid and said electrode, said gas being compressible to permit said fluid to contact said electrode upon the occurrence of fluid pressure in said channel of a predetermined value, and circuit means connected with said electrode for detecting the contact between the fluid and said electrode.
9. The infusion system of claim 8 wherein said circuit means includes a second electrode disposed in said channel incontact with the fluid therein.
10. The infusion system of claim a further including a pair of closely spaced electrodes in said channel and normally bridged by the fluid to normally provide a predetermined value of impedance between said pair of electrodes, and circuit means connected to said pair of electrodes and responsive to a change in said value of impedance upon the occurrence of the presence of an air bubble between said electrodes to interrupt the reciprocation of said plunger.

Claims (10)

1. In a portable infusion system for transferring fluid from a fluid source to a catheter, a positive displacement pumping system having disposable parts, comprising: a self-contained source of DC power; disposable syringe means having a barrel and a piston movable in said barrel along a path to move fluid within the barrel, said barrel having a fluid passage opening; disposable valve means having a pump port in fluid communication with said passage opening, input port means connected with said fluid source for passing fluid to said barrel, and output port means for connection with said catheter for passing fluid to said catheter; base means removably holding said syringe means and said valve means to allow disposal after use with a patient; a holding member removably connected to said piston and mounted on said base for reciprocal movement along said path; motor means energized by said DC power source for reciprocating said holding member and said piston, said motor means including gear means connected to said holding member to effect reciprocal movement of said holding member in response to rotation of said gear means, and a DC motor for rotating said gear means, means for selecting one of a plurality of rates of pumping including generator means for generating DC drive pulses having different duty cycles selectable to effect different rates of pumping, circuit means for coupling said DC drive pulses to said DC motor, and voltage variation compensation means including means responSive to decreasing voltage from said DC power source for increasing the duty cycle of at least some of said DC drive pulses.
2. The system of claim 1 wherein said DC motor is a bidirectional DC motor having an armature shaft rotatable in opposite directions when opposite polarity current is coupled to the DC motor, said gear means converting rotational movement of said armature shaft into translational movement which drives said holding member, and circuit means for periodically reversing the polarity of current passed from said DC power source to said DC motor.
3. The system of claim 1 wherein said valve means includes sensing means for detecting the presence of an air bubble, and safety means responsive to detection of an air bubble for terminating the operation of said motor means.
4. The system of claim 1 including over-pressure means for detecting when the pressure of fluid passed to said catheter exceeds a predetermined maximum, and indicator means actuated when said predetermined maximum is exceeded for providing an alarm indication.
5. In an infusion system for transferring fluid to catheter means, a pumping system comprising a source of fluid capable of passing electricity, a valve assembly having a fluid channel with an outlet adapted for connection with the catheter means for directing the flow of said fluid to the catheter means, fluid pump means including a chamber connected in fluid communication with said fluid source and said fluid channel, and drive means in said chamber actuable to effect movement of fluid from said fluid source and pump fluid through said fluid channel to the catheter means, unidirectional valve means connected in fluid communication with said fluid channel to permit fluid flow from said fluid channel to the catheter and prevent fluid flow from the catheter to said fluid channel, said fluid channel including a fluid passageway having a fluid opening contiguous with said fluid channel for admitting fluid into said passageway a distance determined by the pressure of the fluid in said fluid channel, and a pair of electrode means located within said fluid channel and having extensions connectable with an external circuit, at least one of said pair of electrode means being located in said passageway a predetermined distance from said fluid opening so that the presence of fluid at said last named electrode means indicates a predetermined fluid pressure condition.
6. The pumping system of claim 5 further including third electrode means in said channel adjacent the other of said pair of electrodes, and circuit means responsive to the presence of an air bubble between said third and other electrode means to provide a signal indicative thereof.
7. The pumping system of claim 5 wherein said fluid passageway has a closed end opposite said fluid opening for trapping a compressible gas between said closed end and the fluid admitted trough said fluid opening, said last named electrode means being surrounded by said compressible gas when the pressure of fluid in said fluid channel means is less than said predetermined pressure condition.
8. In an infusion system for transferring fluid to catheter means, a pumping system comprising a source of fluid capable of conducting electricity, a syringe having a barrel and a reciprocal plunger slidable in said barrel for moving fluid into and out of said barrel, a valve assembly having a fluid source inlet connected to said source of fluid, a pressure fluid inlet connected to said syringe barrel and in fluid communication with said fluid source inlet, and a channel connected in fluid communication with said pressure fluid inlet and having an outlet connectable with the catheter, first valve means connected in fluid communication with said source of fluid to permit fluid flow from said source to said syringe barrel and to prevent return fluid flow from said syringe barrel to said fluid source, second valve means connected in fluid communication with said channel to permit fluId flow from said channel to the catheter and prevent return fluid flow from the catheter to said channel, and means for reciprocating said plunger to draw fluid from said source into said barrel through said pressure fluid inlet during movement thereof in one direction and supply pressurized fluid to said channel from said barrel during movement thereof in the opposite direction to transfer the fluid to the catheter, said valve assembly including a pressure chamber connected at one end in fluid communication with said channel and closed at the opposite end thereof, an electrode within said chamber, gas disposed in said chamber normally between said electrode and said one end to prevent contact between said fluid and said electrode, said gas being compressible to permit said fluid to contact said electrode upon the occurrence of fluid pressure in said channel of a predetermined value, and circuit means connected with said electrode for detecting the contact between the fluid and said electrode.
9. The infusion system of claim 8 wherein said circuit means includes a second electrode disposed in said channel in contact with the fluid therein.
10. The infusion system of claim 8 further including a pair of closely spaced electrodes in said channel and normally bridged by the fluid to normally provide a predetermined value of impedance between said pair of electrodes, and circuit means connected to said pair of electrodes and responsive to a change in said value of impedance upon the occurrence of the presence of an air bubble between said electrodes to interrupt the reciprocation of said plunger.
US00081926A 1970-10-19 1970-10-19 Infusion system Expired - Lifetime US3731679A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US8192670A 1970-10-19 1970-10-19

Publications (1)

Publication Number Publication Date
US3731679A true US3731679A (en) 1973-05-08

Family

ID=22167286

Family Applications (1)

Application Number Title Priority Date Filing Date
US00081926A Expired - Lifetime US3731679A (en) 1970-10-19 1970-10-19 Infusion system

Country Status (5)

Country Link
US (1) US3731679A (en)
BE (1) BE772098A (en)
CA (1) CA990803A (en)
DE (1) DE2144096A1 (en)
GB (1) GB1348794A (en)

Cited By (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841331A (en) * 1972-11-17 1974-10-15 J Wilder Suction-pump assembly for drawing body fluids
US3858572A (en) * 1972-10-27 1975-01-07 Kendall & Co Insufflation device
US3880138A (en) * 1973-03-12 1975-04-29 Lear Siegler Inc Method for injecting contrast media into the vascular system
US3895631A (en) * 1974-02-04 1975-07-22 Alza Corp Liquid infusion unit
US3901231A (en) * 1974-02-07 1975-08-26 Baxter Laboratories Inc Infusion pump apparatus
US3985133A (en) * 1974-05-28 1976-10-12 Imed Corporation IV pump
US3993061A (en) * 1975-02-28 1976-11-23 Ivac Corporation Syringe pump drive system and disposable syringe cartridge
US3994294A (en) * 1975-02-28 1976-11-30 Ivac Corporation Syringe pump valving and motor direction control system
US4024864A (en) * 1975-09-05 1977-05-24 Cordis Corporation Injector with overspeed protector
US4037598A (en) * 1974-08-12 1977-07-26 Ivac Corporation Method and apparatus for fluid flow control
DE2609699A1 (en) * 1974-05-28 1977-09-15 Imed Corp Pump with predetermined flow rate and dispensed volume - has volumetric cassette with piston and piston delivery stroke control
US4065230A (en) * 1975-01-17 1977-12-27 Hart Associates, Inc. Reciprocating infusion pump and directional adapter set for use therewith
US4078562A (en) * 1976-08-16 1978-03-14 Diana W. Friedman Infusion pump with feedback control
US4137913A (en) * 1975-02-28 1979-02-06 Ivac Corporation Fluid flow control system
US4140117A (en) * 1975-05-12 1979-02-20 Alza Corporation Cartridge for liquid infusion apparatus
US4244365A (en) * 1979-03-26 1981-01-13 Cutter Laboratories, Inc. Device for use in detecting occlusion in an infusion system
US4256437A (en) * 1978-02-01 1981-03-17 Stewart Naumann Laboratories, Inc. Peristaltic infusion pump and method
US4382753A (en) * 1979-03-09 1983-05-10 Avi, Inc. Nonpulsating IV pump and disposable pump chamber
US4391600A (en) * 1979-03-09 1983-07-05 Avi, Inc. Nonpulsating IV pump and disposable pump chamber
US4410322A (en) * 1979-03-09 1983-10-18 Avi, Inc. Nonpulsating TV pump and disposable pump chamber
US4565500A (en) * 1983-02-24 1986-01-21 Stewart-Riess Laboratories, Inc. Air bubble detecting and discriminating circuit arrangement and method
US4644960A (en) * 1985-09-23 1987-02-24 Arrow International, Inc. Device for making electrical connection to an electrolyte, and system employing same
US4692147A (en) * 1980-04-02 1987-09-08 Medtronic, Inc. Drug administration device
FR2600258A1 (en) * 1986-06-18 1987-12-24 Hazon Bernard PUSH-SYRINGE DEVICE FOR AUTOMATIC PARENTERAL INJECTION WITH SERVICING AND PROGRAMMING
US4747826A (en) * 1983-06-08 1988-05-31 University Of Pittsburgh Rapid venous infusion system
EP0289361A1 (en) * 1987-05-01 1988-11-02 Product Innovation Holdings Limited Medical infusion apparatus
US4812724A (en) * 1984-11-13 1989-03-14 Liebel-Flarsheim Corporation Injector control
US4838860A (en) * 1987-06-26 1989-06-13 Pump Controller Corporation Infusion pump
US4857048A (en) * 1987-05-29 1989-08-15 Hewlett-Packard Company IV pump and disposable flow chamber with flow control
US4898579A (en) * 1987-06-26 1990-02-06 Pump Controller Corporation Infusion pump
US5009641A (en) * 1988-12-02 1991-04-23 Pacesetter Infusion, Ltd. Patient-controlled analgesia security attachment for a medication infusion system
US5069668A (en) * 1990-07-12 1991-12-03 Boydman Scott A Patient controlled analgesia system
WO1992006720A1 (en) * 1990-10-22 1992-04-30 Entracare Corporation A medical fluid delivery system with uniquely configured pump unit and fluid delivery set
EP0518538A2 (en) * 1991-06-12 1992-12-16 RACAL HEALTH & SAFETY LIMITED Motor control system
US5211626A (en) * 1987-05-01 1993-05-18 Product Innovation Holdings Ltd. Medical infusion apparatus
WO1993018807A1 (en) * 1992-03-24 1993-09-30 Laboratoire Aguettant Liquid drug infusion pump control device
US5250027A (en) * 1991-10-08 1993-10-05 Sherwood Medical Company Peristaltic infusion device with backpack sensor
US5320503A (en) * 1988-05-17 1994-06-14 Patient Solutions Inc. Infusion device with disposable elements
US5328459A (en) * 1993-05-06 1994-07-12 Laghi Aldo A Apparatus and method for dispensing and aspirating high viscosity materials
WO1995003079A1 (en) * 1993-07-20 1995-02-02 Volker Lang Infusion monitoring device
US5439460A (en) * 1993-09-07 1995-08-08 Hoover; Bryan J. Cross-spike prevention system
WO1995028185A1 (en) * 1994-04-15 1995-10-26 Allegheny-Singer Research Institute Blood pump device and method of producing
US5538399A (en) * 1993-10-28 1996-07-23 Sims Deltec, Inc. Reservoir enclosure methods
US5564915A (en) * 1993-10-28 1996-10-15 Sims Deltec, Inc. Pressure plate for pump and reservoir enclosure
WO1996034637A1 (en) * 1995-05-04 1996-11-07 Sarcos, Inc. Piston-actuated attachable topical fluid delivery system
US5584667A (en) * 1988-05-17 1996-12-17 Davis; David L. Method of providing uniform flow from an infusion device
US5628619A (en) * 1995-03-06 1997-05-13 Sabratek Corporation Infusion pump having power-saving modes
US5730731A (en) * 1988-04-28 1998-03-24 Thomas J. Fogarty Pressure-based irrigation accumulator
WO1998022168A2 (en) * 1996-11-22 1998-05-28 Liebel-Flarsheim Company Medical fluid injector
US5803712A (en) * 1988-05-17 1998-09-08 Patient Solutions, Inc. Method of measuring an occlusion in an infusion device with disposable elements
US5853386A (en) * 1996-07-25 1998-12-29 Alaris Medical Systems, Inc. Infusion device with disposable elements
US5879143A (en) * 1996-04-26 1999-03-09 Sims Deltec, Inc. Reservoir enclosure adaptors and methods
WO1999047229A1 (en) * 1998-03-19 1999-09-23 King Lael D Liquid chemical delivery system
US6142008A (en) * 1998-06-12 2000-11-07 Abbott Laboratories Air bubble sensor
US6179583B1 (en) * 1997-02-25 2001-01-30 Weston Medical Limited Metered fluid delivery device
US20020115933A1 (en) * 2001-02-14 2002-08-22 Douglas Duchon Fluid injector system
US20020143294A1 (en) * 2001-02-14 2002-10-03 Duchon Douglas J. Catheter fluid control system
US20020145122A1 (en) * 2001-02-15 2002-10-10 Systems And Methods For Detection And Systems and methods for detection and measurement of elements in a medium
US6488660B1 (en) * 1999-01-13 2002-12-03 Ulrich Gmbh & Co. Kg Injector for applying fluids, especially contrast agents in X-ray and nuclear spin tomography
US20020183616A1 (en) * 2001-05-30 2002-12-05 Acist Medical System, Inc. Medical injection system
US20020198494A1 (en) * 2001-02-23 2002-12-26 Diaz Luis A. Port assembly for an integrated medication delivery system
US20020198496A1 (en) * 1995-04-20 2002-12-26 Duchon Douglas J. System and method for multiple injection procedures on heart vessels
US20030007891A1 (en) * 1999-08-20 2003-01-09 Wilson Robert F. Apparatus and method of detecting fluid
US20030028145A1 (en) * 1995-04-20 2003-02-06 Duchon Douglas J. Angiographic injector system with multiple processor redundancy
US20030125605A1 (en) * 2000-02-11 2003-07-03 Peter Forsell Controlled impotence treatment
US20030125768A1 (en) * 2000-02-11 2003-07-03 Forsell Peter Impotence treatment apparatus with energy transforming means
US20030122095A1 (en) * 2001-12-07 2003-07-03 Wilson Robert F. Low pressure measurement devices in high pressure environments
US20040030288A1 (en) * 2000-05-24 2004-02-12 Douglas Dochon Pressure sleeve assembly
US20040034331A1 (en) * 2001-02-23 2004-02-19 Jason Toman Integrated medication delivery system
US20040092885A1 (en) * 2000-04-04 2004-05-13 Douglas Duchon Fluid management and component detection system
US20040133165A1 (en) * 1995-04-20 2004-07-08 Doug Duchon Angiographic injector and injection method
US20040215144A1 (en) * 1995-04-20 2004-10-28 Doug Duchon System for detecting air
US20040215490A1 (en) * 1999-04-01 2004-10-28 Duchon Douglas J Integrated medical information management and medical device control system and method
US20050015056A1 (en) * 2000-07-20 2005-01-20 Douglas Duchon Syringe plunger locking mechanism
US20060021419A1 (en) * 2004-05-28 2006-02-02 Cassidy David E Gas detection in an intravenous fluid delivery system
US7008535B1 (en) 2000-08-04 2006-03-07 Wayne State University Apparatus for oxygenating wastewater
US7047994B2 (en) 2002-05-03 2006-05-23 Acist Medical Systems, Inc. Stopcocks and methods of manufacture thereof
US20060111791A1 (en) * 2002-07-29 2006-05-25 Peter Forsell Durable implant
US20080045783A1 (en) * 2002-07-29 2008-02-21 Peter Forsell Multi-material incontinence treatment construction device
US20080200965A1 (en) * 2003-01-31 2008-08-21 Potencia Medical Ag Electrically operable incontinence treatment apparatus
US20080200753A1 (en) * 2003-01-31 2008-08-21 Potencia Medical Ag Electrically operable incontinence treatment apparatus
US20080221547A1 (en) * 2007-03-07 2008-09-11 Monty David A Medicine Bottle Configuration and Method of Using Same
US20090054725A1 (en) * 2000-02-10 2009-02-26 Obtech Medical Ag Mechanical impotence treatment apparatus
US20090312740A1 (en) * 2005-12-27 2009-12-17 Acist Medical Systems, Inc. Balloon Inflation Device
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US7686800B2 (en) 2000-01-07 2010-03-30 Acist Medical Systems, Inc. Anti-recoil catheter
US20100145139A1 (en) * 2000-02-10 2010-06-10 Obtech Medical Ag Controlled urinary incontinence treatment
US20100204574A1 (en) * 1995-04-20 2010-08-12 Duchon Douglas J System and method for multiple injection procedures on heart vessels
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US8016745B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. Monitoring of a food intake restriction device
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US8096938B2 (en) 1999-08-12 2012-01-17 Obtech Medical Ag Controlled anal incontinence disease treatment
US8096939B2 (en) 2000-02-10 2012-01-17 Obtech Medical Ag Urinary incontinence treatment with wireless energy supply
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US8126558B2 (en) 2000-02-14 2012-02-28 Obtech Medical Ag Controlled penile prosthesis
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US8313423B2 (en) 2000-02-14 2012-11-20 Peter Forsell Hydraulic anal incontinence treatment
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US20130123703A1 (en) * 2010-07-22 2013-05-16 Ofer Shay Pulse infusion device system and method
US8509894B2 (en) 2008-10-10 2013-08-13 Milux Holding Sa Heart help device, system, and method
US8545384B2 (en) 1999-08-12 2013-10-01 Obtech Medical Ag Anal incontinence disease treatment with controlled wireless energy supply
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8600510B2 (en) 2008-10-10 2013-12-03 Milux Holding Sa Apparatus, system and operation method for the treatment of female sexual dysfunction
US8636809B2 (en) 2008-01-29 2014-01-28 Milux Holding Sa Device for treating obesity
US8678997B2 (en) 2000-02-14 2014-03-25 Obtech Medical Ag Male impotence prosthesis apparatus with wireless energy supply
US8696745B2 (en) 2008-10-10 2014-04-15 Kirk Promotion Ltd. Heart help device, system, and method
US8734318B2 (en) 2000-02-11 2014-05-27 Obtech Medical Ag Mechanical anal incontinence
US8764627B2 (en) 2000-02-14 2014-07-01 Obtech Medical Ag Penile prosthesis
US8874215B2 (en) 2008-10-10 2014-10-28 Peter Forsell System, an apparatus, and a method for treating a sexual dysfunctional female patient
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
US8961448B2 (en) 2008-01-28 2015-02-24 Peter Forsell Implantable drainage device
US9649436B2 (en) 2011-09-21 2017-05-16 Bayer Healthcare Llc Assembly method for a fluid pump device for a continuous multi-fluid delivery system
US20180030980A1 (en) * 2016-07-28 2018-02-01 Accriva Diagnostics, Inc. Methods of operating a pump to reduce or eliminate pump backlash errors
US9949812B2 (en) 2009-07-17 2018-04-24 Peter Forsell Vaginal operation method for the treatment of anal incontinence in women
US9995611B2 (en) 2012-03-30 2018-06-12 Icu Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US10046112B2 (en) 2013-05-24 2018-08-14 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
US10086137B2 (en) 2010-07-22 2018-10-02 Medical Flow Systems Ltd Pulse infusion device system and method
US10166328B2 (en) 2013-05-29 2019-01-01 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
CN109195651A (en) * 2016-03-29 2019-01-11 医疗流量系统有限公司 Pulse infusion device systems and method
US10219898B2 (en) 2008-10-10 2019-03-05 Peter Forsell Artificial valve
US10279129B2 (en) 2010-07-22 2019-05-07 Medical Flow System Ltd. Pulse infusion device system and method
US10342917B2 (en) 2014-02-28 2019-07-09 Icu Medical, Inc. Infusion system and method which utilizes dual wavelength optical air-in-line detection
US10430761B2 (en) 2011-08-19 2019-10-01 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US10463788B2 (en) 2012-07-31 2019-11-05 Icu Medical, Inc. Patient care system for critical medications
US10507319B2 (en) 2015-01-09 2019-12-17 Bayer Healthcare Llc Multiple fluid delivery system with multi-use disposable set and features thereof
US10596316B2 (en) 2013-05-29 2020-03-24 Icu Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US10635784B2 (en) 2007-12-18 2020-04-28 Icu Medical, Inc. User interface improvements for medical devices
US10656894B2 (en) 2017-12-27 2020-05-19 Icu Medical, Inc. Synchronized display of screen content on networked devices
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
US10952836B2 (en) 2009-07-17 2021-03-23 Peter Forsell Vaginal operation method for the treatment of urinary incontinence in women
US11123171B2 (en) 2008-10-10 2021-09-21 Peter Forsell Fastening means for implantable medical control assembly
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush
US11246985B2 (en) 2016-05-13 2022-02-15 Icu Medical, Inc. Infusion pump system and method with common line auto flush
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
US11324888B2 (en) 2016-06-10 2022-05-10 Icu Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
US11344673B2 (en) 2014-05-29 2022-05-31 Icu Medical, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US11441960B2 (en) * 2016-04-20 2022-09-13 Hewlett-Packard Development Company, L.P. Microfluidic pressure sensor
CN116531604A (en) * 2023-07-06 2023-08-04 泰州品青医疗器械有限公司 Electronic infusion pump with error touch prevention function

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3233240A1 (en) * 1982-09-04 1984-03-08 Max Prof. Dr.-Ing. 8520 Erlangen Schaldach PISTON PUMP
DE9011168U1 (en) * 1990-07-30 1990-10-04 Baier & Koeppel Gmbh & Co Praezisionsapparate, 8570 Pegnitz, De
US6068011A (en) 1993-10-13 2000-05-30 Paradis; Joseph R. Control of fluid flow
CN110005585B (en) * 2019-04-15 2020-07-14 英诺维尔智能科技(苏州)有限公司 Aseptic seal structure of syringe pump

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU232476A1 (en) * APPARATUS FOR BLOOD TRANSFUSION
US1922941A (en) * 1930-04-16 1933-08-15 Charles C Francis Apparatus for the automatic administration of medication
US2625933A (en) * 1949-05-10 1953-01-20 Peter F Salisbury Blood transfer mechanism
US3073244A (en) * 1960-06-29 1963-01-15 Cutler Hammer Inc Condition responsive fluid flow monitoring and control system
US3091239A (en) * 1958-08-25 1963-05-28 Moeller Wilhelm Apparatus for intravasal injection of gaseous and liquid media
US3155090A (en) * 1962-01-10 1964-11-03 Holter Company Hypodermic syringe operating means
US3447479A (en) * 1967-06-02 1969-06-03 Pall Corp Syringe pump
US3498228A (en) * 1967-05-01 1970-03-03 Charles A Blumle Portable infusion pump
US3515966A (en) * 1967-04-21 1970-06-02 Pierre Albert Marie De Valroge Motor and pump combination fed by a direct current or rectified current power source
US3648694A (en) * 1968-09-25 1972-03-14 Inst Oncologic Bucharest Automatic system with perfusion protection against malfunction

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU232476A1 (en) * APPARATUS FOR BLOOD TRANSFUSION
US1922941A (en) * 1930-04-16 1933-08-15 Charles C Francis Apparatus for the automatic administration of medication
US2625933A (en) * 1949-05-10 1953-01-20 Peter F Salisbury Blood transfer mechanism
US3091239A (en) * 1958-08-25 1963-05-28 Moeller Wilhelm Apparatus for intravasal injection of gaseous and liquid media
US3073244A (en) * 1960-06-29 1963-01-15 Cutler Hammer Inc Condition responsive fluid flow monitoring and control system
US3155090A (en) * 1962-01-10 1964-11-03 Holter Company Hypodermic syringe operating means
US3515966A (en) * 1967-04-21 1970-06-02 Pierre Albert Marie De Valroge Motor and pump combination fed by a direct current or rectified current power source
US3498228A (en) * 1967-05-01 1970-03-03 Charles A Blumle Portable infusion pump
US3447479A (en) * 1967-06-02 1969-06-03 Pall Corp Syringe pump
US3648694A (en) * 1968-09-25 1972-03-14 Inst Oncologic Bucharest Automatic system with perfusion protection against malfunction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Blum et al. A Method of Continuous Arterial Infusion , Surgery, 1948, pp. 30 35. *

Cited By (259)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858572A (en) * 1972-10-27 1975-01-07 Kendall & Co Insufflation device
US3841331A (en) * 1972-11-17 1974-10-15 J Wilder Suction-pump assembly for drawing body fluids
US3880138A (en) * 1973-03-12 1975-04-29 Lear Siegler Inc Method for injecting contrast media into the vascular system
US3895631A (en) * 1974-02-04 1975-07-22 Alza Corp Liquid infusion unit
US3901231A (en) * 1974-02-07 1975-08-26 Baxter Laboratories Inc Infusion pump apparatus
US3985133A (en) * 1974-05-28 1976-10-12 Imed Corporation IV pump
DE2609699A1 (en) * 1974-05-28 1977-09-15 Imed Corp Pump with predetermined flow rate and dispensed volume - has volumetric cassette with piston and piston delivery stroke control
US4037598A (en) * 1974-08-12 1977-07-26 Ivac Corporation Method and apparatus for fluid flow control
US4065230A (en) * 1975-01-17 1977-12-27 Hart Associates, Inc. Reciprocating infusion pump and directional adapter set for use therewith
US3994294A (en) * 1975-02-28 1976-11-30 Ivac Corporation Syringe pump valving and motor direction control system
US4137913A (en) * 1975-02-28 1979-02-06 Ivac Corporation Fluid flow control system
US3993061A (en) * 1975-02-28 1976-11-23 Ivac Corporation Syringe pump drive system and disposable syringe cartridge
US4067332A (en) * 1975-02-28 1978-01-10 Ivac Corporation Syringe pump drive system and disposable syringe cartridge
US4080967A (en) * 1975-02-28 1978-03-28 Ivac Corporation Parenteral syringe pump drive system with installation indicator means
US4140117A (en) * 1975-05-12 1979-02-20 Alza Corporation Cartridge for liquid infusion apparatus
US4024864A (en) * 1975-09-05 1977-05-24 Cordis Corporation Injector with overspeed protector
US4078562A (en) * 1976-08-16 1978-03-14 Diana W. Friedman Infusion pump with feedback control
US4256437A (en) * 1978-02-01 1981-03-17 Stewart Naumann Laboratories, Inc. Peristaltic infusion pump and method
US4382753A (en) * 1979-03-09 1983-05-10 Avi, Inc. Nonpulsating IV pump and disposable pump chamber
US4391600A (en) * 1979-03-09 1983-07-05 Avi, Inc. Nonpulsating IV pump and disposable pump chamber
US4410322A (en) * 1979-03-09 1983-10-18 Avi, Inc. Nonpulsating TV pump and disposable pump chamber
US4244365A (en) * 1979-03-26 1981-01-13 Cutter Laboratories, Inc. Device for use in detecting occlusion in an infusion system
US4692147A (en) * 1980-04-02 1987-09-08 Medtronic, Inc. Drug administration device
US4565500A (en) * 1983-02-24 1986-01-21 Stewart-Riess Laboratories, Inc. Air bubble detecting and discriminating circuit arrangement and method
US4747826A (en) * 1983-06-08 1988-05-31 University Of Pittsburgh Rapid venous infusion system
US4812724A (en) * 1984-11-13 1989-03-14 Liebel-Flarsheim Corporation Injector control
US4644960A (en) * 1985-09-23 1987-02-24 Arrow International, Inc. Device for making electrical connection to an electrolyte, and system employing same
FR2600258A1 (en) * 1986-06-18 1987-12-24 Hazon Bernard PUSH-SYRINGE DEVICE FOR AUTOMATIC PARENTERAL INJECTION WITH SERVICING AND PROGRAMMING
WO1987007843A1 (en) * 1986-06-18 1987-12-30 Bernard Hazon Monostroke syringe pusher for automatic parenteral injections with servo-control and programming
AU613871B2 (en) * 1986-06-18 1991-08-15 Bernard Hazon Monostroke syringe pusher for automatic parenteral injections with servo-control and programming
EP0289361A1 (en) * 1987-05-01 1988-11-02 Product Innovation Holdings Limited Medical infusion apparatus
US5211626A (en) * 1987-05-01 1993-05-18 Product Innovation Holdings Ltd. Medical infusion apparatus
US4857048A (en) * 1987-05-29 1989-08-15 Hewlett-Packard Company IV pump and disposable flow chamber with flow control
US4838860A (en) * 1987-06-26 1989-06-13 Pump Controller Corporation Infusion pump
WO1990015632A1 (en) * 1987-06-26 1990-12-27 Pump Controller Corporation Infusion pump
US4898579A (en) * 1987-06-26 1990-02-06 Pump Controller Corporation Infusion pump
US5730731A (en) * 1988-04-28 1998-03-24 Thomas J. Fogarty Pressure-based irrigation accumulator
US5584667A (en) * 1988-05-17 1996-12-17 Davis; David L. Method of providing uniform flow from an infusion device
US6742992B2 (en) 1988-05-17 2004-06-01 I-Flow Corporation Infusion device with disposable elements
US20080015506A1 (en) * 1988-05-17 2008-01-17 Davis David L Infusion device with disposable elements
US5803712A (en) * 1988-05-17 1998-09-08 Patient Solutions, Inc. Method of measuring an occlusion in an infusion device with disposable elements
US6312227B1 (en) 1988-05-17 2001-11-06 I-Flow Corp. Infusion device with disposable elements
US20050013698A1 (en) * 1988-05-17 2005-01-20 Davis David Lyle Infusion device with disposable elements
US5320503A (en) * 1988-05-17 1994-06-14 Patient Solutions Inc. Infusion device with disposable elements
US6146109A (en) * 1988-05-17 2000-11-14 Alaris Medical Systems, Inc. Infusion device with disposable elements
US5009641A (en) * 1988-12-02 1991-04-23 Pacesetter Infusion, Ltd. Patient-controlled analgesia security attachment for a medication infusion system
US5069668A (en) * 1990-07-12 1991-12-03 Boydman Scott A Patient controlled analgesia system
US5147313A (en) * 1990-10-22 1992-09-15 Entracare Corporation Medical fluid delivery system with uniquely configured pump unit and fluid delivery set
WO1992006720A1 (en) * 1990-10-22 1992-04-30 Entracare Corporation A medical fluid delivery system with uniquely configured pump unit and fluid delivery set
EP0518538A3 (en) * 1991-06-12 1993-04-21 Racal Health & Safety Limited Motor control system
EP0518538A2 (en) * 1991-06-12 1992-12-16 RACAL HEALTH & SAFETY LIMITED Motor control system
US5250027A (en) * 1991-10-08 1993-10-05 Sherwood Medical Company Peristaltic infusion device with backpack sensor
FR2689015A1 (en) * 1992-03-24 1993-10-01 Aguettant Lab Control device for a medical liquid infusion pump.
WO1993018807A1 (en) * 1992-03-24 1993-09-30 Laboratoire Aguettant Liquid drug infusion pump control device
US5328459A (en) * 1993-05-06 1994-07-12 Laghi Aldo A Apparatus and method for dispensing and aspirating high viscosity materials
WO1995003079A1 (en) * 1993-07-20 1995-02-02 Volker Lang Infusion monitoring device
US5688244A (en) * 1993-07-20 1997-11-18 Lang; Volker Apparatus for monitoring infusion
US5439460A (en) * 1993-09-07 1995-08-08 Hoover; Bryan J. Cross-spike prevention system
US5567136A (en) * 1993-10-28 1996-10-22 Sims Deltec, Inc. Pressure plate for pump and reservoir enclosure
US5567119A (en) * 1993-10-28 1996-10-22 Sims Deltec, Inc. Bag/syringe enclosure arrangements and methods
US5564915A (en) * 1993-10-28 1996-10-15 Sims Deltec, Inc. Pressure plate for pump and reservoir enclosure
US5540561A (en) * 1993-10-28 1996-07-30 Sims Deltec, Inc. Reservoir enclosure arrangements
US5538399A (en) * 1993-10-28 1996-07-23 Sims Deltec, Inc. Reservoir enclosure methods
US5711753A (en) * 1994-04-15 1998-01-27 Allegheny-Singer Research Institute Blood pump device and method of pumping blood
WO1995028185A1 (en) * 1994-04-15 1995-10-26 Allegheny-Singer Research Institute Blood pump device and method of producing
US5791880A (en) * 1995-03-06 1998-08-11 Sabratek Corporation Infusion pump having power-saving modes
US5628619A (en) * 1995-03-06 1997-05-13 Sabratek Corporation Infusion pump having power-saving modes
US7662124B2 (en) 1995-04-20 2010-02-16 Acist Medical Systems, Inc. System and method for multiple injection procedures on heart vessels
US20100204574A1 (en) * 1995-04-20 2010-08-12 Duchon Douglas J System and method for multiple injection procedures on heart vessels
US7357785B2 (en) 1995-04-20 2008-04-15 Acist Medical Systems, Inc. System for detecting air
US20020198496A1 (en) * 1995-04-20 2002-12-26 Duchon Douglas J. System and method for multiple injection procedures on heart vessels
US7153288B2 (en) 1995-04-20 2006-12-26 Acist Medical Systems, Inc. System for detecting air
US20040215144A1 (en) * 1995-04-20 2004-10-28 Doug Duchon System for detecting air
US7753885B2 (en) 1995-04-20 2010-07-13 Acist Medical Systems, Inc. Angiographic injector and injection method
US20070055202A1 (en) * 1995-04-20 2007-03-08 Acist Medical Systems, Inc. System for detecting air
US20100249587A1 (en) * 1995-04-20 2010-09-30 Acist Medical Systems, Inc. Angiographic injector and injection method
US20040133165A1 (en) * 1995-04-20 2004-07-08 Doug Duchon Angiographic injector and injection method
US8082018B2 (en) 1995-04-20 2011-12-20 Acist Medical Systems, Inc. System and method for multiple injection procedures on heart vessels
US20050267363A1 (en) * 1995-04-20 2005-12-01 Doug Duchon Dual port syringe
US6945959B2 (en) 1995-04-20 2005-09-20 Acist Medical Systems, Inc. System for detecting air
US7959605B2 (en) 1995-04-20 2011-06-14 Acist Medical Systems, Inc. Angiographic injector and injection method
US7267666B1 (en) 1995-04-20 2007-09-11 Acist Medical Systems, Inc. Angiographic injector system with multiple processor redundancy
US20030028145A1 (en) * 1995-04-20 2003-02-06 Duchon Douglas J. Angiographic injector system with multiple processor redundancy
US6224572B1 (en) 1995-05-04 2001-05-01 Sarcos L.C. Piston-actuated attachable topical fluid delivery system
WO1996034637A1 (en) * 1995-05-04 1996-11-07 Sarcos, Inc. Piston-actuated attachable topical fluid delivery system
US5879143A (en) * 1996-04-26 1999-03-09 Sims Deltec, Inc. Reservoir enclosure adaptors and methods
US6110153A (en) * 1996-07-25 2000-08-29 Alaris Medical Systems, Inc. Infusion device with optical sensor
US5853386A (en) * 1996-07-25 1998-12-29 Alaris Medical Systems, Inc. Infusion device with disposable elements
US6254572B1 (en) 1996-11-22 2001-07-03 Liebel Flarsheim Company Medical fluid injector having watchdog circuit
WO1998022168A2 (en) * 1996-11-22 1998-05-28 Liebel-Flarsheim Company Medical fluid injector
US5868710A (en) * 1996-11-22 1999-02-09 Liebel Flarsheim Company Medical fluid injector
US6159183A (en) * 1996-11-22 2000-12-12 Liebel Flarsheim Company Medical fluid injector having face plate with magnetic conductors
US6004292A (en) * 1996-11-22 1999-12-21 Liebel Flarsheim Company Medical fluid injector
WO1998022168A3 (en) * 1996-11-22 1998-08-06 Liebel Flarsheim Co Medical fluid injector
US6179583B1 (en) * 1997-02-25 2001-01-30 Weston Medical Limited Metered fluid delivery device
US6136184A (en) * 1998-03-19 2000-10-24 King; Lael D. Liquid chemical delivery system
WO1999047229A1 (en) * 1998-03-19 1999-09-23 King Lael D Liquid chemical delivery system
US6142008A (en) * 1998-06-12 2000-11-07 Abbott Laboratories Air bubble sensor
US6488660B1 (en) * 1999-01-13 2002-12-03 Ulrich Gmbh & Co. Kg Injector for applying fluids, especially contrast agents in X-ray and nuclear spin tomography
US20040215490A1 (en) * 1999-04-01 2004-10-28 Duchon Douglas J Integrated medical information management and medical device control system and method
US8096938B2 (en) 1999-08-12 2012-01-17 Obtech Medical Ag Controlled anal incontinence disease treatment
US8545384B2 (en) 1999-08-12 2013-10-01 Obtech Medical Ag Anal incontinence disease treatment with controlled wireless energy supply
US20030007891A1 (en) * 1999-08-20 2003-01-09 Wilson Robert F. Apparatus and method of detecting fluid
US7686800B2 (en) 2000-01-07 2010-03-30 Acist Medical Systems, Inc. Anti-recoil catheter
US20100145139A1 (en) * 2000-02-10 2010-06-10 Obtech Medical Ag Controlled urinary incontinence treatment
US8602966B2 (en) 2000-02-10 2013-12-10 Obtech Medical, AG Mechanical impotence treatment apparatus
US8287444B2 (en) 2000-02-10 2012-10-16 Obtech Medical Ag Mechanical impotence treatment apparatus
US8096939B2 (en) 2000-02-10 2012-01-17 Obtech Medical Ag Urinary incontinence treatment with wireless energy supply
US20090054725A1 (en) * 2000-02-10 2009-02-26 Obtech Medical Ag Mechanical impotence treatment apparatus
US8556796B2 (en) 2000-02-10 2013-10-15 Obtech Medical Ag Controlled urinary incontinence treatment
US8734318B2 (en) 2000-02-11 2014-05-27 Obtech Medical Ag Mechanical anal incontinence
US20030125768A1 (en) * 2000-02-11 2003-07-03 Forsell Peter Impotence treatment apparatus with energy transforming means
US20110184230A1 (en) * 2000-02-11 2011-07-28 Obtech Medical Ag Controlled impotence treatment
US7931582B2 (en) 2000-02-11 2011-04-26 Obtech Medical Ag Controlled impotence treatment
US20030125605A1 (en) * 2000-02-11 2003-07-03 Peter Forsell Controlled impotence treatment
US9655724B2 (en) 2000-02-11 2017-05-23 Peter Forsell Controlled impotence treatment
US8290594B2 (en) 2000-02-11 2012-10-16 Obtech Medical Ag Impotence treatment apparatus with energy transforming means
US20110040143A1 (en) * 2000-02-11 2011-02-17 Obtech Medical Ag Impotence treatment apparatus with energy transforming means
US8678997B2 (en) 2000-02-14 2014-03-25 Obtech Medical Ag Male impotence prosthesis apparatus with wireless energy supply
US8764627B2 (en) 2000-02-14 2014-07-01 Obtech Medical Ag Penile prosthesis
US8313423B2 (en) 2000-02-14 2012-11-20 Peter Forsell Hydraulic anal incontinence treatment
US8126558B2 (en) 2000-02-14 2012-02-28 Obtech Medical Ag Controlled penile prosthesis
US20040092885A1 (en) * 2000-04-04 2004-05-13 Douglas Duchon Fluid management and component detection system
US7169135B2 (en) 2000-04-04 2007-01-30 Acist Medical Systems, Inc. Fluid management and component detection system
US7101352B2 (en) 2000-05-24 2006-09-05 Acist Medical Systems, Inc. Pressure sleeve assembly
US20040030288A1 (en) * 2000-05-24 2004-02-12 Douglas Dochon Pressure sleeve assembly
US7566326B2 (en) 2000-07-20 2009-07-28 Acist Medical Systems, Inc. Syringe plunger locking mechanism
US20050015056A1 (en) * 2000-07-20 2005-01-20 Douglas Duchon Syringe plunger locking mechanism
US7294278B2 (en) 2000-08-04 2007-11-13 Wayne State University Method for oxygenating wastewater
US7008535B1 (en) 2000-08-04 2006-03-07 Wayne State University Apparatus for oxygenating wastewater
US7566320B2 (en) 2001-02-14 2009-07-28 Acist Medical Systems, Inc. Fluid injector system
US8079999B2 (en) 2001-02-14 2011-12-20 Acist Medical Systems, Inc. Fluid injector system
US20020115933A1 (en) * 2001-02-14 2002-08-22 Douglas Duchon Fluid injector system
US20080183131A1 (en) * 2001-02-14 2008-07-31 Acist Medical Systems, Inc. Catheter Fluid Control System
US8262610B2 (en) * 2001-02-14 2012-09-11 Acist Medical Systems, Inc. Catheter fluid control system
US20100004533A1 (en) * 2001-02-14 2010-01-07 Acist Medical Systems, Inc. Fluid injector system
US20020143294A1 (en) * 2001-02-14 2002-10-03 Duchon Douglas J. Catheter fluid control system
US6969865B2 (en) 2001-02-15 2005-11-29 Acist Medical Systems, Inc. Systems and methods for detection and measurement of elements in a medium
US20020145122A1 (en) * 2001-02-15 2002-10-10 Systems And Methods For Detection And Systems and methods for detection and measurement of elements in a medium
US8328786B2 (en) 2001-02-23 2012-12-11 Stryker Corporation Method of controlling a medication delivery system with a removable label containing instructions for setting medication delivery rate overlying a second label with patient instructions
US20020198494A1 (en) * 2001-02-23 2002-12-26 Diaz Luis A. Port assembly for an integrated medication delivery system
US6908452B2 (en) 2001-02-23 2005-06-21 Stryker Instruments Port assembly for an integrated medication delivery system
US7722574B2 (en) 2001-02-23 2010-05-25 Stryker Corporation Infusion assembly that simultaneously delivers therapeutic fluid to plural body sites
US20040106902A1 (en) * 2001-02-23 2004-06-03 Diaz Luis A. Integrated medication delivery system
US7048715B2 (en) 2001-02-23 2006-05-23 Stryker Instruments Pump assembly for an integrated medication delivery system
US7497842B2 (en) 2001-02-23 2009-03-03 Stryker Corporation Medication delivery system comprising a combined medication reservoir, pump assembly and an actuator allowing continuous fluid communication through the pump assembly
US20040034331A1 (en) * 2001-02-23 2004-02-19 Jason Toman Integrated medication delivery system
US20060282040A1 (en) * 2001-02-23 2006-12-14 Stryker Corporation Infusion assembly that simultaneously delivers therapeutic fluid to plural body sites
US20080275425A1 (en) * 2001-02-23 2008-11-06 Stryker Corporation Method of controlling a medication delivery system with a removable label containing instructions for setting medication delivery rate overlying a second label with patient instructions
US6679862B2 (en) 2001-02-23 2004-01-20 Stryker Instruments Integrated medication delivery system
US20090076383A1 (en) * 2001-05-30 2009-03-19 Acist Medical Systems, Inc. Medical injection system
US9901671B2 (en) 2001-05-30 2018-02-27 Acist Medical Systems, Inc. Medical injection system
US7308300B2 (en) 2001-05-30 2007-12-11 Acist Medical Systems, Inc. Medical injection system
US20020183616A1 (en) * 2001-05-30 2002-12-05 Acist Medical System, Inc. Medical injection system
US20100019178A1 (en) * 2001-12-07 2010-01-28 Acist Medical Systems, Inc. Low pressure measurement devices in high pressure environments
US7617837B2 (en) 2001-12-07 2009-11-17 Acist Medical Systems, Inc. Low pressure measurement devices in high pressure environments
US20060180202A1 (en) * 2001-12-07 2006-08-17 Acist Medical Systems, Inc. Low pressure measurement devices in high pressure environments
US20110114197A1 (en) * 2001-12-07 2011-05-19 Acist Medical Systems, Inc. Low pressure measurement devices in high pressure environments
US7389788B2 (en) 2001-12-07 2008-06-24 Acist Medical Systems, Inc. Low pressure measurement devices in high pressure environments
US20030122095A1 (en) * 2001-12-07 2003-07-03 Wilson Robert F. Low pressure measurement devices in high pressure environments
US7905246B2 (en) 2001-12-07 2011-03-15 Acist Medical Systems, Inc. Low pressure measurement devices in high pressure environments
US8590555B2 (en) 2001-12-07 2013-11-26 Acist Medical Systems, Inc. Low pressure measurement devices in high pressure environments
US7047994B2 (en) 2002-05-03 2006-05-23 Acist Medical Systems, Inc. Stopcocks and methods of manufacture thereof
US9278158B2 (en) 2002-07-29 2016-03-08 Peter Forsell Multi-material incontinence treatment construction device
US9427301B2 (en) 2002-07-29 2016-08-30 Peter Forsell Durable implant
US20060111791A1 (en) * 2002-07-29 2006-05-25 Peter Forsell Durable implant
US20080045783A1 (en) * 2002-07-29 2008-02-21 Peter Forsell Multi-material incontinence treatment construction device
US20080200753A1 (en) * 2003-01-31 2008-08-21 Potencia Medical Ag Electrically operable incontinence treatment apparatus
US20080200965A1 (en) * 2003-01-31 2008-08-21 Potencia Medical Ag Electrically operable incontinence treatment apparatus
US20060021419A1 (en) * 2004-05-28 2006-02-02 Cassidy David E Gas detection in an intravenous fluid delivery system
US7377148B2 (en) * 2004-05-28 2008-05-27 Enginivity, Llc Capacitor-based gas detection in an intravenous fluid delivery system
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US8016745B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. Monitoring of a food intake restriction device
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US8758294B2 (en) 2005-12-27 2014-06-24 Acist Medical Systems, Inc. Balloon inflation device
US20090312740A1 (en) * 2005-12-27 2009-12-17 Acist Medical Systems, Inc. Balloon Inflation Device
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US20080221547A1 (en) * 2007-03-07 2008-09-11 Monty David A Medicine Bottle Configuration and Method of Using Same
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US10635784B2 (en) 2007-12-18 2020-04-28 Icu Medical, Inc. User interface improvements for medical devices
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US9694165B2 (en) * 2008-01-28 2017-07-04 Peter Mats Forsell Implantable drainage device
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US20150157836A1 (en) * 2008-01-28 2015-06-11 Peter Mats Forsell Implantable drainage device
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US8961448B2 (en) 2008-01-28 2015-02-24 Peter Forsell Implantable drainage device
US9060771B2 (en) 2008-01-29 2015-06-23 Peter Forsell Method and instrument for treating obesity
US8636809B2 (en) 2008-01-29 2014-01-28 Milux Holding Sa Device for treating obesity
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US8509894B2 (en) 2008-10-10 2013-08-13 Milux Holding Sa Heart help device, system, and method
US9370656B2 (en) 2008-10-10 2016-06-21 Peter Forsell System, an apparatus, and a method for treating a sexual dysfunctional female patient
US10583234B2 (en) 2008-10-10 2020-03-10 Peter Forsell Heart help device, system and method
US9526649B2 (en) 2008-10-10 2016-12-27 Peter Forsell Method and instrument for treating obesity
US11123171B2 (en) 2008-10-10 2021-09-21 Peter Forsell Fastening means for implantable medical control assembly
US9072907B2 (en) 2008-10-10 2015-07-07 Peter Forsell Heart help device, system, and method
US8600510B2 (en) 2008-10-10 2013-12-03 Milux Holding Sa Apparatus, system and operation method for the treatment of female sexual dysfunction
US10219898B2 (en) 2008-10-10 2019-03-05 Peter Forsell Artificial valve
US8696745B2 (en) 2008-10-10 2014-04-15 Kirk Promotion Ltd. Heart help device, system, and method
US8874215B2 (en) 2008-10-10 2014-10-28 Peter Forsell System, an apparatus, and a method for treating a sexual dysfunctional female patient
US10952836B2 (en) 2009-07-17 2021-03-23 Peter Forsell Vaginal operation method for the treatment of urinary incontinence in women
US9949812B2 (en) 2009-07-17 2018-04-24 Peter Forsell Vaginal operation method for the treatment of anal incontinence in women
US10086137B2 (en) 2010-07-22 2018-10-02 Medical Flow Systems Ltd Pulse infusion device system and method
US10279129B2 (en) 2010-07-22 2019-05-07 Medical Flow System Ltd. Pulse infusion device system and method
US10780221B2 (en) 2010-07-22 2020-09-22 Medical Flow Systems Ltd. Pulse infusion device system and method
US20130123703A1 (en) * 2010-07-22 2013-05-16 Ofer Shay Pulse infusion device system and method
US11004035B2 (en) 2011-08-19 2021-05-11 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US11599854B2 (en) 2011-08-19 2023-03-07 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US10430761B2 (en) 2011-08-19 2019-10-01 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US9700672B2 (en) 2011-09-21 2017-07-11 Bayer Healthcare Llc Continuous multi-fluid pump device, drive and actuating system and method
US9649436B2 (en) 2011-09-21 2017-05-16 Bayer Healthcare Llc Assembly method for a fluid pump device for a continuous multi-fluid delivery system
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US11376361B2 (en) 2011-12-16 2022-07-05 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US10578474B2 (en) 2012-03-30 2020-03-03 Icu Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US11933650B2 (en) 2012-03-30 2024-03-19 Icu Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US9995611B2 (en) 2012-03-30 2018-06-12 Icu Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US10463788B2 (en) 2012-07-31 2019-11-05 Icu Medical, Inc. Patient care system for critical medications
US11623042B2 (en) 2012-07-31 2023-04-11 Icu Medical, Inc. Patient care system for critical medications
US10046112B2 (en) 2013-05-24 2018-08-14 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
US10874793B2 (en) 2013-05-24 2020-12-29 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
US10166328B2 (en) 2013-05-29 2019-01-01 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US11433177B2 (en) 2013-05-29 2022-09-06 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US10596316B2 (en) 2013-05-29 2020-03-24 Icu Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US11596737B2 (en) 2013-05-29 2023-03-07 Icu Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US10342917B2 (en) 2014-02-28 2019-07-09 Icu Medical, Inc. Infusion system and method which utilizes dual wavelength optical air-in-line detection
US11344673B2 (en) 2014-05-29 2022-05-31 Icu Medical, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US11491318B2 (en) 2015-01-09 2022-11-08 Bayer Healthcare Llc Multiple fluid delivery system with multi-use disposable set and features thereof
US10507319B2 (en) 2015-01-09 2019-12-17 Bayer Healthcare Llc Multiple fluid delivery system with multi-use disposable set and features thereof
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
CN109195651A (en) * 2016-03-29 2019-01-11 医疗流量系统有限公司 Pulse infusion device systems and method
US11441960B2 (en) * 2016-04-20 2022-09-13 Hewlett-Packard Development Company, L.P. Microfluidic pressure sensor
US11246985B2 (en) 2016-05-13 2022-02-15 Icu Medical, Inc. Infusion pump system and method with common line auto flush
US11324888B2 (en) 2016-06-10 2022-05-10 Icu Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
CN112065707A (en) * 2016-07-28 2020-12-11 阿克里瓦诊断有限公司 Pump apparatus for operating a pump to reduce or eliminate pump backlash error
US11242848B2 (en) 2016-07-28 2022-02-08 Accriva Diagnostics, Inc. Methods of operating a pump to reduce or eliminate pump backlash errors
US20180030980A1 (en) * 2016-07-28 2018-02-01 Accriva Diagnostics, Inc. Methods of operating a pump to reduce or eliminate pump backlash errors
US10519942B2 (en) * 2016-07-28 2019-12-31 Accriva Diagnostics, Inc. Methods of operating a pump to reduce or eliminate pump backlash errors
US11029911B2 (en) 2017-12-27 2021-06-08 Icu Medical, Inc. Synchronized display of screen content on networked devices
US11868161B2 (en) 2017-12-27 2024-01-09 Icu Medical, Inc. Synchronized display of screen content on networked devices
US10656894B2 (en) 2017-12-27 2020-05-19 Icu Medical, Inc. Synchronized display of screen content on networked devices
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush
CN116531604A (en) * 2023-07-06 2023-08-04 泰州品青医疗器械有限公司 Electronic infusion pump with error touch prevention function
CN116531604B (en) * 2023-07-06 2023-09-12 泰州品青医疗器械有限公司 Electronic infusion pump with error touch prevention function

Also Published As

Publication number Publication date
BE772098A (en) 1972-01-17
CA990803A (en) 1976-06-08
GB1348794A (en) 1974-03-20
DE2144096A1 (en) 1972-04-20

Similar Documents

Publication Publication Date Title
US3731679A (en) Infusion system
US3739943A (en) Infusion system
US3985133A (en) IV pump
US4657486A (en) Portable infusion device
US4320757A (en) Self contained injection system
US4236880A (en) Nonpulsating IV pump and disposable pump chamber
US2925814A (en) Transfusion apparatus
US4382753A (en) Nonpulsating IV pump and disposable pump chamber
US7025226B2 (en) Drive system for an infusion pump
US4435173A (en) Variable rate syringe pump for insulin delivery
US5237309A (en) Pump cassette and method of pumping
US4850807A (en) Disposable cassette for fluid delivery pump systems
US4845487A (en) Pump system for enteral/parenteral fluid control and delivery
US3415419A (en) Fluid administering system
US4126132A (en) Intravenous and intra arterial delivery system
US5176502A (en) Syringe pump and the like for delivering medication
US4372304A (en) Flow control system and restrictor for use therein
US4846637A (en) Infusion pump system and conduit therefor
WO2003075984A1 (en) Ambulatory infusion membrane pump
KR20150001543A (en) Intravenous delivery device
CA1149672A (en) Fluid pump
EP0416910A2 (en) Ultrasonic transducer electrical interface assembly
CA1329745C (en) Disposable cassette for fluid delivery pump systems, pump system for enteral/parenteral fluid control and delivery
US5599303A (en) IV administration apparatus
WO1981000519A1 (en) Fluid flow controller

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHERWOOD MEDICAL COMPANY

Free format text: MERGER;ASSIGNOR:SHERWOOD MEDICAL INDUSTRIES INC. (INTO);REEL/FRAME:004123/0634

Effective date: 19820412

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)