US3743989A - Electrical connecting device - Google Patents

Electrical connecting device Download PDF

Info

Publication number
US3743989A
US3743989A US00292635A US3743989DA US3743989A US 3743989 A US3743989 A US 3743989A US 00292635 A US00292635 A US 00292635A US 3743989D A US3743989D A US 3743989DA US 3743989 A US3743989 A US 3743989A
Authority
US
United States
Prior art keywords
coils
connecting device
primary
parts
air gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00292635A
Inventor
M Nicolas
C Mast
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Application granted granted Critical
Publication of US3743989A publication Critical patent/US3743989A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • H01F19/06Broad-band transformers, e.g. suitable for handling frequencies well down into the audio range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F36/00Transformers with superconductive windings or with windings operating at cryogenic temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S336/00Inductor devices
    • Y10S336/02Separable

Definitions

  • ABSTRACT An electrical connecting device, which is immersible remote controlled and able to transmit also remote control or telemetry signals.
  • a primary coil (15) connected to the primary circuit is arranged upon a support or rod (1) in order to be displaceable, together with the magnetic core component integral with it, relatively to the secondary coil (l6) with its magnetic core portion, all this in such a fashion as to create inductive coupling for the transmission of alternating (three-phase) electrical power, and to enable said two parts to be arbitrarily interpenetrated and parted from one another, in a single operation and whatever the orientation.
  • the present invention relates to a device used for transmitting electrical energy and/or electrical signals from a first circuit, referred to as the primary circuit, to a second circuit, referred to as the secondary circuit.
  • This is an electrical connecting device in the broadest sense, designed to interconnect the two circuits in question; the invention seeks to make it possible to connect and disconnect the two circuits in an arbitrary way, and also to ensure that the electrical energy and- /or electrical signals is or are transmitted satisfactorily when the device is in the connecting position.
  • the object of the invention is to create a connecting device of the kind introductorily described, which is capable of being remote-controlled, without demanding stringent requirements in terms of positioning, for its fitting, and which lends itself to operation in a marine environment.
  • a device for transmitting electrical energy or electrical signals, or both, from a primary to a secondary circuit said device comprising a primary coil connected to the primary circuit, and a secondary coil connected to the secondary circuit, these coils being coupled inductively with one another by a magnetic circuit containing an air-gap, one of said coils being assembled upon a support for displacement, along with that part of the magnetic circuit integral with it, relatively to the other of said coils with its integral part of the magnetic circuit, such displacement being produced under the effect of means used for displacing said support, all in such a fashion as to be able to arbitrarily effect, the mutual inductive electrical connection of said primary circuit and said secondary circuit, or their disconnection, respectively by the interpenetration or parting of said two coils, this in a single operation and whatever the relative angle of positions of the coils about said axis, wherein said device operates in a polyphase fashion, for example a three-phase fashion, the primary and secondary coils being assembled in slots formed in magnetic plates
  • the energy transfer is effected in polyphase fashion, namely for example in three-phase fashion, the primary and secondary coils being assembled in slots in magnetic plates belonging to the coil, and being electrically connected in this way with the rotor and stator of a polyphase asynchronous motor having a wound rotor however, the device does not rotate and simply operates as a rotary field transformer, additional means being provided to prevent relative rotation between the two coils.
  • Three-phase power transfer is advantageous in that it makes it possible, at that end of the secondary circuit remote from said device, to supply asynchronous motors which are more reliable than collector motors.
  • FIG. 1 shows the connecting device in longitudinal section
  • FIG. 2 illustrates the same device in longitudinal section on the line IIII of FIG. 1
  • FIG. 3 illustrates the same device in transverse section, along the line III-III of FIG. 1 and
  • FIG. 4 illustrates a variant embodiment of the device shown in FIG. 1, on a different scale.
  • the device in accordance with the invention and illustrated here comprises a power transformer A and a telemetry transformer B, separate from one another but united in one and the same mechanical assembly the common displaceable part of which is supported by a rod 1, itself suspended by a cable In.
  • This cable can be used not only as a supporting means but also to transmit the remote-control and telementry signals, as well as the electrical power (the connections to the coils have not been shown in the Figure).
  • this is a three-phase type employing a quasi-cylindrical transformer the two parts, moving (primary) and fixed (secondary) of which are designed exactly like the rotor and stator of a three-phase asynchronous motor with coil windings.
  • the magnetic circuit is constituted by a stack ofinsulated plates 2 having a thickness preferably in the order of 0.3 mm.
  • the primary and secondary windings are wound in slots 3 formed along generatrices of the cylinder.
  • the conductors corresponding to each phase occupy one slot in three.
  • the total number of slots is 12 in the present instance.
  • the shape of the air gap is not cylindrical but is given a slight taper towards the base.
  • the primary windings are supplied directly from the three-phase 440V (between phases) mains, at a frequency of 50 or 60 c/s, for example.
  • the primary windings create in the air gap, a rotating radial magnetic field substantially at right angles to the longitudinal axis X-X, which field induces in the secondary windings l6, wound in the same fashion as the primary windings, electromotive forces which reconstitute a balanced three-phase system, similar to that of the mains.
  • the secondary coil in order to obtain a balanced three-phase system, the secondary coil must be similar to the primary (same number of slots) but it is not necessary however for the ratio between the number of turns of the windings to be equal to l the transformation ratio can be chosen so that the secondary voltage has the value most suited to the particular application (for example, a secondary voltage of 24V can be obtained from a primary for 440V).
  • the magnetic plates in order to avoid direct contact between them and the seawater, are covered in both parts of the transformer, with a protective coating 4.
  • the magnetic circuit is thus cut by an air gap of several millimeter in addition to any residual seawater which is left. It should be pointed out that the power transfer takes place with an efficiency of less than unity. If a continuous power of 0.5 kw is required at the secondary, with powers of up to 2kw during short periods of time, then the transformer must be overdimensioned to cope with this, so that the permissible power at the primary is sufficient for it to compensate for the losses in all cases.
  • the two respective connecting devices are here combined in one, one and the same sup port 1 supporting the displacement parts of the two devices or individual transformers, but precautions advantageously being taken to prevent parasitic signals stemming from the power circuits, from mixing with the inner control and telemetry signals.
  • the planes of the turns constituting the respective coils of the two transformers are practically at right angles to one another.
  • the primary and secondary coils of the power transformer are designed in the manner of the rotor and stator of a three-phase asynchronous motor, producing a rotating radial field perpendicular to the longitudinal axis of the device
  • the other set of coils, belonging to the transformer for the remote control and telemetry signals, being perpendicular to the axis operates in single-phase fashion and produces a fixed field.
  • the signals having frequencies within the band from one to 10 kc, the core of the transformer can be made up of a certain number of standard C-circuits l1, 12, distinct from one another and directed radially and juxtaposed, the circuits being made of high-permeability (p.- metal) magnetic plates having a thickness of around 0.05 mm, or of ferrite around these magnetic components, the corresponding torroidal coils l3 and 14, of axis X-X, are arranged.
  • the impedance of the primary winding of the telementry transformer varies rapidly as a function of the position of the primary in relation to the secondary (penetration of the moving component). This may provide a convenient means, using a meter to measure the impedance, of effecting a remote check upon whether or not the displaceable component is correctly inserted.
  • the magnetic circuits and the windings are epoxy resin impregnated. Moreover, the two parts of the device have a neoprene coating 4,2 mm thick approximately, which provides protection against corrosion and also produces a certain degree of damping of vibrations.
  • the tapered shape of the air gap is adequate to provide guidance of the moving component, at the time of insertion.
  • the position of the moving component when it is not exactly upon the axis can be seen.
  • the mass of the moving component is around kgs and that of the fixed component around 400 kgs.
  • a diaphragm 8 may be provided as antifouling means, and a cavity 9 to receive biological deposits and act as a reservoir for anti-fouling agents, with a bellows outlet 10 to enable the water displaced by the introduction of the mobile part as it descends into the fixed part, to take place.
  • the power transformer being wound like an asynchronous motor, there is a couple which is a function of the load impedance, which tends to turn the moving component in relation to the fixed.
  • a simple anchoring system 5, for example using dogs, is provided to prevent any risk of rotation.
  • the fixed and moving parts will be equipped in each case with a section of cable (primary 1a or secondary 6) with five conductors (3 for the power and 2 for the telemetry and remote control data), whose length, chosen as a function of the installation conditions, may reach some few meters.
  • the extremity of the cable will be equipped with a connector so that at the surface, it can be connected to the rest of the system in order to provide a seal, this connector will be provided with a moulded envelope, prior to immersion.
  • the surfaces which are in contact with the water are coated with marine type neoprene to which an antifouling product has been added, thus providing protection against corrosion and marine organisms.
  • Various means are available to provide supplementary protection for the walls of the airgap (fixed part), against biological deposits during periods of disconnection (sealing by using a diaphragm, filling with a non-miscible liquid having a density greater than that of sea water, reservoir of anti-fouling agent).
  • the device is completely static and has no active electronic component.
  • the power transformer will be overdimensioned so that the losses do not give rise to excessive heating, even locally (a rise in temperature in the order of 10 after some few minutes of operation at maximum power, is permissible). Under these conditions, the service life of the connector will not be limited by electrical failures.
  • an electrical connecting device for transmitting electrical energy from a first part to a second part, said parts being displaceable relatively to one another, comprising, a primary coil connected to said first part, a secondary coil connected to said second part, said coils having same axis of symmetry, a magnetic circuit with an air gap, and said magnetic circuit consisting of magnetic plates, means for displacing one of said parts relatively to said another part whereby to inductively couple said coils which are integral with said parts respectively when said coils have been properly displaced, and said inductive coupling being achieved irrespective of the relative angle of said coils about said axis of symmetry, the improvement of having slots formed in said magnetic circuit for housing said primary and secondary coils respectively, said coils being electrically connected as the rotor and the stator of a polyphase asynchronos motor, and stop support for preventing relative rotation between said displaceable parts of said connecting device.
  • an electrical connecting device for transmitting electrical energy together with electrical signals from a first part to a second part, the provision of a second set of coils independant from the first set comprising a primary coil connected to said first part and a secondary coil connected to said second part, a magnetic circuit with an air gap, said coils of the second set being inductively coupled through said air gap, as said first and second parts are properly displaced to inductively couple said first set of coils, and both said sets of coils having their respective planes of turns substantially at right angle to one another.
  • An electrical connecting device wherein said first set of coils for transmitting electrical energy produces a radial rotating field perpendicular to said axis of symmetry of said coils, whereas said second set of coils for transmitting electrical signals produces a fixed field and operates in a single-phase manner.
  • An electrical connecting device wherein said means for displacing one of said parts relatively to the other is lifting means for enabling one of said parts as a mobile part to slide into said another part as a fixed part along said axis of symmetry, whereby to establish the inductive coupling of both said sets of coils respectively when said moving part is set in said fixed part, and to disconnect said coupling when said moving part is lifted outside said fixed part.
  • An electrical connecting device wherein said moving part which penetrates into said fixed part is given a tapered outline and said fixed part is given a corresponding outline to fit said tapered outline.
  • An electrical connecting device according to claim 5, wherein further said fixed part is provided with external guide means for facilitating the sliding in of said moving part into said fixed part.
  • An electrical connecting device for transmitting electrical energy and electrical signals, said device operating in a corrosive medium such as seawater, comprising a first part and a second part which are displaceable relative to each other along a common axis of symmetry, a first and a second primary coils connected to said first part and said coils being independant from each other, a first and a second secondary coils connected to said second part and said coils being independant from each other, a first magnetic circuit with an air gap and a second magnetic circuit with an air gap, said magnetic circuits being respectively associated with said first and second primary and secondary coils respectively, means for displacing said first and second parts with their integral coils and magnetic circuits, relatively to one another, and said first primary and secondary coils, as a first set of coils, so as said second primary and secondary coils as a second set of coils, being inductively coupled through said air gaps respectively of said magnetic circuits, when said one part is displaced along said axis of symmetry into said other part, the coils

Abstract

An electrical connecting device, which is immersible remote controlled and able to transmit also remote control or telemetry signals. A primary coil (15) connected to the primary circuit is arranged upon a support or rod (1) in order to be displaceable, together with the magnetic core component integral with it, relatively to the secondary coil (16) with its magnetic core portion, all this in such a fashion as to create inductive coupling for the transmission of alternating (three-phase) electrical power, and to enable said two parts to be arbitrarily interpenetrated and parted from one another, in a single operation and whatever the orientation.

Description

United States Patent [191 Nicolas et al.
ELECTRICAL CONNECTING DEVICE inventors: Michel Jacques Robert Nicolas;
Christian Francois Mast, both of Paris, France Assignee: Thomson-CSF, Paris, France Filed: Sept. 27, 1972 Appl. No.: 292,635
Foreign Application Priority Data Oct. 1, 1971 France 7135487 US. Cl. 336/5, 336/DlG. O02 Int. Cl. I-IOlf 33/00 Field of Search 336/178, 212, 219,
336/DIG. 2, 5, i2, 83
References Cited UNITED STATES PATENTS 10/1966 Nicholl 336/DIG. 2
[451 July 3, 1973 3.387.606 6/1968 Crafts et al. 336/DIG. 2 2,379,664 7/l945 Stanko .1 336/D IG. 2
Primary Examiner-Thomas J. Kozma Attorney-Karl F. Jorda [5 7] ABSTRACT An electrical connecting device, which is immersible remote controlled and able to transmit also remote control or telemetry signals. A primary coil (15) connected to the primary circuit is arranged upon a support or rod (1) in order to be displaceable, together with the magnetic core component integral with it, relatively to the secondary coil (l6) with its magnetic core portion, all this in such a fashion as to create inductive coupling for the transmission of alternating (three-phase) electrical power, and to enable said two parts to be arbitrarily interpenetrated and parted from one another, in a single operation and whatever the orientation.
8 Claims, 4 Drawing Figures Patented July 3, 1913 3,743,989
I 3 Sheets-Sheet 1 3 Sheets-Sheet 8 Patented July 3, 1973 FIG 2 Patented July 3,1973 3,743,989
5 Shets-Sheet a r=|e.4 i sa 1 ELECTRICAL CONNECTING DEVICE BACKGROUND OF THE INVENTION The present invention relates to a device used for transmitting electrical energy and/or electrical signals from a first circuit, referred to as the primary circuit, to a second circuit, referred to as the secondary circuit. This is an electrical connecting device in the broadest sense, designed to interconnect the two circuits in question; the invention seeks to make it possible to connect and disconnect the two circuits in an arbitrary way, and also to ensure that the electrical energy and- /or electrical signals is or are transmitted satisfactorily when the device is in the connecting position.
It should be understood that although the invention is in no way limited to this application, it is especially suitable for application to circuits immersed in the sea. Submarine electrical connectors employing direct metallic contact, are subject to severe corrosion and have very poor reliability when subjected to repeated opera tion. In addition, and in particular in the case of associated multiple conductors, their respective plug arrangements require a positional accuracy such that it is difficult to render this operation automatic.
SUMMARY OF THE INVENTION The object of the invention is to create a connecting device of the kind introductorily described, which is capable of being remote-controlled, without demanding stringent requirements in terms of positioning, for its fitting, and which lends itself to operation in a marine environment.
Consequently, in the case of the invention the idea was adopted of discarding direct metal contact and operating, using a.c., with an inductive connection comprising a moving part, this after it was discovered that a connection established by a mobile capacitive connector, which was an a priori possibility, involved too many difficulties.
According to the invention, there is provided a device for transmitting electrical energy or electrical signals, or both, from a primary to a secondary circuit, said device comprising a primary coil connected to the primary circuit, and a secondary coil connected to the secondary circuit, these coils being coupled inductively with one another by a magnetic circuit containing an air-gap, one of said coils being assembled upon a support for displacement, along with that part of the magnetic circuit integral with it, relatively to the other of said coils with its integral part of the magnetic circuit, such displacement being produced under the effect of means used for displacing said support, all in such a fashion as to be able to arbitrarily effect, the mutual inductive electrical connection of said primary circuit and said secondary circuit, or their disconnection, respectively by the interpenetration or parting of said two coils, this in a single operation and whatever the relative angle of positions of the coils about said axis, wherein said device operates in a polyphase fashion, for example a three-phase fashion, the primary and secondary coils being assembled in slots formed in magnetic plates arranged perpendicularly to the support axis, and being electrically connected in the manner of the rotor and stator of a polyphase asynchronous motor, and being further provided with a stop support to prevent relative rotation between fixed and moving parts.
As will be seen, in a preferred embodiment of the invention the energy transfer is effected in polyphase fashion, namely for example in three-phase fashion, the primary and secondary coils being assembled in slots in magnetic plates belonging to the coil, and being electrically connected in this way with the rotor and stator of a polyphase asynchronous motor having a wound rotor however, the device does not rotate and simply operates as a rotary field transformer, additional means being provided to prevent relative rotation between the two coils. Three-phase power transfer is advantageous in that it makes it possible, at that end of the secondary circuit remote from said device, to supply asynchronous motors which are more reliable than collector motors.
As far as the transfer of electrical signals is concerned, this implying that the power involved is small, this can be carried out in a different manner, as will be explained hereinafter.
BRIEF DESCRIPTION OF THE DRAWING The invention will be better understood and explained through the agency of the ensuing description given by way of non-limitative example, of a connecting device which effects transfer on the one hand of a certain electrical power in three-phase form, and on the other hand of electrical signals in a single-phase form, through the medium of respective, superimposed transformer elements. This description has been given with reference to the drawings in which FIG. 1 shows the connecting device in longitudinal section FIG. 2 illustrates the same device in longitudinal section on the line IIII of FIG. 1
FIG. 3 illustrates the same device in transverse section, along the line III-III of FIG. 1 and FIG. 4 illustrates a variant embodiment of the device shown in FIG. 1, on a different scale.
DESCRIPTION OF THE PREFERRED EMBODIMENT As explained, the device in accordance with the invention and illustrated here, comprises a power transformer A and a telemetry transformer B, separate from one another but united in one and the same mechanical assembly the common displaceable part of which is supported by a rod 1, itself suspended by a cable In. This cable can be used not only as a supporting means but also to transmit the remote-control and telementry signals, as well as the electrical power (the connections to the coils have not been shown in the Figure).
As far as the power transformer A is concerned, this is a three-phase type employing a quasi-cylindrical transformer the two parts, moving (primary) and fixed (secondary) of which are designed exactly like the rotor and stator of a three-phase asynchronous motor with coil windings.
The magnetic circuit is constituted by a stack ofinsulated plates 2 having a thickness preferably in the order of 0.3 mm. The primary and secondary windings are wound in slots 3 formed along generatrices of the cylinder. The conductors corresponding to each phase occupy one slot in three. The total number of slots is 12 in the present instance.
In practice, in order to facilitate the fitting of the moving part (primary) in the fixed part (secondary),
the shape of the air gap is not cylindrical but is given a slight taper towards the base.
The primary windings are supplied directly from the three-phase 440V (between phases) mains, at a frequency of 50 or 60 c/s, for example.
The primary windings create in the air gap, a rotating radial magnetic field substantially at right angles to the longitudinal axis X-X, which field induces in the secondary windings l6, wound in the same fashion as the primary windings, electromotive forces which reconstitute a balanced three-phase system, similar to that of the mains.
It should be pointed out that this kind of transformer could equally well be used to modify the form in which the electrical energy is available. Thus, in order to obtain a balanced three-phase system, the secondary coil must be similar to the primary (same number of slots) but it is not necessary however for the ratio between the number of turns of the windings to be equal to l the transformation ratio can be chosen so that the secondary voltage has the value most suited to the particular application (for example, a secondary voltage of 24V can be obtained from a primary for 440V). It is also possible to create a secondary circuit comprising a number of slots double that of the primary and a winding such that a six-phase secondary voltage is obtained this may be useful if the said secondary voltage is to be subsequently rectified in order to for example charge batteries, since the residual ripple is less in a sixphase system than it is in a three-phase system.
The magnetic plates, in order to avoid direct contact between them and the seawater, are covered in both parts of the transformer, with a protective coating 4. The magnetic circuit is thus cut by an air gap of several millimeter in addition to any residual seawater which is left. It should be pointed out that the power transfer takes place with an efficiency of less than unity. If a continuous power of 0.5 kw is required at the secondary, with powers of up to 2kw during short periods of time, then the transformer must be overdimensioned to cope with this, so that the permissible power at the primary is sufficient for it to compensate for the losses in all cases.
It should also be pointed out, however, that the efficiency increases with power because at the same time the dimensions of the magnetic circuit increase whilst the air gap remains substantially constant.
In the embodiment illustrated, it was required to transmit at the same time as the power, remotecontrolled and telemetry signals, these through circuits separate from those carrying the heavy-current power and having much higher frequencies (some few kc/s instead of 50-60 c/s). The two respective connecting devices are here combined in one, one and the same sup port 1 supporting the displacement parts of the two devices or individual transformers, but precautions advantageously being taken to prevent parasitic signals stemming from the power circuits, from mixing with the inner control and telemetry signals. For this purpose, the planes of the turns constituting the respective coils of the two transformers, are practically at right angles to one another. Whereas the primary and secondary coils of the power transformer are designed in the manner of the rotor and stator of a three-phase asynchronous motor, producing a rotating radial field perpendicular to the longitudinal axis of the device, the other set of coils, belonging to the transformer for the remote control and telemetry signals, being perpendicular to the axis operates in single-phase fashion and produces a fixed field. In the case of this latter set, the signals having frequencies within the band from one to 10 kc, the core of the transformer can be made up of a certain number of standard C-circuits l1, 12, distinct from one another and directed radially and juxtaposed, the circuits being made of high-permeability (p.- metal) magnetic plates having a thickness of around 0.05 mm, or of ferrite around these magnetic components, the corresponding torroidal coils l3 and 14, of axis X-X, are arranged.
It is also possible to add, in the remote control and telemetry circuit, a high-pass filter which eliminates signals of frequency lower than 1,000 c/s, this filter (not shown) being incorporable in the connecting device in accordance with the invention.
It should be borne in mind that the impedance of the primary winding of the telementry transformer varies rapidly as a function of the position of the primary in relation to the secondary (penetration of the moving component). This may provide a convenient means, using a meter to measure the impedance, of effecting a remote check upon whether or not the displaceable component is correctly inserted.
The disposition of the two components of the connecting device, as illustrated in the FIG. 1, could be reversed (male component fixed and female component mobile). However, this kind of arrangement does not appear to be so desirable, because the moving part would be bulkier and have a higher inertia, probably making operation more difficult. Likewise, the telemetry transformer could be arranged below the power transformer.
The magnetic circuits and the windings are epoxy resin impregnated. Moreover, the two parts of the device have a neoprene coating 4,2 mm thick approximately, which provides protection against corrosion and also produces a certain degree of damping of vibrations.
In the case where the alignment area is small i 15 mm), the tapered shape of the air gap is adequate to provide guidance of the moving component, at the time of insertion. In the case where alignment areas of up to as much as 150 mm can arise, it is necessary to equip the female part with a guide cone 7 the aperture of which has a diameter of around 560 mm (FIG. 4). In this figure, in broken line, the position of the moving component when it is not exactly upon the axis, can be seen. To provide a concrete idea of what is involved, it is worthy of mention that in a practical embodiment, the mass of the moving component is around kgs and that of the fixed component around 400 kgs.
It will be seen, too, that the axis of the moving component is hollow and this could possibly be exploited to effect guidance by cable, from the surface.
Also, from a consideration of FIG. 4, it will be observed that a diaphragm 8 may be provided as antifouling means, and a cavity 9 to receive biological deposits and act as a reservoir for anti-fouling agents, with a bellows outlet 10 to enable the water displaced by the introduction of the mobile part as it descends into the fixed part, to take place. The power transformer being wound like an asynchronous motor, there is a couple which is a function of the load impedance, which tends to turn the moving component in relation to the fixed.
A simple anchoring system 5, for example using dogs, is provided to prevent any risk of rotation.
The fixed and moving parts will be equipped in each case with a section of cable (primary 1a or secondary 6) with five conductors (3 for the power and 2 for the telemetry and remote control data), whose length, chosen as a function of the installation conditions, may reach some few meters. The extremity of the cable will be equipped with a connector so that at the surface, it can be connected to the rest of the system in order to provide a seal, this connector will be provided with a moulded envelope, prior to immersion.
The technique of the manufacture of magnetic circuits in the form of insulator plates, is well-known in the context of motor bodies. This method of construction provides great mechanical strength, something which could not be obtained by using ferrite materials.
The surfaces which are in contact with the water are coated with marine type neoprene to which an antifouling product has been added, thus providing protection against corrosion and marine organisms. Various means are available to provide supplementary protection for the walls of the airgap (fixed part), against biological deposits during periods of disconnection (sealing by using a diaphragm, filling with a non-miscible liquid having a density greater than that of sea water, reservoir of anti-fouling agent).
The device is completely static and has no active electronic component. On the other hand, the power transformer will be overdimensioned so that the losses do not give rise to excessive heating, even locally (a rise in temperature in the order of 10 after some few minutes of operation at maximum power, is permissible). Under these conditions, the service life of the connector will not be limited by electrical failures.
Of course, the invention is not limited to the embodiment hereinbefore described and shown which was given merely by way of non-limiting example.
What is claimed is 1. In an electrical connecting device for transmitting electrical energy from a first part to a second part, said parts being displaceable relatively to one another, comprising, a primary coil connected to said first part, a secondary coil connected to said second part, said coils having same axis of symmetry, a magnetic circuit with an air gap, and said magnetic circuit consisting of magnetic plates, means for displacing one of said parts relatively to said another part whereby to inductively couple said coils which are integral with said parts respectively when said coils have been properly displaced, and said inductive coupling being achieved irrespective of the relative angle of said coils about said axis of symmetry, the improvement of having slots formed in said magnetic circuit for housing said primary and secondary coils respectively, said coils being electrically connected as the rotor and the stator of a polyphase asynchronos motor, and stop support for preventing relative rotation between said displaceable parts of said connecting device.
2. In an electrical connecting device according to claim 1, for transmitting electrical energy together with electrical signals from a first part to a second part, the provision of a second set of coils independant from the first set comprising a primary coil connected to said first part and a secondary coil connected to said second part, a magnetic circuit with an air gap, said coils of the second set being inductively coupled through said air gap, as said first and second parts are properly displaced to inductively couple said first set of coils, and both said sets of coils having their respective planes of turns substantially at right angle to one another.
3. An electrical connecting device according to claim 2, wherein said first set of coils for transmitting electrical energy produces a radial rotating field perpendicular to said axis of symmetry of said coils, whereas said second set of coils for transmitting electrical signals produces a fixed field and operates in a single-phase manner.
4. An electrical connecting device according to claim 2, wherein said means for displacing one of said parts relatively to the other is lifting means for enabling one of said parts as a mobile part to slide into said another part as a fixed part along said axis of symmetry, whereby to establish the inductive coupling of both said sets of coils respectively when said moving part is set in said fixed part, and to disconnect said coupling when said moving part is lifted outside said fixed part.
5. An electrical connecting device according to claim 4 wherein said moving part which penetrates into said fixed part is given a tapered outline and said fixed part is given a corresponding outline to fit said tapered outline.
6. An electrical connecting device according to claim 5, wherein further said fixed part is provided with external guide means for facilitating the sliding in of said moving part into said fixed part.
7. In an electrical connecting device according to claim 2, designed to operate in a corosive medium wherein said magnetic circuits comprise an air gap and said air gap may possibly contain said corrosive medium, the provision of a protective coating for protecting the plates of said magnetic circuits against corrosion by said corrosive medium.
8. An electrical connecting device for transmitting electrical energy and electrical signals, said device operating in a corrosive medium such as seawater, comprising a first part and a second part which are displaceable relative to each other along a common axis of symmetry, a first and a second primary coils connected to said first part and said coils being independant from each other, a first and a second secondary coils connected to said second part and said coils being independant from each other, a first magnetic circuit with an air gap and a second magnetic circuit with an air gap, said magnetic circuits being respectively associated with said first and second primary and secondary coils respectively, means for displacing said first and second parts with their integral coils and magnetic circuits, relatively to one another, and said first primary and secondary coils, as a first set of coils, so as said second primary and secondary coils as a second set of coils, being inductively coupled through said air gaps respectively of said magnetic circuits, when said one part is displaced along said axis of symmetry into said other part, the coils of one set being arranged so as to produceia radial rotating field perpendicular to said axis whereby, to transmit said electrical energy, the coils of the other set being arranged so as to produce a fixed field whereby to transmit said electrical signals, stop support for preventing relative rotation between said displaceable parts and protective coating in said air gaps for protecting said magnetic circuits against corrosion by seawater.

Claims (8)

1. In an electrical connecting device for transmitting electrical energy from a first part to a second part, said parts being displaceable relatively to one another, comprising, a primary coil connected to said first part, a secondary coil connected to said second part, said coils having same axis of symmetry, a magnetic circuit with an air gap, and said magnetic circuit consisting of magnetic plates, means for displacing one of said parts relatively to said another part whereby to inductively couple said coils which are integral with said parts respectively when said coils have been properly displaced, and said inductive coupling being achieved irrespective of the relative angle of said coils about said axis of symmetry, the improvement of having slots formed in said magnetic circuit for housing said primary and secondary coils respectively, said coils being electrically connected as the rotor and the stator of a polyphase asynchronos motor, and stop support for preventing relative rotation between said displaceable parts of said connecting device.
2. In an electrical connecting device according to claim 1, for transmitting electrical energy together with electrical signals from a first part to a second part, the provision of a second set of coils independant from the first set comprising a primary coil connected to said first part and a secondary coil connected to said second part, a magnetic circuit with an air gap, said coils of the second set being inductively coupled through said air gap, as said first and second parts are properly displaced to inductively couple said first set of coils, and both said sets of coils having their respective planes of turns substantially at right angle to one another.
3. An electrical connecting device according to claim 2, wherein said first set of coils for transmitting electrical energy produces a radial rotating field perpendicular to said axis of symmetry of said coils, whereas said second set of coils for transmitting electrical signals produces a fixed field and operates in a single-phase manner.
4. An electrical connecting device according to claim 2, wherein said means for displacing one of said parts relatively to the other is lifting means for enabling one of said parts as a mobile part to slide into said another part as a fixed part along said axis of symmetry, whereby to establish the inductive coupling of both said sets of coils respectively when said moving part is set in said fixed part, and to disconnect said coupling when said moving part is lifted outside said fixed part.
5. An electrical connecting device according to claim 4 wherein said moving part which penetrates into said fixed part is given a tapered outline and said fixed part is given a corresponding outline to fit said tapered outline.
6. An electrical connecting device according to claim 5, wherein further said fixed part is provided with external guide means for facilitating the sliding in of said moving part into said fixed part.
7. In an electrical connecting device according to claim 2, designed to operate in a corosive medium wherein said magnetic circuits comprise an air gap and said air gap may possibly contain said corrosive medium, the provision of a protective coating for protecting the plates of said Magnetic circuits against corrosion by said corrosive medium.
8. An electrical connecting device for transmitting electrical energy and electrical signals, said device operating in a corrosive medium such as seawater, comprising a first part and a second part which are displaceable relative to each other along a common axis of symmetry, a first and a second primary coils connected to said first part and said coils being independant from each other, a first and a second secondary coils connected to said second part and said coils being independant from each other, a first magnetic circuit with an air gap and a second magnetic circuit with an air gap, said magnetic circuits being respectively associated with said first and second primary and secondary coils respectively, means for displacing said first and second parts with their integral coils and magnetic circuits, relatively to one another, and said first primary and secondary coils, as a first set of coils, so as said second primary and secondary coils as a second set of coils, being inductively coupled through said air gaps respectively of said magnetic circuits, when said one part is displaced along said axis of symmetry into said other part, the coils of one set being arranged so as to produce a radial rotating field perpendicular to said axis whereby, to transmit said electrical energy, the coils of the other set being arranged so as to produce a fixed field whereby to transmit said electrical signals, stop support for preventing relative rotation between said displaceable parts and protective coating in said air gaps for protecting said magnetic circuits against corrosion by seawater.
US00292635A 1971-10-01 1972-09-27 Electrical connecting device Expired - Lifetime US3743989A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7135487A FR2154364B1 (en) 1971-10-01 1971-10-01

Publications (1)

Publication Number Publication Date
US3743989A true US3743989A (en) 1973-07-03

Family

ID=9083815

Family Applications (1)

Application Number Title Priority Date Filing Date
US00292635A Expired - Lifetime US3743989A (en) 1971-10-01 1972-09-27 Electrical connecting device

Country Status (11)

Country Link
US (1) US3743989A (en)
JP (1) JPS4843123A (en)
DE (1) DE2247755A1 (en)
DK (1) DK136560B (en)
FR (1) FR2154364B1 (en)
GB (1) GB1383577A (en)
IT (1) IT966111B (en)
NL (1) NL7213046A (en)
NO (1) NO137668C (en)
OA (1) OA04176A (en)
SE (1) SE378720B (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4087774A (en) * 1975-07-09 1978-05-02 Mefina S.A. Information transmitting system
US4236086A (en) * 1977-11-25 1980-11-25 Siemens Aktiengesellschaft Apparatus for the detection and processing of electric signals
US4303902A (en) * 1979-08-31 1981-12-01 Westinghouse Electric Corp. Inductive coupler
US4509033A (en) * 1982-05-12 1985-04-02 Robert Bosch Gmbh Ignition coil construction for engine ignition system
US4777466A (en) * 1985-04-25 1988-10-11 Senter For Industriforskning Connector arrangement for electrical circuits in underwater installations, and transformer particularly for use in such arrangement
US4802027A (en) * 1987-10-05 1989-01-31 Pitney Bowes Inc. Data storage device coupled to a data storage interface
US4852648A (en) * 1987-12-04 1989-08-01 Ava International Corporation Well installation in which electrical current is supplied for a source at the wellhead to an electrically responsive device located a substantial distance below the wellhead
US4862375A (en) * 1987-10-05 1989-08-29 Pitney Bowes Inc. Magnetic power coupler for a vault cartridge
US5050675A (en) * 1989-12-20 1991-09-24 Schlumberger Technology Corporation Perforating and testing apparatus including a microprocessor implemented control system responsive to an output from an inductive coupler or other input stimulus
US5236048A (en) * 1991-12-10 1993-08-17 Halliburton Company Apparatus and method for communicating electrical signals in a well, including electrical coupling for electric circuits therein
US5598134A (en) * 1992-11-19 1997-01-28 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Electromagnetic power supplying apparatus for electric motor vehicle
US5814900A (en) * 1991-07-30 1998-09-29 Ulrich Schwan Device for combined transmission of energy and electric signals
EP0886363A1 (en) * 1995-05-29 1998-12-23 Matsushita Electric Industrial Co., Ltd. Power source apparatus
US5890929A (en) * 1996-06-19 1999-04-06 Masimo Corporation Shielded medical connector
US5949155A (en) * 1996-06-25 1999-09-07 Matsushita Electric Works, Ltd. Non-contact electric power transmission device
US6268785B1 (en) * 1998-12-22 2001-07-31 Raytheon Company Apparatus and method for transferring energy across a connectorless interface
US20030015479A1 (en) * 1999-06-21 2003-01-23 Kuennen Roy W. Inductively coupled ballast circuit
US20030074779A1 (en) * 2000-03-21 2003-04-24 James Wong Constrained filament niobium-based superconductor composite and process of fabrication
US20030214255A1 (en) * 1999-06-21 2003-11-20 Baarman David W. Inductively powered apparatus
US20060087282A1 (en) * 2004-10-27 2006-04-27 Baarman David W Implement rack and system for energizing implements
US7146709B2 (en) * 2000-03-21 2006-12-12 Composite Materials Technology, Inc. Process for producing superconductor
US20070085487A1 (en) * 1999-06-21 2007-04-19 Access Business Group International Llc Inductively Coupled Ballast Circuit
US20080001696A1 (en) * 2005-10-17 2008-01-03 Robert Coulson Inductive power transfer system for underwater applications
US20080072407A1 (en) * 2006-09-26 2008-03-27 James Wong Methods for fabrication of improved electrolytic capacitor anode
US7462951B1 (en) 2004-08-11 2008-12-09 Access Business Group International Llc Portable inductive power station
US20090058584A1 (en) * 2007-08-29 2009-03-05 Siemens Energy & Automation, Inc. Three-phase multi-winding device
US7612528B2 (en) 1999-06-21 2009-11-03 Access Business Group International Llc Vehicle interface
US20110036379A1 (en) * 2008-02-20 2011-02-17 Washtec Holding Gmbh Cleaning device
EP2450921A1 (en) * 2010-11-05 2012-05-09 RAFI GmbH & Co. KG Charger, receiving station and plug device for inductive transmission of electrical energy
WO2014092583A1 (en) * 2012-12-14 2014-06-19 Blue Logic As Device for inductive transmission of electrical energy
DE102009014320B4 (en) * 2009-03-25 2021-02-18 Sew-Eurodrive Gmbh & Co Kg Plug connection and use of a plug connection

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE374824B (en) * 1970-06-05 1975-03-17 Polaroid Corp
US4181468A (en) * 1978-03-09 1980-01-01 Sperry Rand Corporation Geothermal energy pump monitor and telemetric system
DE3019668A1 (en) * 1980-05-22 1981-11-26 SIEMENS AG AAAAA, 1000 Berlin und 8000 München DEVICE FOR DETECTING AND PROCESSING ELECTRICAL SIGNALS
DE3019646A1 (en) * 1980-05-22 1981-11-26 SIEMENS AG AAAAA, 1000 Berlin und 8000 München GALVANICALLY SEPARATING COUPLING POINT FOR ENERGY AND / OR SIGNAL TRANSMISSION
DE3019645A1 (en) * 1980-05-22 1981-12-03 Siemens AG, 1000 Berlin und 8000 München INSULATED INSERT WITH HIGH STRENGTH RESISTANCE
US4556837A (en) * 1982-03-24 1985-12-03 Terumo Kabushiki Kaisha Electronic clinical thermometer
JP2655189B2 (en) * 1989-05-17 1997-09-17 富士写真フイルム株式会社 Color diffusion transfer photo film unit
DE4344071A1 (en) * 1993-12-23 1995-07-06 Josef Femboeck Energy and/or data transmission device
DE19806366A1 (en) * 1998-02-09 1999-08-12 Matthias Wapler System for inductive current transfer of alternating current or current pulses between two mutually isolated electrical equipment or equipment parts
DE102014116236A1 (en) * 2014-11-07 2016-05-12 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Sensor arrangement, sensor and cable for use in process automation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2379664A (en) * 1942-08-29 1945-07-03 Rca Corp Electrical connector for loudspeakers and the like
US3277358A (en) * 1963-09-09 1966-10-04 Thomas H Nicholl Battery charger
US3387606A (en) * 1962-03-12 1968-06-11 Robertshaw Controls Co Inductive signal transfer device, useful for aviators' helmets

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2379664A (en) * 1942-08-29 1945-07-03 Rca Corp Electrical connector for loudspeakers and the like
US3387606A (en) * 1962-03-12 1968-06-11 Robertshaw Controls Co Inductive signal transfer device, useful for aviators' helmets
US3277358A (en) * 1963-09-09 1966-10-04 Thomas H Nicholl Battery charger

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4087774A (en) * 1975-07-09 1978-05-02 Mefina S.A. Information transmitting system
US4236086A (en) * 1977-11-25 1980-11-25 Siemens Aktiengesellschaft Apparatus for the detection and processing of electric signals
USRE31524E (en) * 1977-11-25 1984-02-21 Siemens Aktiengesellschaft Apparatus for the detection and processing of electric signals
US4303902A (en) * 1979-08-31 1981-12-01 Westinghouse Electric Corp. Inductive coupler
US4509033A (en) * 1982-05-12 1985-04-02 Robert Bosch Gmbh Ignition coil construction for engine ignition system
US4777466A (en) * 1985-04-25 1988-10-11 Senter For Industriforskning Connector arrangement for electrical circuits in underwater installations, and transformer particularly for use in such arrangement
US4862375A (en) * 1987-10-05 1989-08-29 Pitney Bowes Inc. Magnetic power coupler for a vault cartridge
US4802027A (en) * 1987-10-05 1989-01-31 Pitney Bowes Inc. Data storage device coupled to a data storage interface
US4852648A (en) * 1987-12-04 1989-08-01 Ava International Corporation Well installation in which electrical current is supplied for a source at the wellhead to an electrically responsive device located a substantial distance below the wellhead
US5050675A (en) * 1989-12-20 1991-09-24 Schlumberger Technology Corporation Perforating and testing apparatus including a microprocessor implemented control system responsive to an output from an inductive coupler or other input stimulus
US5814900A (en) * 1991-07-30 1998-09-29 Ulrich Schwan Device for combined transmission of energy and electric signals
US5236048A (en) * 1991-12-10 1993-08-17 Halliburton Company Apparatus and method for communicating electrical signals in a well, including electrical coupling for electric circuits therein
US5598134A (en) * 1992-11-19 1997-01-28 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Electromagnetic power supplying apparatus for electric motor vehicle
EP0886363A1 (en) * 1995-05-29 1998-12-23 Matsushita Electric Industrial Co., Ltd. Power source apparatus
EP0886363A4 (en) * 1995-05-29 1999-05-19 Matsushita Electric Ind Co Ltd Power source apparatus
US6075433A (en) * 1995-05-29 2000-06-13 Matsushita Electric Industrial Co., Ltd. Power supply unit
US5890929A (en) * 1996-06-19 1999-04-06 Masimo Corporation Shielded medical connector
US5949155A (en) * 1996-06-25 1999-09-07 Matsushita Electric Works, Ltd. Non-contact electric power transmission device
US6268785B1 (en) * 1998-12-22 2001-07-31 Raytheon Company Apparatus and method for transferring energy across a connectorless interface
US7126450B2 (en) 1999-06-21 2006-10-24 Access Business Group International Llc Inductively powered apparatus
US7612528B2 (en) 1999-06-21 2009-11-03 Access Business Group International Llc Vehicle interface
US20030214255A1 (en) * 1999-06-21 2003-11-20 Baarman David W. Inductively powered apparatus
US6825620B2 (en) 1999-06-21 2004-11-30 Access Business Group International Llc Inductively coupled ballast circuit
US8138875B2 (en) 1999-06-21 2012-03-20 Access Business Group International Llc Inductively powered apparatus
US20050093475A1 (en) * 1999-06-21 2005-05-05 Kuennen Roy W. Inductively coupled ballast circuit
US20050122058A1 (en) * 1999-06-21 2005-06-09 Baarman David W. Inductively powered apparatus
US20050122059A1 (en) * 1999-06-21 2005-06-09 Baarman David W. Inductively powered apparatus
US20050127850A1 (en) * 1999-06-21 2005-06-16 Baarman David W. Inductively powered apparatus
US20050127849A1 (en) * 1999-06-21 2005-06-16 Baarman David W. Inductively powered apparatus
US7639110B2 (en) 1999-06-21 2009-12-29 Access Business Group International Llc Inductively powered apparatus
US7118240B2 (en) 1999-06-21 2006-10-10 Access Business Group International Llc Inductively powered apparatus
US20030015479A1 (en) * 1999-06-21 2003-01-23 Kuennen Roy W. Inductively coupled ballast circuit
US7615936B2 (en) 1999-06-21 2009-11-10 Access Business Group International Llc Inductively powered apparatus
US20060284713A1 (en) * 1999-06-21 2006-12-21 Baarman David W Inductively powered apparatus
US7180248B2 (en) 1999-06-21 2007-02-20 Access Business Group International, Llc Inductively coupled ballast circuit
US20070085487A1 (en) * 1999-06-21 2007-04-19 Access Business Group International Llc Inductively Coupled Ballast Circuit
US20070126365A1 (en) * 1999-06-21 2007-06-07 Baarman David W Inductively powered apparatus
US7233222B2 (en) 1999-06-21 2007-06-19 Access Business Group International Llc Inductively powered apparatus
US20070210889A1 (en) * 1999-06-21 2007-09-13 Access Business Group International Llc Inductively powered apparatus
US7279843B2 (en) 1999-06-21 2007-10-09 Access Business Group International Llc Inductively powered apparatus
US7439684B2 (en) 1999-06-21 2008-10-21 Access Business Group International Llc Inductive lamp assembly
US7427839B2 (en) 1999-06-21 2008-09-23 Access Business Group International Llc Inductively powered apparatus
US7385357B2 (en) 1999-06-21 2008-06-10 Access Business Group International Llc Inductively coupled ballast circuit
US7480978B1 (en) 2000-03-21 2009-01-27 Composite Materials Technology, Inc. Production of electrolytic capacitors and superconductors
US20090044398A1 (en) * 2000-03-21 2009-02-19 James Wong Production of electrolytic capacitors and superconductors
US6836955B2 (en) * 2000-03-21 2005-01-04 Composite Materials Technology, Inc. Constrained filament niobium-based superconductor composite and process of fabrication
US20030074779A1 (en) * 2000-03-21 2003-04-24 James Wong Constrained filament niobium-based superconductor composite and process of fabrication
US7146709B2 (en) * 2000-03-21 2006-12-12 Composite Materials Technology, Inc. Process for producing superconductor
US7462951B1 (en) 2004-08-11 2008-12-09 Access Business Group International Llc Portable inductive power station
US20060087282A1 (en) * 2004-10-27 2006-04-27 Baarman David W Implement rack and system for energizing implements
US7408324B2 (en) 2004-10-27 2008-08-05 Access Business Group International Llc Implement rack and system for energizing implements
US20080001696A1 (en) * 2005-10-17 2008-01-03 Robert Coulson Inductive power transfer system for underwater applications
US8858738B2 (en) 2006-09-26 2014-10-14 Composite Materials Technology, Inc. Methods for fabrication of improved electrolytic capacitor anode
US20080072407A1 (en) * 2006-09-26 2008-03-27 James Wong Methods for fabrication of improved electrolytic capacitor anode
US7948340B2 (en) * 2007-08-29 2011-05-24 Siemens Industry, Inc. Three-phase multi-winding device
US20090058584A1 (en) * 2007-08-29 2009-03-05 Siemens Energy & Automation, Inc. Three-phase multi-winding device
US20110036379A1 (en) * 2008-02-20 2011-02-17 Washtec Holding Gmbh Cleaning device
DE102009014320B4 (en) * 2009-03-25 2021-02-18 Sew-Eurodrive Gmbh & Co Kg Plug connection and use of a plug connection
EP2450921A1 (en) * 2010-11-05 2012-05-09 RAFI GmbH & Co. KG Charger, receiving station and plug device for inductive transmission of electrical energy
WO2014092583A1 (en) * 2012-12-14 2014-06-19 Blue Logic As Device for inductive transmission of electrical energy
US9419373B2 (en) 2012-12-14 2016-08-16 Blue Logic As Device for inductive transmission of electrical energy
EP2932517A4 (en) * 2012-12-14 2016-09-07 Blue Logic As Device for inductive transmission of electrical energy
RU2645870C2 (en) * 2012-12-14 2018-03-01 Блю Лоджик Ас Device for inductive power transmission

Also Published As

Publication number Publication date
NO137668B (en) 1977-12-19
IT966111B (en) 1974-02-11
NL7213046A (en) 1973-04-03
DE2247755A1 (en) 1973-04-05
GB1383577A (en) 1974-02-12
SE378720B (en) 1975-09-08
JPS4843123A (en) 1973-06-22
AU4707872A (en) 1974-04-04
NO137668C (en) 1978-04-05
FR2154364B1 (en) 1975-06-06
DK136560B (en) 1977-10-24
OA04176A (en) 1979-12-15
DK136560C (en) 1978-03-20
FR2154364A1 (en) 1973-05-11

Similar Documents

Publication Publication Date Title
US3743989A (en) Electrical connecting device
US5814900A (en) Device for combined transmission of energy and electric signals
US4030058A (en) Inductive coupler
US4838797A (en) Underwater connect and disconnect plug and receptacle
US5216402A (en) Separable inductive coupler
US6483218B1 (en) Brushless electric exciter for dynamoelectric machines
US3308316A (en) Submersible motor with a sealed connector plug
Heeres et al. Contactless underwater power delivery
Feezor et al. An interface system for autonomous undersea vehicles
US8102230B2 (en) Inductive coupler connector
UA44857C2 (en) ELECTROMAGNETIC DEVICE (option), high-voltage electric power SET, power grid, method of controlling the electric field in the electromagnetic DEVICES, a method of manufacturing a magnetic circuit for electrical machines rotating CABLE FOR DEVICES FORMATION in electromagnetic winding generating a magnetic field
RU2040691C1 (en) System for transmission of electric power and information in column of joined pipes
CN105450265A (en) Underwater signal electrical-coupling non-contact type bi-directional transmission connector
RU2012118280A (en) DEVICE FOR NON-CONTACT TRANSMISSION OF ELECTRIC POWER TO A UNDERWATER OBJECT (OPTIONS)
US3939391A (en) Apparatus for charging a hermetically sealed electrical energy source
AU724971B2 (en) Power transformer/inductor
EP3503137A1 (en) Inductive power connector
RU2744064C1 (en) Device for contactless transmission of electricity and information signals to an underwater vehicle
RU2668552C1 (en) Device and method for reducing losses with non-contact transmission of electric energy
RU2564199C1 (en) Device for contactless transmission of electric power to underwater object
WO2017032844A1 (en) Combined subsea transformer and compensating hv reactor
EP0167556B1 (en) Inductive electric connector
EP3503138A1 (en) Electrical power connector with cover
CN210606895U (en) Control transformer
CN213846341U (en) Non-connected wireless power supply and communication device