US3753690A - Treatment of liquid metal - Google Patents

Treatment of liquid metal Download PDF

Info

Publication number
US3753690A
US3753690A US00071112A US3753690DA US3753690A US 3753690 A US3753690 A US 3753690A US 00071112 A US00071112 A US 00071112A US 3753690D A US3753690D A US 3753690DA US 3753690 A US3753690 A US 3753690A
Authority
US
United States
Prior art keywords
metal
flux
molten
bed
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00071112A
Inventor
E Emley
M Brant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
British Aluminum Co Ltd
Original Assignee
British Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Aluminum Co Ltd filed Critical British Aluminum Co Ltd
Application granted granted Critical
Publication of US3753690A publication Critical patent/US3753690A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/066Treatment of circulating aluminium, e.g. by filtration
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting

Definitions

  • This invention relates to improvements in the treatment of liquid metal, particularly but not exclusively molten aluminium and especially molten aluminium intended for the production of ingots for working.
  • liquid aluminium contains varying amounts of non-metallic constituents, i.e. gas and non-metallic inclusions, and that their presence may give rise to defects in finished products.
  • non-metallic constituents i.e. gas and non-metallic inclusions
  • Many procedures have been proposed for the removal of the gas and inclusions.
  • the gas content may be reduced to an acceptable level by bubbling chlorine, nitrogen or argon through the melt or by treatment of the metal with hexachlorethane.
  • the use of chlorine and hexachlorethane give rise to a fume disposal problem necessitating expensive equipment, whereas with the nitrogen treatment as heretofore proposed, the metal becomes contaminated through formation of nonmetallic inclusions.
  • the filtered impurities are loosely contained in the filter bed and are readily released if the filter is accidentally jolted or is prodded in order to promote a faster metal flow.
  • the action of the filter bed is not one of filtration but of settlement of impurities from the liquid during quiescent flow through the many channels between the flakes.
  • a process for removing non-metallic constituents in motlen metal especially aluminium which comprises flowing the metal through a multiplicity of flux-lined channels.
  • the channels are desirably provided by a bed or layer of coarse refractory granules coated with a flux.
  • the coarse refractory granules are preferably of alumina and may be in the form of alumina balls of approximately 54 in. diameter and preferably not less than in. diameter.
  • Suitable flux compositions are given in Table 1 below.
  • the treated metal can, if desired, be stripped of any entrained chloride by passing it through a bed of uncoated granules, for example, alumina balls, which are readily wetted by chloride-base fluxes.
  • the cleaning step of the present invention is very effective in removing non-metallic constitutents, it is less so in removing clusters of intermetallic particles, e.g. titanium-rich particles, which may be suspended in the liquid metal.
  • the metal may be flowed through a second bed composed of uncoated refractory granules, whereby the intermetallic particles settle out in the interstices of the second bed.
  • the metal is flowed upwardly through the second bed.
  • the zdirtyin'g effect produced by nitrogen treatment of-lthe molten metal can be materially reduced, if not entirely obviated, by introducing the nitrogen intov the molten metal whilst maintaining a continuous liquid flux cover over the molten metal.
  • This treatment is not limited to the use of nitro-. gen as other gases inert to the molten metal being treated, such as argon, carbon monoxide and carbon dioxide may be used at least with some alloys.
  • the invention provides a process for removing non-metallic constituents from molten metal, especially aluminium, by passing a substantially inert gas therethrough whilst maintaining a liquid flux cover over the molten metal and subsequently flowing the metal through a device comprising a plurality of flux-lined channels.
  • the gas e.g. nitrogen
  • the gas e.g. nitrogen
  • the worst conditions for dirtying the metal are provided by introducing the gas through porous graphite or carbon tubes in the absence of a flux cover.
  • carbonaceous tubes can be employed if the liquid flux cover is maintained over the molten metal and especially where the latter is subsequently flowed through a bed or layer of coarse refractory granules coated with flux.
  • Even a perforated iron tube can be used, but this is not preferred since, even though the metal does not become dirtied, any protective dressing applied to the tube is liable to become wetted by the flux cover with consequent attack of the tube by the motlen aluminium.
  • the iron tube may be coated with a vitreous enamel to reduce attack by molten aluminrum.
  • a porous non-carbonaceous refractory tube or brick is used for introducing the nitrogen and a liguid flux cover is applied to the metal surface, then dirtying of the metal does not occur.
  • metal which has been made dirty for experimental purposes e.g. by addition of a porportion of oily swarf and/or by nitrogen treatment through a graphite tube in the absence of a flux cover, can actually be cleaned by providing a liquid flux cover and gassing the metal with nitrogen.
  • Such a process of degassing under a liquid flux is not readily applicable to the treatment of metal in a holding furnace such as the large reverberatory furnaces used in conventional practice, because of the quantity of flux required to maintain aliquid flux film over such a large area; it may however be carried out in a forewell to, or alcove, or cubicle within, such a reverberatory furnace or in a vessel of small cross-sectional area placed between the holding furnace and the casting machine and through which the metal is caused to flow.
  • liquid aluminium is cleaned and degassed in continuous manner by causing a stream of liquid metal to flow through a containing vessel of such capacity in relation to the metal flow that the residence time of the .metal in the containing vessel is at least 1% min., passing a substantially inert gas into the metal in the containing vessel at a rate sufficient to provide at least 10 cu.ft. per ton of liquid metal, and maintaining a cover of liquid flux upon the surface of the metal in the containing vessel.
  • the residence time of the metal in the degassing chamber' is at least 3 min.
  • the inert gas is preferably nitrogen.
  • the nitrogen flow rate may conveniently be such as to provide 30 cu.ft. per ton liquid metal in order to give a wide margin of safety, but good results have been obtained with flow rates as low as 10 cu.ft. per ton.
  • the minimum quantity of flux required is 1 lb for each 100 sq.in. of surface area of liquid metal in the degassing chamber and 2-3 lb per 100 sq.in. is preferred.
  • the degree of turbulence required is vigorous but should not be so great as to give rise to splashing of metal from the containing vessel.
  • Introduction of the required flow rate of gas into a chamber of the required size will normally result in an adequate degree of turbulence when the gas is diffused in through porous refractory bricks, tubes or diffuser plates. If a greater degree of turbulence is needed it is possible to introduce a proportion of the nitrogen into the degassing chamber through one or more narrow tubes whereby the jets of gas so produced give rise to a tumbling action of the metal which enhances the cleaning and degassing effect. lt is possible in this way to reduce the total flow rate of gas required. Satisfactory results have also been obtained where the whole of the nitrogen is introduced via jets.
  • the temperature of the molten aluminium during treatment should normally be in the range of 675-800C. 700-750C being preferred.
  • the metal is passed through a layer or column of uncoated coarse refractory granules in the second chamber and is then ready to be cast.
  • FIG. I is a somewhat schematic sectional view of an apparatus for degassing and cleaning molten aluminium in accordance with the invention.
  • FIG. 2 is a view similar to FIG. 1 illustrating a modification
  • FIGS. 3, 4 and 5 illustrate modifications of a part of the apparatus shown in FIG. 1;
  • FIG. 6 is a view similar to FIG. 1 but illustrating a further modification
  • FIGS. 7 and 8 illustrate still further modifications
  • FIG. 9 is a sectional view of an apparatus suitable for cleaning and degassing molten metal
  • FIG. 10 is a fragmentary view illustrating a modification of the apparatus of FIG. 9;
  • FIG. 11 is a sectional view of another cleaning and degassing apparatus
  • FIG. 12 is a sectional view of a further cleaning and degassing apparatus
  • FIG. I3 is a sectional view of another cleaning and degassing apparatus
  • FIGS. 14A and 14B are plan and sectional views respectively, of part of a reverberatory furnace modified for use in the method according to the invention.
  • FIGS. 15A and 15B are plan and sectional views respectively, of part of a reverberatory furnace modified in an alternative manner for use in the method according to the invention.
  • a crucible l having a long pouring lip la is fitted with a baffle 2 which extends into the crucible and effectively divides it into two chambers A and B which are in communication by way of a space left below the baffle 2.
  • a tube 3 extends into the chamber A towards the floor thereof and terminates in a-porous plug 3a of non-carbonaceous refractory material.
  • a gas jet 4 is provided externally of the crucible 1 to heat the contents thereof.
  • a bed of flux-coated alumina balls 5 of about l4 in. diameter is provided in the chamber A and a bed of uncoated alumina balls of about 36 in. diameter is provided in the chamber B.
  • the bed of uncoated balls 6 can extend below the baffle 2 and below the bed 5.
  • a launder 7 is provided to flow molten aluminium from a holding'furnace (not shown) to the chamber A.
  • the pouring lip Ia extends from the chamber 8 to a casting launder 8.
  • a body of molten aluminium is maintained in the chamber A and a flux cover 9 is maintained thereover.
  • Molten aluminium enters the chamber A from the launder 7 by falling through the flux cover 9.
  • the metal is degassed by a gas such as nitrogen which is supplied through the tube 3 and escapes from the plug 3a to bubble up through the molten aluminium in chamber A.
  • a gas such as nitrogen which is supplied through the tube 3 and escapes from the plug 3a to bubble up through the molten aluminium in chamber A.
  • the molten aluminium therefore leaves the launder 7, falls through the flux cover 9 into chamber A where it is degassed by the nitrogen, flows downwards through the bed of flux-coated balls 5 in which non-metallic inclusions are removed, passes under the baffle 2 and upwards through the bed of uncoated balls 6 in which intermetallic particles and residual flux are removed and then flows out over the pouring lip Ia to the casing launder 8 in a condition ready for casting.
  • FIG. 2 The arrangement shown in FIG. 2 is similar in many respects to that described with reference to FIG. 1 and like references are used to denote like parts.
  • the crucible 1 of the previous example is replaced by a box lb lined with refractory brick and the plug 3a is replaced by a porous refractory tube 3b of noncarbonaceous material.
  • the launder 7 opens to the chamber A below the level of the flux cover 9 which is confined between the baffle 2 and a further baffle 2a and the walls of the box lb.
  • the baffle 2a also serves to skim the molten aluminium flowing to the chamber A from the furnace tap hole which is shown at 10.
  • the box lb would be pre-heated with a gas flame before being charged with molten aluminium and the balls 5 and 6.
  • immersion heaters may be placed in the chamber A to provide a greater control over the metal temperature.
  • FIGS. 3, 4 and 5 illustrate alternative ways in which the molten aluminium can be introduced into the chamber A from the launder 7.
  • the launder 7 terminates in a spout 7a which extends through the flux cover 9.
  • the launder 7 terminates in a ,slight bowl the floor of which is in the fonn of a perforated refractory screen 7b which breaks up the molten metal as it enters the chamber A.
  • the porous screen 7b is disposed within the flux cover 9 and in the embodiment shown in FIG. 5 it is disposed above the flux cover 9.
  • a splash plate immersed in the flux cover 9 may be used in order to break up the molten aluminium as it enters the chamber A' and so assist in the cleaning and degassing of the molten metal.
  • the chambers A and B of the previous examples are followed by further chambers C and D defined by additional baffles 2b and 2c, the baffle 2b extending upwardly from the floor of the crucible I or box la (as the case may be) to below the level of the molten aluminium and the baffle 2c extending downwardly into the molten aluminium and into a further bed of uncoated coarse refractory balls 6a, e.g. of alumina, of about )4 in. diameter.
  • uncoated coarse refractory balls 6a e.g. of alumina, of about )4 in. diameter.
  • the molten aluminium leaving the chamber B flows over the baffle 2b into the chamber C, downwardly through the bed of uncoated balls 6a, under the baffle 20, upwardly through the bed of uncoated balls 6a and out over the casting launder 8.
  • This passage of the metal through the bed of balls 6a renders the treatment more effective particularly in respect of stripping the metal of any residual flux entrained therein due to the downward flow of the metal through the uncoated balls 6a in the chamber C.
  • the flux being lighter than the molten aluminium tends to rise in the chamber.
  • the two stages of the process described above namely, the first stage of degassing the molten aluminium and flowing it through the bed of flux-coated balls 5 and the second stage of flowing it through a bed of uncoated balls 6, can be carried out in separate vessels.
  • the chamber B could be omitted and replaced by chambers C and D, also where space between the holding furnace is not sufficient to accommodate apparatus such as shown in FIG. 2, at least one of the beds of balls 5 and 6 could be disposed along the casting launder 8 and retained by suitable baffles.
  • the degassing step could be carried out under a flux cover in the holding furnace, for example, in an alcove or forewell thereof.
  • FIG. 7 Another way of separating the process into two convenient stages is shown in FIG. 7. This is very similar to that shown in FIG. 6 except in this case the chambers A and B are contained in one crucible l and the chambers C and D are contained in a separate crucible 11, the two crucibles communicating by way of a launder 12. Also, in this example, the molten metal is introduced into the chamber A below the flux layer 9 by way of baffle 2a as in the example illustrated in FIG. 2 and the nitrogen is introduced through a side wall to escape from the porous refractory tube 3b.
  • the degassing under the flux is carried out in a separate first vessel 13 which may be a brick-lined box, the metal being introduced below the flux-layer 9 by means of baffle 2a and flowing under baffle 2 upwards to spill over into the launder 12 from which it pours into the baffled crucible 14 containing a bed of alumina balls of which at least the upper layers are flux-coated balls 5 followed on the other side of the baffle 2 by a bed of uncoated balls 6.
  • the bed of balls 5 need not initially be coated with flux as it takes but a few minutes of operation of the process for at least enough of them to become sufficiently coated with flux for the process to operate efficiently.
  • the nitrogen is supplied to the molten metal under the flux cover 9 through two porous refractory tubes 3b.
  • the porous refractory non-carbonaceous material used to introduce the gas, e.g. nitrogen, into the molten aluminium may be of any suitable known type. Examples are refractories with a high alumina content, silicon carbide, silicon carbide bonded with silicon nitride and zircon. These are generally satisfactory if of sufficient porosity, but a high silica content should be avoided. Lumps of the refractory material may be shaped into plugs or bricks and drilled to receive a refractory tube through which the gas is fed to the plug, or the refractories may be in tube form. The porous plugs or tubes may be cemented into the walls of the vessel or may even form part of the floor.
  • the granules should be of such a size as to be retained by a a in. screen and in. diameter balls are preferred.
  • the temperature of the molten aluminium during treatment should be in the range of 675-800C, 700750C being preferred.
  • the flux should be substantially free from oxides, oxysalts and fluosilicates and from volatile halides. It should consist essentially of the chlorides and fluorides of the alkali and alkaline earth metals including magnesium and should be thinly fluid at the melting point of the metal; when melted it should have a lower density than liquid aluminium.
  • Flux A As a flux for coating the balls and for providing a liquid flux cover on the top of the metal in the degassing chamber, mixtures of KCl and NaCl with small additions of CaF, are normally preferred (Flux A). Additions of NaF or cryolite may be included to reduce the melting point (Flux B), but a small amount of sodium will then be introduced into the metal and this may be detrimental to aluminium-magnesium alloys, e.g. of the A A 5356 type. For such alloys it is preferable to use a flux which, far from introducing sodium into the al loy, will reduce the very small content initially present as an impurity in primary metal. Suitable fluxes contain MgCl (Fluxes C, F.G.H.).
  • the method of the present invention may be applied to the continuous removal of sodium from liquid metal without the generation of objectionable fumes such as occur when liquid aluminium is treated with chlorine or hexachorethane.
  • a heavy fluid flux may be used to coat the alumina balls and thereby obviate the risk of flux being washed off the balls by the flow of aluminium (Fluxes 9 a 10 D and E).
  • Such fluxes contain BaCl and are in consewhich result have been in the range 0.12-0.17 quence more expensive.
  • cm /lOg which, though very satisfactory for normal using a flux of type A in that as the cleaning process purposes, is not as low as the figures obtained with the proceeds any flux which becomes entrained in the process of the present invention (0.04-0.12 cm/i00g).
  • the metal charge used consisted entirely of scrap granules followed by the bed or column of uncoated metal and included approximately l ton ofscalpings. in granules will ensure a high degree of freedom from this particular experiment the porous refractory tube oxide inclusions etc., it is possible by controlling the shown in FIG. 2 was replaced by porous carbon, so that conditions, as already indicated, to remove nonthe experiment represented a severe test of the effimetallic inclusions so effectively at the prior stage of ciency of the equipment in removing inclusions as well nitrogen treatment under a liquid flux cover that subseas gas.
  • baffles By placing one or more baffles in the exit launder from the degassing chamber it is possible to prevent seepage of liquid flux into the casting, but this can be more effectively ensured by applying to the metal surface on the inflowing side of an exit launder baffle a thin layer of powdered CaF or MgF This layer may be confined by two baffles to a short length of the launder, e.g. 6-9 in.
  • the CaF may if desired, be applied also to the surface of the metal in the exit chamber.
  • CaF may be replaced by an inspissated flux of the kind well known in the magnesium industry so as to form a pasty viscous flux cover with a high absorptive power for fluid fluxes of the type shown in Table l.
  • a crucible 101 provided with a baffle wall 102 extending towards the floor of the crucible to form the chambers A and B.
  • a launder 103 supplies molten metal to the chamber A allowing it to pass through a flux cover 104 floating on the metal in the chamber A.
  • the launder 103 can be disposed to admit molten metal to the chamber A under the flux cover 104 or into the flux cover 104.
  • a porous plug 105 for admitting the inert gas, which is preferably nitrogen, into themolten metal. Molten metal flows through the chamber A under the baffle 102 to the chamber B and overflows along an exit or casting launder 106.
  • a shallow bed 7 of in. diameter alumina balls may be disposed in the chamber A to provide a layer a few balls thick over the porous plug 105 to reduce buoyancy effects and to assist in absorbing inclusions.
  • the bed 107 of balls may extend to a point above the level of the base of the baffle 102 to reduce possible channelling effects of the molten metal in its flow from chamber A to chamber B. Additionally, also as shown, the bed 107 of balls may extend into the chamber B.
  • the bed 107 of balls tend to remove any flux entrained in the metal passing therethrough.
  • a launder baffle 108 may be disposed in the exit or casting launder 106 to prevent seepage of liquid flux to the casting location. This can even more effectively be prevented by applying to the metal surface on the inflowing side of the exit launder baffle 108 a thin layer 109 of powdered CaF, or MgF,.This can extend over the surface of the metal in the chamber or can be confined between two baffles 108a and 108b in the exit or casting launder a shown in FIG. 10.
  • the apparatus of FIG. is generally similar to that of FIG.9 and comprises a crucible 101 divided by a batfle 102 into chambers A and B.
  • Chamber A is supplied with molten metal through a launder 103, the molten metal passing under a flux cover 104 being prevented from running back along the launder by a baffle 110.
  • An open ended graphite tube 111 extends into the chamber A for admitting nitrogen into the molten metal.
  • the molten metal flows through the chamber A under the baffle I02 to the chamber II and overflows into an exit launder H2.
  • the launder 2 may lead direct to a casting launder (not shown) or to an intermediate baffled crucible (not shown) filled with coarse alumina balls or other coarse refractory granules.
  • the apparatus of FIG. 12 comprises a box of refractory brick divided by a baffle 102 into two chambers A and B.
  • Immersion heaters each consisting of a refractory sheath 121 of silicon carbide or nitride containing a gas burner 122 extend into the chamber A.
  • Molten metal enters the chamber A from a launder 103 and falls in a short unsupported stream 123 through a flux cover 104.
  • Rows of porous brick 124 communicate with steel tube inserts 125 through which nitrogen is directed into the chamber A.
  • the molten metal flows through the chamber A, under the baffle 102 to the chamber B and overflows into an exit launder 126 where entrapped salts are removed by means of a baffle 127 and a layer 128 of fluospar.
  • a refractory brick box 120 is divided into three chambers A, B and C by baffles 102 and 132.
  • a low deflecting wall 133 extends upwardly from the base of the box 101 between the baffles 102 and 132.
  • Molten metal enters the chamber A from a launder 103 and falls in a stream 123 through a flux cover 104 as described with reference to FIG. 12.
  • Nitrogen is introduced into the chamber A through a graphite tube 111 as described with reference to FIG. 3.
  • the molten metal flows through the chamber A under the baffle 102 and is deflected upwardly into chamber C by the wall 133.
  • the metal flows from the chamber C under the baffle 132 into the chamber B and overflows into an exit launder 134.
  • Flux (c) was applied to the metal surface in the ingoing chamber in amount corresponding to 3 lb per I00 sq.in. of surface area.
  • Coarse alumina balls (V4 in. diameter) were used to cover the diffuser tubes to a depth of two balls in the degassing chamber and to a few inches above the base of the baffle in the exit chamber.
  • Frequent Straube-Pfeiffer test samples were taken from the exit launder during the progress of the cast and the metal (12 ton) found to be of excellent quality, all the test samples being bubble-free on solidi- 'fication at a pressure of approx. 2 Torr.
  • Straube- Pfeiffer test samples were taken from the exit launder at frequent intervals during the course of the cast (12 tons) and no bubble was developed in any of the tests during solidification at a pressure of 2 Torr.
  • the sodium content of the ingoing metal was 0.0020-0.0025 percent and all outgoing samples analysed less than 0.0005 percent.
  • Two refractory baffles were placed in the outgoing launder approximately 8 in. apart and between them a layer of CaF approximately one-eighth in. deep was sprinkled on the metal surface. Chloride tests carried out on skimmings taken from the metal surface in the launder at a position 6 inches beyond the surface baffle gave negative results.
  • EXAMPLE lll ln a test similar to that of Example ll, dirty undegassed alloy of the A A 6063 type flowing at a rate of 200 lb/min, was successfully cleaned and degassed to show nil bubbles in the Straube-Pfeiffer test using a nitrogen flow rate corresponding approximately to 30 cu.ft. per ton of metal introduced via porous graphite diffusers.
  • a nitrogen flow rate corresponding approximately to 30 cu.ft. per ton of metal introduced via porous graphite diffusers.
  • the nitrogen passing through the diffusers was then reduced to approximately 15 cu.ft/ton making a total consumption of cu.ft/ton of nitrogen.
  • Metal processed by the present invention has been shown to be suitable for production of high quality semi-fabricated products for critical applications. in particular the incidence of blister defects in soft annealed sheet for deep drawing purposes is extremely low and frequently nil.
  • the corrosion resistance of the metal is somewhat better than that of conventionally furnace degassed metal, as judged by the Cass test.
  • a containing vessel such as a brick box or crucible placed between holding furnace and casting point
  • a forewell to, or an alcove within, the holding furnace itself, particularly where this is of a reverberatory type. Best results will then be obtained if the metal in the forewell or alcove is protected from direct contact with the products of combustion of the furnace.
  • brick walls may be built inwards from the wall of the furnace which includes the tapping hole, or from this wall and an adjacent wall, so as to partition off a cubicle of suitable size from the main part of the furnace, metal entering the cubicle by a passage underneath the partitioning walls or through holes left therein for the purpose.
  • a drossing door is needed through which to apply flux to the metal within the cubical walls.
  • Nitrogen or other inert gas may be introduced via porous bricks built into the floor of the cubicle or more conveniently by porous or non-porous graphite tubes, or steel orgcast iron tubes protected by vitreaous enamelling. These tubes may be introduced through the furnace walls into the cubicle. Operation of the process in a forewell or a cubicle within a reverberatoryfurnace has advantages under some conditions and particularly where it is desired to make frequent alloy changes or to operate the process intermittently.
  • the molten metal in the forewell being in direct communication with that in the main body of the reverberatory furnace will be maintained hot thereby, but if desired additional heating may be provided.
  • lFlGS. 14a and 14b show a reverberatory furnace R with a cubicle C defined by walls of refractory brick extending inwardly from walls 141 of the furnace R.
  • the walls 140 may, if desired, extend up to the ceiling (not shown) of the furnace.
  • a tapping hole 142 and a door 143 for dross removal are provided in respective walls 141 of the furnace to communicate with the cubicle C.
  • a drain hole 144 may also be provided in one of the walls 141 at a location outside the cubicle C, the floor 145 of the cubicle preferably sloping downward towards the drain hole 144.
  • Apertures 146 are provided at or near the bases of the walls 140 so that the cubicle C is in communication with the furnace R.
  • a flux cover 147 extends over the surface of the molten metal in the cubicle C and a graphite tube 148 extends into the cubicle for admitting an inert gas into the molten metal.
  • FIGS. 15a and 15b show a reverberatory furnace R with a forewell F.
  • Walls 150 extend outwardly from a wall 151 of the reverberatory furnace R to define the forewell F which is divided by a baffle [52 into two chambers F, and F Openings 153 at or near the base of the wall 151 permit the flow of molten metal to the chamber F, into which nitrogen is introduced through graphite or enamelled steel tubes 154.
  • a flux cover 155 is maintained over the liquid metal in the chamber F,.
  • the molten metal flows under the baffle 152 into the chamber F from which it flows to a casting launder (not shown) through a tapping hole 156. Heat is conserved in the molten metal by use of refractory lined lids 157. Additional heating is provided, where required, by means of gas burners 158.
  • the present invention provides a process for cleaning and degassing molten aluminium in a continuous manner which comprises flowing molten aluminium through a chamber in which a substantially inert gas such as, for example, nitrogen is passed into the metal whilst a liquid flux layer is maintained on the aluminium in the chamber, followed, if desired, by flowing the molten aluminium through a bed or column of coarse refractory flux-coated granules and then flowing the molten aluminium through a bed or column of uncoated coarse refractory granules.
  • Metal treated by this process has given excellent results when used for the production of bright anodised and other critical products.
  • the invention has application to the treatment of molten metals other than aluminium.
  • a process for removing solid, non-metallic constituents from molten metal which comprises flowing the molten metal at a temperature up to 800C. through a bed of coarse refractory granules substantially of such a size as to be retained on a in. aperture screen, while maintaining in a molten state on at least some of said granules in said bed a molten salt flux coating, said bed being submerged beneath the surface of the molten metal,
  • salt flux on said granules is in molten condition
  • said salt flux being selected from the group consisting of mixtures, which are molten at said temperature, of salts selected from the group consisting of chlorides and fluorides of alkali metals, alkaline earth metals and magnesium.
  • a process for removing non-metallic constituents including hydrogen and solid particles from liquid aluminum and its alloys in a continuous manner which comprises flowing such liquid metal at a temperature up to 800C. through a containing vessel,
  • the inert gas being passed into the container and into the liquid metal in such a manner as to create vigorous turbulence whereby a coating of said molten salt flux is produced and maintained on at least some of said granules, said salt flux being selected from mixtures of salts which are molten at said temperature and which salts are selected from the group consisting of chlorides and fluorides of alkali and alkaline earth metals and magnesium.
  • a process for removing solid non-metallic constituents from molten aluminum and its alloys in a continuous manner which comprises continuously flowing the molten metal at a temperature up to 800C. through a containing vessel, maintaining a molten salt flux layer on the surface of molten metal in the containing vessel, continuously creating vigorous turbulence in the molten metal in contact with the molten flux within the containing vessel; and
  • a flux trap comprising a bed of coarse refractory granules substantially of a size to be retained on a in. aperture screen, said bed being submerged beneath the surface of the molten metal, whereby at least some of said granules become coated with said molten salt flux,
  • said salt flux being selected from mixtures of salts which are molten at said temperature and which salts are selected from the group consisting of chlorides and fluorides of alkali and alkaline earth metals and magnesium.
  • a process in accordance with claim 10 for removing hydrogen and solid particles wherein the residence time of said molten metal in said containing vessel is at least 1% min., said vigorous turbulence is created by passing a substantially inert gas into said molten metal at a rate sufficient to provide at least 10 cu. ft. of inert gas per ton of molten metal.
  • said molten flux layer is provided in an amount of at least 1 lb. of flux for each sq. in. of surface area of said molten metal and wherein said flux is substantially free of oxides, oxysalts, fluorosilicates and volatile halides.
  • said flux trap further comprises a layer of fluoride.

Abstract

A process for removing non-metallic constituents in molten metal, particularly aluminium and its alloys. In one treatment the metal is flowed through a multiplicity of flux-lined channels which are conveniently provided by a bed of flux-coated granules of a size such that the channels are large enough not to become clogged during use. In another treatment the metal is degassed by continuously passing it through a containing vessel while passing a substantially inert gas such as nitrogen therethrough under a flux cover; this can be followed by passing the metal through the flux-lined channels.

Description

United States Patent 11 1 Emley et a1.
TREATMENT OF LIQUID METAL lnventors: Edward Frederick Emley, Chalfont St. Giles; Malcolm Victor Brant, Stoke Poges, both of England The British Aluminium Company Limited, Gerrards Cross, England Filed: Sept. 10, 1970 Appl. No.: 71,112
Related U.S. Application Data Continuation-impart of Ser. No. 835,872, June 2, I969, abandoned.
Assignee:
Foreign Application Priority Data Sept. 12, 1969 Great Britain 45,163/69 References Cited UNITED STATES PATENTS 2/1967 Bylund ..75/68 611962 Hess ..75/67 Aug. 21, 1973 3,025,153 3/1962 Lee 75/68 3,281,238 10/1966 Bachowski 75/93 3,172,757 3/1965 Hess 75/67 2,863,558. 12/1958 Brondyke 210/69 3,537,987 11/1970 Copeland 210/10 2,715,068 8/1955 Weiss 75/68 3,189,491 6/1965 Robbins 148/26 3,198,625 8/1965 Stroup 75/68 3,272,667 9/1966 Siegle 148/23 Primary Examiner-L. Dewayne Rutledge Assistant Examiner-Peter D. Rosenberg Attorney-Karl W. Flocks 5 7 ABSTRACT A process for removing non-metallic constituents in molten metal, particularly aluminium and its alloys. in one treatment the metal is flowed through a multiplicity of flux-lined channels which are conveniently provided by a bed of flux-coated granules of a size such that the channels are large enough not to become clogged during use. in another treatment the metal is degassed by continuously passing it through a containing vessel while passing a substantially inert gas such as nitrogen therethrough under a flux cover; this can be followed by passing the metal through the flux-lined channels.
14 Claims, 17 Drawing Figures SHEET 2 [1F 5 TREATMENT OF LIQUID METAL This application is a continuation-in-part of our application Ser. No. 835,872 filed on 2nd June, I969, and now abandoned.
FIELD OF THE INVENTION This invention relates to improvements in the treatment of liquid metal, particularly but not exclusively molten aluminium and especially molten aluminium intended for the production of ingots for working.
BACKGROUND OF THE INVENTION It is well known that liquid aluminium contains varying amounts of non-metallic constituents, i.e. gas and non-metallic inclusions, and that their presence may give rise to defects in finished products. Many procedures have been proposed for the removal of the gas and inclusions. Thus the gas content may be reduced to an acceptable level by bubbling chlorine, nitrogen or argon through the melt or by treatment of the metal with hexachlorethane. The use of chlorine and hexachlorethane give rise to a fume disposal problem necessitating expensive equipment, whereas with the nitrogen treatment as heretofore proposed, the metal becomes contaminated through formation of nonmetallic inclusions.
For removal of inclusions various filtration procedures have been suggested, for example, those of British Patent Specifications Nos. 701,273 and 831,637 in which the metal is caused to flow from one chamber to another through a bed of refractory granules, the two chambers being separated by a baffle. The preferred filter material of British Patent Specification No. 831,637 is a tabular alumina of 3-14 A.S.T.M. mesh size (0056-0250 ins. aperture) supported on a bed of coarse granules A in. 34 in. size. In U.S. Pat. No. 3,039,864 it is proposed to pass the metal down through a filter bed and at the same time to pass an inert gas, e.g. argon, through the bed in an upward direction; thereby effecting a degree of degassing at the same time as the filtration. It is, however, usual to carry out a degassing operation, e.g. with chlorine, in a holding furnace prior to passage of the metal through the filter unit. U.S. Pat. No. 3,039,864 states that nitrogen can be used in place of argon if the formation of nitrides can be tolerated, but that chlorine is undesirable since it gives rise to chlorides which cause rapid blocking of the filter. Examination of the filter bed of such a filter after use shows that oxide and other nonmetallic inclusions are trapped in the metal in the interstices between flakes of tabular alumina, but that the metal does not wet the flakes. In consequence, the filtered impurities are loosely contained in the filter bed and are readily released if the filter is accidentally jolted or is prodded in order to promote a faster metal flow. The action of the filter bed is not one of filtration but of settlement of impurities from the liquid during quiescent flow through the many channels between the flakes. Special procedures are needed at the outset to persuade the liquid metal to pass through this type of filter bed, the minimum thickness of which is 6 in., and partial blockage of flow may occur during use so that a considerable hydrostatic head is needed to maintain SUMMARY OF THE INVENTION We have discovered that non-metallic inclusions can be removed from molten aluminium by causing the aluminium to flow through a cleaning device comprising a bed providing a multiplicity of flux-lined tortuous channels, e.g. very coarse granules the surface of which have been coated with a thin layer of liquid flux. Alumina balls of 74 in. diameter are suitable. With such a cleaning device removal of inclusions is at least as effective as with the flake filter of U.S. Pat. No. 3,039,864 but the present invention presents additional advantages. Because of the flux layer on the alumina balls, they are wetted by the metal and inclusions therein coming in contact with the flux film readily adhere thereto. In consequence, the inclusions are retained in the bed and are not readily released on jolting the bed. Furthermore, because of the coarse nature of the granular bed which can be used, no special steps are needed to start the metal flow, there is no fear of blockage of the system, and metal flows through the bed without the need for a hydrostatic head of metal.
According to one aspect of the present invention there is provided a process for removing non-metallic constituents in motlen metal especially aluminium which comprises flowing the metal through a multiplicity of flux-lined channels.
The channels are desirably provided by a bed or layer of coarse refractory granules coated with a flux.
The coarse refractory granules are preferably of alumina and may be in the form of alumina balls of approximately 54 in. diameter and preferably not less than in. diameter. Suitable flux compositions are given in Table 1 below.
Although tests have shown little tendency for the flux coating to be removed from the coated alumina balls by passage of the metal over them, the treated metal can, if desired, be stripped of any entrained chloride by passing it through a bed of uncoated granules, for example, alumina balls, which are readily wetted by chloride-base fluxes.
Whilst the cleaning step of the present invention is very effective in removing non-metallic constitutents, it is less so in removing clusters of intermetallic particles, e.g. titanium-rich particles, which may be suspended in the liquid metal. To remove these, the metal may be flowed through a second bed composed of uncoated refractory granules, whereby the intermetallic particles settle out in the interstices of the second bed.
Advantageously, the metal is flowed upwardly through the second bed.
The dirtying effect of nitrogen inthe degassing-of aluminium is well known, and because of this effect nitrogen has found little practical favour as a degassing agent for aluminium. The inclusions produced on nitrogen treatment give rise to bubbling when a sample of the liquid is solidified under low pressure, as in the Straube-Pfeiffer test, even when the hydrogen content of the metal is very low. In consequence, the progress of gas removal by nitrogen cannot readily be assessed by using this test. Instead use has been made of more expensive degassing agents such as chlorine and hexachlorethane which do not give rise to inclusions and in fact exert a cleaning effect by virtue of their fluxing action.
We have now discovered that the zdirtyin'g effect produced by nitrogen treatment of-lthe molten metal can be materially reduced, if not entirely obviated, by introducing the nitrogen intov the molten metal whilst maintaining a continuous liquid flux cover over the molten metal. This treatment is not limited to the use of nitro-. gen as other gases inert to the molten metal being treated, such as argon, carbon monoxide and carbon dioxide may be used at least with some alloys.
Thus, in another aspect the invention provides a process for removing non-metallic constituents from molten metal, especially aluminium, by passing a substantially inert gas therethrough whilst maintaining a liquid flux cover over the molten metal and subsequently flowing the metal through a device comprising a plurality of flux-lined channels.
It is preferred to introduce the gas, e.g. nitrogen, into the molten metal through a tube or brick of porous non-carbonaceous refractory material.
The worst conditions for dirtying the metal are provided by introducing the gas through porous graphite or carbon tubes in the absence of a flux cover. However, such carbonaceous tubes can be employed if the liquid flux cover is maintained over the molten metal and especially where the latter is subsequently flowed through a bed or layer of coarse refractory granules coated with flux. Even a perforated iron tube can be used, but this is not preferred since, even though the metal does not become dirtied, any protective dressing applied to the tube is liable to become wetted by the flux cover with consequent attack of the tube by the motlen aluminium. The iron tube may be coated with a vitreous enamel to reduce attack by molten aluminrum.
If a porous non-carbonaceous refractory tube or brick is used for introducing the nitrogen and a liguid flux cover is applied to the metal surface, then dirtying of the metal does not occur. In fact, metal which has been made dirty for experimental purposes, e.g. by addition of a porportion of oily swarf and/or by nitrogen treatment through a graphite tube in the absence of a flux cover, can actually be cleaned by providing a liquid flux cover and gassing the metal with nitrogen. The
v more rapid the stream of nitrogen the greater the cleaning action because of the increased contact between metal and flux cover. By contrast, in the conventional treatment of aluminium through carbonaceous tubes in the absence of a continuous liquid flux cover, the more rapid the nitrogen flow the dirtier the metal becomes. When nitrogen degassing is carried out with porous refractory tubes, no difficulty is encountered in applying the Straube-Pfeiffer test to assess the progress of gas removal.
If the turbulence produced in the liquid aluminium which gives rise to intimate contact between metal and flux is sufficiently prolonged, it is possible not only to remove oxide and other non-metallic inclusions originally present in the metal to be treated but also to wet and absorb inclusions arising from the introduction of nitrogen through carbonaceous refractories as rapidly as these inclusions can form. Under such circumstances it is not essential to flow the degassed metal through a bed of flux-coated coarse refractory granules in order to produce clean degassed metal, and we have found that when dirty gassy metal is degassed with nitrogen under a flux layer metal of very low gas content is readily obtained in a high state of cleanliness and showing complete freedom from bubbleswhen subjected to the Straube-Pfeiffer vacuum solidification 'test, even contact between the metal and flux, a minimum quan-' though the nitrogen is introduced through porous carbonaceous refractories.
Such a process of degassing under a liquid flux is not readily applicable to the treatment of metal in a holding furnace such as the large reverberatory furnaces used in conventional practice, because of the quantity of flux required to maintain aliquid flux film over such a large area; it may however be carried out in a forewell to, or alcove, or cubicle within, such a reverberatory furnace or in a vessel of small cross-sectional area placed between the holding furnace and the casting machine and through which the metal is caused to flow.
The achieve best results it is necessary to provide a minimum quantity of nitrogen in relation to the quantity of metal to be treated, a sufficiently long time of tity of flux per unit area of metal surface, and adequate turbulence. I
According to a further aspect of the present invention liquid aluminium is cleaned and degassed in continuous manner by causing a stream of liquid metal to flow through a containing vessel of such capacity in relation to the metal flow that the residence time of the .metal in the containing vessel is at least 1% min., passing a substantially inert gas into the metal in the containing vessel at a rate sufficient to provide at least 10 cu.ft. per ton of liquid metal, and maintaining a cover of liquid flux upon the surface of the metal in the containing vessel.
Preferably the residence time of the metal in the degassing chamber'is at least 3 min.
The inert gas is preferably nitrogen.
The nitrogen flow rate may conveniently be such as to provide 30 cu.ft. per ton liquid metal in order to give a wide margin of safety, but good results have been obtained with flow rates as low as 10 cu.ft. per ton.
The minimum quantity of flux required is 1 lb for each 100 sq.in. of surface area of liquid metal in the degassing chamber and 2-3 lb per 100 sq.in. is preferred.
The degree of turbulence required is vigorous but should not be so great as to give rise to splashing of metal from the containing vessel. Introduction of the required flow rate of gas into a chamber of the required size will normally result in an adequate degree of turbulence when the gas is diffused in through porous refractory bricks, tubes or diffuser plates. If a greater degree of turbulence is needed it is possible to introduce a proportion of the nitrogen into the degassing chamber through one or more narrow tubes whereby the jets of gas so produced give rise to a tumbling action of the metal which enhances the cleaning and degassing effect. lt is possible in this way to reduce the total flow rate of gas required. Satisfactory results have also been obtained where the whole of the nitrogen is introduced via jets.
The temperature of the molten aluminium during treatment should normally be in the range of 675-800C. 700-750C being preferred.
We have now applied our discoveries of the cleaning effect of coarse flux-coated refractory granules and of how to degas aluminium with nitrogen under nonr fouling conditions to the problems of devising a single metal treatment unit capable of receiving on the ingoing side, liquid metal which has been given no degassing or settling treatment whatever, and delivering, on the outgoing side, cleaned, degassed metal suitable for immediate casting into billet or rolling block intended 3. The metal is passed through the bed or column of flux-coated coarse refractory granules into a second chamber.
4. The metal is passed through a layer or column of uncoated coarse refractory granules in the second chamber and is then ready to be cast.
BRIEF DESCRIPTION OF THE DRAWING Some embodiments of the invention will now be described by way of example, reference being made to the accompanying drawings in which:
FIG. I is a somewhat schematic sectional view of an apparatus for degassing and cleaning molten aluminium in accordance with the invention;
FIG. 2 is a view similar to FIG. 1 illustrating a modification;
FIGS. 3, 4 and 5 illustrate modifications of a part of the apparatus shown in FIG. 1;
FIG. 6 is a view similar to FIG. 1 but illustrating a further modification;
FIGS. 7 and 8 illustrate still further modifications;
FIG. 9 is a sectional view of an apparatus suitable for cleaning and degassing molten metal;
FIG. 10 is a fragmentary view illustrating a modification of the apparatus of FIG. 9;
FIG. 11 is a sectional view of another cleaning and degassing apparatus;
FIG. 12 is a sectional view of a further cleaning and degassing apparatus;
FIG. I3 is a sectional view of another cleaning and degassing apparatus;
FIGS. 14A and 14B are plan and sectional views respectively, of part of a reverberatory furnace modified for use in the method according to the invention; and
FIGS. 15A and 15B are plan and sectional views respectively, of part of a reverberatory furnace modified in an alternative manner for use in the method according to the invention.
DETAILED DESCRIPTION OF EMBODIMENTS In the arrangement shown in FIG. 1, a crucible l having a long pouring lip la is fitted with a baffle 2 which extends into the crucible and effectively divides it into two chambers A and B which are in communication by way of a space left below the baffle 2. A tube 3 extends into the chamber A towards the floor thereof and terminates in a-porous plug 3a of non-carbonaceous refractory material. A gas jet 4 is provided externally of the crucible 1 to heat the contents thereof. A bed of flux-coated alumina balls 5 of about l4 in. diameter is provided in the chamber A and a bed of uncoated alumina balls of about 36 in. diameter is provided in the chamber B. The bed of uncoated balls 6 can extend below the baffle 2 and below the bed 5. A launder 7 is provided to flow molten aluminium from a holding'furnace (not shown) to the chamber A. The pouring lip Ia extends from the chamber 8 to a casting launder 8.
In the operation of the apparatus described, a body of molten aluminium is maintained in the chamber A and a flux cover 9 is maintained thereover. Molten aluminium enters the chamber A from the launder 7 by falling through the flux cover 9. The metal is degassed by a gas such as nitrogen which is supplied through the tube 3 and escapes from the plug 3a to bubble up through the molten aluminium in chamber A. As the pouring lip la is below the level at which molten aIu' minium is maintained in the chamber A, there is a continuous flow of molten aluminium from chamber A to chamber B and out over the pouring lip In to the casting launder 8.. The molten aluminium therefore leaves the launder 7, falls through the flux cover 9 into chamber A where it is degassed by the nitrogen, flows downwards through the bed of flux-coated balls 5 in which non-metallic inclusions are removed, passes under the baffle 2 and upwards through the bed of uncoated balls 6 in which intermetallic particles and residual flux are removed and then flows out over the pouring lip Ia to the casing launder 8 in a condition ready for casting.
The arrangement shown in FIG. 2 is similar in many respects to that described with reference to FIG. 1 and like references are used to denote like parts. In this case, the crucible 1 of the previous example is replaced by a box lb lined with refractory brick and the plug 3a is replaced by a porous refractory tube 3b of noncarbonaceous material. In this case, the launder 7 opens to the chamber A below the level of the flux cover 9 which is confined between the baffle 2 and a further baffle 2a and the walls of the box lb. The baffle 2a also serves to skim the molten aluminium flowing to the chamber A from the furnace tap hole which is shown at 10.
As the gas jet 4 of the previous example is not esscn tial, it is omitted from FIG. 2. In this case, the box lb would be pre-heated with a gas flame before being charged with molten aluminium and the balls 5 and 6. Also, immersion heaters may be placed in the chamber A to provide a greater control over the metal temperature.
FIGS. 3, 4 and 5 illustrate alternative ways in which the molten aluminium can be introduced into the chamber A from the launder 7. In FIG. 3, the launder 7 terminates in a spout 7a which extends through the flux cover 9. In FIGS. 4 and 5 the launder 7 terminates in a ,slight bowl the floor of which is in the fonn of a perforated refractory screen 7b which breaks up the molten metal as it enters the chamber A. In the embodiment shown in FIG. 4, the porous screen 7b is disposed within the flux cover 9 and in the embodiment shown in FIG. 5 it is disposed above the flux cover 9. In addition to use of a perforated refractory screen 7b or as an alternative thereto, a splash plate (not shown) immersed in the flux cover 9 may be used in order to break up the molten aluminium as it enters the chamber A' and so assist in the cleaning and degassing of the molten metal.
In the arrangement shown in FIG. 6, the chambers A and B of the previous examples are followed by further chambers C and D defined by additional baffles 2b and 2c, the baffle 2b extending upwardly from the floor of the crucible I or box la (as the case may be) to below the level of the molten aluminium and the baffle 2c extending downwardly into the molten aluminium and into a further bed of uncoated coarse refractory balls 6a, e.g. of alumina, of about )4 in. diameter. Thus, the molten aluminium leaving the chamber B flows over the baffle 2b into the chamber C, downwardly through the bed of uncoated balls 6a, under the baffle 20, upwardly through the bed of uncoated balls 6a and out over the casting launder 8. This passage of the metal through the bed of balls 6a renders the treatment more effective particularly in respect of stripping the metal of any residual flux entrained therein due to the downward flow of the metal through the uncoated balls 6a in the chamber C. The flux, being lighter than the molten aluminium tends to rise in the chamber.
It will be appreciated that the two stages of the process described above, namely, the first stage of degassing the molten aluminium and flowing it through the bed of flux-coated balls 5 and the second stage of flowing it through a bed of uncoated balls 6, can be carried out in separate vessels. In such event, the chamber B could be omitted and replaced by chambers C and D, also where space between the holding furnace is not sufficient to accommodate apparatus such as shown in FIG. 2, at least one of the beds of balls 5 and 6 could be disposed along the casting launder 8 and retained by suitable baffles. The degassing step could be carried out under a flux cover in the holding furnace, for example, in an alcove or forewell thereof.
Another way of separating the process into two convenient stages is shown in FIG. 7. This is very similar to that shown in FIG. 6 except in this case the chambers A and B are contained in one crucible l and the chambers C and D are contained in a separate crucible 11, the two crucibles communicating by way of a launder 12. Also, in this example, the molten metal is introduced into the chamber A below the flux layer 9 by way of baffle 2a as in the example illustrated in FIG. 2 and the nitrogen is introduced through a side wall to escape from the porous refractory tube 3b.
In the arrangement illustrated in FIG. 8, the degassing under the flux is carried out in a separate first vessel 13 which may be a brick-lined box, the metal being introduced below the flux-layer 9 by means of baffle 2a and flowing under baffle 2 upwards to spill over into the launder 12 from which it pours into the baffled crucible 14 containing a bed of alumina balls of which at least the upper layers are flux-coated balls 5 followed on the other side of the baffle 2 by a bed of uncoated balls 6. As mentioned previously, for practical purposes, the bed of balls 5 need not initially be coated with flux as it takes but a few minutes of operation of the process for at least enough of them to become sufficiently coated with flux for the process to operate efficiently. As can be seen from FIG. 8, the nitrogen is supplied to the molten metal under the flux cover 9 through two porous refractory tubes 3b.
The porous refractory non-carbonaceous material used to introduce the gas, e.g. nitrogen, into the molten aluminium may be of any suitable known type. Examples are refractories with a high alumina content, silicon carbide, silicon carbide bonded with silicon nitride and zircon. These are generally satisfactory if of sufficient porosity, but a high silica content should be avoided. Lumps of the refractory material may be shaped into plugs or bricks and drilled to receive a refractory tube through which the gas is fed to the plug, or the refractories may be in tube form. The porous plugs or tubes may be cemented into the walls of the vessel or may even form part of the floor.
The granules should be of such a size as to be retained by a a in. screen and in. diameter balls are preferred.
The temperature of the molten aluminium during treatment should be in the range of 675-800C, 700750C being preferred.
Suitable compositions for the flux cover 9 and the flux coating of the bed of balls 5 are given in Table l. The flux should be substantially free from oxides, oxysalts and fluosilicates and from volatile halides. It should consist essentially of the chlorides and fluorides of the alkali and alkaline earth metals including magnesium and should be thinly fluid at the melting point of the metal; when melted it should have a lower density than liquid aluminium.
TABLE L-SUITABLE FLUX COMPOSITIONS (PERCENT BY WEIGHT) NaF or KCI NaCl cryolite BsCh MgCl Cali, MgF,
As a flux for coating the balls and for providing a liquid flux cover on the top of the metal in the degassing chamber, mixtures of KCl and NaCl with small additions of CaF, are normally preferred (Flux A). Additions of NaF or cryolite may be included to reduce the melting point (Flux B), but a small amount of sodium will then be introduced into the metal and this may be detrimental to aluminium-magnesium alloys, e.g. of the A A 5356 type. For such alloys it is preferable to use a flux which, far from introducing sodium into the al loy, will reduce the very small content initially present as an impurity in primary metal. Suitable fluxes contain MgCl (Fluxes C, F.G.H.).
Thus by using a suitable flux cover such as one of Fluxes C.F.G. or H the method of the present invention may be applied to the continuous removal of sodium from liquid metal without the generation of objectionable fumes such as occur when liquid aluminium is treated with chlorine or hexachorethane.
If desired a heavy fluid flux may be used to coat the alumina balls and thereby obviate the risk of flux being washed off the balls by the flow of aluminium (Fluxes 9 a 10 D and E). Such fluxes contain BaCl and are in consewhich result have been in the range 0.12-0.17 quence more expensive. There is some advantage in cm /lOg which, though very satisfactory for normal using a flux of type A in that as the cleaning process purposes, is not as low as the figures obtained with the proceeds any flux which becomes entrained in the process of the present invention (0.04-0.12 cm/i00g). metal is absorbed on the uncoated balls which thereby 5 In considering why the latter process should be the become flux coated and so extend the available area to more effective, even though starting from completely which inclusions can adhere. Once the chloride layer undegassed metal, it is probably significant that a solid on the balls has become completely coated with nonfroth of chilled metal and argon, together with oxide metallic inclusions this does not exhaust the useful life formed from adventitious air, tends to accumulate on of the filter, since more inclusions (e.g. oxide particles the surface of the metal in the degassing chamber durand films) can adhere to those already adhering to the ing operation of the process of US. Patent No. flux layer. 3,039,864, whereas in the process of the present invention the metal surface is maintained free from'oxide. It is well established that oxide scum on liquid aluminium cryolite into the flux in place of NaF or cryolite. When hinders both pick'up by and escape of gas from the MgCl is also present, the RF will be converted to KC] metal whereas a very thin fl flux the however, and the Mgclz to Mgpzl surface allows gas to pass in or out readily. The fluid flux layer used in the present invention prevents all a dross formation, despite the turbulence, and a clean y y of example lhe following experiment is cited metal surface through which gas can readily escape is It is also possible to incorporate KF or potassium An apparatus essentially as shown in F 2 was continually maintained. Maintenance of a continuous Structed preheated y removable g j and a 6 layer of liquid flux is unnecessary so long as the metal deep layer of preheated V4 in. diameter alumina balls rf remains fluxed added to each Chambel Metal was into the q p if desired, argon may be used in place of nitrogen but mem until the Chambers were approximately half fullthere is no obvious technical advantage in doing so, reheated it d e alumina balls were since metal of high cleanliness and low gas content can pp in a bath of liquid flux and removed y means be prepared with the cheaper gas nitrogen. For best reof a preheated hand ladle for transfer to the ingoing Suits h hi t" grade f nitrogen may b d Side (Chamber of the baffle A 4 layer of flux" but the ordinary commercial grade is nevertheless satiscoated balls 5 was built upin this way in Chamber A. factor),
A 6 in. layer of preheated $4 in. diameter alumina balls I i to b appreciated h t l h h h b d of fluxwas bum P in chamber when was coated alumina balls 5,ls the preferred way of obtainplete, approximately 20 lbof flux was p ce n the ing the flux-lined channels through which the molten metal in chamber and as as thle had melted the metal is flowed, such channels can be obtained in other nitrogen supply was turned on a d a flOW e of 2 ways. Thus, for example, the metal could be flowedbecu.ft/min established. 5 tons Of liquid A A 6063 type tween overlapping spaced flux-lined baffleswhich toalloy which had been subjected to neither a degassing th r f r a t rt ous path for the m tal and provide nor a settling treatment was passed through the equipth am r similar ffect as the flux-coated balls, or ment at a temperature of approximately 725C an a flowed through one or more pads of coarse steel wool flow rate of 150 lb/min and cast by the semi-continuous 40 r turnin s which have been first dipped in liquid flux direct chill process into two rolling blocks of sections d th l d i a tro h la d r r cibl th 30 in X 10 in. Samples were taken from the metal enterpads being kept in position by means of suitably placed ing and leaving the equipment to determine gas and in baffles. clusion content. The results obtained are shown in Whilst however the step of flowing the degassed mol- Table II. ten metal through the bed or column of flux-coated TABLE 1i Strauba-Pieiflsr test (solidification under 5 t'orr pressure) Bubbling Hydrogen content, Cleaniness assessment during coolcum/100 g. (by fracture examinaing and solidi- Mm tion) fication Appearance of solidified surface Start Middle End Metalin Dirty to fairly clean. Continuous... Arched porous crusts... 0.48 0.32 0.31 Metal out Clean Nil Smooth surfaces tree from blisters and with central depression.-. 0. 04 0.06 0. 08
The metal charge used consisted entirely of scrap granules followed by the bed or column of uncoated metal and included approximately l ton ofscalpings. in granules will ensure a high degree of freedom from this particular experiment the porous refractory tube oxide inclusions etc., it is possible by controlling the shown in FIG. 2 was replaced by porous carbon, so that conditions, as already indicated, to remove nonthe experiment represented a severe test of the effimetallic inclusions so effectively at the prior stage of ciency of the equipment in removing inclusions as well nitrogen treatment under a liquid flux cover that subseas gas. We have carried out comparative experiments quent passage through one or more columns of granwith the process described by US. Patent No. ules may not be required even for critical applications, 3,039,864 on the same scale as the experiment deprovided some alternative means is available for stripscribed and subjecting the metal to a prior chlorine deping from the outflowing metal any entrained flux gassing treatment, but even so the hydrogen contents which may be present. in operating the present invention in the absence of a column of granules we find that some liquid flux passes into the exit chamber and coats the walls with a thin layer any excess of which is displaccd upwards to the metal surface. By placing one or more baffles in the exit launder from the degassing chamber it is possible to prevent seepage of liquid flux into the casting, but this can be more effectively ensured by applying to the metal surface on the inflowing side of an exit launder baffle a thin layer of powdered CaF or MgF This layer may be confined by two baffles to a short length of the launder, e.g. 6-9 in. The CaF may if desired, be applied also to the surface of the metal in the exit chamber. Alternatively, CaF may be replaced by an inspissated flux of the kind well known in the magnesium industry so as to form a pasty viscous flux cover with a high absorptive power for fluid fluxes of the type shown in Table l.
The operation of the present invention whereby the columns of balls is reduced in depth or eliminated is further illustrated by the examples of FIGS. 9-15.
In the arrangement illustrated in FIG. 9 there is provided a crucible 101 provided with a baffle wall 102 extending towards the floor of the crucible to form the chambers A and B. A launder 103 supplies molten metal to the chamber A allowing it to pass through a flux cover 104 floating on the metal in the chamber A. As will be appreciated, the launder 103 can be disposed to admit molten metal to the chamber A under the flux cover 104 or into the flux cover 104. Within the chamber A is disposed a porous plug 105 for admitting the inert gas, which is preferably nitrogen, into themolten metal. Molten metal flows through the chamber A under the baffle 102 to the chamber B and overflows along an exit or casting launder 106.
The apparatus, so far described, is broadly sufficient for the purpose of the present invention. However, various modifications may optionally be made to improve it. Thus a shallow bed 7 of in. diameter alumina balls may be disposed in the chamber A to provide a layer a few balls thick over the porous plug 105 to reduce buoyancy effects and to assist in absorbing inclusions. Furthermore, as shown, the bed 107 of balls may extend to a point above the level of the base of the baffle 102 to reduce possible channelling effects of the molten metal in its flow from chamber A to chamber B. Additionally, also as shown, the bed 107 of balls may extend into the chamber B.
The bed 107 of balls tend to remove any flux entrained in the metal passing therethrough. Instead of the bed 107 of balls, or in addition thereto, a launder baffle 108 may be disposed in the exit or casting launder 106 to prevent seepage of liquid flux to the casting location. This can even more effectively be prevented by applying to the metal surface on the inflowing side of the exit launder baffle 108 a thin layer 109 of powdered CaF, or MgF,.This can extend over the surface of the metal in the chamber or can be confined between two baffles 108a and 108b in the exit or casting launder a shown in FIG. 10.
The apparatus of FIG. is generally similar to that of FIG.9 and comprises a crucible 101 divided by a batfle 102 into chambers A and B. Chamber A is supplied with molten metal through a launder 103, the molten metal passing under a flux cover 104 being prevented from running back along the launder by a baffle 110. An open ended graphite tube 111 extends into the chamber A for admitting nitrogen into the molten metal. The molten metal flows through the chamber A under the baffle I02 to the chamber II and overflows into an exit launder H2. The launder 2 may lead direct to a casting launder (not shown) or to an intermediate baffled crucible (not shown) filled with coarse alumina balls or other coarse refractory granules.
The apparatus of FIG. 12 comprises a box of refractory brick divided by a baffle 102 into two chambers A and B. Immersion heaters each consisting of a refractory sheath 121 of silicon carbide or nitride containing a gas burner 122 extend into the chamber A. Molten metal enters the chamber A from a launder 103 and falls in a short unsupported stream 123 through a flux cover 104. Rows of porous brick 124 communicate with steel tube inserts 125 through which nitrogen is directed into the chamber A. As in the previously described apparatus, the molten metal flows through the chamber A, under the baffle 102 to the chamber B and overflows into an exit launder 126 where entrapped salts are removed by means of a baffle 127 and a layer 128 of fluospar.
In the apparatus of FIG. 13 a refractory brick box 120 is divided into three chambers A, B and C by baffles 102 and 132. A low deflecting wall 133 extends upwardly from the base of the box 101 between the baffles 102 and 132. Molten metal enters the chamber A from a launder 103 and falls in a stream 123 through a flux cover 104 as described with reference to FIG. 12. Nitrogen is introduced into the chamber A through a graphite tube 111 as described with reference to FIG. 3. The molten metal flows through the chamber A under the baffle 102 and is deflected upwardly into chamber C by the wall 133. The metal flows from the chamber C under the baffle 132 into the chamber B and overflows into an exit launder 134. As the metal flows from chamber C to chamber B entrained flux is deposited on the surface 135 of the baffle 132 leaving little, if any, to be removed in the exit launder 134. EXAMPLE I Dirty, undegassed Al-2'/2%Mg alloy at 710C was flowed at a speed of 600 lb per min into a brick box divided by a baffle wall to form two chambers, the ingoing chamber having a capacity of 2,400 lb of metal corresponding to a residence time of the metal in this chamber of 4 min. Commercial purity nitrogen was introduced via porous graphite diffuser tubes into the ingoing chamber at a flow rate of 400 cu.ft/hr corresponding to approximately 27 cu.ft. nitrogen per ton of metal. Flux (c) was applied to the metal surface in the ingoing chamber in amount corresponding to 3 lb per I00 sq.in. of surface area. Coarse alumina balls (V4 in. diameter) were used to cover the diffuser tubes to a depth of two balls in the degassing chamber and to a few inches above the base of the baffle in the exit chamber. Frequent Straube-Pfeiffer test samples were taken from the exit launder during the progress of the cast and the metal (12 ton) found to be of excellent quality, all the test samples being bubble-free on solidi- 'fication at a pressure of approx. 2 Torr.
EXAMPLE II Dirty, undegassedprimary metal at 730C was flowed at a speed of 250 lb per min into a brick box divided by a baffle wall to form two chambers, the ingoing chamber having a capacity of 1,000 lb of metal corresponding to a residence time of 4 min. White spot nitrogen was introduced via porous graphite diffuser tubes into the ingoing chamber at a flow rate of 150. cu.ft/hr corresponding to approx. 20 cu.ft/ton. Coarse alumina balls in. dia) were placed in the bottom of the brick box to a depth sufficient to cover the bottom of the baffle. Flux F was applied in amount corresponding to approx. 3 lb per 100 sq. in. of surface area. Straube- Pfeiffer test samples were taken from the exit launder at frequent intervals during the course of the cast (12 tons) and no bubble was developed in any of the tests during solidification at a pressure of 2 Torr. The sodium content of the ingoing metal was 0.0020-0.0025 percent and all outgoing samples analysed less than 0.0005 percent. Two refractory baffles were placed in the outgoing launder approximately 8 in. apart and between them a layer of CaF approximately one-eighth in. deep was sprinkled on the metal surface. Chloride tests carried out on skimmings taken from the metal surface in the launder at a position 6 inches beyond the surface baffle gave negative results. EXAMPLE lll ln a test similar to that of Example ll, dirty undegassed alloy of the A A 6063 type flowing at a rate of 200 lb/min, was successfully cleaned and degassed to show nil bubbles in the Straube-Pfeiffer test using a nitrogen flow rate corresponding approximately to 30 cu.ft. per ton of metal introduced via porous graphite diffusers. During the course of the cast two Vsin. steel tubes were inserted into the degassed chamber and nitrogen passed through at a flow rate corresponding approximately to cu.ft. per ton. The nitrogen passing through the diffusers was then reduced to approximately 15 cu.ft/ton making a total consumption of cu.ft/ton of nitrogen. Straube-Pfeiffer samples were again bubble-free. Under the original conditions of op eration i.e. with all the nitrogen entering via the diffuser tubes it was not possible to obtain nil bubbles consistently in the Straube'Pfeiffer test with only 20 cu.ft/- ton of nitrogen passing, although the degassing achieved was satisfactory.
Actual hydrogen analyses on samples of metal degassed and cleaned in accordance with the present invention have shown the gas contents achieved to be extremely low, i.e. 0.04-0. l 5 cc/ 100 g in comparison with 0.l50.20 cc/lOOg for conventional furnace degassing with chlorine.
Metal processed by the present invention has been shown to be suitable for production of high quality semi-fabricated products for critical applications. in particular the incidence of blister defects in soft annealed sheet for deep drawing purposes is extremely low and frequently nil. The corrosion resistance of the metal is somewhat better than that of conventionally furnace degassed metal, as judged by the Cass test.
Operation of the process of the present invention brings with it a number of important practical advantages. Its use eliminates the capital and operating costs of fume treatment equipment. Substitution of nitrogen and flux for chlorine brings savings in degassing costs. The time of treatment of metal with chlorine or hexachlorethane in a holding furnace is saved so that the output can be increased. Most valuable of all economi cally, metal losses are greatly reduced since dross formation in the holding furnace is far less than with conventional furnace degassing where chlorine or a chorine-nitrogen mixture is being passed into a reverbera-.
tory furnace for periods up to 60 min.
In addition to carrying out the process of the present invention in a containing vessel such as a brick box or crucible placed between holding furnace and casting point, it is also practicable to use as a containing vessel a forewell to, or an alcove within, the holding furnace itself, particularly where this is of a reverberatory type. Best results will then be obtained if the metal in the forewell or alcove is protected from direct contact with the products of combustion of the furnace. in the case of the alcove or cubicle within the furnace, brick walls may be built inwards from the wall of the furnace which includes the tapping hole, or from this wall and an adjacent wall, so as to partition off a cubicle of suitable size from the main part of the furnace, metal entering the cubicle by a passage underneath the partitioning walls or through holes left therein for the purpose. A drossing door is needed through which to apply flux to the metal within the cubical walls. Nitrogen or other inert gas may be introduced via porous bricks built into the floor of the cubicle or more conveniently by porous or non-porous graphite tubes, or steel orgcast iron tubes protected by vitreaous enamelling. These tubes may be introduced through the furnace walls into the cubicle. Operation of the process in a forewell or a cubicle within a reverberatoryfurnace has advantages under some conditions and particularly where it is desired to make frequent alloy changes or to operate the process intermittently.
When operating with a forewell it is convenient to divide the forewell by means of a baffle into two chambers so that molten metal enters one chamber, flows underneath the baffle or through one or more holes therein to the other chamber, and then through a tap hole into a casting launder.
The molten metal in the forewell being in direct communication with that in the main body of the reverberatory furnace will be maintained hot thereby, but if desired additional heating may be provided.
lFlGS. 14a and 14b show a reverberatory furnace R with a cubicle C defined by walls of refractory brick extending inwardly from walls 141 of the furnace R. The walls 140 may, if desired, extend up to the ceiling (not shown) of the furnace. A tapping hole 142 and a door 143 for dross removal are provided in respective walls 141 of the furnace to communicate with the cubicle C. A drain hole 144 may also be provided in one of the walls 141 at a location outside the cubicle C, the floor 145 of the cubicle preferably sloping downward towards the drain hole 144. Apertures 146 are provided at or near the bases of the walls 140 so that the cubicle C is in communication with the furnace R. A flux cover 147 extends over the surface of the molten metal in the cubicle C and a graphite tube 148 extends into the cubicle for admitting an inert gas into the molten metal.
FIGS. 15a and 15b show a reverberatory furnace R with a forewell F. Walls 150 extend outwardly from a wall 151 of the reverberatory furnace R to define the forewell F which is divided by a baffle [52 into two chambers F, and F Openings 153 at or near the base of the wall 151 permit the flow of molten metal to the chamber F, into which nitrogen is introduced through graphite or enamelled steel tubes 154. A flux cover 155 is maintained over the liquid metal in the chamber F,. The molten metal flows under the baffle 152 into the chamber F from which it flows to a casting launder (not shown) through a tapping hole 156. Heat is conserved in the molten metal by use of refractory lined lids 157. Additional heating is provided, where required, by means of gas burners 158.
It will be seen that the present invention provides a process for cleaning and degassing molten aluminium in a continuous manner which comprises flowing molten aluminium through a chamber in which a substantially inert gas such as, for example, nitrogen is passed into the metal whilst a liquid flux layer is maintained on the aluminium in the chamber, followed, if desired, by flowing the molten aluminium through a bed or column of coarse refractory flux-coated granules and then flowing the molten aluminium through a bed or column of uncoated coarse refractory granules. Metal treated by this process has given excellent results when used for the production of bright anodised and other critical products.
The invention has application to the treatment of molten metals other than aluminium.
We claim: 1. A process for removing solid, non-metallic constituents from molten metal which comprises flowing the molten metal at a temperature up to 800C. through a bed of coarse refractory granules substantially of such a size as to be retained on a in. aperture screen, while maintaining in a molten state on at least some of said granules in said bed a molten salt flux coating, said bed being submerged beneath the surface of the molten metal,
maintaining said temperature whereby the salt flux on said granules is in molten condition, said salt flux being selected from the group consisting of mixtures, which are molten at said temperature, of salts selected from the group consisting of chlorides and fluorides of alkali metals, alkaline earth metals and magnesium.
2. A process in accordance with claim 1, wherein a layer of said molten flux is maintained on the surface of said molten metal, and nitrogen is passed through said molten metal to degas said molten metal.
3. A process in accordance with claim 1, wherein said coarse refractory granules are Al O balls of as in. minimum size.
4. A process in accordance with claim 1, further comprising flowing said molten metal through a second bed of substantially uncoated coarse refractory granules.
5. A process for removing non-metallic constituents including hydrogen and solid particles from liquid aluminum and its alloys in a continuous manner which comprises flowing such liquid metal at a temperature up to 800C. through a containing vessel,
maintaining a molten salt flux layer on the surface of metal in the containing vessel,
simultaneously passing a substantially inert gas into the liquid metal, and
thereafter flowing the liquid metal through a bed of coarse refractory granules substantially of a size to be retained on a 56 in. aperture screen, said bed being submerged beneath the surface of the molten metal,
the inert gas being passed into the container and into the liquid metal in such a manner as to create vigorous turbulence whereby a coating of said molten salt flux is produced and maintained on at least some of said granules, said salt flux being selected from mixtures of salts which are molten at said temperature and which salts are selected from the group consisting of chlorides and fluorides of alkali and alkaline earth metals and magnesium.
6. A process in accordance with claim 5, wherein said containing vessel is divided by a baffle wall to provide a substantially U-shaped vessel in which the direction of liquid metal flow is down a first leg of the U and up a second leg of the U, wherein said process comprises passing said inert gas upwardly through the liquid metal in said first leg with said molten salt layer being maintained on the surface of the liquid metal in said first leg.
7. A process in accordance with claim 5, wherein said substantially inert gas is nitrogen.
8. A process in accordance with claim 5, wherein said bed of coarse refractory granules is located in a second vessel downstream from said containing vessel.
9. A process in accordance with claim 5 for additionally removing sodium metal from the liquid aluminium, wherein said flux contains at least 5 percent by weight of MgCl, and is substantially free of the fluoride and complex fluorides of sodium.
10. A process for removing solid non-metallic constituents from molten aluminum and its alloys in a continuous manner which comprises continuously flowing the molten metal at a temperature up to 800C. through a containing vessel, maintaining a molten salt flux layer on the surface of molten metal in the containing vessel, continuously creating vigorous turbulence in the molten metal in contact with the molten flux within the containing vessel; and
thereafter continuously flowing the molten metal having some molten flux entrained therein through a flux trap comprising a bed of coarse refractory granules substantially of a size to be retained on a in. aperture screen, said bed being submerged beneath the surface of the molten metal, whereby at least some of said granules become coated with said molten salt flux,
said salt flux being selected from mixtures of salts which are molten at said temperature and which salts are selected from the group consisting of chlorides and fluorides of alkali and alkaline earth metals and magnesium.
1 l. A process in accordance with claim 10 for removing hydrogen and solid particles wherein the residence time of said molten metal in said containing vessel is at least 1% min., said vigorous turbulence is created by passing a substantially inert gas into said molten metal at a rate sufficient to provide at least 10 cu. ft. of inert gas per ton of molten metal.
12. A process in accordance with claim 11, wherein said molten flux layer is provided in an amount of at least 1 lb. of flux for each sq. in. of surface area of said molten metal and wherein said flux is substantially free of oxides, oxysalts, fluorosilicates and volatile halides.
13. A process in accordance with claim 12, wherein said gas is nitrogen.
14. A process in accordance with claim 11, wherein said flux trap further comprises a layer of fluoride.

Claims (13)

  1. 2. A process in accordance with claim 1, wherein a layer of said molten flux is maintained on the surface of said molten metal, and nitrogen is passed through said molten metal to degas said molten metal.
  2. 3. A process in accordance with claim 1, wherein said coarse refractory granules are Al2O3 balls of 3/8 in. minimum size.
  3. 4. A process in accordance with claim 1, further comprising flowing said molten metal through a second bed of substantially uncoated coarse refractory granules.
  4. 5. A process for removing non-metallic constituents including hydrogen and solid particles from liquid aluminum and its alloys in a continuous manner which comprises flowing such liquid metal at a temperature up to 800*C. through a containing vessel, maintaining a molten salt flux layer on the surface of metal in the containing vessel, simultaneously passing a substantially inert gas into the liquid metal, and thereafter flowing the liquid metal through a bed of coarse refractory granules substantially of a size to be retained on a 3/8 in. aperture screen, said bed being submerged beneath the surface of the molten metal, the inert gas being passed into the container and into the liquid metal in such a manner as to create vigorous turbulence whereby a coating of said molten salt flux is produced and maintained on at least some of said granules, said salt flux being selected from mixtures of salts which are molten at said temperature and which salts are selected from the group consisting of chlorides and fluorides of alkali and alkaline earth metals and magnesium.
  5. 6. A process in accordance with claim 5, wherein said containing vessel Is divided by a baffle wall to provide a substantially U-shaped vessel in which the direction of liquid metal flow is down a first leg of the U and up a second leg of the U, wherein said process comprises passing said inert gas upwardly through the liquid metal in said first leg with said molten salt layer being maintained on the surface of the liquid metal in said first leg.
  6. 7. A process in accordance with claim 5, wherein said substantially inert gas is nitrogen.
  7. 8. A process in accordance with claim 5, wherein said bed of coarse refractory granules is located in a second vessel downstream from said containing vessel.
  8. 9. A process in accordance with claim 5 for additionally removing sodium metal from the liquid aluminium, wherein said flux contains at least 5 percent by weight of MgCl2 and is substantially free of the fluoride and complex fluorides of sodium.
  9. 10. A process for removing solid non-metallic constituents from molten aluminum and its alloys in a continuous manner which comprises continuously flowing the molten metal at a temperature up to 800*C. through a containing vessel, maintaining a molten salt flux layer on the surface of molten metal in the containing vessel, continuously creating vigorous turbulence in the molten metal in contact with the molten flux within the containing vessel; and thereafter continuously flowing the molten metal having some molten flux entrained therein through a flux trap comprising a bed of coarse refractory granules substantially of a size to be retained on a 3/8 in. aperture screen, said bed being submerged beneath the surface of the molten metal, whereby at least some of said granules become coated with said molten salt flux, said salt flux being selected from mixtures of salts which are molten at said temperature and which salts are selected from the group consisting of chlorides and fluorides of alkali and alkaline earth metals and magnesium.
  10. 11. A process in accordance with claim 10 for removing hydrogen and solid particles wherein the residence time of said molten metal in said containing vessel is at least 1 1/2 min., said vigorous turbulence is created by passing a substantially inert gas into said molten metal at a rate sufficient to provide at least 10 cu. ft. of inert gas per ton of molten metal.
  11. 12. A process in accordance with claim 11, wherein said molten flux layer is provided in an amount of at least 1 lb. of flux for each 100 sq. in. of surface area of said molten metal and wherein said flux is substantially free of oxides, oxysalts, fluorosilicates and volatile halides.
  12. 13. A process in accordance with claim 12, wherein said gas is nitrogen.
  13. 14. A process in accordance with claim 11, wherein said flux trap further comprises a layer of fluoride.
US00071112A 1969-09-12 1970-09-10 Treatment of liquid metal Expired - Lifetime US3753690A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB4516369 1969-09-12

Publications (1)

Publication Number Publication Date
US3753690A true US3753690A (en) 1973-08-21

Family

ID=10436143

Family Applications (2)

Application Number Title Priority Date Filing Date
US00071155A Expired - Lifetime US3741751A (en) 1969-09-12 1970-09-10 Heating of molten metal
US00071112A Expired - Lifetime US3753690A (en) 1969-09-12 1970-09-10 Treatment of liquid metal

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US00071155A Expired - Lifetime US3741751A (en) 1969-09-12 1970-09-10 Heating of molten metal

Country Status (12)

Country Link
US (2) US3741751A (en)
JP (1) JPS556088B1 (en)
AT (1) AT325865B (en)
BE (1) BE756091A (en)
CA (1) CA941618A (en)
CH (1) CH513982A (en)
DE (1) DE2045258A1 (en)
FR (1) FR2061246A5 (en)
GB (1) GB1316578A (en)
IS (1) IS950B6 (en)
NL (1) NL170311C (en)
SE (1) SE365250B (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917242A (en) * 1973-05-18 1975-11-04 Southwire Co Apparatus for fluxing and filtering of molten metal
US4032124A (en) * 1975-03-28 1977-06-28 Swiss Aluminium Ltd. Apparatus and method for in-line degassing and filtration of molten metal
US4087080A (en) * 1975-04-29 1978-05-02 Swiss Aluminium Ltd. Apparatus for filtering metal melts
US4093194A (en) * 1976-01-13 1978-06-06 E. I. Du Pont De Nemours And Company Process and reactor for making magnesium metal
US4138246A (en) * 1976-03-26 1979-02-06 Swiss Aluminium Ltd. Process for lowering the concentration of sodium in aluminum melts
US4138245A (en) * 1976-12-21 1979-02-06 Swiss Aluminium Ltd. Process for the removal of impurities from aluminum melts
US4144054A (en) * 1976-12-21 1979-03-13 Swiss Aluminium Ltd. Process for the removal of impurities from aluminum melts
US4169584A (en) * 1977-07-18 1979-10-02 The Carborundum Company Gas injection apparatus
US4394271A (en) * 1981-04-23 1983-07-19 Groteke Daniel E Apparatus and method for filtration of molten metal
WO1985004675A1 (en) * 1984-04-13 1985-10-24 Aluminium Pechiney Improvement to a device for the treatment, during the passage, of a liquid alloy or metal stream based on aluminium or magnesium
EP0281508A1 (en) * 1987-02-03 1988-09-07 Alusuisse-Lonza Services Ag Apparatus for degassing molten metal
EP0490371A2 (en) * 1990-12-13 1992-06-17 Aluminum Company Of America Multistage rigid media filter for molten metal
WO1992010595A1 (en) * 1990-12-11 1992-06-25 Christopher John English Apparatus and method for treating molten metal
US5171359A (en) * 1991-09-19 1992-12-15 Megy Joseph A Refractory metal SWARF composition
WO1994008059A1 (en) * 1991-09-19 1994-04-14 Megy Joseph A Refractory metal sway composition and method of making same
US5405427A (en) * 1994-05-18 1995-04-11 Eckert; C. Edward Salt flux for addition to molten metal adapted for removing constituents therefrom and methods of using
US5435982A (en) * 1993-03-31 1995-07-25 Molten Metal Technology, Inc. Method for dissociating waste in a packed bed reactor
US5597401A (en) * 1992-10-05 1997-01-28 Megy; Joseph A. Refractory metal SWARF composition and method of making same
US5662725A (en) * 1995-05-12 1997-09-02 Cooper; Paul V. System and device for removing impurities from molten metal
US5673902A (en) * 1996-02-01 1997-10-07 Selee Corporation Dual stage ceramic foam filtration system and method
US5814126A (en) * 1994-01-12 1998-09-29 Cook; Thomas H. Method and apparatus for producing bright and smooth galvanized coatings
US5913353A (en) * 1994-09-26 1999-06-22 Ford Global Technologies, Inc. Process for casting light metals
US5944496A (en) * 1996-12-03 1999-08-31 Cooper; Paul V. Molten metal pump with a flexible coupling and cement-free metal-transfer conduit connection
US5951243A (en) * 1997-07-03 1999-09-14 Cooper; Paul V. Rotor bearing system for molten metal pumps
US6027685A (en) * 1997-10-15 2000-02-22 Cooper; Paul V. Flow-directing device for molten metal pump
US6303074B1 (en) 1999-05-14 2001-10-16 Paul V. Cooper Mixed flow rotor for molten metal pumping device
US6398525B1 (en) 1998-08-11 2002-06-04 Paul V. Cooper Monolithic rotor and rigid coupling
US6689310B1 (en) 2000-05-12 2004-02-10 Paul V. Cooper Molten metal degassing device and impellers therefor
US6723276B1 (en) 2000-08-28 2004-04-20 Paul V. Cooper Scrap melter and impeller
US20050026318A1 (en) * 2000-10-19 2005-02-03 Seiji Sarayama Crystal growth method, crystal growth apparatus, group-III nitride crystal and group-III nitride semiconductor device
US20060180962A1 (en) * 2004-12-02 2006-08-17 Thut Bruno H Gas mixing and dispersement in pumps for pumping molten metal
US7100669B1 (en) * 2003-04-09 2006-09-05 Brunswick Corporation Aluminum-silicon casting alloy having refined primary silicon due to pressure
US20080116148A1 (en) * 2004-02-17 2008-05-22 John Henry Courtenay Treatment of Metal Melts
US7402276B2 (en) 2003-07-14 2008-07-22 Cooper Paul V Pump with rotating inlet
US20080236336A1 (en) * 2007-03-27 2008-10-02 Thut Bruno H Flux injection with pump for pumping molten metal
US7470392B2 (en) 2003-07-14 2008-12-30 Cooper Paul V Molten metal pump components
US7507367B2 (en) 2002-07-12 2009-03-24 Cooper Paul V Protective coatings for molten metal devices
US7731891B2 (en) 2002-07-12 2010-06-08 Cooper Paul V Couplings for molten metal devices
US7906068B2 (en) 2003-07-14 2011-03-15 Cooper Paul V Support post system for molten metal pump
US20120090432A1 (en) * 2010-10-18 2012-04-19 Alcoa, Inc. Wettable injectors for degassing of molten metal
US8178037B2 (en) 2002-07-12 2012-05-15 Cooper Paul V System for releasing gas into molten metal
US8337746B2 (en) 2007-06-21 2012-12-25 Cooper Paul V Transferring molten metal from one structure to another
US8361379B2 (en) 2002-07-12 2013-01-29 Cooper Paul V Gas transfer foot
US8366993B2 (en) 2007-06-21 2013-02-05 Cooper Paul V System and method for degassing molten metal
US8444911B2 (en) 2009-08-07 2013-05-21 Paul V. Cooper Shaft and post tensioning device
US8449814B2 (en) 2009-08-07 2013-05-28 Paul V. Cooper Systems and methods for melting scrap metal
US8524146B2 (en) 2009-08-07 2013-09-03 Paul V. Cooper Rotary degassers and components therefor
US8535603B2 (en) 2009-08-07 2013-09-17 Paul V. Cooper Rotary degasser and rotor therefor
US8613884B2 (en) 2007-06-21 2013-12-24 Paul V. Cooper Launder transfer insert and system
US8714914B2 (en) 2009-09-08 2014-05-06 Paul V. Cooper Molten metal pump filter
US9011761B2 (en) 2013-03-14 2015-04-21 Paul V. Cooper Ladle with transfer conduit
US9108244B2 (en) 2009-09-09 2015-08-18 Paul V. Cooper Immersion heater for molten metal
US9156087B2 (en) 2007-06-21 2015-10-13 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9205490B2 (en) 2007-06-21 2015-12-08 Molten Metal Equipment Innovations, Llc Transfer well system and method for making same
US9410744B2 (en) 2010-05-12 2016-08-09 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US9409232B2 (en) 2007-06-21 2016-08-09 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel and method of construction
US9643247B2 (en) 2007-06-21 2017-05-09 Molten Metal Equipment Innovations, Llc Molten metal transfer and degassing system
US9903383B2 (en) 2013-03-13 2018-02-27 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened top
US10052688B2 (en) 2013-03-15 2018-08-21 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US10138892B2 (en) 2014-07-02 2018-11-27 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US10267314B2 (en) 2016-01-13 2019-04-23 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US10428821B2 (en) 2009-08-07 2019-10-01 Molten Metal Equipment Innovations, Llc Quick submergence molten metal pump
US10947980B2 (en) 2015-02-02 2021-03-16 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened blade tips
US11149747B2 (en) 2017-11-17 2021-10-19 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices
US11358217B2 (en) 2019-05-17 2022-06-14 Molten Metal Equipment Innovations, Llc Method for melting solid metal
WO2023196341A1 (en) * 2022-04-05 2023-10-12 Doggone Investment Co. LLC Apparatus and method for production of high purity copper-based alloys
US11873845B2 (en) 2021-05-28 2024-01-16 Molten Metal Equipment Innovations, Llc Molten metal transfer device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1374586A (en) * 1971-10-08 1974-11-20 British Aluminium Co Ltd Apparatus for introducing gas into liquid metal
GB1554104A (en) * 1975-07-23 1979-10-17 British Steel Corp Refining liquid metal
US4277281A (en) * 1979-08-16 1981-07-07 Southwire Company Continuous filter for molten copper
DE3145538A1 (en) * 1981-11-17 1983-05-26 ESB Schweißbetrieb Burbach & Bender oHG, 5900 Siegen Process and apparatus for the treatment of metal melts with purge gas
DE3480855D1 (en) * 1983-10-21 1990-02-01 Showa Aluminum Corp METHOD FOR REMOVING HYDROGEN GAS AND NON-METAL IMPURITIES FROM ALUMINUM MELTS.
DE3413256A1 (en) * 1984-04-07 1985-10-17 Varta Batterie Ag, 3000 Hannover Apparatus for treating melts composed of lead and lead alloys
EP0183402B1 (en) * 1984-11-29 1988-08-17 Foseco International Limited Rotary device, apparatus and method for treating molten metal
GB2243620B (en) * 1990-03-27 1994-06-29 Atsugi Unisia Corp Improvements in and relating to forming aluminium-silicon alloy
CN100389214C (en) * 2003-12-16 2008-05-21 兰州理工大学 Apparatus and method for removing non-metallic oxidized impurity in non-ferrous alloy liquid
ITMI20060155A1 (en) * 2006-01-31 2007-08-01 Techint Spa FLAME BURNER WITH FLAT LOW EMISSIONS POLLUTANT
EP3118337B1 (en) * 2015-07-15 2019-09-04 Heraeus Deutschland GmbH & Co. KG Method and device for burning away precious metal-containing materials

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2715068A (en) * 1953-03-20 1955-08-09 Harry M Levin Comestible and comestible base and method of making the same
US2863558A (en) * 1957-04-29 1958-12-09 Aluminum Co Of America Filtering molten aluminous metal
US3025153A (en) * 1959-01-21 1962-03-13 Foundry Services Int Ltd Heat-producing mixtures
US3039864A (en) * 1958-11-21 1962-06-19 Aluminum Co Of America Treatment of molten light metals
US3172757A (en) * 1965-03-09 Treatment of molten light metals
US3189491A (en) * 1962-07-02 1965-06-15 Dow Chemical Co Aluminum flux
US3198625A (en) * 1961-02-08 1965-08-03 Aluminum Co Of America Purification of aluminum
US3272667A (en) * 1964-12-10 1966-09-13 Du Pont Submerged arc welding process and flux composition utilizing fluorocarbon
US3281238A (en) * 1963-11-13 1966-10-25 Aluminum Co Of America Treatment of molten aluminous metal
US3305351A (en) * 1964-02-24 1967-02-21 Reynolds Metals Co Treatment of aluminum with aluminum fluoride particles
US3537987A (en) * 1969-08-28 1970-11-03 Intalco Aluminum Corp Method of filtering molten light metals

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172757A (en) * 1965-03-09 Treatment of molten light metals
US2715068A (en) * 1953-03-20 1955-08-09 Harry M Levin Comestible and comestible base and method of making the same
US2863558A (en) * 1957-04-29 1958-12-09 Aluminum Co Of America Filtering molten aluminous metal
US3039864A (en) * 1958-11-21 1962-06-19 Aluminum Co Of America Treatment of molten light metals
US3025153A (en) * 1959-01-21 1962-03-13 Foundry Services Int Ltd Heat-producing mixtures
US3198625A (en) * 1961-02-08 1965-08-03 Aluminum Co Of America Purification of aluminum
US3189491A (en) * 1962-07-02 1965-06-15 Dow Chemical Co Aluminum flux
US3281238A (en) * 1963-11-13 1966-10-25 Aluminum Co Of America Treatment of molten aluminous metal
US3305351A (en) * 1964-02-24 1967-02-21 Reynolds Metals Co Treatment of aluminum with aluminum fluoride particles
US3272667A (en) * 1964-12-10 1966-09-13 Du Pont Submerged arc welding process and flux composition utilizing fluorocarbon
US3537987A (en) * 1969-08-28 1970-11-03 Intalco Aluminum Corp Method of filtering molten light metals

Cited By (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917242A (en) * 1973-05-18 1975-11-04 Southwire Co Apparatus for fluxing and filtering of molten metal
US4032124A (en) * 1975-03-28 1977-06-28 Swiss Aluminium Ltd. Apparatus and method for in-line degassing and filtration of molten metal
US4087080A (en) * 1975-04-29 1978-05-02 Swiss Aluminium Ltd. Apparatus for filtering metal melts
US4093194A (en) * 1976-01-13 1978-06-06 E. I. Du Pont De Nemours And Company Process and reactor for making magnesium metal
US4138246A (en) * 1976-03-26 1979-02-06 Swiss Aluminium Ltd. Process for lowering the concentration of sodium in aluminum melts
US4138245A (en) * 1976-12-21 1979-02-06 Swiss Aluminium Ltd. Process for the removal of impurities from aluminum melts
US4144054A (en) * 1976-12-21 1979-03-13 Swiss Aluminium Ltd. Process for the removal of impurities from aluminum melts
US4169584A (en) * 1977-07-18 1979-10-02 The Carborundum Company Gas injection apparatus
US4394271A (en) * 1981-04-23 1983-07-19 Groteke Daniel E Apparatus and method for filtration of molten metal
WO1985004675A1 (en) * 1984-04-13 1985-10-24 Aluminium Pechiney Improvement to a device for the treatment, during the passage, of a liquid alloy or metal stream based on aluminium or magnesium
EP0281508A1 (en) * 1987-02-03 1988-09-07 Alusuisse-Lonza Services Ag Apparatus for degassing molten metal
WO1992010595A1 (en) * 1990-12-11 1992-06-25 Christopher John English Apparatus and method for treating molten metal
EP0490371A2 (en) * 1990-12-13 1992-06-17 Aluminum Company Of America Multistage rigid media filter for molten metal
EP0490371A3 (en) * 1990-12-13 1993-10-06 Aluminum Company Of America Multistage rigid media filter for molten metal
US5171359A (en) * 1991-09-19 1992-12-15 Megy Joseph A Refractory metal SWARF composition
WO1994008059A1 (en) * 1991-09-19 1994-04-14 Megy Joseph A Refractory metal sway composition and method of making same
US5597401A (en) * 1992-10-05 1997-01-28 Megy; Joseph A. Refractory metal SWARF composition and method of making same
US5435982A (en) * 1993-03-31 1995-07-25 Molten Metal Technology, Inc. Method for dissociating waste in a packed bed reactor
US5814126A (en) * 1994-01-12 1998-09-29 Cook; Thomas H. Method and apparatus for producing bright and smooth galvanized coatings
US5405427A (en) * 1994-05-18 1995-04-11 Eckert; C. Edward Salt flux for addition to molten metal adapted for removing constituents therefrom and methods of using
US5913353A (en) * 1994-09-26 1999-06-22 Ford Global Technologies, Inc. Process for casting light metals
US5662725A (en) * 1995-05-12 1997-09-02 Cooper; Paul V. System and device for removing impurities from molten metal
US5673902A (en) * 1996-02-01 1997-10-07 Selee Corporation Dual stage ceramic foam filtration system and method
US6345964B1 (en) 1996-12-03 2002-02-12 Paul V. Cooper Molten metal pump with metal-transfer conduit molten metal pump
US5944496A (en) * 1996-12-03 1999-08-31 Cooper; Paul V. Molten metal pump with a flexible coupling and cement-free metal-transfer conduit connection
US5951243A (en) * 1997-07-03 1999-09-14 Cooper; Paul V. Rotor bearing system for molten metal pumps
US6027685A (en) * 1997-10-15 2000-02-22 Cooper; Paul V. Flow-directing device for molten metal pump
US6398525B1 (en) 1998-08-11 2002-06-04 Paul V. Cooper Monolithic rotor and rigid coupling
US6303074B1 (en) 1999-05-14 2001-10-16 Paul V. Cooper Mixed flow rotor for molten metal pumping device
US6689310B1 (en) 2000-05-12 2004-02-10 Paul V. Cooper Molten metal degassing device and impellers therefor
US6723276B1 (en) 2000-08-28 2004-04-20 Paul V. Cooper Scrap melter and impeller
US20080282969A1 (en) * 2000-10-19 2008-11-20 Ricoh Company, Ltd, Crystal growth method, crystal growth apparatus, group-iii nitride crystal and group-iii nitride semiconductor device
US20050026318A1 (en) * 2000-10-19 2005-02-03 Seiji Sarayama Crystal growth method, crystal growth apparatus, group-III nitride crystal and group-III nitride semiconductor device
US8562737B2 (en) 2000-10-19 2013-10-22 Ricoh Company, Ltd. Crystal growth method, crystal growth apparatus, group-III nitride crystal and group III nitride semiconductor device
US8361379B2 (en) 2002-07-12 2013-01-29 Cooper Paul V Gas transfer foot
US8110141B2 (en) 2002-07-12 2012-02-07 Cooper Paul V Pump with rotating inlet
US8529828B2 (en) 2002-07-12 2013-09-10 Paul V. Cooper Molten metal pump components
US8440135B2 (en) 2002-07-12 2013-05-14 Paul V. Cooper System for releasing gas into molten metal
US8409495B2 (en) 2002-07-12 2013-04-02 Paul V. Cooper Rotor with inlet perimeters
US9034244B2 (en) 2002-07-12 2015-05-19 Paul V. Cooper Gas-transfer foot
US7507367B2 (en) 2002-07-12 2009-03-24 Cooper Paul V Protective coatings for molten metal devices
US8178037B2 (en) 2002-07-12 2012-05-15 Cooper Paul V System for releasing gas into molten metal
US7731891B2 (en) 2002-07-12 2010-06-08 Cooper Paul V Couplings for molten metal devices
US9435343B2 (en) 2002-07-12 2016-09-06 Molten Meal Equipment Innovations, LLC Gas-transfer foot
US7100669B1 (en) * 2003-04-09 2006-09-05 Brunswick Corporation Aluminum-silicon casting alloy having refined primary silicon due to pressure
US8075837B2 (en) 2003-07-14 2011-12-13 Cooper Paul V Pump with rotating inlet
US7402276B2 (en) 2003-07-14 2008-07-22 Cooper Paul V Pump with rotating inlet
US7906068B2 (en) 2003-07-14 2011-03-15 Cooper Paul V Support post system for molten metal pump
US8501084B2 (en) 2003-07-14 2013-08-06 Paul V. Cooper Support posts for molten metal pumps
US7470392B2 (en) 2003-07-14 2008-12-30 Cooper Paul V Molten metal pump components
US8475708B2 (en) 2003-07-14 2013-07-02 Paul V. Cooper Support post clamps for molten metal pumps
US20080116148A1 (en) * 2004-02-17 2008-05-22 John Henry Courtenay Treatment of Metal Melts
US7476357B2 (en) 2004-12-02 2009-01-13 Thut Bruno H Gas mixing and dispersement in pumps for pumping molten metal
US20060180962A1 (en) * 2004-12-02 2006-08-17 Thut Bruno H Gas mixing and dispersement in pumps for pumping molten metal
US7534284B2 (en) 2007-03-27 2009-05-19 Bruno Thut Flux injection with pump for pumping molten metal
US20080236336A1 (en) * 2007-03-27 2008-10-02 Thut Bruno H Flux injection with pump for pumping molten metal
US9205490B2 (en) 2007-06-21 2015-12-08 Molten Metal Equipment Innovations, Llc Transfer well system and method for making same
US9643247B2 (en) 2007-06-21 2017-05-09 Molten Metal Equipment Innovations, Llc Molten metal transfer and degassing system
US11759854B2 (en) 2007-06-21 2023-09-19 Molten Metal Equipment Innovations, Llc Molten metal transfer structure and method
US11185916B2 (en) 2007-06-21 2021-11-30 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel with pump
US11167345B2 (en) 2007-06-21 2021-11-09 Molten Metal Equipment Innovations, Llc Transfer system with dual-flow rotor
US8613884B2 (en) 2007-06-21 2013-12-24 Paul V. Cooper Launder transfer insert and system
US11130173B2 (en) 2007-06-21 2021-09-28 Molten Metal Equipment Innovations, LLC. Transfer vessel with dividing wall
US8753563B2 (en) 2007-06-21 2014-06-17 Paul V. Cooper System and method for degassing molten metal
US11103920B2 (en) 2007-06-21 2021-08-31 Molten Metal Equipment Innovations, Llc Transfer structure with molten metal pump support
US9017597B2 (en) 2007-06-21 2015-04-28 Paul V. Cooper Transferring molten metal using non-gravity assist launder
US8366993B2 (en) 2007-06-21 2013-02-05 Cooper Paul V System and method for degassing molten metal
US11020798B2 (en) 2007-06-21 2021-06-01 Molten Metal Equipment Innovations, Llc Method of transferring molten metal
US10562097B2 (en) 2007-06-21 2020-02-18 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9156087B2 (en) 2007-06-21 2015-10-13 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US8337746B2 (en) 2007-06-21 2012-12-25 Cooper Paul V Transferring molten metal from one structure to another
US10458708B2 (en) 2007-06-21 2019-10-29 Molten Metal Equipment Innovations, Llc Transferring molten metal from one structure to another
US10352620B2 (en) 2007-06-21 2019-07-16 Molten Metal Equipment Innovations, Llc Transferring molten metal from one structure to another
US10345045B2 (en) 2007-06-21 2019-07-09 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US9383140B2 (en) 2007-06-21 2016-07-05 Molten Metal Equipment Innovations, Llc Transferring molten metal from one structure to another
US10274256B2 (en) 2007-06-21 2019-04-30 Molten Metal Equipment Innovations, Llc Vessel transfer systems and devices
US9409232B2 (en) 2007-06-21 2016-08-09 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel and method of construction
US10195664B2 (en) 2007-06-21 2019-02-05 Molten Metal Equipment Innovations, Llc Multi-stage impeller for molten metal
US10072891B2 (en) 2007-06-21 2018-09-11 Molten Metal Equipment Innovations, Llc Transferring molten metal using non-gravity assist launder
US9982945B2 (en) 2007-06-21 2018-05-29 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel and method of construction
US9925587B2 (en) 2007-06-21 2018-03-27 Molten Metal Equipment Innovations, Llc Method of transferring molten metal from a vessel
US9909808B2 (en) 2007-06-21 2018-03-06 Molten Metal Equipment Innovations, Llc System and method for degassing molten metal
US9862026B2 (en) 2007-06-21 2018-01-09 Molten Metal Equipment Innovations, Llc Method of forming transfer well
US9566645B2 (en) 2007-06-21 2017-02-14 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9581388B2 (en) 2007-06-21 2017-02-28 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US9855600B2 (en) 2007-06-21 2018-01-02 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9464636B2 (en) 2009-08-07 2016-10-11 Molten Metal Equipment Innovations, Llc Tension device graphite component used in molten metal
US9080577B2 (en) 2009-08-07 2015-07-14 Paul V. Cooper Shaft and post tensioning device
US8449814B2 (en) 2009-08-07 2013-05-28 Paul V. Cooper Systems and methods for melting scrap metal
US9506129B2 (en) 2009-08-07 2016-11-29 Molten Metal Equipment Innovations, Llc Rotary degasser and rotor therefor
US8535603B2 (en) 2009-08-07 2013-09-17 Paul V. Cooper Rotary degasser and rotor therefor
US9382599B2 (en) 2009-08-07 2016-07-05 Molten Metal Equipment Innovations, Llc Rotary degasser and rotor therefor
US9470239B2 (en) 2009-08-07 2016-10-18 Molten Metal Equipment Innovations, Llc Threaded tensioning device
US8524146B2 (en) 2009-08-07 2013-09-03 Paul V. Cooper Rotary degassers and components therefor
US8444911B2 (en) 2009-08-07 2013-05-21 Paul V. Cooper Shaft and post tensioning device
US10428821B2 (en) 2009-08-07 2019-10-01 Molten Metal Equipment Innovations, Llc Quick submergence molten metal pump
US9328615B2 (en) 2009-08-07 2016-05-03 Molten Metal Equipment Innovations, Llc Rotary degassers and components therefor
US9377028B2 (en) 2009-08-07 2016-06-28 Molten Metal Equipment Innovations, Llc Tensioning device extending beyond component
US9657578B2 (en) 2009-08-07 2017-05-23 Molten Metal Equipment Innovations, Llc Rotary degassers and components therefor
US9422942B2 (en) 2009-08-07 2016-08-23 Molten Metal Equipment Innovations, Llc Tension device with internal passage
US10570745B2 (en) 2009-08-07 2020-02-25 Molten Metal Equipment Innovations, Llc Rotary degassers and components therefor
US8714914B2 (en) 2009-09-08 2014-05-06 Paul V. Cooper Molten metal pump filter
US9108244B2 (en) 2009-09-09 2015-08-18 Paul V. Cooper Immersion heater for molten metal
US10309725B2 (en) 2009-09-09 2019-06-04 Molten Metal Equipment Innovations, Llc Immersion heater for molten metal
US9410744B2 (en) 2010-05-12 2016-08-09 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US9482469B2 (en) 2010-05-12 2016-11-01 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US20120090432A1 (en) * 2010-10-18 2012-04-19 Alcoa, Inc. Wettable injectors for degassing of molten metal
US10641279B2 (en) 2013-03-13 2020-05-05 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened tip
US11391293B2 (en) 2013-03-13 2022-07-19 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened top
US9903383B2 (en) 2013-03-13 2018-02-27 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened top
US9011761B2 (en) 2013-03-14 2015-04-21 Paul V. Cooper Ladle with transfer conduit
US9587883B2 (en) 2013-03-14 2017-03-07 Molten Metal Equipment Innovations, Llc Ladle with transfer conduit
US10302361B2 (en) 2013-03-14 2019-05-28 Molten Metal Equipment Innovations, Llc Transfer vessel for molten metal pumping device
US10126058B2 (en) 2013-03-14 2018-11-13 Molten Metal Equipment Innovations, Llc Molten metal transferring vessel
US10126059B2 (en) 2013-03-14 2018-11-13 Molten Metal Equipment Innovations, Llc Controlled molten metal flow from transfer vessel
US10307821B2 (en) 2013-03-15 2019-06-04 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US10322451B2 (en) 2013-03-15 2019-06-18 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US10052688B2 (en) 2013-03-15 2018-08-21 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US11286939B2 (en) 2014-07-02 2022-03-29 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US10465688B2 (en) 2014-07-02 2019-11-05 Molten Metal Equipment Innovations, Llc Coupling and rotor shaft for molten metal devices
US11939994B2 (en) 2014-07-02 2024-03-26 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US10138892B2 (en) 2014-07-02 2018-11-27 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US11933324B2 (en) 2015-02-02 2024-03-19 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened blade tips
US10947980B2 (en) 2015-02-02 2021-03-16 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened blade tips
US11519414B2 (en) 2016-01-13 2022-12-06 Molten Metal Equipment Innovations, Llc Tensioned rotor shaft for molten metal
US10641270B2 (en) 2016-01-13 2020-05-05 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US11098719B2 (en) 2016-01-13 2021-08-24 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US10267314B2 (en) 2016-01-13 2019-04-23 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US11098720B2 (en) 2016-01-13 2021-08-24 Molten Metal Equipment Innovations, Llc Tensioned rotor shaft for molten metal
US11149747B2 (en) 2017-11-17 2021-10-19 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices
US11850657B2 (en) 2019-05-17 2023-12-26 Molten Metal Equipment Innovations, Llc System for melting solid metal
US11759853B2 (en) 2019-05-17 2023-09-19 Molten Metal Equipment Innovations, Llc Melting metal on a raised surface
US11358217B2 (en) 2019-05-17 2022-06-14 Molten Metal Equipment Innovations, Llc Method for melting solid metal
US11858036B2 (en) 2019-05-17 2024-01-02 Molten Metal Equipment Innovations, Llc System and method to feed mold with molten metal
US11858037B2 (en) 2019-05-17 2024-01-02 Molten Metal Equipment Innovations, Llc Smart molten metal pump
US11931803B2 (en) 2019-05-17 2024-03-19 Molten Metal Equipment Innovations, Llc Molten metal transfer system and method
US11931802B2 (en) 2019-05-17 2024-03-19 Molten Metal Equipment Innovations, Llc Molten metal controlled flow launder
US11471938B2 (en) 2019-05-17 2022-10-18 Molten Metal Equipment Innovations, Llc Smart molten metal pump
US11358216B2 (en) 2019-05-17 2022-06-14 Molten Metal Equipment Innovations, Llc System for melting solid metal
US11873845B2 (en) 2021-05-28 2024-01-16 Molten Metal Equipment Innovations, Llc Molten metal transfer device
WO2023196341A1 (en) * 2022-04-05 2023-10-12 Doggone Investment Co. LLC Apparatus and method for production of high purity copper-based alloys

Also Published As

Publication number Publication date
CH513982A (en) 1971-10-15
GB1316578A (en) 1973-05-09
BE756091A (en) 1971-02-15
IS950B6 (en) 1976-10-08
AT325865B (en) 1975-11-10
NL170311B (en) 1982-05-17
SE365250B (en) 1974-03-18
NL7013489A (en) 1971-03-16
IS1945A7 (en) 1971-03-13
DE2045258A1 (en) 1971-03-25
CA941618A (en) 1974-02-12
FR2061246A5 (en) 1971-06-18
US3741751A (en) 1973-06-26
JPS556088B1 (en) 1980-02-13
NL170311C (en) 1982-10-18

Similar Documents

Publication Publication Date Title
US3753690A (en) Treatment of liquid metal
US2821472A (en) Method for fluxing molten light metals prior to the continuous casting thereof
US4401295A (en) Apparatus for treating molten metal
JPS6352096B2 (en)
JP3668081B2 (en) Method for refining molten aluminum alloy and flux for refining molten aluminum alloy
US3627293A (en) Apparatus for purifying metals by pouring through slag
US3321300A (en) Degassing of metals or alloys
US2987391A (en) Method for melting and treating aluminum
US3305351A (en) Treatment of aluminum with aluminum fluoride particles
KR850001291B1 (en) Continuous melting and refining of secondary and/or blister copper
NO128073B (en)
NO133148B (en)
US4277280A (en) Apparatus and method for removal of alkali and alkaline earth metals from molten aluminium
US4295884A (en) Process for treating a molten metal or alloy using liquid and solid flux
GB1367069A (en) Removal of non-metallic constituents from liquid metal
JPH0394029A (en) Manufacture of fine aluminum particle alloy
JPH0757896B2 (en) Method and apparatus for remelting and refining magnesium metal or magnesium alloy
US4515600A (en) Process for the removal of the slag portion from molten mixtures of slag and silicon using a semipermeable separating wall
US2472465A (en) Apparatus for the treatment of molten metals
US4049248A (en) Dynamic vacuum treatment
Brant et al. Fumeless in-line degassing and cleaning of liquid aluminum
RU2146650C1 (en) Method of refining silicon and its alloys
Neff et al. Melting and melt treatment of aluminum alloys
US4325539A (en) Device for treating a molten metal or alloy using liquid and solid flux
JPH0367975B2 (en)