US3756243A - Flow control system for physiological drainage - Google Patents

Flow control system for physiological drainage Download PDF

Info

Publication number
US3756243A
US3756243A US00183047A US3756243DA US3756243A US 3756243 A US3756243 A US 3756243A US 00183047 A US00183047 A US 00183047A US 3756243D A US3756243D A US 3756243DA US 3756243 A US3756243 A US 3756243A
Authority
US
United States
Prior art keywords
port
motive
motive chamber
flow
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00183047A
Inventor
R Schulte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baxter International Inc
Original Assignee
R Schulte
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by R Schulte filed Critical R Schulte
Application granted granted Critical
Publication of US3756243A publication Critical patent/US3756243A/en
Assigned to AMERICAN HOSPITAL SUPPLY CORPORATION; A CORP OF IL. reassignment AMERICAN HOSPITAL SUPPLY CORPORATION; A CORP OF IL. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AMERICAN HEYER- SCHULTE CORPORATION
Assigned to AMERICAN HEYER-SCHULTE CORPORATION reassignment AMERICAN HEYER-SCHULTE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: HEYER-SCHULTE CORPORATION
Assigned to BAXTER TRAVENOL LABORATORIES, INC. A CORP. OF DE reassignment BAXTER TRAVENOL LABORATORIES, INC. A CORP. OF DE MERGER (SEE DOCUMENT FOR DETAILS). EFFECTIVE ON 11/25/1985 ILLINOIS Assignors: AMERICAN HOSPITAL SUPPLY CORPORATION INTO
Assigned to BAXTER INTERNATIONAL INC. reassignment BAXTER INTERNATIONAL INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE ON 10/17/1988 Assignors: BAXTER TRAVENOL LABORATORIES, INC., A CORP. OF DE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M27/00Drainage appliance for wounds or the like, i.e. wound drains, implanted drains
    • A61M27/002Implant devices for drainage of body fluids from one part of the body to another
    • A61M27/006Cerebrospinal drainage; Accessories therefor, e.g. valves

Definitions

  • Cl 128/350 V chambers A port is f d in the partition, and a fluid [51] Int. Cl A6lm 27/00 actuated valving member is adapted to open and to of Search R, V lo e the ort
  • a reservoir has a lenum chamber dcfined by a bounding wall portion which is movable to References Cited change the volume of the plenum chamber.
  • a manually UNITED STATES PATENTS actuable control valve which has an open condition and 3,111,125 11/1963 Schulte 128/350 v a Closed Condition interconnects the Plenum chamber 3,452,757 7/1969 Ames 128/350 V of the reservoir to motive means for moving the valving 3,492,996 2/1970 Fountain..
  • Drainage of such fluids by means of a shunt is a wellknown technique for alleviating the symptoms of hydrocephalus.
  • a classical example of a drainage system for this purpose is shown in Schulte U.S. Pat. No. 3,1 1 1,125 issued Nov. 19, 1963, wherein the collector (distal) end of a region to be drained, passes through a pump, and extends as a shunt tube to the heart where it is drained into the blood stream.
  • a check valve such as a slit valves in the shunt tube so that the flow is unidirectional away from the brain, and cannot back up.
  • a flow control system includes a flow valve having an internal cavity.
  • a partition divides the cavity into a pair of chambers and an inlet and an outlet open into different respective ones of the chambers.
  • the inlet is connected to the region from which fluid is to be drained, and the outlet is directed to the drainage region where the fluid is to be disposed of.
  • the partition has a port therethrough which interconnects the two chambers.
  • a fluid actuated valving member is disposed in one of the chambers and includes a closure element which is movable toward and away from the port so as to close it or to open it.
  • Motive chamber means is provided which has a movable wall portion that moves the closure element for this purpose.
  • a reservoir has a plenum chamber defined by a bounding wall. A portion of the bounding wall is movable in order to change the volume of the plenum chamber.
  • a manually actuable control valve has an open condition and a closed condition. It interconnects the plenum chamber of the reservoir to the motive chamber means of the valving member so that a liquid can flow back and forth between them under control of the control valve, whereby to maintain the flow valve in a selected condition.
  • the motive chamber means comprises a flexible wall whereby the volume of the motive chamber means is variable as a consequence of fluid injected into it. When expanded sufficiently, it causes the closure means to close the port.
  • the motive chamber means is an elastic balloon
  • the manually actuable control valve is a unidirectional check valve which permits fluid to flow toward the flow valve except when it is mechanically distorted to permit reverse flow to the reservoir.
  • a flexible diaphragm is provided in the chamber between the port and the closure element, whereby to make the flow valve itself a unidirectional check valve which permits flow only from the inlet to the outlet, and prevents the reverse flow.
  • FIG. 1 is a plan view of the presently preferred embodiment of the invention
  • FIG. 2 is a cross-section taken at line 2-2 of FIG. 1 in one valving condition
  • FIG. 3 is a view similar to that of FIG. 2 showing the device in another valving condition
  • FIG. 4 is an axial cross-section of a fragment of FIG. 2 shown in another valving position
  • FIG. 5 is a perspective view of a portion of FIG. 2;
  • FIG. 6 is an enlarged axial section taken at line 6-6 of FIG. 1;
  • FIG. 7 is an enlarged axial cross-section of another embodiment of a portion of the system of FIG. 1.
  • FIG. 1 shows the presently preferred flow control system 10 according to the invention. It is constructed so as to be laid flat against the skull and beneath the scalp. Its major components are a flow valve 11 having an inlet 12 and an outlet 13, a manually actuable control valve 14, and a reservoir 15. It is the function of flow valve 11 to provide for a positive shut-off of fluid flow from the inlet to the outlet, and in one embodiment of the invention, to limit such flow to movement from the inlet to the outlet and to prevent movement from the outlet to the inlet. It is the function of the system to control the flow valve.
  • Flow valve 11 includes a base and a dome-shaped cover 21.
  • the base and the cover are joined to form a continuous body which encloses an internal flow cavity 22 across which there extends a partition 23 which divides the cavity into a first and a second chamber 24, 25, respectively.
  • a port 26 through the partition fluidly interconnects the two chambers.
  • a valve seat 27 surrounds the port in the second chamber and projects into this chamber.
  • the flow valve is customarily made of the same material throughout.
  • Asuitable material is medical grade silicone rubber and the flexibility of a member will largely be determined by its thickness.
  • the partition is preferably made stiffly flexible.
  • the cover is also stifily flexible and includes a plurality of internal ribs 28 to prevent the cover from making a sealing contact with the upper surface of the partition.
  • the flow valve therefore tends to retain its shape, although it can be temporarily collapsed by mechanical pressure when needed to'expel fluid from it. Fluid flow can always occur between the inlet and the port without impedance from contact between the cover and the partition, because of the flow channels formed by the ribs.
  • Inlet 12 enters first chamber 24.
  • Outlet 13 is connected to second chamber 25. Therefore, positive flow from the region to be drained to the region to receive the drainage fluid will be from the inlet through cham-- ber 24, port 26, chamber 25, and outlet 13.
  • a fluid actuated valving member 30 (FIG. 6) is formed in the base and operated in second chamber 25.
  • the base includes a cloth reinforced closure sheet 31 at the bottom of a motive chamber 32 which comprises a cylindrical sink in the base. It is overlaid and closed by a wall 33 which has a movable central portion as will later be discussed. It carries a closure element 34 which in the embodiment shown is the upper surface of wall 33.
  • Closure sheet 31 is inelastic because of its reinforcement while wall 33 is flexible and elastic, with the properties of the wall of a balloon.
  • a conduit 35 enters motive chamber 32 from control valve 14 to admit actuating fluid to it. It is the purpose of wall 33 to deflect so that closure element 34 can close port 26 at valve seat 27, (see FIG. 3) and upon release of pressure return to the condition shown in FIG. 6.
  • the combination of motive chamber 32 and wall 33 is sometimes called motive chamber means.”
  • the movable part of wall 33 is sometimes called the movable wall portion of the motive chamber means.
  • Manually actuable control valve 14 is shown in full detail in FIGS. 2, 3, 4 and 5. It includes a cover 40 which is stiffly flexible. It encloses a cavity 41 which is divided into a chamber 42 that is connected to conduit 35 and another chamber 43 that is connected to the reservoir through a conduit 44.
  • a manually deformable valve element 45 (see FIG. 5) comprises a domeshaped body 46 with imperforate peripheral upper and lower zones 47, 48. At least one slit, but preferably four slits 49, extend as lines of longitude along and through the dome-shaped body, thereby interconnecting the inside and outside walls of the dome. They extend from zone to zone. These slits are formed by cutting the material without removal of the material so that when the body is undistorted, the slits will remain closed.
  • the slits can be distorted and thereby opened by a sufficient differential positive fluid force or bymanual deformation such as by a vertical axial push along axis 50 of the body (See FIGS. 3 and 4).
  • This is merely one form of a valve suitable for this purpose.
  • An advantage of the illustrated dome-shaped body is that it opens readily to flow from inside to outside, but tends to close tightly to prevent reverse flow when the differential is reversed. It would take an unexpectedly high pressure to open the valve to reverse flow.
  • This valve therefore functions as a check valve which can be opened by manual deformation caused by exerting a mechanical force sufi'icient to distort the body and open the slits.
  • valves other than slit valves could be used instead of the illustrated valve, and that the slits could instead be provided in a flat wall instead of in a dome structure, which would render the valve as easily opened in both directions by fluid differential, which if the required differential pressure to open it werehigh enough would still be acceptable.
  • this valve is essentially a check valve which absent manual distortion will readily permit flow from its inner chamber 43 to outside chamber 42 when a suitable differential pressure is exerted, but will not permit the reverse. Similarly, it operates as a positive valve preventing any flow at diflerential pressures below that required to open the slits unless there is a mechanical deformation.
  • the construction shown is especially suitable for physiological uses because it permits the flow valve to be retained in its positively closed condition and opened only as a consequence of the intentional manipulation of the control valve.
  • Reservior 15 is connected to chamber 43 by conduit 44.
  • the reservoir has a base 51 and a stiffly flexible dome 52 which fon'n an internal plenum chamber 53 whose volume is variable by virtue of the fact that the wall of the dome is movable and flexible.
  • FIGS. 1-6 constitutes the presently preferred embodiment of the invention in which the system provides positive off-on control of the drainage of fluids.
  • FIG. 7 illustrates an additional feature which may be utilized in the same system invention if desired. It utilizes the same elements as in FIGS. 1-6 and like numbers are therefore used in FIG. 7. It adds a check diaphragm 55 which is a thin, very flexible diaphragm which is made of shape and size such that its normal position is that shown in FIG. 7 wherein because of its structure it normally bears against valve seat 27 and closes port 26.
  • the diaphragm includes a perforation 56 so that there is equal pressure on both sides.
  • closure element 34 of the fluid actuating valve member 30 will press against the diaphragm to press it against the valve seat 27 in order to make the same class of valve closure as occurred in FIGS. 1-6, and this is the full equivalent of the closure of FIGS. 1-6.
  • FIG. 2 shows the device in its relaxed, open to flow condition. While it is possible to use any class of fluid including gases in this device to control its action, there is an undesirable tendency of gases to be absorbed in any system over a period of time and therefore the system will usually be filled with liquid such as a saline solution. Should this liquid leak into the body it will do no harm.
  • the displaceable volume of the reservoir should be substantially equal to the volume needed in the fluid actuated valving member 30 for closing the flow valve, and no greater, in order that over-extension of wall 33 will not occur. This is a design parameter which is easily determined by the designer.
  • the reservoir, the control valve, conduits 44 and 35 and motive chamber 32 are filled with saline solution in FIG. 2 and the device may be installed in the user in that condition, the valve being in its relaxed and open condition which can be observed by feeling the reservoirs tumescent condition. While the reservoir is fully extended to its normal position as shown, there will be no closure of the flow by valving member and the system is open to flow.
  • valve element is in effect a check valve, any back pressure derived from an increase in drainage pressure in the flow valve only tends to close it more tightly, and the flow valve will therefore remain closed.
  • An advantage of using a liquid as the motive fluid resides in its incompressibility, because regardless of an increase in the drainage pressure in the flow valve, there will be no opening of the valve as a consequence of shrinkage of volume in chamber 32, for it cannot occur.
  • FIG. 5 An advantage of the construction of body 46 can be noted in FIG. 5.
  • the slits extend only between the zones 47 and 48, and not into them. There is no risk of mismatching of the edges of the slits when they close as there would be if the slits were to extend up to the pole of the dome-shaped body and intersect to form leaves with free ends. Similarly, there are edges that may be mismatched at the lower edge.
  • valve 14 is a reliable off-on valve having open and closed positions which can be attained by fluid force in one direction and by mechanical forces in both directions. It will be understood that there is a wide range of equivalent valving means available, but this device, which can so readily be made of materials of construction that are compatible with the human body, constitutes a uniquely desirable construction.
  • the manually actuable control valve 14 and reservoir 15 together comprise means for forcing liquid into the motive chamber means and releasably retaining it therein.
  • the material of the device may conveniently be medical grade silicone rubber which can be cast in individual parts and then cemented or fused together as desired.
  • valve 14 In use, the flow valve is shut off, and the surgeon may make such pressure measurements or clinical observations as he wishes in order to determine when a given upper pressure level has been reached. When it has, he simply presses on valve 14, which opens valve 1 1 until he is of the opinion that enough fluid has been drained to reach a predetermined lower pressure level. Then he presses reservoir 15 to close the flow valve.
  • the condition of valve 11 can always be determined from an examination of the contour of reservoir 15.
  • This invention provides a desirable and useful means for positive drainage of fluids within the human body which can in one embodiment provide check valve functions (FIG. 7), which is rugged and reliable, and whose condition can readily be ascertained by tactile testing.
  • a flow control system for the positive control of drainage of fluid from a region of the body to be drained to another location, and providing for the controlled positive shut-off of said drainage, said system comprising: a flow valve having an internal flow cavity, an inlet to and an outletfrom said flow cavity, a partition dividing the cavity into a pair of chambers, the inlet and outlet opening into different respective ones of said chambers, said partition having a port therein which interconnects the two chambers, a fluid-actuated valving member in one of said chambers comprising a closure element movable against and away from the partition so as to close or to open the port to flow therethrough, and motive chamber means having a movable wall carrying said closure element; a reservoir having a plenum chamber defined by a bounding wall, a portion of which is movable in order to reduce the volume of the plenum chamber; and a manually-actuable control valve having an open condition and a closed condition, interconnecting the plenum chamber of the reser voir and the motive chamber
  • the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid pressure within the motive chamber so as to cause the closure means to close the port.
  • closure means comprises a region of said wall of the motive chamber means.
  • a system according to claim 1 in which a flexible diaphragm extends across the flow valve which is connected to the outlet and is adapted to move against the port to close the same when the fluid pressure in the outlet is greater than that in the inlet and to move away from the port to leave it open when the differential pressure is reversed, the diaphragm being disposed between the closure elements and the port.
  • the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid pressure within the motive chamber so as to cause the closure means to close the port.
  • control valve comprises a check valve which opens to permit flow from the reservoir to the motive chamber means, and which closes to prevent it unless manually manipulated.
  • control valve comprises a wall having a slit therethrough which is closed when the wall is undistorted, and which is opened to flow when the said wall is distorted.
  • control valve comprises a body forming a cavity, a domeshaped manually deformable valve element in said cavity having slits through its wall which are closed when the valve element is undistorted and open when the valve element is distorted, the inside of said dome being connected to the reservoir, and the cavity at the outside of the dome being connected to the motive chamber means.
  • a system according to claim 9 in which the body of the control valve has an upper and a lower peripheral zone, the slits extending between but not into said zones.
  • the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid pressure within the motive chamber so as to cause the closure means to close the port.
  • closure means comprises a region of said wall of the motive chamber means.
  • a system according to claim. 9 in which a flexible diaphragm extends across the flow valve chamber which is connected to the outlet and is adapted to move against the port to close the same when the fluid pressure in the outlet is greater than that in the inlet and to move away from the port to leave it open when the differential pressure is reversed, the diaphragm being disposed between the closure elements and the port.
  • the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid pressure within the motive chamber so as to cause the closure means to close the port.
  • control valve comprises a check valvewhich opens to permit flow from the reservoir to the motive chamber means, and which closes to prevent it unless manually manipulated.
  • the motive chamber means comprises a sink in the flow valve on the same side of the partition as the outlet, and a flexible and elastic sheet laid across said sink to form a motive chamber connected to the manually-actuable control valve.
  • a flow valve for the positive control of drainage of fluid from a region of the body to be drained to another location which flow valve provides for the controlled positive shut-off of said drainage comprising a body having an internal flow cavity, an inlet to and an outlet from said flow cavity, a partition dividing the cavity into a pair of chambers, the inlet and outlet opening.
  • said partition having a port therein which interconnects the two chambers, a fluid-actuated valv-- ing member in one of said chambers comprising a closure element movable against and away from the partition so as to close or to open the port to flow therethrough, and motive chamber means having a movable wall portion carrying said closure element; and means for forcing liquid into said motive chamber means and releasably retaining it therein.
  • the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid pressure within the motive chamber so as to cause the closure means to close the port.
  • closure means comprises a region of said wall of the motive chamber means.
  • a combination according to claim 20 in which a flexible diaphragm extends across the flow valve chamber which is connected to the outlet and is adapted to move against the port to close the same when the fluid pressure in the outlet is greater than that in the inlet and to move away from the port to leave it open when the differential pressure is reversed, the diaphragm being disposed between the closure elements and the port.
  • the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid] pressure within the motive chamber so as to cause the closure means to close the port.
  • a system according to claim 20 in which the motive chamber means comprises a sink in the flow valve on the same side of the partition as'the outlet, and a flexible and elastic sheet laid across said sink to form a motive chamber connected to the manually-actuable control valve.

Abstract

A flow control system for the positive control of drainage of fluid from a region of the body to be drained to a drainage site at another location. It provides means for the controlled positive shut-off of said drainage. The system includes a flow valve having an internal flow cavity with an inlet and an outlet. A partition divides the cavity into a pair of chambers, the inlet and outlet opening into different respective ones of the chambers. A port is formed in the partition, and a fluid actuated valving member is adapted to open and to close the port. A reservoir has a plenum chamber defined by a bounding wall portion which is movable to change the volume of the plenum chamber. A manually actuable control valve which has an open condition and a closed condition interconnects the plenum chamber of the reservoir to motive means for moving the valving member for opening and closing the flow valve.

Description

ilte States Patent Schulte 1 Sept. 4, 1973 FLOW CONTROL SYSTEM FOR [57] ABSTRACT PHYSIOLOGICAL DRAINA E A flow control system for the positive control of drain- [76] Inventor: Rude" Schulte, 5377 Overpass age of fluid from a region of the body to bedrained to Rd Santa Barbara, Calif 93105 a drainage slte at another location. It provides means for the controlled positive shut-off of said drainage. Filed! p 1971 The system includes a flow valve having an internal [211 Appl' No; 183,047 flow cavity with an inlet and an outlet. A partition divides the cavity into a pair of chambers, the inlet and outlet opening into different respective ones of the [52] U.S. Cl 128/350 V chambers A port is f d in the partition, and a fluid [51] Int. Cl A6lm 27/00 actuated valving member is adapted to open and to of Search R, V lo e the ort A reservoir has a lenum chamber dcfined by a bounding wall portion which is movable to References Cited change the volume of the plenum chamber. A manually UNITED STATES PATENTS actuable control valve which has an open condition and 3,111,125 11/1963 Schulte 128/350 v a Closed Condition interconnects the Plenum chamber 3,452,757 7/1969 Ames 128/350 V of the reservoir to motive means for moving the valving 3,492,996 2/1970 Fountain.. 128/350 V member for opening and closing the flow valve. 3,503,402 3/1970 Schulte 128/350 V 3,595,240 7/1971 Mishler 128/350 V Primary Examiner-Lucie 1-1. Laudenslager Attorney-Angus & Mon
27 Claims, 7 Drawing Figures PATENTEnstP 4 ma 3756243 sum-1 or 2 INVENTOR. Awau' 50/0175 BY g wt f FLOW CONTROL SYSTEM FOR PHYSIOLOGICAL DRAINAGE This invention relates to a flow control system for the positive control of drainage of fluid from a region of a body to be drained to a drainage location.
There are many ailments wherein the natural physiological means for draining a region of the body (such as the cranium) do not function correctly Then the fluid builds up, causing pain and damage to the patient. A classical example of such an ailment is hydrocephalus wherein the cerebral fluids are not properly drained through the natural mechanism, but instead accumulate. They exert pressure on the brain, constricting its growth and enlarging the skull. Serious brain damage and even death frequently occurs unless the fluid is drained.
Drainage of such fluids by means of a shunt is a wellknown technique for alleviating the symptoms of hydrocephalus. A classical example of a drainage system for this purpose is shown in Schulte U.S. Pat. No. 3,1 1 1,125 issued Nov. 19, 1963, wherein the collector (distal) end of a region to be drained, passes through a pump, and extends as a shunt tube to the heart where it is drained into the blood stream. It is customary to include a check valve, such as a slit valves in the shunt tube so that the flow is unidirectional away from the brain, and cannot back up. i
The alleviation of the symptoms of hydrocephalus and of other ailments involving the accumulation of body fluids has been dramatic. Thousands of persons are alive and normal today who would otherwise be dead or mentally retarded. There has, however, arisen the undesirable consequence that the person might become dependent upon the shunt throughout his entire life, and could never be without one. It would, of course, be preferable were the body encouraged to form its own drainage passages which it might be able to do were the dangerous and damaging symptoms resulting from too great an accumulation to be alleviated. Maintaining pressure at a safe level, but one which is high enough to encourage the body to form its own drainage paths offers the possiblity that a person might one day be free of dependence on the shunt. Thus, the shunt would exist to prevent a dangerous level of fluid accumulation from occurring, but would still leave sufficient fluid in the region to be drained that a continuing pressure would be exerted.
The precise pressure at which the body would be encouraged to form its own drainage paths must be determined for the individual person. It is possible to design different shunts to open at different respective pressures, but this involves the unacceptable requirement to remove and to replace an already-installed shunt which might open at which proves to be an incorrect pressure. It is evident that any more than the minimum number of procedures involving the heart and the brain must be avoided. Furthermore, it is as undesirable to drain too much fluid as it is to drain too little. An excessively-drained brain will lead to fever and malaise. Therefore, it is desirable to give the surgeon a valve which can positively shut off flow so as to permit pressure to build up to agiven level, and which can be opened to release justenough fluid to drop the pressure to some selected level.
It is an object of this invention to provide a flow control system which can be externally controlled that exerts a positive control on fluid drainage in the sense of off-on control, wherein the surgeon can by visual observation of symptoms and even of measurement of cranial pressure adjust the pressure level in the region to be drained to a level which is acceptable to the patient and which is likely to improve his condition over a period of time.
It is an advantage of the flow control system according to this invention that it is entirely controlled from the outside of the body, that the condition of the valve (whether it is open or closed) can be determined from outside the body, and that it can be: constructed flat and thereby be unobtrusive when laid against the skull and under the scalp.
A flow control system according to this invention includes a flow valve having an internal cavity. A partition divides the cavity into a pair of chambers and an inlet and an outlet open into different respective ones of the chambers. The inlet is connected to the region from which fluid is to be drained, and the outlet is directed to the drainage region where the fluid is to be disposed of. The partition has a port therethrough which interconnects the two chambers. A fluid actuated valving member is disposed in one of the chambers and includes a closure element which is movable toward and away from the port so as to close it or to open it. Motive chamber means is provided which has a movable wall portion that moves the closure element for this purpose.
A reservoir has a plenum chamber defined by a bounding wall. A portion of the bounding wall is movable in order to change the volume of the plenum chamber.
A manually actuable control valve has an open condition and a closed condition. It interconnects the plenum chamber of the reservoir to the motive chamber means of the valving member so that a liquid can flow back and forth between them under control of the control valve, whereby to maintain the flow valve in a selected condition.
According to a preferred but optional feature of this invention, the motive chamber means comprises a flexible wall whereby the volume of the motive chamber means is variable as a consequence of fluid injected into it. When expanded sufficiently, it causes the closure means to close the port.
According to still another preferred but optional feature of the invention, the motive chamber means is an elastic balloon, and the manually actuable control valve is a unidirectional check valve which permits fluid to flow toward the flow valve except when it is mechanically distorted to permit reverse flow to the reservoir.
According to still another preferred but optional feature of the invention, a flexible diaphragm is provided in the chamber between the port and the closure element, whereby to make the flow valve itself a unidirectional check valve which permits flow only from the inlet to the outlet, and prevents the reverse flow.
The above and other features of this invention will be fully understood from the following detailed description and the accompanying drawings, in which:
FIG. 1 is a plan view of the presently preferred embodiment of the invention;
FIG. 2 is a cross-section taken at line 2-2 of FIG. 1 in one valving condition;
FIG. 3 is a view similar to that of FIG. 2 showing the device in another valving condition;
FIG. 4 is an axial cross-section of a fragment of FIG. 2 shown in another valving position;
FIG. 5 is a perspective view of a portion of FIG. 2;
FIG. 6 is an enlarged axial section taken at line 6-6 of FIG. 1; and
FIG. 7 is an enlarged axial cross-section of another embodiment of a portion of the system of FIG. 1.
FIG. 1 shows the presently preferred flow control system 10 according to the invention. It is constructed so as to be laid flat against the skull and beneath the scalp. Its major components are a flow valve 11 having an inlet 12 and an outlet 13, a manually actuable control valve 14, and a reservoir 15. It is the function of flow valve 11 to provide for a positive shut-off of fluid flow from the inlet to the outlet, and in one embodiment of the invention, to limit such flow to movement from the inlet to the outlet and to prevent movement from the outlet to the inlet. It is the function of the system to control the flow valve.
Flow valve 11 includes a base and a dome-shaped cover 21. The base and the cover are joined to form a continuous body which encloses an internal flow cavity 22 across which there extends a partition 23 which divides the cavity into a first and a second chamber 24, 25, respectively. A port 26 through the partition fluidly interconnects the two chambers. A valve seat 27 surrounds the port in the second chamber and projects into this chamber.
The flow valve is customarily made of the same material throughout. Asuitable material is medical grade silicone rubber and the flexibility of a member will largely be determined by its thickness. The partition is preferably made stiffly flexible. The cover is also stifily flexible and includes a plurality of internal ribs 28 to prevent the cover from making a sealing contact with the upper surface of the partition. The flow valve therefore tends to retain its shape, although it can be temporarily collapsed by mechanical pressure when needed to'expel fluid from it. Fluid flow can always occur between the inlet and the port without impedance from contact between the cover and the partition, because of the flow channels formed by the ribs.
Inlet 12 enters first chamber 24. Outlet 13 is connected to second chamber 25. Therefore, positive flow from the region to be drained to the region to receive the drainage fluid will be from the inlet through cham-- ber 24, port 26, chamber 25, and outlet 13.
A fluid actuated valving member 30 (FIG. 6) is formed in the base and operated in second chamber 25. For this purpose, the base includes a cloth reinforced closure sheet 31 at the bottom of a motive chamber 32 which comprises a cylindrical sink in the base. It is overlaid and closed by a wall 33 which has a movable central portion as will later be discussed. It carries a closure element 34 which in the embodiment shown is the upper surface of wall 33.
Closure sheet 31 is inelastic because of its reinforcement while wall 33 is flexible and elastic, with the properties of the wall of a balloon. A conduit 35 enters motive chamber 32 from control valve 14 to admit actuating fluid to it. It is the purpose of wall 33 to deflect so that closure element 34 can close port 26 at valve seat 27, (see FIG. 3) and upon release of pressure return to the condition shown in FIG. 6. The combination of motive chamber 32 and wall 33 is sometimes called motive chamber means." The movable part of wall 33 is sometimes called the movable wall portion of the motive chamber means.
Manually actuable control valve 14 is shown in full detail in FIGS. 2, 3, 4 and 5. It includes a cover 40 which is stiffly flexible. It encloses a cavity 41 which is divided into a chamber 42 that is connected to conduit 35 and another chamber 43 that is connected to the reservoir through a conduit 44. A manually deformable valve element 45 (see FIG. 5) comprises a domeshaped body 46 with imperforate peripheral upper and lower zones 47, 48. At least one slit, but preferably four slits 49, extend as lines of longitude along and through the dome-shaped body, thereby interconnecting the inside and outside walls of the dome. They extend from zone to zone. These slits are formed by cutting the material without removal of the material so that when the body is undistorted, the slits will remain closed.
It is evident that the slits can be distorted and thereby opened by a sufficient differential positive fluid force or bymanual deformation such as by a vertical axial push along axis 50 of the body (See FIGS. 3 and 4). This is merely one form of a valve suitable for this purpose. An advantage of the illustrated dome-shaped body is that it opens readily to flow from inside to outside, but tends to close tightly to prevent reverse flow when the differential is reversed. It would take an unexpectedly high pressure to open the valve to reverse flow. This valve therefore functions as a check valve which can be opened by manual deformation caused by exerting a mechanical force sufi'icient to distort the body and open the slits.
It will be understood that valves other than slit valves could be used instead of the illustrated valve, and that the slits could instead be provided in a flat wall instead of in a dome structure, which would render the valve as easily opened in both directions by fluid differential, which if the required differential pressure to open it werehigh enough would still be acceptable. It will further be noted that this valve is essentially a check valve which absent manual distortion will readily permit flow from its inner chamber 43 to outside chamber 42 when a suitable differential pressure is exerted, but will not permit the reverse. Similarly, it operates as a positive valve preventing any flow at diflerential pressures below that required to open the slits unless there is a mechanical deformation. The construction shown is especially suitable for physiological uses because it permits the flow valve to be retained in its positively closed condition and opened only as a consequence of the intentional manipulation of the control valve.
Reservior 15 is connected to chamber 43 by conduit 44. The reservoir has a base 51 and a stiffly flexible dome 52 which fon'n an internal plenum chamber 53 whose volume is variable by virtue of the fact that the wall of the dome is movable and flexible.
The embodiment of FIGS. 1-6 constitutes the presently preferred embodiment of the invention in which the system provides positive off-on control of the drainage of fluids. FIG. 7 illustrates an additional feature which may be utilized in the same system invention if desired. It utilizes the same elements as in FIGS. 1-6 and like numbers are therefore used in FIG. 7. It adds a check diaphragm 55 which is a thin, very flexible diaphragm which is made of shape and size such that its normal position is that shown in FIG. 7 wherein because of its structure it normally bears against valve seat 27 and closes port 26. The diaphragm includes a perforation 56 so that there is equal pressure on both sides. It will be noted that when the pressure in the inlet is higher than that in the outlet, the diaphragm will be deflected away from the port and flow will occur. Should the reverse pressure differential occur, then by virtue of its inherent mechanical tendency to return to the shape and position of FIG. 7 and also by virtue of the unbalanced area of the diaphragm within the valve seat 27, the diaphragm will close and hold closed the port and prevent reverse flow into the region intended to be drained. This can constitute an important advantage when the valve is open, because in the event that the person is inverted a reverse difl'erential pressure will result, and this valve will prevent back flow. It is evident that the closure element 34 of the fluid actuating valve member 30 will press against the diaphragm to press it against the valve seat 27 in order to make the same class of valve closure as occurred in FIGS. 1-6, and this is the full equivalent of the closure of FIGS. 1-6.
The operation of this device will now be discussed with initial reference to FIG. 2 which shows the device in its relaxed, open to flow condition. While it is possible to use any class of fluid including gases in this device to control its action, there is an undesirable tendency of gases to be absorbed in any system over a period of time and therefore the system will usually be filled with liquid such as a saline solution. Should this liquid leak into the body it will do no harm. The displaceable volume of the reservoir should be substantially equal to the volume needed in the fluid actuated valving member 30 for closing the flow valve, and no greater, in order that over-extension of wall 33 will not occur. This is a design parameter which is easily determined by the designer.
Accordingly, the reservoir, the control valve, conduits 44 and 35 and motive chamber 32 are filled with saline solution in FIG. 2 and the device may be installed in the user in that condition, the valve being in its relaxed and open condition which can be observed by feeling the reservoirs tumescent condition. While the reservoir is fully extended to its normal position as shown, there will be no closure of the flow by valving member and the system is open to flow.
To close the flow valve, a distortive force will be exerted on the reservoir as indicated by arrow 57 in FIG. 3 so as to deflect the dome wall 52 of the reservoir and reduce the volume of the plenum chamber. Fluid is therefore driven through conduit 44 and into chamber 43 where the differential pressure causes the slits 49 to open and bow out as shown, and liquid flows through them into chamber 42. From chamber 42 it flows through conduit to motive chamber 32. The increased pressure (or more precisely the increased volume of incompressible liquid in chamber 32) will cause wall 33 to balloon upwardly and contact seat 27 to close the port 26. The valve is now positively closed to flow. The closed condition can positively be determined by feeling the surface of the reservoir and observing that it is depressed, because there is no way for the wall of the reservoir to return to its original domelike condition unless liquid is returned to it.
Because valve element is in effect a check valve, any back pressure derived from an increase in drainage pressure in the flow valve only tends to close it more tightly, and the flow valve will therefore remain closed. An advantage of using a liquid as the motive fluid resides in its incompressibility, because regardless of an increase in the drainage pressure in the flow valve, there will be no opening of the valve as a consequence of shrinkage of volume in chamber 32, for it cannot occur.
Now should it be desired to open the flow valve to drainage flow, a distortive force is exerted as indicated by arrow 58 in FIG. 4 which will cause the cover 40 of the control valve 14 to move downward to contact the top of body 46 to distort slits 49 so as to open them. At this time, there is likely to be sufficient drainage pressure in the flow valve to deflect the wall 33 away from the port and also if desired one may push directly down onto the cover 21 of the flow valve so as positively to expel liquid from chamber 32 back through control valve 14 into the reservoir, thereby restoring it into the condition shown in FIG. 2. The return to the open condition is also assisted by the elasticity of wall 33, which tends to return to the position shown in FIG. 2. When drainage of chamber 32 is completed, the force 58 may be released, and valve 14 will return to the condition shown in FIG. 2 leaving flow valve 11 open to drainage flow.
An advantage of the construction of body 46 can be noted in FIG. 5. The slits extend only between the zones 47 and 48, and not into them. There is no risk of mismatching of the edges of the slits when they close as there would be if the slits were to extend up to the pole of the dome-shaped body and intersect to form leaves with free ends. Similarly, there are edges that may be mismatched at the lower edge.
, Therefore, valve 14 is a reliable off-on valve having open and closed positions which can be attained by fluid force in one direction and by mechanical forces in both directions. It will be understood that there is a wide range of equivalent valving means available, but this device, which can so readily be made of materials of construction that are compatible with the human body, constitutes a uniquely desirable construction.
The manually actuable control valve 14 and reservoir 15 together comprise means for forcing liquid into the motive chamber means and releasably retaining it therein.
The material of the device may conveniently be medical grade silicone rubber which can be cast in individual parts and then cemented or fused together as desired.
In use, the flow valve is shut off, and the surgeon may make such pressure measurements or clinical observations as he wishes in order to determine when a given upper pressure level has been reached. When it has, he simply presses on valve 14, which opens valve 1 1 until he is of the opinion that enough fluid has been drained to reach a predetermined lower pressure level. Then he presses reservoir 15 to close the flow valve. The condition of valve 11 can always be determined from an examination of the contour of reservoir 15.
This invention provides a desirable and useful means for positive drainage of fluids within the human body which can in one embodiment provide check valve functions (FIG. 7), which is rugged and reliable, and whose condition can readily be ascertained by tactile testing.
This invention is not to be limited by the embodiments shown in the drawings and described in the de scription which are given by way of example and not of limitation, but only in accordance with the scope of the appended claims.
I claim:
1. A flow control system for the positive control of drainage of fluid from a region of the body to be drained to another location, and providing for the controlled positive shut-off of said drainage, said system comprising: a flow valve having an internal flow cavity, an inlet to and an outletfrom said flow cavity, a partition dividing the cavity into a pair of chambers, the inlet and outlet opening into different respective ones of said chambers, said partition having a port therein which interconnects the two chambers, a fluid-actuated valving member in one of said chambers comprising a closure element movable against and away from the partition so as to close or to open the port to flow therethrough, and motive chamber means having a movable wall carrying said closure element; a reservoir having a plenum chamber defined by a bounding wall, a portion of which is movable in order to reduce the volume of the plenum chamber; and a manually-actuable control valve having an open condition and a closed condition, interconnecting the plenum chamber of the reser voir and the motive chamber means of said valving member and being adapted to prevent flow between them in at least one direction therethrough while in its closed condition.
2. A system according to claim 1 in which the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid pressure within the motive chamber so as to cause the closure means to close the port.
3, A system according to claim 2 in which the said wall of the motive chamber means is elastic so as to stretch while being moved to close the port.
4. A system according to claim 2 in which the closure means comprises a region of said wall of the motive chamber means.
5. A system according to claim 1 in which a flexible diaphragm extends across the flow valve which is connected to the outlet and is adapted to move against the port to close the same when the fluid pressure in the outlet is greater than that in the inlet and to move away from the port to leave it open when the differential pressure is reversed, the diaphragm being disposed between the closure elements and the port.
6. A system according to claim 5 in which the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid pressure within the motive chamber so as to cause the closure means to close the port.
7. A system according to claim 6 in which the said wall of the motive chamber means is elastic so as to stretch while being moved to close the port.
8. A system according to claim 1 in which the control valve comprises a check valve which opens to permit flow from the reservoir to the motive chamber means, and which closes to prevent it unless manually manipulated.
9. A system according to claim 1 in which the control valve comprises a wall having a slit therethrough which is closed when the wall is undistorted, and which is opened to flow when the said wall is distorted.
10. A system according to claim 1 in which the control valve comprises a body forming a cavity, a domeshaped manually deformable valve element in said cavity having slits through its wall which are closed when the valve element is undistorted and open when the valve element is distorted, the inside of said dome being connected to the reservoir, and the cavity at the outside of the dome being connected to the motive chamber means.
11. A system according to claim 9 in which the body of the control valve has an upper and a lower peripheral zone, the slits extending between but not into said zones.
12. A system according to claim 9 in which the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid pressure within the motive chamber so as to cause the closure means to close the port.
13. A system according to claim 12 in which the said wall of the motive chamber means is elastic so as to stretch while being moved to close the port.
14. A system according to claim 12 in which the closure means comprises a region of said wall of the motive chamber means.
15. A system according to claim. 9 in which a flexible diaphragm extends across the flow valve chamber which is connected to the outlet and is adapted to move against the port to close the same when the fluid pressure in the outlet is greater than that in the inlet and to move away from the port to leave it open when the differential pressure is reversed, the diaphragm being disposed between the closure elements and the port.
16. A system according to claim 15 in which the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid pressure within the motive chamber so as to cause the closure means to close the port.
17. A system according to claim 16 in which the said wall of the motive chamber means is elastic so as to stretch while being moved to close the port.
18. A system according to claim 9 in which the control valve comprises a check valvewhich opens to permit flow from the reservoir to the motive chamber means, and which closes to prevent it unless manually manipulated.
19. A system according to claim 8 in which the motive chamber means comprises a sink in the flow valve on the same side of the partition as the outlet, and a flexible and elastic sheet laid across said sink to form a motive chamber connected to the manually-actuable control valve.
20. In combination, a flow valve for the positive control of drainage of fluid from a region of the body to be drained to another location which flow valve provides for the controlled positive shut-off of said drainage, comprising a body having an internal flow cavity, an inlet to and an outlet from said flow cavity, a partition dividing the cavity into a pair of chambers, the inlet and outlet opening. into different respective ones'of said chambers, said partition having a port therein which interconnects the two chambers, a fluid-actuated valv-- ing member in one of said chambers comprising a closure element movable against and away from the partition so as to close or to open the port to flow therethrough, and motive chamber means having a movable wall portion carrying said closure element; and means for forcing liquid into said motive chamber means and releasably retaining it therein.
21. A system according to claim in which the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid pressure within the motive chamber so as to cause the closure means to close the port.
22. A combination according to claim 21 in which the said wall of the motive chamber means is elastic so as to stretch while being moved to close the port.
23. A combination according to claim 21 in which the closure means comprises a region of said wall of the motive chamber means.
24. A combination according to claim 20 in which a flexible diaphragm extends across the flow valve chamber which is connected to the outlet and is adapted to move against the port to close the same when the fluid pressure in the outlet is greater than that in the inlet and to move away from the port to leave it open when the differential pressure is reversed, the diaphragm being disposed between the closure elements and the port.
25. A system according to claim 24 in which the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid] pressure within the motive chamber so as to cause the closure means to close the port. I
26. A combination according to claim 25 in which the said wall of the motive chamber means is elastic so as to stretch while being moved to close the port.
27. A system according to claim 20 in which the motive chamber means comprises a sink in the flow valve on the same side of the partition as'the outlet, and a flexible and elastic sheet laid across said sink to form a motive chamber connected to the manually-actuable control valve.
* IF t l P040510 7 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION. Patent No. 3,756 Dated September 4, 1973 Inventofls) RUDOLF R. SCHULTE It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
/ Col. 1, line 54 "which" should read -what-- Col. 7, line 41 after "across" insert "that one of-- (Claim 5, line 2) i Col. 7, line 41 after "valve" insert "chambers-- (Claim 5, line 2) w Col. 7, line 52 "means" should read --element-- (Claim 6, line 5) a o r Col.. 8, line l6 it "means". should read -element-- (Claim 12, line 5) l Y 1 Col. 8, line 26 after "across" insert --that one of- (Claim 15, line 2) a Col. 8, line 26 "chamber',' should read --chambers-- (Claim 15, line 2) Q Col. 8, line 32 "elements" should read element-- (Claim 15 line 8) Col. 8, line 37 'means" should read --element-- (Claim 16, line 5) m Col. 9, line 7 'means should read --element-- (Claim 21 line 5) r Col. 9, line 16 after "across" insert -that one of-- (Claim 24, line 2) Col. 9, lines 16-17 "chamber" should read "chambers- (Claim 24, lines 2-3? Col. 10, line 8 (Claim 25, line 5) 'means" should read --element--'- Signedand sealed this 3rdday 0f December 1974.
(SEAL) Attest:
McCOY M. GIBSON JR. C MARSHALL DANN Attesting Officer Commissioner of Patents.

Claims (27)

1. A flow control system for the positive control of drainage of fluid from a region of the body to be drained to another location, and providing for the controlled positive shut-off of said drainage, said system comprising: a flow valve having an internal flow cavity, an inlet to and an outlet from said flow cavity, a partition dividing the cavity into a pair of chambers, the inlet and outlet opening into different respective ones of said chambers, said partition having a port therein which interconnects the two chambers, a fluid-actuated valving member in one of said chambers comprising a closure element movable against and away from the partition so as to close or to open the port to flow therethrough, and motive chamber means having a movable wall carrying said closure element; a reservoir having a plenum chamber defined by a bounding wall, a portion of which is movable in order to reduce the volume of the plenum chamber; and a manually-actuable control valve having an open condition and a closed condition, interconnecting the plenum chamber of the reservoir and the motive chamber means of said valving member and being adapted to prevent flow between them in at least one direction therethrough while in its closed condition.
2. A system according to claim 1 in which the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid pressure within the motive chamber so as to cause the closure means to close the port.
3. A system according to claim 2 in which the said wall of the motive chamber means is elastic so as to stretch while being moved to close the port.
4. A system according to claim 2 in which the closure means comprises a region of said wall of the motive chamber means.
5. A system according to claim 1 iN which a flexible diaphragm extends across the flow valve which is connected to the outlet and is adapted to move against the port to close the same when the fluid pressure in the outlet is greater than that in the inlet and to move away from the port to leave it open when the differential pressure is reversed, the diaphragm being disposed between the closure elements and the port.
6. A system according to claim 5 in which the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid pressure within the motive chamber so as to cause the closure means to close the port.
7. A system according to claim 6 in which the said wall of the motive chamber means is elastic so as to stretch while being moved to close the port.
8. A system according to claim 1 in which the control valve comprises a check valve which opens to permit flow from the reservoir to the motive chamber means, and which closes to prevent it unless manually manipulated.
9. A system according to claim 1 in which the control valve comprises a wall having a slit therethrough which is closed when the wall is undistorted, and which is opened to flow when the said wall is distorted.
10. A system according to claim 1 in which the control valve comprises a body forming a cavity, a dome-shaped manually deformable valve element in said cavity having slits through its wall which are closed when the valve element is undistorted and open when the valve element is distorted, the inside of said dome being connected to the reservoir, and the cavity at the outside of the dome being connected to the motive chamber means.
11. A system according to claim 9 in which the body of the control valve has an upper and a lower peripheral zone, the slits extending between but not into said zones.
12. A system according to claim 9 in which the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid pressure within the motive chamber so as to cause the closure means to close the port.
13. A system according to claim 12 in which the said wall of the motive chamber means is elastic so as to stretch while being moved to close the port.
14. A system according to claim 12 in which the closure means comprises a region of said wall of the motive chamber means.
15. A system according to claim 9 in which a flexible diaphragm extends across the flow valve chamber which is connected to the outlet and is adapted to move against the port to close the same when the fluid pressure in the outlet is greater than that in the inlet and to move away from the port to leave it open when the differential pressure is reversed, the diaphragm being disposed between the closure elements and the port.
16. A system according to claim 15 in which the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid pressure within the motive chamber so as to cause the closure means to close the port.
17. A system according to claim 16 in which the said wall of the motive chamber means is elastic so as to stretch while being moved to close the port.
18. A system according to claim 9 in which the control valve comprises a check valve which opens to permit flow from the reservoir to the motive chamber means, and which closes to prevent it unless manually manipulated.
19. A system according to claim 8 in which the motive chamber means comprises a sink in the flow valve on the same side of the partition as the outlet, and a flexible and elastic sheet laid across said sink to form a motive chamber connected to the manually-actuable control valve.
20. In combination, a flow valve for the positive control of drainage of fluid from a region of the body to be drained to another location which flow valve provides for the controlled positive shut-off of said drainage, comprising a body having an internal flow cavity, an inleT to and an outlet from said flow cavity, a partition dividing the cavity into a pair of chambers, the inlet and outlet opening into different respective ones of said chambers, said partition having a port therein which interconnects the two chambers, a fluid-actuated valving member in one of said chambers comprising a closure element movable against and away from the partition so as to close or to open the port to flow therethrough, and motive chamber means having a movable wall portion carrying said closure element; and means for forcing liquid into said motive chamber means and releasably retaining it therein.
21. A system according to claim 20 in which the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid pressure within the motive chamber so as to cause the closure means to close the port.
22. A combination according to claim 21 in which the said wall of the motive chamber means is elastic so as to stretch while being moved to close the port.
23. A combination according to claim 21 in which the closure means comprises a region of said wall of the motive chamber means.
24. A combination according to claim 20 in which a flexible diaphragm extends across the flow valve chamber which is connected to the outlet and is adapted to move against the port to close the same when the fluid pressure in the outlet is greater than that in the inlet and to move away from the port to leave it open when the differential pressure is reversed, the diaphragm being disposed between the closure elements and the port.
25. A system according to claim 24 in which the motive chamber means comprises a motive chamber bounded at least in part by the movable wall which is movable as a consequence of fluid pressure within the motive chamber so as to cause the closure means to close the port.
26. A combination according to claim 25 in which the said wall of the motive chamber means is elastic so as to stretch while being moved to close the port.
27. A system according to claim 20 in which the motive chamber means comprises a sink in the flow valve on the same side of the partition as the outlet, and a flexible and elastic sheet laid across said sink to form a motive chamber connected to the manually-actuable control valve.
US00183047A 1971-09-23 1971-09-23 Flow control system for physiological drainage Expired - Lifetime US3756243A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US18304771A 1971-09-23 1971-09-23

Publications (1)

Publication Number Publication Date
US3756243A true US3756243A (en) 1973-09-04

Family

ID=22671208

Family Applications (1)

Application Number Title Priority Date Filing Date
US00183047A Expired - Lifetime US3756243A (en) 1971-09-23 1971-09-23 Flow control system for physiological drainage

Country Status (1)

Country Link
US (1) US3756243A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901245A (en) * 1973-03-15 1975-08-26 Bio Medical Res Ltd Bio-medical pressure control device
US4364395A (en) * 1981-06-30 1982-12-21 American Heyer-Schulte Corporation Low profile shunt system
US4464168A (en) * 1981-06-30 1984-08-07 American Hospital Supply Corporation Low profile shunt system
US4522622A (en) * 1982-12-23 1985-06-11 Alza Corporation Multiple fluid pulse dispenser
US4552553A (en) * 1983-06-30 1985-11-12 Pudenz-Schulte Medical Research Corp. Flow control valve
US4557721A (en) * 1983-11-29 1985-12-10 Cordis Corporation Servo valve
US4560375A (en) * 1983-06-30 1985-12-24 Pudenz-Schulte Medical Research Corp. Flow control valve
US4588394A (en) * 1984-03-16 1986-05-13 Pudenz-Schulte Medical Research Corp. Infusion reservoir and pump system
US4636194A (en) * 1983-06-30 1987-01-13 Pudenz-Schulte Medical Research Corp. Burr-hole flow control valve
US4675003A (en) * 1985-12-23 1987-06-23 Cordis Corporation Three stage pressure regulator valve
US4676772A (en) * 1985-12-23 1987-06-30 Cordis Corporation Adjustable implantable valve having non-invasive position indicator
US4681559A (en) * 1985-12-23 1987-07-21 Cordis Corporation Plural valve three stage pressure relief system
US4681560A (en) * 1984-03-16 1987-07-21 Pudenz-Schulte Medical Research Corp. Subcutaneous infusion reservoir and pump system
US4714459A (en) * 1985-12-23 1987-12-22 Cordis Corporation Three stage intracranial pressure control valve
US4714458A (en) * 1985-12-23 1987-12-22 Cordis Corporation Three stage valve with flexible valve seat
US4729762A (en) * 1985-12-23 1988-03-08 Cordis Corporation Three stage implantable pressure relief valve with adjustable valve stem members
US4741730A (en) * 1982-10-04 1988-05-03 American Hospital Supply Hydrocephalus shunt with in-line filter
EP0270205A2 (en) * 1986-12-02 1988-06-08 CODMAN & SHURTLEFF INC. Improved body fluid transfer device
US4776839A (en) * 1986-10-21 1988-10-11 Cordis Corporation Three stage implantable pressure relief valve with improved valve stem member
US4776838A (en) * 1983-12-08 1988-10-11 Cordis Corporation Three stage valve
US4781672A (en) * 1986-10-21 1988-11-01 Cordis Corporation Three stage implantable flow control valve with improved valve closure member
US4795437A (en) * 1987-01-29 1989-01-03 Pudenz-Schulte Medical Research Corporation Siphon control device
US4816016A (en) * 1984-03-16 1989-03-28 Pudenz-Schulte Medical Research Corp. Subcutaneous infusion reservoir and pump system
US4867741A (en) * 1983-11-04 1989-09-19 Portnoy Harold D Physiological draining system with differential pressure and compensating valves
US5085644A (en) * 1990-04-02 1992-02-04 Pudenz-Schulte Medical Research Corporation Sterilizable medication infusion device with dose recharge restriction
US5152753A (en) * 1990-04-02 1992-10-06 Pudenz-Schulte Medical Research Corporation Medication infusion device with dose recharge restriction
WO1996026748A3 (en) * 1995-02-23 1996-10-24 Cv Dynamics Inc Dba Medical In Balloon catheter having palpitatable discharge valve and retention collar
US5662600A (en) * 1995-09-29 1997-09-02 Pudenz-Schulte Medical Research Corporation Burr-hole flow control device
US6022335A (en) * 1998-07-01 2000-02-08 Ramadan; Hossein Implantable hemodialysis triple port assembly
US20050182432A1 (en) * 2004-02-18 2005-08-18 Fanton Gary S. Apparatus and methods for clearing obstructions from surgical cutting instruments
WO2005115502A2 (en) * 2004-05-25 2005-12-08 California Institute Of Technology Device and method for treating hydrocephalus
US20050277865A1 (en) * 2004-05-25 2005-12-15 Morteza Gharib Device and method for treating hydrocephalus
US9125655B2 (en) 2010-07-16 2015-09-08 California Institute Of Technology Correction and optimization of wave reflection in blood vessels
US9656009B2 (en) 2007-07-11 2017-05-23 California Institute Of Technology Cardiac assist system using helical arrangement of contractile bands and helically-twisting cardiac assist device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111125A (en) * 1961-11-06 1963-11-19 Rudolf R Schulte Drainage device
US3452757A (en) * 1966-09-14 1969-07-01 Dow Corning Two-way flushing device for treatment of hydrocephalus
US3492996A (en) * 1966-02-09 1970-02-03 Dow Corning Ventriculo-atrial shunt
US3503402A (en) * 1966-03-23 1970-03-31 Rudolf R Schulte Shunt device
US3595240A (en) * 1968-08-07 1971-07-27 Alan J Mishler Hydrocephalus shunt with two-way flushing means

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111125A (en) * 1961-11-06 1963-11-19 Rudolf R Schulte Drainage device
US3492996A (en) * 1966-02-09 1970-02-03 Dow Corning Ventriculo-atrial shunt
US3503402A (en) * 1966-03-23 1970-03-31 Rudolf R Schulte Shunt device
US3452757A (en) * 1966-09-14 1969-07-01 Dow Corning Two-way flushing device for treatment of hydrocephalus
US3595240A (en) * 1968-08-07 1971-07-27 Alan J Mishler Hydrocephalus shunt with two-way flushing means

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901245A (en) * 1973-03-15 1975-08-26 Bio Medical Res Ltd Bio-medical pressure control device
US4364395A (en) * 1981-06-30 1982-12-21 American Heyer-Schulte Corporation Low profile shunt system
US4464168A (en) * 1981-06-30 1984-08-07 American Hospital Supply Corporation Low profile shunt system
US4741730A (en) * 1982-10-04 1988-05-03 American Hospital Supply Hydrocephalus shunt with in-line filter
US4522622A (en) * 1982-12-23 1985-06-11 Alza Corporation Multiple fluid pulse dispenser
US4560375A (en) * 1983-06-30 1985-12-24 Pudenz-Schulte Medical Research Corp. Flow control valve
US4636194A (en) * 1983-06-30 1987-01-13 Pudenz-Schulte Medical Research Corp. Burr-hole flow control valve
US4552553A (en) * 1983-06-30 1985-11-12 Pudenz-Schulte Medical Research Corp. Flow control valve
US4867741A (en) * 1983-11-04 1989-09-19 Portnoy Harold D Physiological draining system with differential pressure and compensating valves
US4557721A (en) * 1983-11-29 1985-12-10 Cordis Corporation Servo valve
US4776838A (en) * 1983-12-08 1988-10-11 Cordis Corporation Three stage valve
US4588394A (en) * 1984-03-16 1986-05-13 Pudenz-Schulte Medical Research Corp. Infusion reservoir and pump system
US4816016A (en) * 1984-03-16 1989-03-28 Pudenz-Schulte Medical Research Corp. Subcutaneous infusion reservoir and pump system
US4681560A (en) * 1984-03-16 1987-07-21 Pudenz-Schulte Medical Research Corp. Subcutaneous infusion reservoir and pump system
US4676772A (en) * 1985-12-23 1987-06-30 Cordis Corporation Adjustable implantable valve having non-invasive position indicator
US4729762A (en) * 1985-12-23 1988-03-08 Cordis Corporation Three stage implantable pressure relief valve with adjustable valve stem members
US4714458A (en) * 1985-12-23 1987-12-22 Cordis Corporation Three stage valve with flexible valve seat
US4714459A (en) * 1985-12-23 1987-12-22 Cordis Corporation Three stage intracranial pressure control valve
US4681559A (en) * 1985-12-23 1987-07-21 Cordis Corporation Plural valve three stage pressure relief system
US4675003A (en) * 1985-12-23 1987-06-23 Cordis Corporation Three stage pressure regulator valve
US4776839A (en) * 1986-10-21 1988-10-11 Cordis Corporation Three stage implantable pressure relief valve with improved valve stem member
US4781672A (en) * 1986-10-21 1988-11-01 Cordis Corporation Three stage implantable flow control valve with improved valve closure member
EP0270205A2 (en) * 1986-12-02 1988-06-08 CODMAN & SHURTLEFF INC. Improved body fluid transfer device
EP0270205A3 (en) * 1986-12-02 1990-05-09 CODMAN & SHURTLEFF INC. Improved body fluid transfer device
US4795437A (en) * 1987-01-29 1989-01-03 Pudenz-Schulte Medical Research Corporation Siphon control device
US5085644A (en) * 1990-04-02 1992-02-04 Pudenz-Schulte Medical Research Corporation Sterilizable medication infusion device with dose recharge restriction
US5152753A (en) * 1990-04-02 1992-10-06 Pudenz-Schulte Medical Research Corporation Medication infusion device with dose recharge restriction
US5707357A (en) * 1995-02-23 1998-01-13 C V Dynamics, Inc. Balloon catheter having palpitatable discharge valve and retention collar
WO1996026748A3 (en) * 1995-02-23 1996-10-24 Cv Dynamics Inc Dba Medical In Balloon catheter having palpitatable discharge valve and retention collar
US5662600A (en) * 1995-09-29 1997-09-02 Pudenz-Schulte Medical Research Corporation Burr-hole flow control device
US5800376A (en) * 1995-09-29 1998-09-01 Medtronic, Inc. Burr-hole flow control device
US6022335A (en) * 1998-07-01 2000-02-08 Ramadan; Hossein Implantable hemodialysis triple port assembly
US20050182432A1 (en) * 2004-02-18 2005-08-18 Fanton Gary S. Apparatus and methods for clearing obstructions from surgical cutting instruments
WO2005115502A2 (en) * 2004-05-25 2005-12-08 California Institute Of Technology Device and method for treating hydrocephalus
US20050277865A1 (en) * 2004-05-25 2005-12-15 Morteza Gharib Device and method for treating hydrocephalus
WO2005115502A3 (en) * 2004-05-25 2006-06-08 California Inst Of Techn Device and method for treating hydrocephalus
US7524298B2 (en) 2004-05-25 2009-04-28 California Institute Of Technology Device and method for treating hydrocephalus
US9656009B2 (en) 2007-07-11 2017-05-23 California Institute Of Technology Cardiac assist system using helical arrangement of contractile bands and helically-twisting cardiac assist device
US9125655B2 (en) 2010-07-16 2015-09-08 California Institute Of Technology Correction and optimization of wave reflection in blood vessels

Similar Documents

Publication Publication Date Title
US3756243A (en) Flow control system for physiological drainage
US3768508A (en) Valve for controllable release of entrapped body fluids
US3769982A (en) Physiological drainage system with closure means responsive to downstream suction
US3991768A (en) Shunt system resistant to overdrainage and siphoning and valve therefor
US11172937B2 (en) Tissue compression device with pressure indicator
US3669116A (en) Drainage catheter with anticlogging means
JPS6025136B2 (en) Diversion device for the transfer of cerebrospinal fluid
US10751493B2 (en) Apparatus for preventing over inflation of the retention balloon in medical catheters and airway devices
US3827439A (en) Plug valve for physiological shunt systems
US3758073A (en) Valve for physiological drainage actuable by lateral compression
US3111125A (en) Drainage device
US3566875A (en) Device for draining cerebrospinal fluid
US5358494A (en) Irrigation dressing
US3469582A (en) Hand-held surgical airflow instrument
US3595240A (en) Hydrocephalus shunt with two-way flushing means
DE4219888C2 (en) Medical pressure transducer
ES2355476T3 (en) APPARATUS FOR MONITORING INTRA-ABDOMINAL PRESSURE.
US5304114A (en) Shunt valve system
US4457487A (en) Flushing device
US3916948A (en) Control valve for medicinal fluids
EP0196821A2 (en) Tissue expander system
EP0482096A1 (en) Irrigation dressing
JP3722830B2 (en) Artificial sphincter device
US5728061A (en) Device and method for treating hydrocephalus
US20190136991A1 (en) Method and apparatus for draining

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMERICAN HOSPITAL SUPPLY CORPORATION; ONE AMERICAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AMERICAN HEYER- SCHULTE CORPORATION;REEL/FRAME:004099/0695

Effective date: 19830121

AS Assignment

Owner name: AMERICAN HEYER-SCHULTE CORPORATION

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:HEYER-SCHULTE CORPORATION;REEL/FRAME:004245/0660

Effective date: 19800623

AS Assignment

Owner name: BAXTER TRAVENOL LABORATORIES, INC. A CORP. OF DE

Free format text: MERGER;ASSIGNOR:AMERICAN HOSPITAL SUPPLY CORPORATION INTO;REEL/FRAME:004760/0345

Effective date: 19870126

AS Assignment

Owner name: BAXTER INTERNATIONAL INC.

Free format text: CHANGE OF NAME;ASSIGNOR:BAXTER TRAVENOL LABORATORIES, INC., A CORP. OF DE;REEL/FRAME:005050/0870

Effective date: 19880518