US3767838A - Gas insulated flexible high voltage cable - Google Patents

Gas insulated flexible high voltage cable Download PDF

Info

Publication number
US3767838A
US3767838A US00218277A US3767838DA US3767838A US 3767838 A US3767838 A US 3767838A US 00218277 A US00218277 A US 00218277A US 3767838D A US3767838D A US 3767838DA US 3767838 A US3767838 A US 3767838A
Authority
US
United States
Prior art keywords
gas
high voltage
voltage cable
flexible high
insulated flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00218277A
Inventor
Connell L Mc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Inc USA
Original Assignee
ITE Imperial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITE Imperial Corp filed Critical ITE Imperial Corp
Application granted granted Critical
Publication of US3767838A publication Critical patent/US3767838A/en
Assigned to BROWN BOVERI ELECTRIC INC.; A CORP OF DE reassignment BROWN BOVERI ELECTRIC INC.; A CORP OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: I-T-E IMPERIAL CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0233Cables with a predominant gas dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/06Gas-pressure cables; Oil-pressure cables; Cables for use in conduits under fluid pressure
    • H01B9/0644Features relating to the dielectric of gas-pressure cables
    • H01B9/0655Helically wrapped insulation

Definitions

  • ABSTRACT A gas insulated flexible high voltage cable in which an annular conductor is positioned within an annular conductive enclosure. Spacer means position and maintain the conductor within the annular conductive enclosure.
  • the spacer means comprises a plurality of gas permeable support layers of porous material, spaced one from another, and a plurality of perforated conductive layers alternately positioned between each pair of support layers.
  • the spacer means is saturated by a volume of compressed insulating gas, such as sulfur hexafluoride.
  • This invention relates to power cables, and is particularly directed to gas insulated high voltage power cables of simple construction, capable of conducting heavy currents at high voltages.
  • a coaxial conductor is carried in a metal housing and held in position with respect thereto by solid insulating discs of the type disclosed in U.S. Pat. No. 3,573,341 to Graybill et al., and assigned to I-T-E Imperial Corporation. Such discs position, maintain and support the coaxial conductor within the housing.
  • the gas insulated, flexible, high voltage cable comprises an annular conductive enclosure, gas impervious throughout its length.
  • An annular conductor is positioned within the annular conductive enclosure.
  • Spacer means position and maintain the conductor within the annular conductive enclosure.
  • the spacer means itself, comprises a plurality of gas permeable support layers of porous material, spaced one from another. Each gas permeable support layer surrounds the annular conductor and each preceding support layer. A first gas permeable support layer not only surrounds the annular conductor, but it also engages the annular conductor.
  • a plurality of perforated conductive layers are alternately spaced between the gas permeable support layers.
  • the succession of alternating support layers and perforated conductive layers form a composite structure.
  • a gas for instance, sulfur hexafluoride, trichlorofluoromethane, dichlorodifluoromethane, dichlorofluoromethane, chlorodifluoromethane and the like, is dispersed under a controlled positive pressure throughout the spacer means and is adsorbed in the gas permeable support layers.
  • Gas pressure within the spacer means may vary from I to 6 atmospheres and preferably vary from 2 to 4 atmospheres.
  • the gas permeable support layers within the spacer means are in gastransfer communication with each other. These support layers are themselves gas permeable and porous and gas may communicate between support layers through the perforations provided in the conductive layers alternately spaced between the support layers.
  • the gas permeable support layers are preferably formed of an open cell, flexible foam resin material, for instance urethane (castor oil, polyester and polyether singly or in combination) polyethylene, styrene or silicone, but these support layers may be formed, as well, from materials such as cloth, paper, felt or like materials that have an open structure.
  • urethane castor oil, polyester and polyether singly or in combination
  • polyethylene polyethylene
  • styrene or silicone polyethylene
  • styrene or silicone polyethylene
  • the fibers in these other suitable materials may be either natural or synthetic provided they impart, to the spacer means, acceptably large surface area and volume resistivity, and an acceptably low dielectric constant and a creep-age path substantially greater than the direct radial distance from conductor to ground.
  • the materials used to form different support layers within the spacer means may be varied to preferably provide a dielectric constant in the spacer means of about 1.05 to 2.0.
  • the composition of support layers may be varied to provide a dielectric value approaching 1.05 at the outer layer of the spacer means and a maximum dielectric value approaching 2.0 at the inner layer of the spacer means proximate to the annular conductor.
  • the compressed gas saturated spacer arrangement substantially inhibits the oscillation of metallic dust particles between the annular conductor and annular conductive enclosure. The tendency for an electrical breakdown to occur is therefore reduced.
  • the spacer arrangement acts like a microporous filter to trap particles enclosed within the volume defined between the annular conductive enclosure and annular conductor.
  • the filter-like effect of the spacer means prevents any significant accumulation of migrating particles, even over long cable sections. By virtue of this cable construction, trapped particles are no longer free to oscillate between the two concentric conductors to reduce the dielectric breakdown level of the cable section.
  • FIG. 1 is a vertical cross-section illustrative of the prior art in which a solid insulating disc supports and maintains a coaxial conductor in position in a metal housing;
  • FIG. 2 is a detail view of the disc shown in FIG. 1;
  • FIG. 3 is a detail cut away view in section of one embodiment of this invention.
  • FIG. 4 is an elevated end view of the embodiment shown in FIG. 3.
  • FIGS 1 and 2 illustrate prior art cable constructions and the spacer means used to support the annular conductor within the annular conductive enclosure.
  • the compressed gas insulated conductor 10 is normally comprised of a metal enclosed high voltage electrical conductor in which a hollow metallic conductor 12 is centrally supported with a surrounding grounded metal enclosure 14 by means of a disc-shaped insulator 16.
  • the interior hollow space between the hollow metallic conductor and grounded metal enclosure is usually filled with a high dielectric compressed gas, such as sulfur hexafluoride.
  • a high dielectric compressed gas such as sulfur hexafluoride.
  • Prior art constructions of this type provide a large volume through which metallic dust particles can oscillate to establish a point or points of high dielectric stress. These metallic dust particle accumulations probably reduce the dielectric breakdown voltage and cause local breakdowns to occur on succeeding over voltage surges on the system.
  • annular conductor 20 is formed of large diameter stranded aluminum hollow cable 22 which-is flexible and lightweight.
  • the aluminum stranding may be wrapped over a lightweight hollow core 24 for additional support, if necessary.
  • Aluminum stranding 22 is housed in conductor jacket 26.
  • Conductor jacket 26 is a high dielectric constant and low resistivity material. It is desirable that the conductor jacket be formed of a material with such properties to obtain a minimum voltage gradient across its thickness.
  • the character of the material from which the conductor jacket is forrned is such that the material is compatible with refrigerant gases and sulfur hexafluoride.
  • Insulation support layers 28 which surround conductor 20 are formed of an open cell flexible foam resin material. Suitable resin materials from which the insulation support layers may be formed typically include urethane, silicone, polyethylene, styrene and their derivatives and copolymers.
  • Numeral 30 designates the perforated conductive layers alternately positioned between the insulation support layers 28.
  • the conductive layers 30 may be a metallic or conductive tape lap-wound between the support layers at controlled diameters with respect to annular conductor 20.
  • the conductive layers may be formed by applying a conductive coating to a thin insulating film.
  • the helical windings are perforated to provide for the communication of insulating gas between different layers in the composite spacer means.
  • the number and position of conductive foils in the composite spacer means may be varied along with ers 28 are illustrated as helically wound strips; however, the structure of the support layer may vary.
  • Annular conductive enclosure 32 houses annular conductor 20 and composite spacer means 34.
  • Annular conductive enclosure 32 comprises conductive inner jacket 36 which may be lap wound around the spacer means or may be an integral extruded layer.
  • Inner jacket 36 may be formed of any conventional conductive materials which are impervious to the insulating gas confined within the spacer means characterized by a low resistance to provide an effective ground layer for the insulating system.
  • Banding 38 is a non-magnetic stainless steel wire which adds structural strength to inner jacket 36. Other equivalent materials may be used to band inner jacket 36.
  • Outer jacket 40 houses the entire cable assembly. It is a wrapped or extruded covering whichsecures banding38 to inner jacket 36 and protects the entire cable assembly from weather conditions and external abrasion.
  • the spacer means 34 is gas filled, preferably with sulfur hexafluoride gas. However, other insulating gases with high dielectric strengths may be used in place of sulfur hexafluoride.
  • the gas is maintained within the spacer means 34 under controlled pressure of about 2 to 4 atmospheres. The insulating gas, may diffuse throughout the total volume of spacer means 34 through porous insulation support layers 28 and perforated cond enser layers 30.
  • Spacer means 34 is sufficiently porous to permit a substantially uninhibited movement of compressed gas from bus section to bus section in the cable arrangement, but the spacer means is not porous enough to permit unrestricted passage of the metallic dust particles which may be present in the conductor, or which may be generated by the interaction of voltage polarity which is on a conductor.
  • a gas insulated flexible high voltage cable comprising:
  • annular conductor positioned within said enclosure; and spacer means positioning and maintaining said conductor within said enclosure;
  • said spacer means having a dielectric constant of about 1.05 to 2.0 and consisting essentially of a plurality of gas permeable support layers of porous material, spaced one from another, surrounding said conductor and providing support therefor, 21 first gas permeable support layer engaging said conductor; and a plurality of perforated conductive layers alternately spaced between said gas permeable support layers.
  • the gas insulated flexible high voltage cable of claim 1 including a gas under controlled positive pressure dispersed throughout said spacer means and adsorbed in said gas permeable support layers, said gas permeable support layers being in gas-transfer communication, one with another.
  • gas insulated flexible high voltage cable of claim 1 wherein said porous material from which said gas permeable support layers are formed is selected from the group consisting of open cell flexible foam resins, cloth, paper and felt.
  • annular conductor comprises an annular conductive housing; and v a plurality of stranded conductors confined within said housing.
  • annular conductive enclosure comprises a conductive inner jacket impervious to said gas

Abstract

A gas insulated flexible high voltage cable in which an annular conductor is positioned within an annular conductive enclosure. Spacer means position and maintain the conductor within the annular conductive enclosure. The spacer means comprises a plurality of gas permeable support layers of porous material, spaced one from another, and a plurality of perforated conductive layers alternately positioned between each pair of support layers. The spacer means is saturated by a volume of compressed insulating gas, such as sulfur hexafluoride.

Description

United States Patent [1 1 McConnell GAS INSULATED FLEXIBLE HIGH VOLTAGE CABLE [75] Inventor: Lorne D. McConnell, Radnor, Pa.
[73] Assignee: I-T-E Imperial Corporation,
Philadelphia, Pa.
[22] Filed: Jan. 17, 1972 [21] Appl. No.: 218,277
174/25 G, 26 G, 16 B, 99 B, 15 C, 110 F, 122 R, 120 R, 120 SR, 1201 C, 120 PP, 130
[56] References Cited UNITED STATES PATENTS 2,799,720 7/1957 Emanueli 174/25 G 2,147,402 2/1939 Faucett 174/25 G 2,286,052 6/1942 Beaver et al 174/25 G 3,160,703 12/1964 Muller 174/120 R 2,531,156 11/1950 Piercy et a1.... 174/25 G X 2,782,248 2/1957 Clark 174/25 R 3,459,871 8/1969 Eager, Jr. at al 174/25 R Oct. 23, 1973 Primary Examiner-Bernard A. Gilheany Assistant ExaminerA. T. Grimley AttarneySidney G. Faber et a1.
[57] ABSTRACT A gas insulated flexible high voltage cable in which an annular conductor is positioned within an annular conductive enclosure. Spacer means position and maintain the conductor within the annular conductive enclosure.
The spacer means comprises a plurality of gas permeable support layers of porous material, spaced one from another, and a plurality of perforated conductive layers alternately positioned between each pair of support layers. The spacer means is saturated by a volume of compressed insulating gas, such as sulfur hexafluoride.
8 Claims, 4 Drawing Figures '1 GAS INSULATED FLEXIBLE HIGH VOLTAGE CABLE BACKGROUND OF THE INVENTION This invention relates to power cables, and is particularly directed to gas insulated high voltage power cables of simple construction, capable of conducting heavy currents at high voltages.
In current gas insulated transmission systems, a coaxial conductor is carried in a metal housing and held in position with respect thereto by solid insulating discs of the type disclosed in U.S. Pat. No. 3,573,341 to Graybill et al., and assigned to I-T-E Imperial Corporation. Such discs position, maintain and support the coaxial conductor within the housing.
Such prior art systems can, however, only be manufactured and shipped in relatively short lengths of about 40 feet, and must thereafter be field assembled, field cleaned and field tested. These arrangements, moreover, include a large gas-filled volume in which loose conductive dust particles may become charged and thereafter oscillate through the system to establish points of high dielectric stress which may cause local electrical breakdowns within the system.
According to this invention, these disadvantages may be overcome by replacing the spacer discs with a composite spacer means which substantially fills the volume between the annular conductor and conductive housingQOther advantages of this invention will become apparent from the more detailed description that follows.
SUMMARY OF THE INVENTION Briefly, the gas insulated, flexible, high voltage cable comprises an annular conductive enclosure, gas impervious throughout its length. An annular conductor is positioned within the annular conductive enclosure. Spacer means position and maintain the conductor within the annular conductive enclosure.
The spacer means, itself, comprises a plurality of gas permeable support layers of porous material, spaced one from another. Each gas permeable support layer surrounds the annular conductor and each preceding support layer. A first gas permeable support layer not only surrounds the annular conductor, but it also engages the annular conductor.
A plurality of perforated conductive layers are alternately spaced between the gas permeable support layers. The succession of alternating support layers and perforated conductive layers form a composite structure.
A gas, for instance, sulfur hexafluoride, trichlorofluoromethane, dichlorodifluoromethane, dichlorofluoromethane, chlorodifluoromethane and the like, is dispersed under a controlled positive pressure throughout the spacer means and is adsorbed in the gas permeable support layers. Gas pressure within the spacer means may vary from I to 6 atmospheres and preferably vary from 2 to 4 atmospheres. The gas permeable support layers within the spacer means are in gastransfer communication with each other. These support layers are themselves gas permeable and porous and gas may communicate between support layers through the perforations provided in the conductive layers alternately spaced between the support layers.
The gas permeable support layers are preferably formed of an open cell, flexible foam resin material, for instance urethane (castor oil, polyester and polyether singly or in combination) polyethylene, styrene or silicone, but these support layers may be formed, as well, from materials such as cloth, paper, felt or like materials that have an open structure. The fibers in these other suitable materials may be either natural or synthetic provided they impart, to the spacer means, acceptably large surface area and volume resistivity, and an acceptably low dielectric constant and a creep-age path substantially greater than the direct radial distance from conductor to ground.
The materials used to form different support layers within the spacer means may be varied to preferably provide a dielectric constant in the spacer means of about 1.05 to 2.0. In a more preferred spacer means embodiment, the composition of support layers may be varied to provide a dielectric value approaching 1.05 at the outer layer of the spacer means and a maximum dielectric value approaching 2.0 at the inner layer of the spacer means proximate to the annular conductor.
The compressed gas saturated spacer arrangement substantially inhibits the oscillation of metallic dust particles between the annular conductor and annular conductive enclosure. The tendency for an electrical breakdown to occur is therefore reduced. The spacer arrangement acts like a microporous filter to trap particles enclosed within the volume defined between the annular conductive enclosure and annular conductor. The filter-like effect of the spacer means prevents any significant accumulation of migrating particles, even over long cable sections. By virtue of this cable construction, trapped particles are no longer free to oscillate between the two concentric conductors to reduce the dielectric breakdown level of the cable section.
BRIEF DESCRIPTION OF THE DRAWINGS This invention may be more fully understood in conjunction with the following drawings in which:
FIG. 1 is a vertical cross-section illustrative of the prior art in which a solid insulating disc supports and maintains a coaxial conductor in position in a metal housing;
FIG. 2 is a detail view of the disc shown in FIG. 1;
FIG. 3 is a detail cut away view in section of one embodiment of this invention; and
FIG. 4 is an elevated end view of the embodiment shown in FIG. 3.
DETAILED DESCRIPTION OF THE INVENTION FIGS 1 and 2 illustrate prior art cable constructions and the spacer means used to support the annular conductor within the annular conductive enclosure. The compressed gas insulated conductor 10 is normally comprised of a metal enclosed high voltage electrical conductor in which a hollow metallic conductor 12 is centrally supported with a surrounding grounded metal enclosure 14 by means of a disc-shaped insulator 16. The interior hollow space between the hollow metallic conductor and grounded metal enclosure is usually filled with a high dielectric compressed gas, such as sulfur hexafluoride. Prior art constructions of this type provide a large volume through which metallic dust particles can oscillate to establish a point or points of high dielectric stress. These metallic dust particle accumulations probably reduce the dielectric breakdown voltage and cause local breakdowns to occur on succeeding over voltage surges on the system.
Referring now to FIGS 3 and 4 which illustrate an embodiment of the present invention, annular conductor 20 is formed of large diameter stranded aluminum hollow cable 22 which-is flexible and lightweight. The aluminum stranding may be wrapped over a lightweight hollow core 24 for additional support, if necessary. Aluminum stranding 22 is housed in conductor jacket 26. Conductor jacket 26 is a high dielectric constant and low resistivity material. It is desirable that the conductor jacket be formed of a material with such properties to obtain a minimum voltage gradient across its thickness. The character of the material from which the conductor jacket is forrned is such that the material is compatible with refrigerant gases and sulfur hexafluoride.
Insulation support layers 28 which surround conductor 20 are formed of an open cell flexible foam resin material. Suitable resin materials from which the insulation support layers may be formed typically include urethane, silicone, polyethylene, styrene and their derivatives and copolymers.
Numeral 30 designates the perforated conductive layers alternately positioned between the insulation support layers 28. The conductive layers 30 may be a metallic or conductive tape lap-wound between the support layers at controlled diameters with respect to annular conductor 20. Alternatively, the conductive layers may be formed by applying a conductive coating to a thin insulating film. The helical windings are perforated to provide for the communication of insulating gas between different layers in the composite spacer means. The number and position of conductive foils in the composite spacer means may be varied along with ers 28 are illustrated as helically wound strips; however, the structure of the support layer may vary.
Annular conductive enclosure 32 houses annular conductor 20 and composite spacer means 34. Annular conductive enclosure 32 comprises conductive inner jacket 36 which may be lap wound around the spacer means or may be an integral extruded layer. Inner jacket 36 may be formed of any conventional conductive materials which are impervious to the insulating gas confined within the spacer means characterized by a low resistance to provide an effective ground layer for the insulating system. Banding 38 is a non-magnetic stainless steel wire which adds structural strength to inner jacket 36. Other equivalent materials may be used to band inner jacket 36. Outer jacket 40 houses the entire cable assembly. It is a wrapped or extruded covering whichsecures banding38 to inner jacket 36 and protects the entire cable assembly from weather conditions and external abrasion.
The spacer means 34 is gas filled, preferably with sulfur hexafluoride gas. However, other insulating gases with high dielectric strengths may be used in place of sulfur hexafluoride. The gas is maintained within the spacer means 34 under controlled pressure of about 2 to 4 atmospheres. The insulating gas, may diffuse throughout the total volume of spacer means 34 through porous insulation support layers 28 and perforated cond enser layers 30.
Spacer means 34 is sufficiently porous to permit a substantially uninhibited movement of compressed gas from bus section to bus section in the cable arrangement, but the spacer means is not porous enough to permit unrestricted passage of the metallic dust particles which may be present in the conductor, or which may be generated by the interaction of voltage polarity which is on a conductor.
While the present invention has been described with reference to specific embodiments, these embodiments are provided for illustrative purposes only, and are not to be construed as limiting the invention, which is defined by the appended claims.
What is claimed is:
1. A gas insulated flexible high voltage cable comprising:
an annular conductive enclosure, gas-impervious throughout its length,
an annular conductor positioned within said enclosure; and spacer means positioning and maintaining said conductor within said enclosure;
said spacer means having a dielectric constant of about 1.05 to 2.0 and consisting essentially of a plurality of gas permeable support layers of porous material, spaced one from another, surrounding said conductor and providing support therefor, 21 first gas permeable support layer engaging said conductor; and a plurality of perforated conductive layers alternately spaced between said gas permeable support layers.
2. The gas insulated flexible high voltage cable of claim 1 including a gas under controlled positive pressure dispersed throughout said spacer means and adsorbed in said gas permeable support layers, said gas permeable support layers being in gas-transfer communication, one with another.
3. The gas insulated flexible high voltage cable of claim 2 wherein said gas is sulfur hexafluoride.
4. The gas insulated flexible high voltage cable of claim 1 wherein said porous material from which said gas permeable support layers are formed is selected from the group consisting of open cell flexible foam resins, cloth, paper and felt.
5. The gas insulated flexible high voltage cable of claim 1 wherein said annular conductor comprises an annular conductive housing; and v a plurality of stranded conductors confined within said housing.
6. The gas insulated flexible high voltage cable of claim 1 wherein said annular conductive enclosure comprises a conductive inner jacket impervious to said gas;
an outer jacket surrounding said conductive inner jacket; and
conductive, non-magnetic banding between said conductive inner jacket and said outer jacket.
7. The gas insulated flexible high voltage cable of claim 1 wherein said porous material from which said gas permeable support layers are formed is an open cell flexible urethane foam.
8. The gas insulated flexible high voltage cable of claim 1 wherein the dielectric constant of the individual layers of said spacer means is varied such that it approaches 1.05 at the outermost layer thereof and approaches 2.0 at the innermost layer thereof proximate to said annular conductor.

Claims (7)

  1. 2. The gas insulated flexible high voltage cable of claim 1 including a gas under controlled positive pressure dispersed throughout said spacer means and adsorbed in said gas permeable support layers, said gas permeable support layers being in gas-transfer communication, one with another.
  2. 3. The gas insulated flexible high voltage cable of claim 2 wherein said gas is sulfur hexafluoride.
  3. 4. The gas insulated flexible high voltage cable of claim 1 wherein said porous material from which said gas permeable support layers are formed is selected from the group consisting of open cell flexible foam resins, cloth, paper and felt.
  4. 5. The gas insulated flexible high voltage cable of claim 1 wherein said annular conductor comprises an annular conductive housing; and a plurality of stranded conductors confined within said housing.
  5. 6. The gas insulated flexible high voltage cable of claim 1 wherein said annular conductive enclosure comprises a conductive inner jacket impervious to said gas; an outer jacket surrounding said conductive inner jacket; and conductive, non-magnetic banding between said conductive inner jacket and said outer jacket.
  6. 7. The gas insulated flexible high voltage cable of claim 1 wherein said porous material from which said gas permeable support layers are formed is an open cell flexible urethane foam.
  7. 8. The gas insulated flexible high voltage cable of claim 1 wherein the dielectric constant of the individual layers of said spacer means is varied such that it approaches 1.05 at the outermost layer thereof and approaches 2.0 at the innermost layer thereof proximate to said annular conductor.
US00218277A 1972-01-17 1972-01-17 Gas insulated flexible high voltage cable Expired - Lifetime US3767838A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US21827772A 1972-01-17 1972-01-17

Publications (1)

Publication Number Publication Date
US3767838A true US3767838A (en) 1973-10-23

Family

ID=22814461

Family Applications (1)

Application Number Title Priority Date Filing Date
US00218277A Expired - Lifetime US3767838A (en) 1972-01-17 1972-01-17 Gas insulated flexible high voltage cable

Country Status (4)

Country Link
US (1) US3767838A (en)
CA (1) CA992627A (en)
CH (1) CH556598A (en)
DE (1) DE2301794C3 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271226A (en) * 1976-12-03 1981-06-02 Compagnie Francaise Des Petroles Insulating layers for electrical cables
US4581478A (en) * 1982-04-07 1986-04-08 Pugh Paul F Gas pressurized cable and conduit system
WO1987000344A1 (en) * 1985-06-24 1987-01-15 Pugh Paul F Gas pressurized cable and conduit system
US5552372A (en) * 1994-10-27 1996-09-03 General Electric Company Ceramic superconducting lead resistant to breakage
US5759960A (en) * 1994-10-27 1998-06-02 General Electric Company Superconductive device having a ceramic superconducting lead resistant to breakage
US7674981B1 (en) * 2008-09-25 2010-03-09 Alcatel-Lucent Usa Inc. Structured dielectric for coaxial cable
CN103943232A (en) * 2014-03-28 2014-07-23 安徽长风电缆集团有限公司 High-temperature-resisting coaxial cable used for underworkings
US20220268869A1 (en) * 2021-02-24 2022-08-25 Bluehalo, Llc System and method for a digitally beamformed phased array feed

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894488A (en) * 1988-03-21 1990-01-16 Comm/Scope, Inc. High frequency signal cable with improved electrical dissipation factor and method of producing same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2147402A (en) * 1932-11-22 1939-02-14 Gen Cable Corp Electric cable
US2216010A (en) * 1937-06-09 1940-09-24 Gen Electric High tension electric cable
US2222932A (en) * 1937-09-11 1940-11-26 Okonite Callender Cable Co Inc Electric cable
US2286052A (en) * 1939-02-28 1942-06-09 Glover & Co Ltd W T Electric cable
US2531156A (en) * 1945-04-17 1950-11-21 Gen Electric Method of insulating hollow core conductors
US2782248A (en) * 1951-06-01 1957-02-19 Gen Electric Electrical cable structure
US2799720A (en) * 1952-04-09 1957-07-16 Pirelli Gas-pressure electric cables
US3160703A (en) * 1961-08-22 1964-12-08 Siemens Ag Laminated high-voltage insulation of coaxial electric conductors
US3403063A (en) * 1965-04-22 1968-09-24 Anaconda Wire & Cable Co Process of charging heavy gas into a gas-filled cable
US3459871A (en) * 1966-10-21 1969-08-05 Gen Cable Corp High voltage cable
US3496281A (en) * 1967-03-14 1970-02-17 Du Pont Spacing structure for electrical cable
DE1809989A1 (en) * 1968-11-20 1970-06-11 Kabel Metallwerke Ghh Telephone cable with filler polyurethane - foam between sheath and core

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2147402A (en) * 1932-11-22 1939-02-14 Gen Cable Corp Electric cable
US2216010A (en) * 1937-06-09 1940-09-24 Gen Electric High tension electric cable
US2222932A (en) * 1937-09-11 1940-11-26 Okonite Callender Cable Co Inc Electric cable
US2286052A (en) * 1939-02-28 1942-06-09 Glover & Co Ltd W T Electric cable
US2531156A (en) * 1945-04-17 1950-11-21 Gen Electric Method of insulating hollow core conductors
US2782248A (en) * 1951-06-01 1957-02-19 Gen Electric Electrical cable structure
US2799720A (en) * 1952-04-09 1957-07-16 Pirelli Gas-pressure electric cables
US3160703A (en) * 1961-08-22 1964-12-08 Siemens Ag Laminated high-voltage insulation of coaxial electric conductors
US3403063A (en) * 1965-04-22 1968-09-24 Anaconda Wire & Cable Co Process of charging heavy gas into a gas-filled cable
US3459871A (en) * 1966-10-21 1969-08-05 Gen Cable Corp High voltage cable
US3496281A (en) * 1967-03-14 1970-02-17 Du Pont Spacing structure for electrical cable
DE1809989A1 (en) * 1968-11-20 1970-06-11 Kabel Metallwerke Ghh Telephone cable with filler polyurethane - foam between sheath and core

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271226A (en) * 1976-12-03 1981-06-02 Compagnie Francaise Des Petroles Insulating layers for electrical cables
US4581478A (en) * 1982-04-07 1986-04-08 Pugh Paul F Gas pressurized cable and conduit system
WO1987000344A1 (en) * 1985-06-24 1987-01-15 Pugh Paul F Gas pressurized cable and conduit system
US5552372A (en) * 1994-10-27 1996-09-03 General Electric Company Ceramic superconducting lead resistant to breakage
US5552211A (en) * 1994-10-27 1996-09-03 General Electric Company Ceramic superconducting lead resistant to breakage
US5571606A (en) * 1994-10-27 1996-11-05 General Electric Company Ceramic superconducting lead resistant to breakage
US5574001A (en) * 1994-10-27 1996-11-12 General Electric Company Ceramic superconducting lead resistant to breakage
US5759960A (en) * 1994-10-27 1998-06-02 General Electric Company Superconductive device having a ceramic superconducting lead resistant to breakage
US7674981B1 (en) * 2008-09-25 2010-03-09 Alcatel-Lucent Usa Inc. Structured dielectric for coaxial cable
US20100071929A1 (en) * 2008-09-25 2010-03-25 Lucent Technologies Inc. Structured dielectric for coaxial cable
CN103943232A (en) * 2014-03-28 2014-07-23 安徽长风电缆集团有限公司 High-temperature-resisting coaxial cable used for underworkings
US20220268869A1 (en) * 2021-02-24 2022-08-25 Bluehalo, Llc System and method for a digitally beamformed phased array feed
US11721900B2 (en) 2021-02-24 2023-08-08 Bluehalo, Llc System and method for a digitally beamformed phased array feed
US11742579B2 (en) 2021-02-24 2023-08-29 Bluehalo, Llc System and method for a digitally beamformed phased array feed
US11742578B2 (en) * 2021-02-24 2023-08-29 Bluehalo, Llc System and method for a digitally beamformed phased array feed
US11777215B2 (en) 2021-02-24 2023-10-03 Bluehalo, Llc System and method for a digitally beamformed phased array feed
US11784412B2 (en) 2021-02-24 2023-10-10 Bluehalo, Llc System and method for a digitally beamformed phased array feed
US11791557B2 (en) 2021-02-24 2023-10-17 Bluehalo, Llc System and method for a digitally beamformed phased array feed
US20230361471A1 (en) * 2021-02-24 2023-11-09 Bluehalo, Llc System and method for a digitally beamformed phased array feed
US11817636B2 (en) 2021-02-24 2023-11-14 Bluehalo, Llc System and method for a digitally beamformed phased array feed
US11824279B2 (en) 2021-02-24 2023-11-21 Bluehalo, Llc System and method for a digitally beamformed phased array feed
US11824280B2 (en) 2021-02-24 2023-11-21 Bluehalo, Llc System and method for a digitally beamformed phased array feed
US20230378650A1 (en) * 2021-02-24 2023-11-23 Bluehalo, Llc System and method for a digitally beamformed phased array feed
US11843188B2 (en) 2021-02-24 2023-12-12 Bluehalo, Llc System and method for a digitally beamformed phased array feed
US11870159B2 (en) 2021-02-24 2024-01-09 Bluehalo, Llc System and method for a digitally beamformed phased array feed
US20240063542A1 (en) * 2021-02-24 2024-02-22 Bluehalo, Llc System and method for a digitally beamformed phased array feed
US11955727B2 (en) 2021-02-24 2024-04-09 Bluehalo, Llc System and method for a digitally beamformed phased array feed

Also Published As

Publication number Publication date
DE2301794B2 (en) 1974-08-22
DE2301794C3 (en) 1975-04-10
CA992627A (en) 1976-07-06
DE2301794A1 (en) 1973-08-30
CH556598A (en) 1974-11-29

Similar Documents

Publication Publication Date Title
US4090028A (en) Metal arcing ring for high voltage gas-insulated bus
US4207482A (en) Multilayered high voltage grading system for electrical conductors
US3644662A (en) Stress cascade-graded cable termination
US3259684A (en) Shielded resin insulated electric cable
US3345450A (en) Electric power transmission system
US3767838A (en) Gas insulated flexible high voltage cable
US2125869A (en) Electrical conductor
KR860008590A (en) High frequency composite wire and deflection unit with the same
US2322702A (en) Shielded cable
US4219742A (en) Hybrid dual voltage transmission system
US3287489A (en) Insulated high voltage cables
US4387266A (en) Foil-insulated high voltage bushing with embossed potential control inserts
US4370514A (en) High-voltage bushing with double-layered potential control inserts
US2381003A (en) Insulated electric conductor
US2882491A (en) Apparatus for testing electric cable insulation
JPS589521B2 (en) Namigatano Kinzokushisuo Gubishita Denki Cable
US3943433A (en) Measuring transformer arrangement for a high-voltage installation carrying several conductors
US2488211A (en) High-frequency cable
KR920001936B1 (en) Multi-conductor high voltage cable
US1978418A (en) Concentric return multiconductor cable
GB1068970A (en) Improvements in or relating to electric cables with compressed gas insulation
US3641251A (en) Scheme for reducing audible noise developed by an extra-high voltage transmission line
US3828114A (en) Synthetic resin sleeve with embedded stress control screen for high-voltage cables
US3551582A (en) Accessories for cables carrying very heavy currents
US1554250A (en) Reactance coil

Legal Events

Date Code Title Description
AS Assignment

Owner name: BROWN BOVERI ELECTRIC INC.; SPRING HOUSE, PA. 1947

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:I-T-E IMPERIAL CORPORATION;REEL/FRAME:004103/0790

Effective date: 19820428