US3769531A - Electrostatic system for generating periodical mechanical vibrations - Google Patents

Electrostatic system for generating periodical mechanical vibrations Download PDF

Info

Publication number
US3769531A
US3769531A US00209142A US3769531DA US3769531A US 3769531 A US3769531 A US 3769531A US 00209142 A US00209142 A US 00209142A US 3769531D A US3769531D A US 3769531DA US 3769531 A US3769531 A US 3769531A
Authority
US
United States
Prior art keywords
electrode means
electrode
electrodes
intermediate electrode
resilient tongue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00209142A
Inventor
F Elkuch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PROCOR FL Ets
PROCTOR ETS
Original Assignee
PROCTOR ETS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PROCTOR ETS filed Critical PROCTOR ETS
Application granted granted Critical
Publication of US3769531A publication Critical patent/US3769531A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/02Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a pendulum
    • G04C3/024Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a pendulum using other coupling means, e.g. electrostrictive, magnetostrictive

Definitions

  • ABSTRACT The present invention concerns means for generating periodical mechanical vibrations by means of electric energy and deals with a'greatly simplified and efficacious swing system which produces mechanical vibratory movements, which system dispenses with any active elements or components except for an energy or current source or cell, the energy losses produced by ohmic resistances in the system being reduced to a minimum and resulting in a high degree of efficiency, reliability, and accurate performance.
  • the invention is applicable more generally to the operation and performance of clocks, watches, and similar instruments requiring substantially no surveillance and nevertheless acting dependably and accurately for an extensive length of time.
  • Yet a further object of the invention is directed to means affording convenient and continuous replacement or replenishment of energy losses to which said device is subject during operation.
  • FIG. ll shows an embodiment of the invention having three electrodes, only one of which is movable.
  • FIG. 2 shows schematically theapplication of the embodiment of FIG. 1 to a ratchet wheel drive.
  • a vibrating member comprising a vibrating tongue with a mass must be mounted in a resilient or springy manner and in a fashion which fulfills the specific physical conditions for proper oscillation of a vibrating reed.
  • a member vibrates, i.e, when kinetic (velocity) and static (resilient flexure) energies are in reciprocal propagation within the member, there is a certain damping of the vibration due to the losses of energy which are caused in particular by internal and external friction. To maintain the resultant vibration, it becomes necessary to replace any inevitably resulting energy losses.
  • FIG. I there is disclosed a device with an arrangement capable of executing vibratory motions for the drive of a clock or timepiece mechanism, which requires good frequency stability.
  • an elastic or resilient member or tongue 21 On an elastic or resilient member or tongue 21 is fastened an electrode 20.
  • the other end of tongue 21 is rigidly connected between two insulating blocks 30.
  • Tongue 21 supporting a mass (electrode 20) at its free end constitutes a vibrating member which can swing back and forth in the direction of arrow 4 when it is excited to do so.
  • the assembly of tongue 21 and electrode 20 is electrically insulated from the remaining parts of the arrangement (as shown), and two outer electrodes 18 and 19 are fixedly attached or held in position by means of two relatively heavier supports or carriers 25 which are fastened on the outer sides of said blocks 30.
  • Said two outer electrodes are also electrically insulated and are located spaced apart from each other and from movable electrode 20.
  • Supports 25 are electric conductors, so that through connections 7 and 8, electric current (opposed electrical potentials) can be supplied to the outer electrodes from a voltage source or energy cell (not shown) for the charging of these electrodes.
  • Blocks 30 contain or consist of insulation material.
  • movable electrode 20 has, for instance, a negative electrical charge, and, if it comes near outer electrode 18 (which bears a positive potential, as shown), the electric field between these two electrodes will act on them and cause an attraction of the one toward the other, movable electrode 20 being moved counter to the force of elastic tongue 21 toward and up to electrode 18.
  • Electrode 20 now assumes the same polarity as electrode 18 and will be repelled by the latter as long as it touches it or is in proximity thereto. Electrode 20 is then exposed to the action or force of elastically tensioned tongue member 21 and hence can swing back, passing, owing to inertia, beyond its neutral or initial position and approaching outer electrode 19, which, as shown, has a negative polarity. Since electrode 20 now has a positive electrical charge (from preceding contact with electrode 18), the same aforementioned action will occur, but with respect to electrode 19 and with reverse polarities and directions. Subsequently, electrode 20 comes successively and alternately in contact with outer electrode 18 and with outer electrode 19, thereby causing a charge exchange each time, the aforementioned operation and phenomenon repeating itself in each direction.
  • the vibrating member formed of tongue 21 and electrode 20 is totally insulated from the rest of the arrangement; it is clearly apparent, therefore, considering the laws of the electrostatic theory, that the potential which this member 20, 21 would theoretically exhibit as compared with the outside (if it were possible to measure it) will undergo certain fluctuations in the course of the movement which takes electrode 20 from one of the outer electrodes to the opposite one, these fluctuations in theoretical potential being due to the fact that the electric charge itself cannot vary as long as electrode remains completely insulated.
  • This theoretical potential will undergo the greatest fluctuation at the outermost parts of the movement, i.e., just at the moment when electrode 20 is leaving an outer electrode or is about to touch one. It is also at those points that the mechanical force, which is electrostatic in origin, acting upon electrode 20, will be by far the greatest. During the whole remainder of the movement, the mechanical force of electrostatic origin will be much weaker and practically negligible.
  • Contact points 22, 23, and 24, of a known conductive metal or material resistant to burning down or melting, are arranged on the end faces of the respective electrodes. They render it possible that when using a voltage source of 1,000 volts, for example, the electrodes need not approach each other completely for the charge exchange or' load compensation, because at a sufficiently minute or small distance between the contact points, a spark arcs already over which suffices for charge compensation. In this way, the harmonic vibratory movement of tongue 21 with electrode 20 is not disturbed by any impact of the electrodes on each other.
  • FIG. 2 shows that for the partial decoupling of the vibration energy, a transducer may be inserted in the-circuit, which transforms the current surges occurring during a charge reversal into an alternating current voltage, which can be tapped atthe terminals of the secondary winding of the transformer or transducer.
  • a pawl 55 may be arranged which engages in the asymmetrical ratchetteeth 56 of a gear 57, the latter being advanced by one tooth during each vibratory movement.
  • a voltage source of relatively high voltage say, of at least volts
  • an isotropic generator is advantageously employed.
  • Such voltage cells or sources can be accommodated within 'a'minimum of space and yet furnish a terminal voltage of more than 1,000 volts.
  • the electric circuit of the above-described aggregates or arrangements is very simple, and any necessary changes of direction of the electric field are effectuated automatically by the movements of the intermediate electrode.
  • the great advantage of this arrrangement is that a vibration generator can be conveniently accommodated at greatly reduced dimensions, yet operates with a very high efficiency and which is suitable for installation in timing instruments, clockworks, and the like.
  • a system for generating periodical mechanical oscillations with substantially high frequency stability for the drive of a timepiece and like instrument comprising three electrode means arranged in spaced confronting relationship with regard to one another and at a predetermined distance from one another in inoperacharge carried thereby when said intermediate electrode means moves from one to the other of the outer electrodes, a direct current power source, and conductor means for respectively connecting said outer electrodes with different polarities of said direct currentpower source.
  • a system for generating periodical mechanical oscillations with substantially high frequency stability for the drive of a timepiece and like instrument comprising a pair of outer electrode means, resilient tongue means disposed intermediate said pair of outer electrode means, said resilient tongue means incorporating means defining an intermediate electrode means coopcrating with said pair of outer electrode means, said pair of outer electrode means and said intermediate electrode means being disposed in spaced confonting relationship from one another in inoperative position of said electrode means, with said intermediate electrode means being carried by said resilient tongue means to perform an oscillatory movement which successively at least approaches one and then the other of said outer electrode means, means for insulating said intermediate electrode means such that said intermediate electrode means possesses a substantially constant charge during movement from one to the other of said outer electrode means, a direct current-power source having different poles, and means for respectively connecting said outer electrodes with different poles of said direct current-power source.

Abstract

The present invention concerns means for generating periodical mechanical vibrations by means of electric energy and deals with a greatly simplified and efficacious swing system which produces mechanical vibratory movements, which system dispenses with any active elements or components except for an energy or current source or cell, the energy losses produced by ohmic resistances in the system being reduced to a minimum and resulting in a high degree of efficiency, reliability, and accurate performance. Three electrodes are arranged to constitute a mechanical oscillating or swinging arrangement of which one electrode is resiliently supported and is capable of flexing and swinging along a predetermined length of an oscillating course and in a direction toward and away from the other electrodes, a charge compensation in condenser fashion occurring when the one electrode approaches one of the other two electrodes closely enough within an electric field established between said electrodes. In the position of rest said electrodes are sufficiently remote or spaced from each other but are aligned with their frontal faces confronting each other.

Description

llnited States Patent [1 1 Ellmch ELECTROSTATIC SYSTEM FOR GENERATING PERIODICAL MECHANICAL VIBRATIONS [75] Inventor: Franz Elkuch, Schellenberg,
Liechtenstein [73] Assignee: Etablissemeut Proeor Vaduz,
' Liechtenstein 221 Filed: net. 17, 1911 211 Appl. No.: 209,142
Related'ILS. Application Data [62] Division of Ser, No. 863,056, Oct. 2, 1969, Pat. No.
[30] Foreign Application Priority Data Oct. 8, 1968 Switzerland 14948/68 [52] US. Cl. 310/6, 58/23 [51] Int. Cl. H0211 1/00 [58] Field of Search 310/5, 6, 21, 22,
310/37, 25, 31, 32; 318/116; 58/23, 28, 29, 23 MV, 23 TF; 317/250 [56] References Cited UNITED STATES PATENTS 3,652,955 3/1972 Cruger et 310/25 X 3,609,957 10/1971 Emerson et al.. 310/3 X 3,204,133 8/1965 Tschudin 310/22 FOREIGN PATENTS OR APPLICATIONS 922,033 3/1963 Great Britain 310/5 1 Oct. 30, 1973 Primary ExaminerD. F. Duggan Attorney-Werner W. Kleeman [57] ABSTRACT The present invention concerns means for generating periodical mechanical vibrations by means of electric energy and deals with a'greatly simplified and efficacious swing system which produces mechanical vibratory movements, which system dispenses with any active elements or components except for an energy or current source or cell, the energy losses produced by ohmic resistances in the system being reduced to a minimum and resulting in a high degree of efficiency, reliability, and accurate performance.
5 Claims, 2 Drawing Figures 4- r Y \V i i [ll- II I ELECTROSTATIC SYSTEM FOR GENERATING PERIODICAL MECHANICAL VIBRATIONS CROSS REFERENCE TO RELATED APPLICATION This application is a divisional application of copending'US. Pat. application Ser. No. 863,056, filed Oct. 2, 1969 now U.S. Pat. No. 3,641,373 dated Feb. 8, 1972.
SUMMARY OF THE INVENTION The invention is applicable more generally to the operation and performance of clocks, watches, and similar instruments requiring substantially no surveillance and nevertheless acting dependably and accurately for an extensive length of time.
It is therefore one of the important objects of the invention to provide means resulting in a highly economical and inexpensive vibratory drive system which can be easily adapted to'the clockwork of timepieces and similar instruments, preferably employable in the scientific field, which require precision and exactitude for their operation.
It is another object of the present invention to provide means conductive to a compact and relatively sturdy device for transferring electric energy to a mechanical drive arrangement which includes vibratory motion release and distribution, the vibratory movable elements being very few in number and having a greatly simplified design or configuration.
Yet a further object of the invention is directed to means affording convenient and continuous replacement or replenishment of energy losses to which said device is subject during operation.
,These and other objects and features of the invention ensue from the following detailed specification, reference thereto being made in the attached drawings illustrating one preferred embodiment of the invention.
BRIEF DESCRIPTION OF THE DRAWING FIG. ll shows an embodiment of the invention having three electrodes, only one of which is movable.
FIG. 2 shows schematically theapplication of the embodiment of FIG. 1 to a ratchet wheel drive.
.DESCRIPTION OF THE PREFERRED EMBODIMENT For achieving a structure capable of performing desired vibrations, a vibrating member comprising a vibrating tongue with a mass must be mounted in a resilient or springy manner and in a fashion which fulfills the specific physical conditions for proper oscillation of a vibrating reed. When such a member vibrates, i.e, when kinetic (velocity) and static (resilient flexure) energies are in reciprocal propagation within the member, there is a certain damping of the vibration due to the losses of energy which are caused in particular by internal and external friction. To maintain the resultant vibration, it becomes necessary to replace any inevitably resulting energy losses.
In FIG. I there is disclosed a device with an arrangement capable of executing vibratory motions for the drive of a clock or timepiece mechanism, which requires good frequency stability. On an elastic or resilient member or tongue 21 is fastened an electrode 20. The other end of tongue 21 is rigidly connected between two insulating blocks 30. Tongue 21 supporting a mass (electrode 20) at its free end, constitutes a vibrating member which can swing back and forth in the direction of arrow 4 when it is excited to do so. For this purpose, the assembly of tongue 21 and electrode 20 is electrically insulated from the remaining parts of the arrangement (as shown), and two outer electrodes 18 and 19 are fixedly attached or held in position by means of two relatively heavier supports or carriers 25 which are fastened on the outer sides of said blocks 30. Said two outer electrodes are also electrically insulated and are located spaced apart from each other and from movable electrode 20.
Supports 25 are electric conductors, so that through connections 7 and 8, electric current (opposed electrical potentials) can be supplied to the outer electrodes from a voltage source or energy cell (not shown) for the charging of these electrodes. Blocks 30 contain or consist of insulation material.
It is obvious from the electrotechnical theory that when movable electrode 20 touches neither electrode 18 nor electrode 19, it is held only electrostatically under the influence of outer electrodes 18 and 19, and is totally insulated from the other parts. The mechanical action of this electrostatic influence on movable electrode 20 will depend upon the electrical charge and the location of the latter at that particular moment, assuming that both the outer electrodes are charged at predetermined potentials.
If movable electrode 20 has, for instance, a negative electrical charge, and, if it comes near outer electrode 18 (which bears a positive potential, as shown), the electric field between these two electrodes will act on them and cause an attraction of the one toward the other, movable electrode 20 being moved counter to the force of elastic tongue 21 toward and up to electrode 18.
As soon as the electrodes closely approach or touch each other, the potential difference (or electrical charge disparity) between these two electrodes is compensated and the electric field disappears rapidly. Electrode 20 now assumes the same polarity as electrode 18 and will be repelled by the latter as long as it touches it or is in proximity thereto. Electrode 20 is then exposed to the action or force of elastically tensioned tongue member 21 and hence can swing back, passing, owing to inertia, beyond its neutral or initial position and approaching outer electrode 19, which, as shown, has a negative polarity. Since electrode 20 now has a positive electrical charge (from preceding contact with electrode 18), the same aforementioned action will occur, but with respect to electrode 19 and with reverse polarities and directions. Subsequently, electrode 20 comes successively and alternately in contact with outer electrode 18 and with outer electrode 19, thereby causing a charge exchange each time, the aforementioned operation and phenomenon repeating itself in each direction.
As is plain from FIG. 1, the vibrating member formed of tongue 21 and electrode 20 is totally insulated from the rest of the arrangement; it is clearly apparent, therefore, considering the laws of the electrostatic theory, that the potential which this member 20, 21 would theoretically exhibit as compared with the outside (if it were possible to measure it) will undergo certain fluctuations in the course of the movement which takes electrode 20 from one of the outer electrodes to the opposite one, these fluctuations in theoretical potential being due to the fact that the electric charge itself cannot vary as long as electrode remains completely insulated. This theoretical potential will undergo the greatest fluctuation at the outermost parts of the movement, i.e., just at the moment when electrode 20 is leaving an outer electrode or is about to touch one. It is also at those points that the mechanical force, which is electrostatic in origin, acting upon electrode 20, will be by far the greatest. During the whole remainder of the movement, the mechanical force of electrostatic origin will be much weaker and practically negligible.
This distinguishes the system according to FIGS. 1 and 2 from a system in which, e.g., by means of a capacitance condenser of appreciable capacity capacitance connected between electrode 20'and a point of fixed potential, the potential of electrode 20 would remain practically the same during the entire movement of that electrode. The'result would be that the electric charge carried by electrode 20 would undergo changes.
' In such a case, as a matter of fact, at the'moment when electrode 20 moves close to oneor the other of the outer electrodes (18 or 19 which would cause it to undergo fluctuations of potential if the latter were not sustained from outside, e.g., by means of the said condenser), it would,- if its potential is sustained, acquire or loseelectric charges precisely intended to prevent said potential fluctuations. The consequence of this gain or loss of electric charge(in such a case of operation with sustained potential) would be to extend the terminal portions beginning and ending-of the movement, upon which'appre'ciable mechanical forces of electrostatic origin act. v
That feature of the system shown in FIGS. land 2 according to which the intermediate vibrating member 21, 20 is totally insulated from the rest of the arrangement appears to be very important one, for it tends to make as short as possible those periods of time during which the mechanicallforces of electrostatic origin act upon the vibrating member to maintainv its oscillation.
lt will be noted that forces act on the vibrating mass in either direction of movement thereof, and during the brief contact of electrodes 18, 20 and 19, 20, only a relatively small compensating current flows, which is independent of the resistance of the circuit including electrode 18, support of electrode 18, terminal 7, voltage source, terminal 8, support 25 of electrode 19, and electrode 19. The voltage source must merely replenish the electrons intermittently absorbed by electrode 20 from electrode 19, which it transfers to electrode 1 8, Therefore, the efficiency of this device is extremely high and dependable.
Contact points 22, 23, and 24, of a known conductive metal or material resistant to burning down or melting, are arranged on the end faces of the respective electrodes. They render it possible that when using a voltage source of 1,000 volts, for example, the electrodes need not approach each other completely for the charge exchange or' load compensation, because at a sufficiently minute or small distance between the contact points, a spark arcs already over which suffices for charge compensation. In this way, the harmonic vibratory movement of tongue 21 with electrode 20 is not disturbed by any impact of the electrodes on each other.
It is known from the theory of vibrating reeds that with such a vibrating device, contrary to what happens with an oscillator device of the spiral-balance type, for example, a mechanical action for maintenance of the oscillation, applied at the end of the path of movement, is in any case not more unfavorable than a mechanical action for maintaining the oscillation applied in mid course/As long as the mechanical maintenance action applied to a vibrating reed at the end of the movement remains relatively sudden and retains a magnitude corresponding merely to the compensation of the energy losses which would otherwise damp the vibration movement, it is known that according to the vibrating reed theory, the vibration will remain a harmonic vibratory movement (having a frequency determined by the physical parameters of the vibrating reed).
FIG. 2 shows that for the partial decoupling of the vibration energy, a transducer may be inserted in the-circuit, which transforms the current surges occurring during a charge reversal into an alternating current voltage, which can be tapped atthe terminals of the secondary winding of the transformer or transducer. At the resilient tongue, a pawl 55 may be arranged which engages in the asymmetrical ratchetteeth 56 of a gear 57, the latter being advanced by one tooth during each vibratory movement.
Since for generating a force necessary for vibrating the" electrodes, a voltage source of relatively high voltage, say, of at least volts, is necessary, an isotropic generator is advantageously employed. Such voltage cells or sources can be accommodated within 'a'minimum of space and yet furnish a terminal voltage of more than 1,000 volts.
The electric circuit of the above-described aggregates or arrangements is very simple, and any necessary changes of direction of the electric field are effectuated automatically by the movements of the intermediate electrode. The great advantage of this arrrangement is that a vibration generator can be conveniently accommodated at greatly reduced dimensions, yet operates with a very high efficiency and which is suitable for installation in timing instruments, clockworks, and the like. i
It will be seen from the aforesaid disclosure that there has been created according to this invention a very compact and highly efficient vibratory system, which lends itself to a great variety of applications-in the'instrument field and may be modified or altered according to the purpose intended. 1
What is claimed is:
1. A system for generating periodical mechanical oscillations with substantially high frequency stability for the drive of a timepiece and like instrument, comprising three electrode means arranged in spaced confronting relationship with regard to one another and at a predetermined distance from one another in inoperacharge carried thereby when said intermediate electrode means moves from one to the other of the outer electrodes, a direct current power source, and conductor means for respectively connecting said outer electrodes with different polarities of said direct currentpower source.
2. The system as defined in claim 1, further including transmission means operatively connected with said intermediate electrode means, said transmission means incorporating a pawl-shaped member connected with said vibrating member, a ratchet wheel which can be actuated by said pawl-shaped member in position position of said electrode means, so that the resultant mechanical oscillation energy of the vibrating member imparts rotational movement to said ratchet wheel through the agency of said pawl-shaped member.
3. The system as defined in claim 1, wherein said three electrode means incorporate means for precluding any disturbing effect upon the vibratory movement of the vibrating member due to possible impact of said electrode means against one another.
4. A system for generating periodical mechanical oscillations with substantially high frequency stability for the drive of a timepiece and like instrument, comprising a pair of outer electrode means, resilient tongue means disposed intermediate said pair of outer electrode means, said resilient tongue means incorporating means defining an intermediate electrode means coopcrating with said pair of outer electrode means, said pair of outer electrode means and said intermediate electrode means being disposed in spaced confonting relationship from one another in inoperative position of said electrode means, with said intermediate electrode means being carried by said resilient tongue means to perform an oscillatory movement which successively at least approaches one and then the other of said outer electrode means, means for insulating said intermediate electrode means such that said intermediate electrode means possesses a substantially constant charge during movement from one to the other of said outer electrode means, a direct current-power source having different poles, and means for respectively connecting said outer electrodes with different poles of said direct current-power source.
5. The system as defined in claim 4, wherein said means of said resilient tongue means defining said intermediate electrode means is a separate electrode member mounted upon said resilient tongue means.

Claims (5)

1. A system for generating periodical mechanical oscillations with substantially high frequency stability for the drive of a timepiece and like instrument, comprising three electrode means arranged in spaced confronting relationship with regard to one another and at a predetermined distance from one another in inoperative position of said three electrode means, said three electrode means comprising two outer electrodes and one intermediate electrode means, resilient tongue means for carrying said intermediate electrode means, said resilient tongue means and said intermediate electrode means defining a vibrating member for moving said intermediate electrode means relative to said two outer electrodes, said intermediate electrode means being devoid of components which would alter the charge carried thereby when said intermediate electrode means moves from one to the other of the outer electrodes, a direct current-power source, and conductor means for respectively connecting said outer electrodes with different polarities of said direct current-power source.
2. The system as defined in claim 1, further including transmission means operatively connected with said intermediate electrode means, said transmission means incorporating a pawl-shaped member connected with said vibrating member, a ratchet wheel which can be actuated by said pawl-shaped member in operative position position of said electrode means, so that the resultant mechanical oscillation energy of the vibrating member imparts rotational movement to said ratchet wheel through the agency of said pawl-shaped member.
3. The system as defined in claim 1, wherein said three electrode means incorporate means for precluding any disturbing effect upon the vibratory movement of the vibrating member due to possible impact of said electrode means against one another.
4. A system for generating periodical mechaNical oscillations with substantially high frequency stability for the drive of a timepiece and like instrument, comprising a pair of outer electrode means, resilient tongue means disposed intermediate said pair of outer electrode means, said resilient tongue means incorporating means defining an intermediate electrode means cooperating with said pair of outer electrode means, said pair of outer electrode means and said intermediate electrode means being disposed in spaced confonting relationship from one another in inoperative position of said electrode means, with said intermediate electrode means being carried by said resilient tongue means to perform an oscillatory movement which successively at least approaches one and then the other of said outer electrode means, means for insulating said intermediate electrode means such that said intermediate electrode means possesses a substantially constant charge during movement from one to the other of said outer electrode means, a direct current-power source having different poles, and means for respectively connecting said outer electrodes with different poles of said direct current-power source.
5. The system as defined in claim 4, wherein said means of said resilient tongue means defining said intermediate electrode means is a separate electrode member mounted upon said resilient tongue means.
US00209142A 1968-10-08 1971-12-17 Electrostatic system for generating periodical mechanical vibrations Expired - Lifetime US3769531A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1494868A CH511476A (en) 1968-10-08 1968-10-08 Device for generating periodic mechanical vibrations in a clockwork

Publications (1)

Publication Number Publication Date
US3769531A true US3769531A (en) 1973-10-30

Family

ID=4405098

Family Applications (2)

Application Number Title Priority Date Filing Date
US863056A Expired - Lifetime US3641373A (en) 1968-10-08 1969-10-02 Electrostatic system for generating periodical mechanical vibrations
US00209142A Expired - Lifetime US3769531A (en) 1968-10-08 1971-12-17 Electrostatic system for generating periodical mechanical vibrations

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US863056A Expired - Lifetime US3641373A (en) 1968-10-08 1969-10-02 Electrostatic system for generating periodical mechanical vibrations

Country Status (8)

Country Link
US (2) US3641373A (en)
AT (1) AT289243B (en)
BR (1) BR6912995D0 (en)
CH (2) CH1494868A4 (en)
DE (1) DE1948659A1 (en)
FR (1) FR2020118B1 (en)
GB (1) GB1250368A (en)
SE (1) SE376668B (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3838299A (en) * 1971-12-17 1974-09-24 Procor Ets System for generating periodical mechanical vibrations
US3881309A (en) * 1973-03-13 1975-05-06 Biviator Sa Electronic timepiece
US4585977A (en) * 1984-12-04 1986-04-29 Dominic Arbisi Electronic motor
US5051643A (en) * 1990-08-30 1991-09-24 Motorola, Inc. Electrostatically switched integrated relay and capacitor
US5072288A (en) * 1989-02-21 1991-12-10 Cornell Research Foundation, Inc. Microdynamic release structure
US5149673A (en) * 1989-02-21 1992-09-22 Cornell Research Foundation, Inc. Selective chemical vapor deposition of tungsten for microdynamic structures
US5235187A (en) * 1991-05-14 1993-08-10 Cornell Research Foundation Methods of fabricating integrated, aligned tunneling tip pairs
US5275055A (en) * 1992-08-31 1994-01-04 Honeywell Inc. Resonant gauge with microbeam driven in constant electric field
US6184607B1 (en) * 1998-12-29 2001-02-06 Honeywell International Inc. Driving strategy for non-parallel arrays of electrostatic actuators sharing a common electrode
US6307298B1 (en) * 2000-03-20 2001-10-23 Motorola, Inc. Actuator and method of manufacture
US6568286B1 (en) 2000-06-02 2003-05-27 Honeywell International Inc. 3D array of integrated cells for the sampling and detection of air bound chemical and biological species
US6729856B2 (en) 2001-10-09 2004-05-04 Honeywell International Inc. Electrostatically actuated pump with elastic restoring forces
US6771001B2 (en) * 2001-03-16 2004-08-03 Optical Coating Laboratory, Inc. Bi-stable electrostatic comb drive with automatic braking
US20040211077A1 (en) * 2002-08-21 2004-10-28 Honeywell International Inc. Method and apparatus for receiving a removable media member
US6837476B2 (en) 2002-06-19 2005-01-04 Honeywell International Inc. Electrostatically actuated valve
US20060134510A1 (en) * 2004-12-21 2006-06-22 Cleopatra Cabuz Air cell air flow control system and method
US20060137749A1 (en) * 2004-12-29 2006-06-29 Ulrich Bonne Electrostatically actuated gas valve
US20060241545A1 (en) * 2005-04-20 2006-10-26 Children's Medical Center Corporation Waveform sensing and regulating fluid flow valve
US20060272718A1 (en) * 2005-06-03 2006-12-07 Honeywell International Inc. Microvalve package assembly
US20070131286A1 (en) * 2005-12-09 2007-06-14 Honeywell International Inc. Gas valve with overtravel
US20070221276A1 (en) * 2006-03-22 2007-09-27 Honeywell International Inc. Modulating gas valves and systems
US20080029207A1 (en) * 2006-07-20 2008-02-07 Smith Timothy J Insert Molded Actuator Components
US7328882B2 (en) 2005-01-06 2008-02-12 Honeywell International Inc. Microfluidic modulating valve
US20080099082A1 (en) * 2006-10-27 2008-05-01 Honeywell International Inc. Gas valve shutoff seal
US20080128037A1 (en) * 2006-11-30 2008-06-05 Honeywell International Inc. Gas valve with resilient seat
US7420659B1 (en) 2000-06-02 2008-09-02 Honeywell Interantional Inc. Flow control system of a cartridge
US7445017B2 (en) 2005-01-28 2008-11-04 Honeywell International Inc. Mesovalve modulator
US7517201B2 (en) 2005-07-14 2009-04-14 Honeywell International Inc. Asymmetric dual diaphragm pump
US20130170330A1 (en) * 2010-07-30 2013-07-04 The Swatch Group Research And Development Ltd Controlled contact or contactless force transmission in a timepiece
US8839815B2 (en) 2011-12-15 2014-09-23 Honeywell International Inc. Gas valve with electronic cycle counter
US8899264B2 (en) 2011-12-15 2014-12-02 Honeywell International Inc. Gas valve with electronic proof of closure system
US8905063B2 (en) 2011-12-15 2014-12-09 Honeywell International Inc. Gas valve with fuel rate monitor
US8947242B2 (en) 2011-12-15 2015-02-03 Honeywell International Inc. Gas valve with valve leakage test
US9074770B2 (en) 2011-12-15 2015-07-07 Honeywell International Inc. Gas valve with electronic valve proving system
US9234661B2 (en) 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
US9645584B2 (en) 2014-09-17 2017-05-09 Honeywell International Inc. Gas valve with electronic health monitoring
US9683674B2 (en) 2013-10-29 2017-06-20 Honeywell Technologies Sarl Regulating device
US9835265B2 (en) 2011-12-15 2017-12-05 Honeywell International Inc. Valve with actuator diagnostics
US9841122B2 (en) 2014-09-09 2017-12-12 Honeywell International Inc. Gas valve with electronic valve proving system
US9846440B2 (en) 2011-12-15 2017-12-19 Honeywell International Inc. Valve controller configured to estimate fuel comsumption
US9851103B2 (en) 2011-12-15 2017-12-26 Honeywell International Inc. Gas valve with overpressure diagnostics
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US10024439B2 (en) 2013-12-16 2018-07-17 Honeywell International Inc. Valve over-travel mechanism
US10422531B2 (en) 2012-09-15 2019-09-24 Honeywell International Inc. System and approach for controlling a combustion chamber
US10503181B2 (en) 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator
US10564062B2 (en) 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
US10697632B2 (en) 2011-12-15 2020-06-30 Honeywell International Inc. Gas valve with communication link
US10697815B2 (en) 2018-06-09 2020-06-30 Honeywell International Inc. System and methods for mitigating condensation in a sensor module
US11073281B2 (en) 2017-12-29 2021-07-27 Honeywell International Inc. Closed-loop programming and control of a combustion appliance

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH153972A4 (en) * 1972-02-02 1973-06-29
US3961209A (en) * 1972-07-20 1976-06-01 Biviator S.A. Oscillator for time measurement
US3772537A (en) * 1972-10-27 1973-11-13 Trw Inc Electrostatically actuated device
DE10221420A1 (en) * 2002-05-14 2003-12-11 Enocean Gmbh Device for converting mechanical energy into electrical energy
JP4213540B2 (en) * 2003-08-20 2009-01-21 株式会社日立製作所 Vibration generator
US20070051415A1 (en) * 2005-09-07 2007-03-08 Honeywell International Inc. Microvalve switching array
US8030807B2 (en) * 2005-12-09 2011-10-04 Chubb International Holdings Limited Electromechanical energy harvesting system
US7766037B2 (en) * 2007-07-25 2010-08-03 Honeywell International, Inc. Adjustable shutoff valve
US20090072637A1 (en) * 2007-09-13 2009-03-19 Forcecon Technology Co., Ltd. Airflow generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB922033A (en) * 1960-12-30 1963-03-27 Svu Ochrany Materialu G V Akim Electrostatic vibrator
US3204133A (en) * 1962-01-31 1965-08-31 Straumann Inst Ag Electric reciprocating drive with motion conversion
US3609957A (en) * 1969-03-27 1971-10-05 Gen Time Corp Drive arrangement for timekeeping system
US3652955A (en) * 1970-07-30 1972-03-28 Gen Time Corp Electromechanical oscillator using electret coupling

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1910434A (en) * 1929-01-26 1933-05-23 Harvey C Hayes Electrically driven pendulum
US2606222A (en) * 1947-08-26 1952-08-05 Clifford Cecil Frank Electric motor
US2835105A (en) * 1953-06-02 1958-05-20 Ancienne Manufacture D Horloge Electrostatic balance clock
US2760331A (en) * 1953-07-09 1956-08-28 Reiner Irving Electrostatic pendulum clock
US3283226A (en) * 1965-01-07 1966-11-01 Berry Ind Inc Resonant reed assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB922033A (en) * 1960-12-30 1963-03-27 Svu Ochrany Materialu G V Akim Electrostatic vibrator
US3204133A (en) * 1962-01-31 1965-08-31 Straumann Inst Ag Electric reciprocating drive with motion conversion
US3609957A (en) * 1969-03-27 1971-10-05 Gen Time Corp Drive arrangement for timekeeping system
US3652955A (en) * 1970-07-30 1972-03-28 Gen Time Corp Electromechanical oscillator using electret coupling

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3838299A (en) * 1971-12-17 1974-09-24 Procor Ets System for generating periodical mechanical vibrations
US3881309A (en) * 1973-03-13 1975-05-06 Biviator Sa Electronic timepiece
US4585977A (en) * 1984-12-04 1986-04-29 Dominic Arbisi Electronic motor
US5072288A (en) * 1989-02-21 1991-12-10 Cornell Research Foundation, Inc. Microdynamic release structure
US5149673A (en) * 1989-02-21 1992-09-22 Cornell Research Foundation, Inc. Selective chemical vapor deposition of tungsten for microdynamic structures
US5051643A (en) * 1990-08-30 1991-09-24 Motorola, Inc. Electrostatically switched integrated relay and capacitor
US5449903A (en) * 1991-05-14 1995-09-12 Cornell Research Foundation, Inc. Methods of fabricating integrated, aligned tunneling tip pairs
US5235187A (en) * 1991-05-14 1993-08-10 Cornell Research Foundation Methods of fabricating integrated, aligned tunneling tip pairs
US5275055A (en) * 1992-08-31 1994-01-04 Honeywell Inc. Resonant gauge with microbeam driven in constant electric field
US6184607B1 (en) * 1998-12-29 2001-02-06 Honeywell International Inc. Driving strategy for non-parallel arrays of electrostatic actuators sharing a common electrode
US6307298B1 (en) * 2000-03-20 2001-10-23 Motorola, Inc. Actuator and method of manufacture
US6889567B2 (en) 2000-06-02 2005-05-10 Honeywell International Inc. 3D array integrated cells for the sampling and detection of air bound chemical and biological species
US6568286B1 (en) 2000-06-02 2003-05-27 Honeywell International Inc. 3D array of integrated cells for the sampling and detection of air bound chemical and biological species
US7420659B1 (en) 2000-06-02 2008-09-02 Honeywell Interantional Inc. Flow control system of a cartridge
US6758107B2 (en) 2000-06-02 2004-07-06 Honeywell International Inc. 3D array of integrated cells for the sampling and detection of air bound chemical and biological species
US6771001B2 (en) * 2001-03-16 2004-08-03 Optical Coating Laboratory, Inc. Bi-stable electrostatic comb drive with automatic braking
US6767190B2 (en) 2001-10-09 2004-07-27 Honeywell International Inc. Methods of operating an electrostatically actuated pump
US6729856B2 (en) 2001-10-09 2004-05-04 Honeywell International Inc. Electrostatically actuated pump with elastic restoring forces
US6837476B2 (en) 2002-06-19 2005-01-04 Honeywell International Inc. Electrostatically actuated valve
US20050062001A1 (en) * 2002-06-19 2005-03-24 Cleopatra Cabuz Electrostatically actuated valve
US6968862B2 (en) 2002-06-19 2005-11-29 Honeywell International Inc. Electrostatically actuated valve
US20040211077A1 (en) * 2002-08-21 2004-10-28 Honeywell International Inc. Method and apparatus for receiving a removable media member
US7000330B2 (en) 2002-08-21 2006-02-21 Honeywell International Inc. Method and apparatus for receiving a removable media member
US20060134510A1 (en) * 2004-12-21 2006-06-22 Cleopatra Cabuz Air cell air flow control system and method
US20060137749A1 (en) * 2004-12-29 2006-06-29 Ulrich Bonne Electrostatically actuated gas valve
US7222639B2 (en) 2004-12-29 2007-05-29 Honeywell International Inc. Electrostatically actuated gas valve
US7467779B2 (en) 2005-01-06 2008-12-23 Honeywell International Inc. Microfluidic modulating valve
US7328882B2 (en) 2005-01-06 2008-02-12 Honeywell International Inc. Microfluidic modulating valve
US7445017B2 (en) 2005-01-28 2008-11-04 Honeywell International Inc. Mesovalve modulator
US20060241545A1 (en) * 2005-04-20 2006-10-26 Children's Medical Center Corporation Waveform sensing and regulating fluid flow valve
US7618391B2 (en) * 2005-04-20 2009-11-17 Children's Medical Center Corporation Waveform sensing and regulating fluid flow valve
US7320338B2 (en) 2005-06-03 2008-01-22 Honeywell International Inc. Microvalve package assembly
US20060272718A1 (en) * 2005-06-03 2006-12-07 Honeywell International Inc. Microvalve package assembly
US7517201B2 (en) 2005-07-14 2009-04-14 Honeywell International Inc. Asymmetric dual diaphragm pump
US20070131286A1 (en) * 2005-12-09 2007-06-14 Honeywell International Inc. Gas valve with overtravel
US7624755B2 (en) 2005-12-09 2009-12-01 Honeywell International Inc. Gas valve with overtravel
US20070221276A1 (en) * 2006-03-22 2007-09-27 Honeywell International Inc. Modulating gas valves and systems
US7523762B2 (en) 2006-03-22 2009-04-28 Honeywell International Inc. Modulating gas valves and systems
US8007704B2 (en) 2006-07-20 2011-08-30 Honeywell International Inc. Insert molded actuator components
US20080029207A1 (en) * 2006-07-20 2008-02-07 Smith Timothy J Insert Molded Actuator Components
US20080099082A1 (en) * 2006-10-27 2008-05-01 Honeywell International Inc. Gas valve shutoff seal
US7644731B2 (en) 2006-11-30 2010-01-12 Honeywell International Inc. Gas valve with resilient seat
US20080128037A1 (en) * 2006-11-30 2008-06-05 Honeywell International Inc. Gas valve with resilient seat
US20130170330A1 (en) * 2010-07-30 2013-07-04 The Swatch Group Research And Development Ltd Controlled contact or contactless force transmission in a timepiece
US9074770B2 (en) 2011-12-15 2015-07-07 Honeywell International Inc. Gas valve with electronic valve proving system
US8899264B2 (en) 2011-12-15 2014-12-02 Honeywell International Inc. Gas valve with electronic proof of closure system
US8905063B2 (en) 2011-12-15 2014-12-09 Honeywell International Inc. Gas valve with fuel rate monitor
US8947242B2 (en) 2011-12-15 2015-02-03 Honeywell International Inc. Gas valve with valve leakage test
US9846440B2 (en) 2011-12-15 2017-12-19 Honeywell International Inc. Valve controller configured to estimate fuel comsumption
US8839815B2 (en) 2011-12-15 2014-09-23 Honeywell International Inc. Gas valve with electronic cycle counter
US10851993B2 (en) 2011-12-15 2020-12-01 Honeywell International Inc. Gas valve with overpressure diagnostics
US10697632B2 (en) 2011-12-15 2020-06-30 Honeywell International Inc. Gas valve with communication link
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US9835265B2 (en) 2011-12-15 2017-12-05 Honeywell International Inc. Valve with actuator diagnostics
US9851103B2 (en) 2011-12-15 2017-12-26 Honeywell International Inc. Gas valve with overpressure diagnostics
US9234661B2 (en) 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
US10422531B2 (en) 2012-09-15 2019-09-24 Honeywell International Inc. System and approach for controlling a combustion chamber
US11421875B2 (en) 2012-09-15 2022-08-23 Honeywell International Inc. Burner control system
US9657946B2 (en) 2012-09-15 2017-05-23 Honeywell International Inc. Burner control system
US9683674B2 (en) 2013-10-29 2017-06-20 Honeywell Technologies Sarl Regulating device
US10215291B2 (en) 2013-10-29 2019-02-26 Honeywell International Inc. Regulating device
US10024439B2 (en) 2013-12-16 2018-07-17 Honeywell International Inc. Valve over-travel mechanism
US9841122B2 (en) 2014-09-09 2017-12-12 Honeywell International Inc. Gas valve with electronic valve proving system
US9645584B2 (en) 2014-09-17 2017-05-09 Honeywell International Inc. Gas valve with electronic health monitoring
US10203049B2 (en) 2014-09-17 2019-02-12 Honeywell International Inc. Gas valve with electronic health monitoring
US10503181B2 (en) 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator
US10564062B2 (en) 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
US11073281B2 (en) 2017-12-29 2021-07-27 Honeywell International Inc. Closed-loop programming and control of a combustion appliance
US10697815B2 (en) 2018-06-09 2020-06-30 Honeywell International Inc. System and methods for mitigating condensation in a sensor module

Also Published As

Publication number Publication date
BR6912995D0 (en) 1973-03-08
AT289243B (en) 1971-04-13
FR2020118B1 (en) 1974-03-15
CH1494868A4 (en) 1971-03-15
FR2020118A1 (en) 1970-07-10
CH511476A (en) 1971-03-15
GB1250368A (en) 1971-10-20
SE376668B (en) 1975-06-02
US3641373A (en) 1972-02-08
DE1948659A1 (en) 1970-04-30

Similar Documents

Publication Publication Date Title
US3769531A (en) Electrostatic system for generating periodical mechanical vibrations
US3532408A (en) Resonant torsional oscillators
US3168690A (en) Clock power-device
US4056743A (en) Oscillating reed electric motors
US3652955A (en) Electromechanical oscillator using electret coupling
US2769946A (en) Oscillating commutatorless direct current motor
US3207965A (en) Adjustable mechanical oscillator for time-measuring apparatus
US2606222A (en) Electric motor
US3150337A (en) Electro-mechanical resonant device
US3360704A (en) Spring-type electromechanical oscillator
US3214662A (en) Electro-mechanical oscillation sustaining drive system
US3714773A (en) Amplitude control means for balance wheel oscillator
US3581126A (en) Mounting device for flexion vibrators
US2852725A (en) Electrically-maintained vibratory oscillator
US3618311A (en) Synchronized horological system
US3403312A (en) Circuitry for timekeeping instruments
US3838299A (en) System for generating periodical mechanical vibrations
US3921386A (en) Circuit for synchronizing watches driven by a coil-magnet system
US2835105A (en) Electrostatic balance clock
US2883827A (en) Electrically actuated horological instrument
US3123755A (en) Electrical system for maintenance of
US3509437A (en) Timepiece drive
US2986686A (en) Electro-mechanical devices
US1910434A (en) Electrically driven pendulum
US3349305A (en) Electromechanical oscillators