US3774846A - Pressure wave atomizing apparatus - Google Patents

Pressure wave atomizing apparatus Download PDF

Info

Publication number
US3774846A
US3774846A US00218438A US3774846DA US3774846A US 3774846 A US3774846 A US 3774846A US 00218438 A US00218438 A US 00218438A US 3774846D A US3774846D A US 3774846DA US 3774846 A US3774846 A US 3774846A
Authority
US
United States
Prior art keywords
nozzle
liquid
section
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00218438A
Inventor
R Schurig
J Korn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonic Development Corporation of America
Original Assignee
Sonic Development Corporation of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonic Development Corporation of America filed Critical Sonic Development Corporation of America
Application granted granted Critical
Publication of US3774846A publication Critical patent/US3774846A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0692Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/34Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by ultrasonic means or other kinds of vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/48Sonic vibrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/75Flowing liquid aspirates gas

Definitions

  • ABSTRACT Fluids to be mixed and atomized are fed into a converging-diverging nozzle which directs them towards a cavity member.
  • liquid is forced through the central opening of the nozzle, and gas is injected into the liquid at a plurality of points around the liquid stream through an inclined baffle structure near the converging portion of the nozzle.
  • air is fed into the central opening of the nozzle, and liquid through the baf- [52] US. Cl 239/102, 239/427.3, 239/430, fie structure, as well as downstream from the baffle 239/DIG.
  • the liquid supply flow rate and the gas sup- [51] Int. Cl B05b 7/00 ply pressure are regulated so that the input gas pres- [58] Field of Search 239/102, 416.5, 417, sure is greater than the minimum liquid pressure but 239/424.5, 427.3, 427.5, 430, DIG. 20 less than the maximum liquid pressure.
  • the upstream liquid feed passageway is effectively closed at low flow [56] References Cited rates, while being open at high flow rates, thus en- UN1TED STATES PATENTS abling the maintenance of relatively high liquid back- 3,240,254 3/1966 Hughes 239 102 x Pressures for accurate rate control a wide 3,471,091 10/1969 Baker 239/417 x range of flow values- 708,893 9/1902 Lundholm..
  • This invention relates to apparatus and methods for atomizing and mixing fluent materials and burning combustible fluids.
  • a major object of the present invention to provide atomizing, mixing and fuel burning apparatus and methods which give relatively very high tum-down ratios while maintaining highly satisfactory atomization.
  • a further object of the present invention is to provide such apparatus which is simple in construction and operation, has relative large fluid feed holes which do not become clogged easily, which is economical to use and requires relatively low gas flow rates, which will operate effectively in a liquid ambient medium, and which is relatively inexpensive to manufacture.
  • a further object is to provide an improved liquid feed means for such apparatus.
  • FIG. 1 is a perspective view of an atomizing and fuel burning device constructed in accordance with the present invention
  • FIG. 2 is a cross-sectional, partially schematic view taken along line 2--2 of FIG. 1;
  • FIG. 3 is a graph illustrating qualitatively variation of some of the operating parameters of the device shown in FIGS. 1 and 2;
  • FIGS. 4, 5, 6 and 7 is a cross-sectional view of another embodiment of the invention.
  • the atomizer and burner device shown in FIGS. 1 and 2 includes a nozzle assembly 10, and a cavity resonator member 12 which is secured to one end of the nozzle assembly by means of three support struts 14.
  • the nozzle assembly 10 is composed of three main components; an internal nozzle member 24, a baffle" member 26 within the member 24, and an outer sleeve 28.
  • the sleeve 28 has a threaded portion 30 (not shown in FIG. 2) at one end which is used for coupling the nozzle to gas and liquid supply conduits.
  • Several metal balls 32 are welded in position to permanently space the inner nozzle member 24 from the outer sleeve 28 as is shown in FIG. 2 and thus form an annularly-shaped liquid flow conduit 34.
  • the baffle member 26 is generally frustro-conically shaped, and has an angle of inclination (a) equal to the angle of inclination of the frusto-conically shaped walls of the converging nozzle section of the nozzle member 24.
  • the left end of the bafi'le member 26 is force-fitted into the cylindrical inner wall 41 of the noule member 24, and forms a liquid flow passageway 40 between the wall 39 of the baffle and the nozzle wall.
  • Several symmetrically-positioned liquid feed holes 36 pass through the wall of the nozzle number 24 and exit into the passageway 40 formed between the baffle wall 39 and the nozzle wall.
  • the downstream end of the baf fle member 26 forms a liquid flow opening 42 through which liquid passes into the stabilizing section of the nozzle.
  • the baffle 26 has a cylindrical end portion 44 which has the same diameter D* as the stabilizing section 18 and thus effectively forms a portion of the stabilizing section.
  • the exit opening 42 is substantially cylindrically shaped and is continuous around the entire periphery of the nozzle.
  • Additional liquid feed holes 38 are positioned symmetn'cally in the nozzle member so as to exit into the diverging section 20 of the nozzle.
  • the total crosssectional area of the holes 36 preferably is approximately equal to the total cross-sectional area of the holes 38. In one specific embodiment of the invention which has been built and tested, there are eight of the upstream holes 36 and sixteen of the holes 38.
  • the liquid to be atomized such as fuel oil
  • a reservoir 46 see FIG. 2
  • a pump 50 qnd another conduit 52 into the liquid flow conduit of the atomizer.
  • Compressed air, steam, or the like is supplied to the converging nozzle inlet by means of any convenient, well-known pressure source 54 through a pipe 56, a valve 58 and another pipe 60.
  • a known linkage control device 62 is provided which senses the pressure P at which the liquid fuel is supplied, and simultaneously measures the pressure P at which gas is supplied to the atomizer.
  • the control device 62 automatically varies the liquid pressure P, and the gas pressure P to change the heat output in response to changing heat demands on the system, and maintains a differential between the liquid and gas pressures throughout the entire range of variation of the burner output. One pressure always is greater than the other pressure.
  • the present invention solves the foregoing problems by providing, in addition to the usual holes 38, another set of holes 36 at a position in the nozzle where the gas stream pressure working against the flow of liquid through the holes 36 varies from a positive value which exceeds the liquid pressure, to a value which is lower than the liquid pressure.
  • the gas pressure is lower than the liquid pressure, as it is at very high liquid flow rates, liquid flows not only through the passages 38 but also through the holes 36 so that, in effect, the total feed passage cross-sectional area is the sum of the areas of the holes 36 and 38.
  • the higher gas pressure substantially prevents liquid from flowing through the holes 36 and forces substantially the entire quantity of liquid to flow only through the holes 38.
  • the holes 38 are positioned so that the gas pressures at their exit openings always are considerably lower than the fluid feed pressure so that there is always a flow of liquid through the holes 38 as long as any liquid is being supplied.
  • the effective cross-sectional area of the liquid flow passages is reduced to half of the value at high flow rates, with the result that a liquid pressure P greater than zero is developed and liquid flows through all of the holes 38 around the periphery of the nozzle.
  • the atomizer produces a symmetrical spray or flame pattern. Since a pressure P, is developed which is large enough to be sensed by the control system 62, it is possible for the control system to vary the flow rate to far lower levels than in previous devices.
  • the effective tum-down ratio of the device is greatly increased. For example, in devices of the present invention which have been tested using water as the liquid and air as the input gas, tum-down ratios of 30 to 1 have been achieved.
  • the control system 62 is made to vary the gas pressure, P so that the liquid pressure P exceeds the input gas pressure P by a certain amount at the high flow rates and is less than the gas pressure at the low flow rates. This has been found to insure that the cross-over point will occur at some point in the range of maximum to minimum flow rates, and that the turn-down ratio will be maximized.
  • FIG. 3 is a graph showing the qualitative relationship between the pressures P and P as the liquid flow rate through the device is varied in the manner described above.
  • the curves describing the variations in P and P need not be linear as shown in FIG. 3, but can be of different shapes determined in accordance with the particular control function desired.
  • the offset in the P curve is observed when the two pressures are approximately equal.
  • the rise in P is believed to be attributable to the start of liquid flow through the stabilizer section.
  • the liquid is believed to partially occlude the stabilizer, thus changing its effective diameter and creating a greater back-pressure.
  • the baffle member 26 is provided in order to prevent gas from flowing from the gas stream into the liquid in conduit 34, and thus to prevent the pulsating, uneven atomization that would result. This is done, it is believed, by providing the relatively long liquid feed passageway 40 extending generally in the same direction as the flow of gas through the nozzle. It is believed that this arrangement makes it difficult for the high-speed gas flowing past the exit opening 42 to flow back into the passageway 40 and through the holes 36, even when P is substantially greater than P Although it is not absolutely necessary to set the point at which liquid starts flowing through the holes 36 as the one at which P equals P it is extremely convenient to do so since these parameters can be measured and controlled readily.
  • the liquid pressure at the exit opening 42 should be approximately equal to the gas pressure at that position when P equals P
  • the gas pressure decreases as it moves to the right through the converging nozzle section 16 provided by the baffle 26.
  • typical input pressures P 10 to 60 p.s.i.g., the gas pressure is believed to be still greater than atmospheric pressure at the opening 42.
  • a plane is reached at which the gas pressure equals atmospheric pressure, and at all points downstream from that plane, the pressure is below atmospheric.
  • the gas pressure can be very much below annospheric pressure and can be so very low that it is negligible compared to the liquid feed pressure P,,.
  • the reduction in gas pressure expe rienced at the exit opening 42 is offset by a reduction in the liquid pressure at that point of approximately the same amount.
  • the liquid pressure reduction is accomplished simply by making the total cross-sectional area of the conduit 40 greater than the total cross-sectional area of the holes 36 by an amount sufficient to reduce the liquid pressure to the approximate value of the gas pressure at point 42.
  • the length and shape of the baffle 26 and the spacing of thee converging wall section 39 from the wall of the nozzle member 24 can be varied as desired, as long as the length of passage 40 is not made so short that gas at its maximum pressure differential over the liquid flows back through the holes 36. It is believed that the baffle 26 enhances the symmetry of the spray pattern by spreading the fuel flow evenly around the nozzle periphery.
  • the structure shown in the drawing can be modified by providing additional sets of feed holes at different points along the length of the nozzle structure in order to give further variability in the control of flow through the nozzle.
  • the position, size and shape of the holes can be selected so that the pressure variations at the outlets of the holes will be such as to allow liquid to flow through the holes when the liquid pressure at the outlets is greater than the gas pressure, and to prevent such flow when the gas pressure is greater than the liquid pressure.
  • the location of the holes 38 can be varied, but it is preferred to have the hole exits located where the gas pressure is sub-ambient so that liquids always will be drawn through the holes.
  • the exits can be located, for example, from the downstream end of section 118 to and even beyond the downstream end of the diverging section 20.
  • the atomizer 70 shown in FIG. 4 has substantially the same construction as the atomizer shown in FIGS. 1 and 2, except that the downstream feed holes 38 have been omitted from the atomizer 70, and the dimensions of the nozzle and resonator are different.
  • the atomizer 70 is particularly desirable for use where extremely high tum-down ratios are not needed, but where it is desired to use very high inlet gas pressure P
  • the use of the baffle 26 directs the liquid into the gas generally in the direction of the gas flow and prevents the gas from flowing back into the liquid feed conduit. Also, the annular shape of the opening 42 spreads the liquid around the nozzle and produces a symmetrical spray pattern.
  • the atomizer 70 has the further advantage that it produces an elongated spray or flame pattern which is highly desirable for many purposes.
  • the use of the baffled liquid feed arrangement into the upstream portion of the nozzle rather than the downstream portion makes the elongated spray pattern possible by enabling the resonator diameter D R to be considerably less than the metal throat diameter D* without any noticeable effect upon the atomization quality produced by the device. It is believed that this is true because the evenly-distributed sheet of liquid flowing through the stabilizing section 18 restricts the section and makes its effective diameter approximately the same as that of the resonator. The reduced cavity diameter allows the resonator member itself to be reduced in size, with the resultant narrowing and longitudinal extension of the spray pattern.
  • the diameter D of the resonator cavity 22 should be approximately equal to the effective diameter D* of stabilizing section 18.
  • the depth L of the resonator cavity 22 preferably is equal to either M2 or M4, where )t is given approximately by the following equation:
  • the half-angle of the diverging section should be maintained within the range of from about 3 or 4 to about 25.
  • the angle (b) shown in FIG. 2 is around 15, and the angle (d) in FIG. 4 is around 4.
  • the value of the half-angle of convergence of the converging section 16 ordinarily is not particularly critical and can vary widely, as is well known in the art. However, in order to align the passageway 40 approximately in the direction of the flow of gas through the nozzle, it is desired to keep the convergence angle relatively small.
  • the angle (a) shown in FIG. 2 of the drawings is approximately 20, and the angle (0) shown in FIG. 4 is approximately 5.
  • the resonator support members 14 can have any shape desired, but preferably they consist of three relatively thin, symmetrically-positioned stainless steel wires.
  • the atomizers constructed and operated in accordance with the present invention will produce very high tum-down ratios with high quality atomization throughout the range of flow rate variation. What is more, the control of the liquid flow rate is simple and positive, and the flame pattern produced by the device when used as a burner nozzle is quite symmetrical.
  • FIG. 5 One such atomizer is shown in FIG. 5, in which corresponding parts are given the same reference numerals as before.
  • the main difference between the atomizer 80 and the atomizers shown in FIGS. 2 and 4 is that liquid is fed through the center of the nozzle instead of at the periphery of the nozzle, and gas is fed through the holes 36 through which liquid is fed in the embodiments shown in FIGS. 2 and 4.
  • Gas is pumped by a compressor 88 and is fed through an inlet tube 84 to an annular manifold 82, through the holes 36, along the baffle 26, and into the liquid at the entrance to the throat section 18.
  • the liquid is pumped by a pump 86 through a conduit 90, through the throat section 18 and the diverging section 20, to form a jet which impinges upon the cavitybearing resonator member 12.
  • the gas is pumped into the atomizer under relatively high pressures, e.g., 30 to I00 p.s.i.g., and mixes intimately with the liquid in the nozzle before the liquidgas mixture emerges from the nozzle and strikes the cavity 22 in member 12.
  • the convergence and divergence angles of the nozzle of atomizer 80 are the same as those of the nozzle shown in FIG. 2.
  • the throat section 18 is considerably longer than the corresponding throat section in the FIG. 2 structure.
  • the diameter D of the throat section 18 is larger than the diameter D of the opening 16 of the baffle member.
  • the diameter D in a typical nozzle which has been tested successfully is 0.344 inch, whereas the diameter D is 0.312 inch.
  • the spacing between the inner wall of the baffle 26 and the converging wall of the nozzle is 0.022 inch.
  • the atomizer 80 has several advantages.
  • One significant advantage is that, because of its relatively large liquid feed passages, very badly contaminated liquids can be atomized without clogging the nozzle.
  • This advantage is exemplified by the schematic showing, in FIG. 5, of a gas scrubber 87.
  • the scrubber 87 one or more atomizer 80 is used to atomize and spray water into an enclosure 95, which is, for example, a chamber receiving smoke-laden air from a furnace, in order to scrub smoke or dust 97 out of the air. The smoke flows downwardly into the enclosure 95, and out through an opening 85.
  • the smoke-and-debris-laden water 99 falls and collects at the bottom of the enclosure 95, and is pumped to a settling pond 93 by a pump 101 through a conduit 103.
  • the debris-laden water enters the pond at one end, and is re-used by pumping it out through a conduit 91 at the other end of the pond, presumably after the debris has settled out in the pond.
  • Such water when used, for example, to clean air from smoke in an asphalt-making plant, invariably has debris in it when it is re-used.
  • Such debris includes pebble-sized cinders which will clog the feed holes of most atomizers.
  • the atomizer 80 is an extremely clog-free atomizer.
  • the baffle 26 and the inclined gas feed passageway it provides also help to prevent inoperativeness due to clogging.
  • the inclination of the gas feed passageway towards the direction of gas flow minimizes the likelihood of objects becoming lodged in the passageway.
  • the enlargement of the central passageway due to the change from diameter D to diameter D is believed to create suction on the gas passageway which tends to keep it open and clean.
  • Another advantage of the atomizer 80 is that it produces good atomization, quite sufficient to produce excellent gas scrubbing, and yet requires a relatively low gas flow rate for satisfactory operation. This can result in considerable savings in compressor equipment costs. The even spread of the gas when it is injected into the water at the edge of the baffle 26 is believed to assist in obtaining good atomization.
  • the atomizer 80 also has been found to be particularly advantageous in aeration of liquids, or the dissolving of gases in liquids. Such a use of the atomizer 80 is illustrated in FIG. 6 of the drawings.
  • FIG. 6 shows a tank 98 with a body of liquid 100 in the tank. Submerged in the liquid is the atomizer 80. Gas is pumped to the atomizer 80 through a pipe 96. The pump 86 pumps liquid in the tank through the atomizer 80, in the manner illustrated in FIG. 5. The atomizer 80 intimately mixes the gas with the liquid, and issues the gas in tiny bubbles which thus come into intimate contact with the liquid. If the gas is soluble in the liquid, it often dissolves before reaching the surface of the liquid.
  • the gas which is dissolved in the liquid can vary considerably.
  • ozone is fed into the atomizer 80 and dissolved in the water in the tank to kill algae, etc., in the water.
  • Air, of course, chlorine, etc., are other examples of gases which it is useful to percolate through the liquid.
  • FIG. 7 illustrates another atomizer 110 which is essentially the same as the atomizer shown in FIGS. 1 and 2, except that only one row of diverge-section feed holes 38 is provided, and a barrier 111 is provided to separate the annular feed passageways and provide separate chambers 112 and 116 to feed the holes 38 and 36, respectively.
  • the atomizer 110 is used in a gas turbine engine, in the manner shown in U. S. Pat. No. 3,320,144, in which the main gas flow through the center of the nozzle is created by the pressure difference between the combustion chamber interior and the compressor of the turbine. Since, during starting of the engine, the pressure on the gas fed to the atomizer is relatively low, higher pressure air is fed through a conduit 118 from a compressor 120 into the nozzle through the chamber 116 and holes 36. Pressurized liquid fuel is fed to the holes through the conduit 114. Then, when the rotational speed of the compressor of the turbine increases to a sufficient level, the separate air source 120 is removed, and the only air flow is through the center of the nozzle.
  • a significant advantage of both of the nozzles and shown in FIGS. 5 and 7 is that the cross-sectional area provided by the holes 36 is substantially less than the area of the central passageway through the nozzle, with the result that atomization is accomplished with a considerably reduced air flow volume.
  • the compressors 88 and can have a lower flow capacity and can be less expensive than higher capacity compressors which otherwise might be required.
  • An atomizer device comprising, in combination, a nozzle having a converging inlet section for receiving, accelerating and forming a pressurized gas into a gas stream, a diverging outlet section connected to said inlet section for receiving accelerated gas therefrom and issuing said gas stream into the ambient medium, and a substantially straight section joining said converging and diverging sections, a cavity resonator facing said outlet opening, first conduit means for guiding fluent materials into said gas stream within said diverging section of said nozzle, second conduit means for guiding fluent materials into said gas stream at a position within said straight section of said nozzle, said second conduit means including holes exiting at the internal walls of said converging section, a baffle member mounted inside said atomizer opposite and spaced from the outlets of said holes, said bafile member extending in a direction generally parallel to the internal walls of said converging section to a point adjacent the downstream end of said converging section, said baffle member having a generally frustro-conical shape with a smaller opening whose
  • M is the Mach number of gas flowing at the exit of the diverging section of the nozzle, with only gas flow through the center of the nozzle, and D* is the nozzle throat diameter.

Abstract

Fluids to be mixed and atomized are fed into a convergingdiverging nozzle which directs them towards a cavity member. In one embodiment of the invention, liquid is forced through the central opening of the nozzle, and gas is injected into the liquid at a plurality of points around the liquid stream through an inclined baffle structure near the converging portion of the nozzle. In another embodiment, air is fed into the central opening of the nozzle, and liquid through the baffle structure, as well as downstream from the baffle structure. The liquid supply flow rate and the gas supply pressure are regulated so that the input gas pressure is greater than the minimum liquid pressure but less than the maximum liquid pressure. The upstream liquid feed passageway is effectively closed at low flow rates, while being open at high flow rates, thus enabling the maintenance of relatively high liquid back-pressures for accurate flow rate control over a wide range of flow values.

Description

United States Patent Schurig et al.
[ Nov. 27, 1973 PRESSURE WAVE ATOMIZING APPARATUS Filed:
-.- Am9ris o k rs. N.-,
Jan. 17, 1972 App]. No.: 218,438
Related US. Application Data Division of Ser. No. 889,596, Dec. 31, 1969, Pat. No. 3,677,525, which is a continuation-in-part of Ser. No. 699,109, Jan. 19, 1968, abandoned.
Primary ExaminerM. Henson Wood, Jr. Assistant Examiner-John J. Love Att0rneyCurtis, Morris & Safford [57] ABSTRACT Fluids to be mixed and atomized are fed into a converging-diverging nozzle which directs them towards a cavity member. In one embodiment of the invention, liquid is forced through the central opening of the nozzle, and gas is injected into the liquid at a plurality of points around the liquid stream through an inclined baffle structure near the converging portion of the nozzle. In another embodiment, air is fed into the central opening of the nozzle, and liquid through the baf- [52] US. Cl 239/102, 239/427.3, 239/430, fie structure, as well as downstream from the baffle 239/DIG. 20 structure. The liquid supply flow rate and the gas sup- [51] Int. Cl B05b 7/00 ply pressure are regulated so that the input gas pres- [58] Field of Search 239/102, 416.5, 417, sure is greater than the minimum liquid pressure but 239/424.5, 427.3, 427.5, 430, DIG. 20 less than the maximum liquid pressure. The upstream liquid feed passageway is effectively closed at low flow [56] References Cited rates, while being open at high flow rates, thus en- UN1TED STATES PATENTS abling the maintenance of relatively high liquid back- 3,240,254 3/1966 Hughes 239 102 x Pressures for accurate rate control a wide 3,471,091 10/1969 Baker 239/417 x range of flow values- 708,893 9/1902 Lundholm.. 239/427.3 3,385,030 5/1968 Letvin 239/427.5 X 3,334,657 8/1967 Smith et a] 239/102 X 5 Cl i 7 D in Fi r FOREIGN PATENTS OR APPLICATIONS I 159,883 5/1922 Great Britain 239/416.5
9''! 1 2 8 in \\2\ N 50, a 41m 36% /f' 1i v 33 /z I 62 Z J T 0 mi! 1' a 3 L2 O Z 2 5a [5 0 o 0,, t 50 31 0 33 l f X $6 a) a j l I V l I 57 4 [73:19 3 /7 F L '1:
PRESSURE WAVE ATOMIZING APPARATUS This is a division of application Ser. No. 889,596, filed Dec. 31, 1969, now US. Pat. No. 3,677,525, which is a continuation-in-part of US. Pat. application Ser. No. 699,109, filed Jan. 19, 1968, now abandoned.
This invention relates to apparatus and methods for atomizing and mixing fluent materials and burning combustible fluids.
U. S. Pat. No. 3,240,254, which is assigned to the same assignee as this application, describes atomizing and fuel burning structures and methods which utilize a coverging-diverging gas accelerating and expansion nozzle together with a cavity resonator to produce high-intensity sonic pressure waves. Fluent materials such as liquids are introduced into the high-speed gas stream moving through and issuing from the nozzle, at various positions within or outside of the noule. The resonant sonic pressure wave energy atomizes the liquids into minute droplets of a highly uniform size. When used in burners, such atomizers produce flames of excellent quality over a relatively wide range of fuel flow rates.
Although atomizers and burners constructed in accordance with the above-identified patent are superior to other prior devices and are highly satisfactory for most purposes, it is an object of the present invention I to improve upon them by increasing their turn-down ratios; that is, by increasing the ratio of the maximum flow rate to the minimum flow rate at which fluids can be atomized satisfactorily.
In accordance with the foregoing, it is a major object of the present invention to provide atomizing, mixing and fuel burning apparatus and methods which give relatively very high tum-down ratios while maintaining highly satisfactory atomization. A further object of the present invention is to provide such apparatus which is simple in construction and operation, has relative large fluid feed holes which do not become clogged easily, which is economical to use and requires relatively low gas flow rates, which will operate effectively in a liquid ambient medium, and which is relatively inexpensive to manufacture. A further object is to provide an improved liquid feed means for such apparatus.
Further objects, aspects and advantages of the present invention will be set forth in and will be apparent from the following description and drawings.
In the drawings:
FIG. 1 is a perspective view of an atomizing and fuel burning device constructed in accordance with the present invention;
FIG. 2 is a cross-sectional, partially schematic view taken along line 2--2 of FIG. 1;
FIG. 3 is a graph illustrating qualitatively variation of some of the operating parameters of the device shown in FIGS. 1 and 2; and
Each of FIGS. 4, 5, 6 and 7 is a cross-sectional view of another embodiment of the invention.
The atomizer and burner device shown in FIGS. 1 and 2 includes a nozzle assembly 10, and a cavity resonator member 12 which is secured to one end of the nozzle assembly by means of three support struts 14.
Referring specifically to FIG. 2, the nozzle assembly 10 includes a gas accelerating and expanding nozzle comprising a converging inlet section generally indicated at 16, a diverging outlet section 20, with a straight-wall cylindrical stabilizing section 18 interconnecting the converging and diverging sections. As is disclosed in greater detail in the above-mentioned U. S. Pat. No. 3,240,254, pressurized gas, preferably air, is introduced into the converging section 16 of the nozzle; and the nozzle is believed to accelerate the gas to supersonic velocities and expand it to sub-ambient pressures at the exit opening of the diverging section 20. The resonator member 12 has a resonator cavity 22 which resonates the pressure waves created by the nozzle, and the device thus produces high-intensity sonic or ultra-sonic pressure waves.
The nozzle assembly 10 is composed of three main components; an internal nozzle member 24, a baffle" member 26 within the member 24, and an outer sleeve 28. As is shown in FIG. 1, the sleeve 28 has a threaded portion 30 (not shown in FIG. 2) at one end which is used for coupling the nozzle to gas and liquid supply conduits. Several metal balls 32 are welded in position to permanently space the inner nozzle member 24 from the outer sleeve 28 as is shown in FIG. 2 and thus form an annularly-shaped liquid flow conduit 34.
The baffle member 26 is generally frustro-conically shaped, and has an angle of inclination (a) equal to the angle of inclination of the frusto-conically shaped walls of the converging nozzle section of the nozzle member 24. The left end of the bafi'le member 26 is force-fitted into the cylindrical inner wall 41 of the noule member 24, and forms a liquid flow passageway 40 between the wall 39 of the baffle and the nozzle wall.
Several symmetrically-positioned liquid feed holes 36 pass through the wall of the nozzle number 24 and exit into the passageway 40 formed between the baffle wall 39 and the nozzle wall. The downstream end of the baf fle member 26 forms a liquid flow opening 42 through which liquid passes into the stabilizing section of the nozzle. The baffle 26 has a cylindrical end portion 44 which has the same diameter D* as the stabilizing section 18 and thus effectively forms a portion of the stabilizing section. The exit opening 42 is substantially cylindrically shaped and is continuous around the entire periphery of the nozzle.
Additional liquid feed holes 38 are positioned symmetn'cally in the nozzle member so as to exit into the diverging section 20 of the nozzle. The total crosssectional area of the holes 36 preferably is approximately equal to the total cross-sectional area of the holes 38. In one specific embodiment of the invention which has been built and tested, there are eight of the upstream holes 36 and sixteen of the holes 38.
In prior art fuel burning methods using atomizers such as those shown in the above-identified patent, the liquid to be atomized, such as fuel oil, is fed from a reservoir 46 (see FIG. 2) through a pipe 48, a pump 50 qnd another conduit 52 into the liquid flow conduit of the atomizer. Compressed air, steam, or the like is supplied to the converging nozzle inlet by means of any convenient, well-known pressure source 54 through a pipe 56, a valve 58 and another pipe 60. In the usual prior fuel burning installation of relatively high heatproducing capacity, a known linkage control device 62 is provided which senses the pressure P at which the liquid fuel is supplied, and simultaneously measures the pressure P at which gas is supplied to the atomizer. The control device 62 automatically varies the liquid pressure P,, and the gas pressure P to change the heat output in response to changing heat demands on the system, and maintains a differential between the liquid and gas pressures throughout the entire range of variation of the burner output. One pressure always is greater than the other pressure.
In the above-described prior art atomizers, ordinarily only one set of liquid feed holes is used. The inventors have discovered that the tum-down ratios of such atomizers is limited by the liquid feed characteristics of the atomizer at very low liquid flow rates. The total cross-sectional area of the feed holes must be large enough to pass up to several hundred gallons per hour. When a single set of feed holes large enough to pass such quantities of liquids is used to feed liquids at very low flow rates, the liquid flows through only some of the holes and not others, with the result that the flame pattern sometimes is asymmetrical. Furthermore, the liquid pressure P drops virtually to zero. The result of this is that the pressure sensed by the control system 62 is zero, and the system cannot control the flow rate at lower liquid pressures. Thus, the minimum flow rate and, hence, the tum-down ratio, is limited by the inabil ity of the control system to function at lower flow rates.
The present invention solves the foregoing problems by providing, in addition to the usual holes 38, another set of holes 36 at a position in the nozzle where the gas stream pressure working against the flow of liquid through the holes 36 varies from a positive value which exceeds the liquid pressure, to a value which is lower than the liquid pressure. When the gas pressure is lower than the liquid pressure, as it is at very high liquid flow rates, liquid flows not only through the passages 38 but also through the holes 36 so that, in effect, the total feed passage cross-sectional area is the sum of the areas of the holes 36 and 38. However, when the gas pressure is greater than the liquid pressure, as it is at low flow rates, the higher gas pressure substantially prevents liquid from flowing through the holes 36 and forces substantially the entire quantity of liquid to flow only through the holes 38. The holes 38 are positioned so that the gas pressures at their exit openings always are considerably lower than the fluid feed pressure so that there is always a flow of liquid through the holes 38 as long as any liquid is being supplied. At such low flow rates, the effective cross-sectional area of the liquid flow passages is reduced to half of the value at high flow rates, with the result that a liquid pressure P greater than zero is developed and liquid flows through all of the holes 38 around the periphery of the nozzle. Thus, the atomizer produces a symmetrical spray or flame pattern. Since a pressure P,, is developed which is large enough to be sensed by the control system 62, it is possible for the control system to vary the flow rate to far lower levels than in previous devices. Thus, the effective tum-down ratio of the device is greatly increased. For example, in devices of the present invention which have been tested using water as the liquid and air as the input gas, tum-down ratios of 30 to 1 have been achieved.
It is believed that in a nozzle with the relative dimensions shown in the drawings, substantially no liquid flows through the holes 36 until the inlet pressure P approximately equals the liquid supply pressure P,,, and then liquid flows at all pressures at which P is greater than P The point at which liquid first starts feeding in substantial quantities through the holes 36 is termed herein as the cross-over point. In accordance with one aspect of the present invention, the control system 62 is made to vary the gas pressure, P so that the liquid pressure P exceeds the input gas pressure P by a certain amount at the high flow rates and is less than the gas pressure at the low flow rates. This has been found to insure that the cross-over point will occur at some point in the range of maximum to minimum flow rates, and that the turn-down ratio will be maximized.
FIG. 3 is a graph showing the qualitative relationship between the pressures P and P as the liquid flow rate through the device is varied in the manner described above. The curves describing the variations in P and P need not be linear as shown in FIG. 3, but can be of different shapes determined in accordance with the particular control function desired. The offset in the P curve is observed when the two pressures are approximately equal. The rise in P is believed to be attributable to the start of liquid flow through the stabilizer section. The liquid is believed to partially occlude the stabilizer, thus changing its effective diameter and creating a greater back-pressure.
The baffle member 26 is provided in order to prevent gas from flowing from the gas stream into the liquid in conduit 34, and thus to prevent the pulsating, uneven atomization that would result. This is done, it is believed, by providing the relatively long liquid feed passageway 40 extending generally in the same direction as the flow of gas through the nozzle. It is believed that this arrangement makes it difficult for the high-speed gas flowing past the exit opening 42 to flow back into the passageway 40 and through the holes 36, even when P is substantially greater than P Although it is not absolutely necessary to set the point at which liquid starts flowing through the holes 36 as the one at which P equals P it is extremely convenient to do so since these parameters can be measured and controlled readily. In order to attain this end, it is believed that the liquid pressure at the exit opening 42 should be approximately equal to the gas pressure at that position when P equals P The gas pressure, of course, decreases as it moves to the right through the converging nozzle section 16 provided by the baffle 26. With typical input pressures P of 10 to 60 p.s.i.g., the gas pressure is believed to be still greater than atmospheric pressure at the opening 42. At a position further downstream, in the stabilizing section 18, a plane is reached at which the gas pressure equals atmospheric pressure, and at all points downstream from that plane, the pressure is below atmospheric. In the diverging section 20, the gas pressure can be very much below annospheric pressure and can be so very low that it is negligible compared to the liquid feed pressure P,,.
It is believed that the reduction in gas pressure expe rienced at the exit opening 42 is offset by a reduction in the liquid pressure at that point of approximately the same amount. The liquid pressure reduction is accomplished simply by making the total cross-sectional area of the conduit 40 greater than the total cross-sectional area of the holes 36 by an amount sufficient to reduce the liquid pressure to the approximate value of the gas pressure at point 42. Keeping these principles in mind, the length and shape of the baffle 26 and the spacing of thee converging wall section 39 from the wall of the nozzle member 24 can be varied as desired, as long as the length of passage 40 is not made so short that gas at its maximum pressure differential over the liquid flows back through the holes 36. It is believed that the baffle 26 enhances the symmetry of the spray pattern by spreading the fuel flow evenly around the nozzle periphery.
The structure shown in the drawing can be modified by providing additional sets of feed holes at different points along the length of the nozzle structure in order to give further variability in the control of flow through the nozzle. The position, size and shape of the holes can be selected so that the pressure variations at the outlets of the holes will be such as to allow liquid to flow through the holes when the liquid pressure at the outlets is greater than the gas pressure, and to prevent such flow when the gas pressure is greater than the liquid pressure.
The location of the holes 38 can be varied, but it is preferred to have the hole exits located where the gas pressure is sub-ambient so that liquids always will be drawn through the holes. The exits can be located, for example, from the downstream end of section 118 to and even beyond the downstream end of the diverging section 20.
The atomizer 70 shown in FIG. 4 has substantially the same construction as the atomizer shown in FIGS. 1 and 2, except that the downstream feed holes 38 have been omitted from the atomizer 70, and the dimensions of the nozzle and resonator are different. The atomizer 70 is particularly desirable for use where extremely high tum-down ratios are not needed, but where it is desired to use very high inlet gas pressure P The use of the baffle 26 directs the liquid into the gas generally in the direction of the gas flow and prevents the gas from flowing back into the liquid feed conduit. Also, the annular shape of the opening 42 spreads the liquid around the nozzle and produces a symmetrical spray pattern.
The atomizer 70 has the further advantage that it produces an elongated spray or flame pattern which is highly desirable for many purposes. The use of the baffled liquid feed arrangement into the upstream portion of the nozzle rather than the downstream portion makes the elongated spray pattern possible by enabling the resonator diameter D R to be considerably less than the metal throat diameter D* without any noticeable effect upon the atomization quality produced by the device. It is believed that this is true because the evenly-distributed sheet of liquid flowing through the stabilizing section 18 restricts the section and makes its effective diameter approximately the same as that of the resonator. The reduced cavity diameter allows the resonator member itself to be reduced in size, with the resultant narrowing and longitudinal extension of the spray pattern.
Most of the parameters of the nozzle and resonator structures disclosed above are described in the prior art. However, for the sake of completeness, some of the more important parameters will be discussed next.
In order to attain maximum atomizing power, the diameter D of the resonator cavity 22 should be approximately equal to the effective diameter D* of stabilizing section 18. The depth L of the resonator cavity 22 preferably is equal to either M2 or M4, where )t is given approximately by the following equation:
1.307 D* M I in which M is the Mach number of the gas flowing at the exit of the diverging section of the nozzle, and D* is the nozzle throat diameter.
The half-angle of the diverging section should be maintained within the range of from about 3 or 4 to about 25. The angle (b) shown in FIG. 2 is around 15, and the angle (d) in FIG. 4 is around 4. The value of the half-angle of convergence of the converging section 16 ordinarily is not particularly critical and can vary widely, as is well known in the art. However, in order to align the passageway 40 approximately in the direction of the flow of gas through the nozzle, it is desired to keep the convergence angle relatively small. The angle (a) shown in FIG. 2 of the drawings is approximately 20, and the angle (0) shown in FIG. 4 is approximately 5.
The resonator support members 14 can have any shape desired, but preferably they consist of three relatively thin, symmetrically-positioned stainless steel wires.
It has been found that the atomizers constructed and operated in accordance with the present invention will produce very high tum-down ratios with high quality atomization throughout the range of flow rate variation. What is more, the control of the liquid flow rate is simple and positive, and the flame pattern produced by the device when used as a burner nozzle is quite symmetrical.
Applicants have discovered that atomizers with a structure quite similar to that shown in FIGS. 1 through 4, but with different fluid feed arrangements offer distinct advantages in many uses. One such atomizer is shown in FIG. 5, in which corresponding parts are given the same reference numerals as before. The main difference between the atomizer 80 and the atomizers shown in FIGS. 2 and 4 is that liquid is fed through the center of the nozzle instead of at the periphery of the nozzle, and gas is fed through the holes 36 through which liquid is fed in the embodiments shown in FIGS. 2 and 4. Gas is pumped by a compressor 88 and is fed through an inlet tube 84 to an annular manifold 82, through the holes 36, along the baffle 26, and into the liquid at the entrance to the throat section 18. The liquid is pumped by a pump 86 through a conduit 90, through the throat section 18 and the diverging section 20, to form a jet which impinges upon the cavitybearing resonator member 12.
The gas is pumped into the atomizer under relatively high pressures, e.g., 30 to I00 p.s.i.g., and mixes intimately with the liquid in the nozzle before the liquidgas mixture emerges from the nozzle and strikes the cavity 22 in member 12.
The convergence and divergence angles of the nozzle of atomizer 80 are the same as those of the nozzle shown in FIG. 2. However, the throat section 18 is considerably longer than the corresponding throat section in the FIG. 2 structure. Another difference is that the diameter D of the throat section 18 is larger than the diameter D of the opening 16 of the baffle member. For example, the diameter D, in a typical nozzle which has been tested successfully is 0.344 inch, whereas the diameter D is 0.312 inch. The spacing between the inner wall of the baffle 26 and the converging wall of the nozzle is 0.022 inch.
The atomizer 80 has several advantages. One significant advantage is that, because of its relatively large liquid feed passages, very badly contaminated liquids can be atomized without clogging the nozzle. This advantage is exemplified by the schematic showing, in FIG. 5, of a gas scrubber 87. In the scrubber 87, one or more atomizer 80 is used to atomize and spray water into an enclosure 95, which is, for example, a chamber receiving smoke-laden air from a furnace, in order to scrub smoke or dust 97 out of the air. The smoke flows downwardly into the enclosure 95, and out through an opening 85. The smoke-and-debris-laden water 99 falls and collects at the bottom of the enclosure 95, and is pumped to a settling pond 93 by a pump 101 through a conduit 103. The debris-laden water enters the pond at one end, and is re-used by pumping it out through a conduit 91 at the other end of the pond, presumably after the debris has settled out in the pond. However, such water, when used, for example, to clean air from smoke in an asphalt-making plant, invariably has debris in it when it is re-used. Such debris includes pebble-sized cinders which will clog the feed holes of most atomizers. However, not so with the atomizer 80. Thus, the atomizer 80 is an extremely clog-free atomizer.
The baffle 26 and the inclined gas feed passageway it provides also help to prevent inoperativeness due to clogging. The inclination of the gas feed passageway towards the direction of gas flow minimizes the likelihood of objects becoming lodged in the passageway. Furthermore, the enlargement of the central passageway due to the change from diameter D to diameter D is believed to create suction on the gas passageway which tends to keep it open and clean.
Another advantage of the atomizer 80 is that it produces good atomization, quite sufficient to produce excellent gas scrubbing, and yet requires a relatively low gas flow rate for satisfactory operation. This can result in considerable savings in compressor equipment costs. The even spread of the gas when it is injected into the water at the edge of the baffle 26 is believed to assist in obtaining good atomization.
Alternative forms of the invention can be made by using gas feed holes 92 in the throat section 18, or inclined holes 94 in the diverging section, instead of the baffle 26 and feed holes 36.
The atomizer 80 also has been found to be particularly advantageous in aeration of liquids, or the dissolving of gases in liquids. Such a use of the atomizer 80 is illustrated in FIG. 6 of the drawings.
FIG. 6 shows a tank 98 with a body of liquid 100 in the tank. Submerged in the liquid is the atomizer 80. Gas is pumped to the atomizer 80 through a pipe 96. The pump 86 pumps liquid in the tank through the atomizer 80, in the manner illustrated in FIG. 5. The atomizer 80 intimately mixes the gas with the liquid, and issues the gas in tiny bubbles which thus come into intimate contact with the liquid. If the gas is soluble in the liquid, it often dissolves before reaching the surface of the liquid.
The gas which is dissolved in the liquid can vary considerably. For example, in the ozonization of water, ozone is fed into the atomizer 80 and dissolved in the water in the tank to kill algae, etc., in the water. Air, of course, chlorine, etc., are other examples of gases which it is useful to percolate through the liquid.
FIG. 7 illustrates another atomizer 110 which is essentially the same as the atomizer shown in FIGS. 1 and 2, except that only one row of diverge-section feed holes 38 is provided, and a barrier 111 is provided to separate the annular feed passageways and provide separate chambers 112 and 116 to feed the holes 38 and 36, respectively.
The atomizer 110 is used in a gas turbine engine, in the manner shown in U. S. Pat. No. 3,320,144, in which the main gas flow through the center of the nozzle is created by the pressure difference between the combustion chamber interior and the compressor of the turbine. Since, during starting of the engine, the pressure on the gas fed to the atomizer is relatively low, higher pressure air is fed through a conduit 118 from a compressor 120 into the nozzle through the chamber 116 and holes 36. Pressurized liquid fuel is fed to the holes through the conduit 114. Then, when the rotational speed of the compressor of the turbine increases to a sufficient level, the separate air source 120 is removed, and the only air flow is through the center of the nozzle.
A significant advantage of both of the nozzles and shown in FIGS. 5 and 7 is that the cross-sectional area provided by the holes 36 is substantially less than the area of the central passageway through the nozzle, with the result that atomization is accomplished with a considerably reduced air flow volume. Thus, the compressors 88 and can have a lower flow capacity and can be less expensive than higher capacity compressors which otherwise might be required.
We claim:
1.- An atomizer device, said device comprising, in combination, a nozzle having a converging inlet section for receiving, accelerating and forming a pressurized gas into a gas stream, a diverging outlet section connected to said inlet section for receiving accelerated gas therefrom and issuing said gas stream into the ambient medium, and a substantially straight section joining said converging and diverging sections, a cavity resonator facing said outlet opening, first conduit means for guiding fluent materials into said gas stream within said diverging section of said nozzle, second conduit means for guiding fluent materials into said gas stream at a position within said straight section of said nozzle, said second conduit means including holes exiting at the internal walls of said converging section, a baffle member mounted inside said atomizer opposite and spaced from the outlets of said holes, said bafile member extending in a direction generally parallel to the internal walls of said converging section to a point adjacent the downstream end of said converging section, said baffle member having a generally frustro-conical shape with a smaller opening whose diameter is substantially equal to that of the downstream end of said converging section, the total effective flow passageway cross-sectional areas of said first and second conduit means being approximately equal to one another.
2. Apparatus as in claim 1 in which said cavity has a diameter which is approximately equal to the diameter of the throat of said nozzle.
3. Apparatus as in claim 1 in which said cavity has a depth of approximately M2 or M4 where:
)t- 1.307 0* M 1 in which M is the Mach number of gas flowing at the exit of the diverging section of the nozzle, with only gas flow through the center of the nozzle, and D* is the nozzle throat diameter.
4. Apparatus as in claim 3 in which said nozzle has a straight-walled section of substantially constant crosssectional area between its converging and diverging sections, and said cavity has a diameter which is approximately equal to the diameter of the throat of said nozzle.
5. Apparatus as in claim 1 in which the diverging section of said nozzle has a divergence half-angle of approximately 4 to 25.

Claims (5)

1. An atomizer device, said device comprising, in combination, a nozzle having a converging inlet section for receiving, accelerating and forming a pressurized gas into a gas stream, a diverging outlet section connected to said inlet section for receiving accelerated gas therefrom and issuing said gas stream into the ambient medium, and a substantially straight section joining said converging and diverging sections, a cavity resonator facing said outlet opening, first conduit means for guiding fluent materials into said gas stream within said diverging section of said nozzle, second conduit means for guiding fluent materials into said gas stream at a position within said straight section of said nozzle, said second conduit means including holes exiting at the internal walls of said converging section, a baffle member mounted inside said atomizer opposite and spaced from the outlets of said holes, said baffle member extending in a direction generally parallel to the internal walls of said converging section to a point adjacent the downstream end of said converging section, said baffle member having a generally frustro-conical shape with a smaller opening whose diameter is substantially equal to that of the downstream end of said converging section, the total effective flow passageway cross-sectional areas of said first and second conduit means being approximately equal to one another.
2. Apparatus as in claim 1 in which said cavity has a diameter which is approximately equal to the diameter of the throat of said nozzle.
3. Apparatus as in claim 1 in which said cavity has a depth of approximately lambda /2 or lambda /4 where: lambda 1.307 D* Square Root ME2 - 1 in which ME is the Mach number of gas flowing at the exit of the diverging section of the nozzle, with only gas flow through the center of the nozzle, and D* is the nozzle throat diameter.
4. Apparatus as in claim 3 in which said nozzle has a straight-walled section of substantially constant cross-sectional area between its converging and diverging sections, and said cavity has a diameter which is approximately equal to the diameter of the throat of said nozzle.
5. Apparatus as in claim 1 in which the diverging section of said nozzle has a divergence half-angle of approximately 4* to 25*.
US00218438A 1969-12-31 1972-01-17 Pressure wave atomizing apparatus Expired - Lifetime US3774846A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88959669A 1969-12-31 1969-12-31
US21843872A 1972-01-17 1972-01-17

Publications (1)

Publication Number Publication Date
US3774846A true US3774846A (en) 1973-11-27

Family

ID=26912908

Family Applications (1)

Application Number Title Priority Date Filing Date
US00218438A Expired - Lifetime US3774846A (en) 1969-12-31 1972-01-17 Pressure wave atomizing apparatus

Country Status (1)

Country Link
US (1) US3774846A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042016A (en) * 1975-10-28 1977-08-16 Evelyn Boochever Environmental humidification and cooling system
US4054097A (en) * 1976-03-17 1977-10-18 Barkhuus Per W Method and apparatus for incinerating liquid, gaseous and pasty waste
US4084934A (en) * 1972-02-05 1978-04-18 Mitsubishi Precision Co., Ltd. Combustion apparatus
FR2377576A1 (en) * 1977-01-14 1978-08-11 Italimpianti RADIANT TYPE BURNER FOR LIQUID AND GASEOUS FUELS
US4109868A (en) * 1976-02-03 1978-08-29 Gotaverken Angteknik Ab Fuel supply governing device
US4177226A (en) * 1976-05-25 1979-12-04 Alsthom-Atlantique Device for injection of a gas in a liquid
US4292259A (en) * 1979-02-12 1981-09-29 Skoda, Oborovy Podnik Arrangement for sucking-off gases
US4381268A (en) * 1980-07-17 1983-04-26 Hoechst Aktiengesellschaft Device for gassing liquids or suspensions
US4491551A (en) * 1981-12-02 1985-01-01 Johnson Dennis E J Method and device for in-line mass dispersion transfer of a gas flow into a liquid flow
US4562014A (en) * 1980-12-09 1985-12-31 Johnson Dennis E J Method and device for in-line mass dispersion transfer of a gas flow into a liquid flow
US4564375A (en) * 1983-07-18 1986-01-14 Evelyn Munk Humidification apparatus
US4721562A (en) * 1984-04-03 1988-01-26 Feldmuele Aktiengesellschaft Aerating apparatus
US4793556A (en) * 1984-12-21 1988-12-27 National Research Development Corporation Method of and apparatus for the nebulization of liquids and liquid suspensions
US4954147A (en) * 1989-06-15 1990-09-04 Hazleton Environmental Products, Inc. Water conditioning apparatus and method
US5050532A (en) * 1988-10-03 1991-09-24 Hundt & Weber Schaltgerate Gmbh Method of moistening such articles as tools or workpieces with a liquid, such as a lubricant, coolant, or adhesive, and device for carrying out the method
EP0576817A1 (en) * 1992-06-27 1994-01-05 Lechler GmbH & Co.KG Method and device for supplying gas and liquid to a two component spray nozzle
US5338496A (en) * 1993-04-22 1994-08-16 Atwood & Morrill Co., Inc. Plate type pressure-reducting desuperheater
US5403475A (en) * 1993-01-22 1995-04-04 Allen; Judith L. Liquid decontamination method
US5587004A (en) * 1990-06-22 1996-12-24 Fuji Photo Film Co., Ltd. Defoaming device and method for aeration
US5609798A (en) * 1995-06-07 1997-03-11 Msp Corporation High output PSL aerosol generator
US5820353A (en) * 1994-07-06 1998-10-13 Mannesmann Aktiengesellschaft Apparatus and process for operating jet pump from which a driving medium exits at supersonic speed
US6120008A (en) * 1998-04-28 2000-09-19 Life International Products, Inc. Oxygenating apparatus, method for oxygenating a liquid therewith, and applications thereof
US6142457A (en) * 1998-01-30 2000-11-07 Mobil Oil Corporation Atomizing feed nozzle
US6328226B1 (en) * 1999-12-22 2001-12-11 Visteon Global Technologies, Inc. Nozzle assembly
US6584774B1 (en) * 2001-10-05 2003-07-01 The United States Of America As Represented By The Secretary Of The Air Force High frequency pulsed fuel injector
DE10247955A1 (en) * 2002-10-12 2004-05-13 Alstom (Switzerland) Ltd. Burner for gas turbine has at least one resonance tube with one end open and other closed
US20050074303A1 (en) * 2003-10-07 2005-04-07 Trinity Industrial Corporation Ejector, fine solid piece recovery apparatus and fluid conveyor
US20050077636A1 (en) * 2003-10-10 2005-04-14 Bortkevitch Sergey V. Method and apparatus for enhanced oil recovery by injection of a micro-dispersed gas-liquid mixture into the oil-bearing formation
US20050211602A1 (en) * 1998-10-16 2005-09-29 World Energy Systems Corporation Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds
US20090072052A1 (en) * 2001-11-26 2009-03-19 Gillette Thomas D Systems and methods for producing ozonated water on demand
US20100331428A1 (en) * 2007-11-07 2010-12-30 Aridis Pharmaceuticals Sonic Low Pressure Spray Drying
US20110114548A1 (en) * 2001-11-26 2011-05-19 Gillette Thomas D Systems and methods for reducing off-gassed ozone
US20110192910A1 (en) * 2008-10-16 2011-08-11 Urea Casale S. A. Spraying Method and Nozzle for Atomization of a Liquid
US8936202B2 (en) 2010-07-30 2015-01-20 Consolidated Edison Company Of New York, Inc. Hyper-condensate recycler
US9739508B2 (en) 2010-07-30 2017-08-22 Hudson Fisonic Corporation Apparatus and method for utilizing thermal energy
WO2018119023A1 (en) * 2016-12-22 2018-06-28 President And Fellows Of Harvard College Supersonic spray drying systems and methods
US10184229B2 (en) 2010-07-30 2019-01-22 Robert Kremer Apparatus, system and method for utilizing thermal energy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US708893A (en) * 1901-08-08 1902-09-09 Charles Gustavus Lundholm Burner for liquid fuels.
GB159883A (en) * 1920-03-08 1922-05-04 Georges Desire Joseph Clement Improvements in burners for liquid combustibles
US3240254A (en) * 1963-12-23 1966-03-15 Sonic Dev Corp Compressible fluid sonic pressure wave apparatus and method
US3334657A (en) * 1963-10-28 1967-08-08 Smith Adjustable fluid mixing devices
US3385030A (en) * 1966-09-28 1968-05-28 Fabricating Engineering Compan Process for scrubbing a gas stream containing particulate material
US3471091A (en) * 1967-09-01 1969-10-07 Swimquip Inc Hydrotherapy fitting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US708893A (en) * 1901-08-08 1902-09-09 Charles Gustavus Lundholm Burner for liquid fuels.
GB159883A (en) * 1920-03-08 1922-05-04 Georges Desire Joseph Clement Improvements in burners for liquid combustibles
US3334657A (en) * 1963-10-28 1967-08-08 Smith Adjustable fluid mixing devices
US3240254A (en) * 1963-12-23 1966-03-15 Sonic Dev Corp Compressible fluid sonic pressure wave apparatus and method
US3385030A (en) * 1966-09-28 1968-05-28 Fabricating Engineering Compan Process for scrubbing a gas stream containing particulate material
US3471091A (en) * 1967-09-01 1969-10-07 Swimquip Inc Hydrotherapy fitting

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084934A (en) * 1972-02-05 1978-04-18 Mitsubishi Precision Co., Ltd. Combustion apparatus
US4042016A (en) * 1975-10-28 1977-08-16 Evelyn Boochever Environmental humidification and cooling system
US4118945A (en) * 1975-10-28 1978-10-10 Evelyn Boochever Enthalpy control for an environmental humidification and cooling system
US4109868A (en) * 1976-02-03 1978-08-29 Gotaverken Angteknik Ab Fuel supply governing device
US4054097A (en) * 1976-03-17 1977-10-18 Barkhuus Per W Method and apparatus for incinerating liquid, gaseous and pasty waste
US4177226A (en) * 1976-05-25 1979-12-04 Alsthom-Atlantique Device for injection of a gas in a liquid
FR2377576A1 (en) * 1977-01-14 1978-08-11 Italimpianti RADIANT TYPE BURNER FOR LIQUID AND GASEOUS FUELS
US4292259A (en) * 1979-02-12 1981-09-29 Skoda, Oborovy Podnik Arrangement for sucking-off gases
US4381268A (en) * 1980-07-17 1983-04-26 Hoechst Aktiengesellschaft Device for gassing liquids or suspensions
US4562014A (en) * 1980-12-09 1985-12-31 Johnson Dennis E J Method and device for in-line mass dispersion transfer of a gas flow into a liquid flow
US4491551A (en) * 1981-12-02 1985-01-01 Johnson Dennis E J Method and device for in-line mass dispersion transfer of a gas flow into a liquid flow
US4564375A (en) * 1983-07-18 1986-01-14 Evelyn Munk Humidification apparatus
US4721562A (en) * 1984-04-03 1988-01-26 Feldmuele Aktiengesellschaft Aerating apparatus
US4793556A (en) * 1984-12-21 1988-12-27 National Research Development Corporation Method of and apparatus for the nebulization of liquids and liquid suspensions
US5050532A (en) * 1988-10-03 1991-09-24 Hundt & Weber Schaltgerate Gmbh Method of moistening such articles as tools or workpieces with a liquid, such as a lubricant, coolant, or adhesive, and device for carrying out the method
US4954147A (en) * 1989-06-15 1990-09-04 Hazleton Environmental Products, Inc. Water conditioning apparatus and method
US5587004A (en) * 1990-06-22 1996-12-24 Fuji Photo Film Co., Ltd. Defoaming device and method for aeration
EP0576817A1 (en) * 1992-06-27 1994-01-05 Lechler GmbH & Co.KG Method and device for supplying gas and liquid to a two component spray nozzle
US5403475A (en) * 1993-01-22 1995-04-04 Allen; Judith L. Liquid decontamination method
US5423979A (en) * 1993-01-22 1995-06-13 Allen; Judith L. Liquid decontamination apparatus
US5338496A (en) * 1993-04-22 1994-08-16 Atwood & Morrill Co., Inc. Plate type pressure-reducting desuperheater
US5820353A (en) * 1994-07-06 1998-10-13 Mannesmann Aktiengesellschaft Apparatus and process for operating jet pump from which a driving medium exits at supersonic speed
US5609798A (en) * 1995-06-07 1997-03-11 Msp Corporation High output PSL aerosol generator
US6142457A (en) * 1998-01-30 2000-11-07 Mobil Oil Corporation Atomizing feed nozzle
AU753170B2 (en) * 1998-01-30 2002-10-10 Mobil Oil Corporation Atomizing feed nozzle and method of use thereof
US6120008A (en) * 1998-04-28 2000-09-19 Life International Products, Inc. Oxygenating apparatus, method for oxygenating a liquid therewith, and applications thereof
US6279882B1 (en) 1998-04-28 2001-08-28 Life International Products, Inc. Oxygenating apparatus, method for oxygenating a liquid therewith, and applications thereof
US20050211602A1 (en) * 1998-10-16 2005-09-29 World Energy Systems Corporation Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds
US7967954B2 (en) 1998-10-16 2011-06-28 World Energy Systems Corporation Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds
US20100260649A1 (en) * 1998-10-16 2010-10-14 World Energy Systems Corporation Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds
US20050276735A1 (en) * 1998-10-16 2005-12-15 World Energy Systems Corporation Deep conversion combining the demetallization and the conversion of crudes, residues or heavy oils into light liquids with pure or impure oxygenated compounds
US6328226B1 (en) * 1999-12-22 2001-12-11 Visteon Global Technologies, Inc. Nozzle assembly
US6584774B1 (en) * 2001-10-05 2003-07-01 The United States Of America As Represented By The Secretary Of The Air Force High frequency pulsed fuel injector
US8696796B2 (en) 2001-11-26 2014-04-15 Thomas D. Gillette Systems and methods for reducing off-gassed ozone
US8272582B2 (en) * 2001-11-26 2012-09-25 Gillette Thomas D Systems and methods for producing ozonated water on demand
US8147591B2 (en) 2001-11-26 2012-04-03 Gillette Thomas D Systems and methods for reducing off-gassed ozone
US8690078B2 (en) 2001-11-26 2014-04-08 Thomas D. Gillette Systems and methods for producing ozonated water on demand
US8323380B2 (en) 2001-11-26 2012-12-04 Gillette Thomas D Systems and methods for reducing off-gassed ozone
US20090072052A1 (en) * 2001-11-26 2009-03-19 Gillette Thomas D Systems and methods for producing ozonated water on demand
US20110114548A1 (en) * 2001-11-26 2011-05-19 Gillette Thomas D Systems and methods for reducing off-gassed ozone
DE10247955A1 (en) * 2002-10-12 2004-05-13 Alstom (Switzerland) Ltd. Burner for gas turbine has at least one resonance tube with one end open and other closed
US20040131986A1 (en) * 2002-10-12 2004-07-08 Marcel Stalder Burner
US6969251B2 (en) 2002-10-12 2005-11-29 Alstom Technology Ltd Burner
US20050074303A1 (en) * 2003-10-07 2005-04-07 Trinity Industrial Corporation Ejector, fine solid piece recovery apparatus and fluid conveyor
US6974279B2 (en) * 2003-10-07 2005-12-13 Trinity Inudstrial Corporation Ejector, fine solid piece recovery apparatus and fluid conveyor
US7059591B2 (en) * 2003-10-10 2006-06-13 Bortkevitch Sergey V Method and apparatus for enhanced oil recovery by injection of a micro-dispersed gas-liquid mixture into the oil-bearing formation
US20050077636A1 (en) * 2003-10-10 2005-04-14 Bortkevitch Sergey V. Method and apparatus for enhanced oil recovery by injection of a micro-dispersed gas-liquid mixture into the oil-bearing formation
US8268354B2 (en) 2007-11-07 2012-09-18 Aridis Pharmaceuticals Sonic low pressure spray drying
US8673357B2 (en) 2007-11-07 2014-03-18 Aridis Pharmaceuticals Sonic low pressure spray drying
US20100331428A1 (en) * 2007-11-07 2010-12-30 Aridis Pharmaceuticals Sonic Low Pressure Spray Drying
US20110192910A1 (en) * 2008-10-16 2011-08-11 Urea Casale S. A. Spraying Method and Nozzle for Atomization of a Liquid
US8991721B2 (en) * 2008-10-16 2015-03-31 Casale Sa Spraying method and nozzle for atomization of a liquid
US9421508B2 (en) 2008-10-16 2016-08-23 Casale Sa Spraying method and nozzle for atomization of a liquid
US8936202B2 (en) 2010-07-30 2015-01-20 Consolidated Edison Company Of New York, Inc. Hyper-condensate recycler
US9506659B2 (en) 2010-07-30 2016-11-29 Robert Kremer Hyper-condensate recycler
US9739508B2 (en) 2010-07-30 2017-08-22 Hudson Fisonic Corporation Apparatus and method for utilizing thermal energy
US10184229B2 (en) 2010-07-30 2019-01-22 Robert Kremer Apparatus, system and method for utilizing thermal energy
WO2018119023A1 (en) * 2016-12-22 2018-06-28 President And Fellows Of Harvard College Supersonic spray drying systems and methods

Similar Documents

Publication Publication Date Title
US3774846A (en) Pressure wave atomizing apparatus
US3677525A (en) Pressure wave atomizing apparatus
US3240254A (en) Compressible fluid sonic pressure wave apparatus and method
RU2329873C2 (en) Liquid sprayer
US6691928B2 (en) High efficiency method for atomizing a liquid fuel
CA1180734A (en) Atomizer
CA2209560A1 (en) Improved flat fan spray nozzle
US3371869A (en) Compressible fluid sonic pressure wave atomizing apparatus
JPH0580250B2 (en)
CA2106526A1 (en) Foam producing venturi
US4511087A (en) Air mist nozzle apparatus
US3758033A (en) Pressure wave atomizing method
US3240253A (en) Sonic pressure wave atomizing apparatus and methods
US2012139A (en) Atomizer
US3337135A (en) Spiral fuel flow restrictor
US3693887A (en) Method and apparatus for gasifying liquid fuels and effecting a complete combustion thereof
JPS5941780B2 (en) Complex fluid jet method and complex nozzle unit
US3899130A (en) Atomizer with graduated liquid feed and manufacturing method
US1101264A (en) Spray-nozzle and method of distributing liquids.
SU503600A1 (en) Jet centrifugal nozzle
US3947216A (en) Burner for liquid fuels
US20020030122A1 (en) Method and apparatus for generating water sprays, and methods of cleaning using water sprays
US1163591A (en) Spray-nozzle.
JPS5855805B2 (en) fluid mixing device
US218337A (en) Improvement in hydrocarbon-burners