US3779758A - Photosensitive process for producing printed circuits employing electroless deposition - Google Patents

Photosensitive process for producing printed circuits employing electroless deposition Download PDF

Info

Publication number
US3779758A
US3779758A US00810378A US3779758DA US3779758A US 3779758 A US3779758 A US 3779758A US 00810378 A US00810378 A US 00810378A US 3779758D A US3779758D A US 3779758DA US 3779758 A US3779758 A US 3779758A
Authority
US
United States
Prior art keywords
adhesive
process according
catalyst
film
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00810378A
Inventor
J Polichette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kollmorgen Corp
Original Assignee
Photocircuits Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photocircuits Corp filed Critical Photocircuits Corp
Application granted granted Critical
Publication of US3779758A publication Critical patent/US3779758A/en
Assigned to KOLLMORGEN CORPORATION, A CORP. OF NY reassignment KOLLMORGEN CORPORATION, A CORP. OF NY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: KOLLMORGEN TECHNOLOGIES CORPORATION, A TX CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • H05K3/387Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive for electroless plating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09J161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1605Process or apparatus coating on selected surface areas by masking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/52Compositions containing diazo compounds as photosensitive substances
    • G03C1/62Metal compounds reducible to metal
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/695Compositions containing azides as the photosensitive substances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/04Chromates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/185Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method by making a catalytic pattern by photo-imaging
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/28Non-macromolecular organic substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0709Catalytic ink or adhesive for electroless plating

Definitions

  • ABSTRACT An adhesive system which provides adhesive compositions to be applied to an insulating base and form printed images thereon.
  • the adhesive compositions include agents which render them photosensitive, and receptive to electroless metals.
  • This invention relates to an adhesive system whereby a film of adhesive composition is applied to an insulating substrate to form printed circuit images thereon.
  • the adhesive composition comprises agents which render the adhesive layer sensitive to light and receptive to an electroless metal, e.g., copper.
  • Another object of this invention is to form printed circuit images with an adhesive composition which is receptive to the deposition of an electroless metal.
  • a further object of this invention is to provide an adhesive composition capable of forming a good bond with an insulating base.
  • insulating substrata on which it is desired to electrolessly deposit metal, e.g., copper, by contacting the substra'ta sequentially with aqueous acidic solutions of stannous tin ions and precious metal ions, e.g., palla dium, or with a single acidic aqueous solution comprising a mixture of stannous tin ions and precious metal ions such as palladium.
  • aqueous acidic solutions of stannous tin ions and precious metal ions e.g., palla dium
  • a single acidic aqueous solution comprising a mixture of stannous tin ions and precious metal ions such as palladium.
  • one such treatment involves immersing the insulating base material first in an acidic aqueous solution of stannous chloride followed by washing after which the substratum is immersed in an acidic aqueous solution of palladium chloride.
  • the substratum is immersed in an acidic a
  • Seeding systems are known wherein electroless metal deposition is initiated on solid particles catalytic to the deposition of electroless metal and dispersed throughout an organic adhesive base.
  • the adhesive system of the present invention represents an improvement over the seeding and sensitizing systems heretofore available in that it greatly simplifies the application of printed circuits on an insulated base board.
  • a printed circuit may be provided without altering or deteriorating the base or insulating base on which the image is printed.
  • the present adhesive system there is no need to etch the whole base.
  • the image may be added to the base only where it is desired or needed.
  • Another advantage of the present system is that it provides a clean background for selection of the area where the image may be placed. Also, with the present system, the insulated base is not tampered with by mechanical abrasion, chemical etching or with an overcoating with the adhesive composition.
  • An important advantage of the present invention is that it provides a sharp, clear and definable photoprint image.
  • the images may be printed with the lines being as thin as 0.1 millimeters or less, and the spaces in between the lines may also be 0.1 millimeters or less.
  • This advantage of the present adhesive system is emphasized in comparison with the prior silk-screening process where the refinement of the lines could only be as low as 0.5 to 0.8 millimeters.
  • the adhesives of the present system are curable by light and thus, the detrimental heat cure cycles may be eliminated which are necessary in producing images by other systems such as silk-screening.
  • the adhesive system of the present invention is also readily adaptable to a wide variety of substrata and economical.
  • the present adhesive system in addition to providing printed circuits may be used to provide various designs including metallic designs, decorative designs, and the like on a variety of bases.
  • the present adhesive system includes an adhesive base composition having dispersed therein a catalyst, e.g. a palladium chloride catalyst and a sensitizing agent, e.g. a diazonium salt.
  • a catalyst e.g. a palladium chloride catalyst
  • a sensitizing agent e.g. a diazonium salt.
  • the catalyst and sensitizing agent impart desired properties to the adhesive composition of receptiveness to electroless metals and lightsensitiveness, respectively.
  • the adhesive base composition of the present invention will ordinarily comprise an adhesive polymer or copolymer, an adhesive resin alone or in combination with a thermosetting resin of the type described hereinbelow, and solvent material.
  • Typical of the adhesive polymers which may be used in the present system are polyvinyl acetal resins, polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidione, polyamides, polyvinyl butyral natural and synthetic rubbers, and the like.
  • Preferred for use as the polymer are acrylonitrile butadi ene copolymers, and other polymers containing ethylenic groups.
  • the resins which may be used according to this invention include thermosetting resins such as allyl phthalate; furane; melamine formaldehyde; phenol formaldehyde and phenol-furfural copolymer, alone or compounded with butadiene acrylonitrile copolymer or acrylonitrile-butadiene-styrene copolymers; polyacrylic esters; silicones; polyesters; and the like.
  • thermosetting resins such as allyl phthalate; furane; melamine formaldehyde; phenol formaldehyde and phenol-furfural copolymer, alone or compounded with butadiene acrylonitrile copolymer or acrylonitrile-butadiene-styrene copolymers
  • polyacrylic esters silicones
  • polyesters and the like.
  • the adhesive base composition may also include phenolic resins such as bromo methyl alkylated phenol formaldehyde and thermosetting phenolics, to reinforce and impart adhesive properties to the adhesive base compositions.
  • phenolic resins such as bromo methyl alkylated phenol formaldehyde and thermosetting phenolics
  • Certain epoxy resins, epoxy-urethane resins, and urethane resin also may be used to enhance the adhesive properties of the adhesive compositions.
  • the adhesive base compositions of the present adhesive system have dispersed therein an agent which is catalystic to the reception of an electroless metal dissolved in an organic system which may comprise one or more organic solvents, one or more organic polymers, or one or more organic solvents in combination with one or more organic resins.
  • the catalytic agent may be a salt or an oxide, or may be any of the metals of Groups 8 and 1B of the Periodic Table of Elements, compounds of any of these metals or mixtures of such metals. Salts or oxides of iron, c0- balt, and iridium will ordinarily be used as the dissolved catalytic agent, with a palladium chloride catalyst being preferred, i.e. a catalyst identified as PEC-S according to the present invention, the preparation of which is described hereinbelow.
  • Any organic solvent which is capable of dissolving the catalytic salts or oxides are used, providing the organic solvent does not precipitate the adhesive from its solvents.
  • Preferred catalytic compounds for dissolution in polymers and solvents of the type described are chlorides, bromides, fluorides, fluoroborates, iodides, nitrates, sulfates, acetates, and oxides of the metals and elements described hereinabove.
  • Complexes of rhodium, iridium, platinum and palladium with stannous chloride are also suitable catalysts for dissolution in the polymers and solvents.
  • the adhesive compositions are rendered sensitive to light by adding to the adhesive compositions diazonium compounds, azides, ferrous compounds or bichromate compounds dissolved in organic solvents as sensitizers.
  • the diazonium compounds that may be suitably used according to the present invention include pdiethylamino-Z-ethoxybenzenediazonium chlorozincate, 4 ethylamino-3-methyl benzenediazonium chlorozincate, p-morpholenobenzenediazonium fluoroborate, 4-Diethylamino-2-methylbenzene-diazonium chlorozincate, 2-butyl-3-diazo-3-pseudoindole, p-amino-N- benzyl-N-ethylbenzene diazonium chlorostanate, p- Amino-N-benzyl-N-ethylbenzene diazonium chlorozincate, 3-chlor-4-diethylamino benzene diazonium chlorozincate, p-diethylaminobenzene-diazonium fluoroborate, p-diethylaminobenzene-diazonium
  • the organic solvents in which the diazonium compounds, azides, and other sensitizing compounds are dissolved include diethyl formamide, dimethyl acetamide, methyl cellosolve, n-methyl-Z-pyrrolidone, dioxane and the like.
  • the sensitizer compounds are dissolved in organic solvent concentrates to provide a more uniform distribution of the sensitizer in the adhesive system. The compounds are added to the solvent and dissolved using mechanical agitation.
  • the dyes are of a chemical class which include triarylmethane, anthraquinone, stilbene, xanthene, monazo compounds, e.g., Eriocyanine A, Alizarin, Alizarin Blue S, Erythrosin, Eriochrome Black T, [0501 Greene, and the like.
  • the pigments include, for example, ammonium ferro-ferri cyanide, phthalocyamine blue, zirconium silicate, cab-o-sil, aluminum stearate and the like.
  • the pigments were also found to strengthen the adhesive film and provide a color contrast on certain types of base materials.
  • the phenolics include bromo methyl alkylated phenol formaldehyde, oil soluble heat reactive phenolics, and thermosetting phenolics.
  • a chlorosulfonated polyethylene elastomer can also be used to reinforce and impart adhesive properties to the base polymers.
  • the bromo methyl alkylated phenol-formaldehyde resin may also be used to improve the photoprintable properties of the adhesive system.
  • Typical of the electroless copper solutions which may be used are those described in U.S. Pat. No. 3,095,309, the description of which is incorporated herein by reference.
  • such solutions comprise a source of cupric ions, e.g., copper sulfate, a reducing agent for cupric ions, e.g., formaldehyde, a complexing agent for cupric ions, e.g., tetrasodium ethylenediaminetetraacetic acid, and a pH adjustor, e.g., sodium hydroxide.
  • Typical electroless nickel baths which may be used are described in Brenner, Metal Finishing, November 1954, pages 68 to 76, incorporated herein by reference. They comprise aqueous solutions of a nickel salt, such as nickel chloride; an active chemical reducing agent for the nickel salt, such as the hypophosphite ion; and a complexing agent, such as carboxylic acids and salts thereof.
  • a nickel salt such as nickel chloride
  • an active chemical reducing agent for the nickel salt such as the hypophosphite ion
  • a complexing agent such as carboxylic acids and salts thereof.
  • Electroless gold plating baths which may be used are disclosed in U. S. Pat. No. 2,976,181, hereby incorporated herein by reference. They contain a slightly water soluble gold salt, such as gold cyanide, a reducing agent for the gold salt, such as the hypophosphite ion, and a chelating or complexing agent, such as sodium or potassium cyanide.
  • the hypophosphite ion may be introduced in the form of the acid or salts thereof, such as the sodium, calcium and the ammonium salts.
  • the purpose of the complexing agent is to maintain a relatively small portion of the gold in solution as a water soluble gold complex, permitting a relatively large portion of the gold to remain out of solution as a gold reserve.
  • the pH of the bath will be about 13.5, or between about 13 and 15, and the ion ratio of hypophosphite radical to insoluble gold salt may be between about 0.33 and 10.1.
  • Epon is a epoxy resin made by reacting bisphenol A with epichlorohydrin, having a melting point of 6476C., and an epoxide equivalent of 450-525.
  • SP-l055 resin is a heat reactive, bromo-methyl alkylated phenolformaldehyde resin having a melting point of C.
  • SP-l26 resin is an oil soluble, heat reactive lump form, phenolic resin, having a melting point of and a specific gravity of 1.10
  • SP-6600 resin is a powdered phenolic resin containing 6 to 8 percent hexa and has a melting point of 155-170F. and a specific gravity of 1.15-1.20.
  • the following example illustrates the method of producing the palladium chloride catalyst PEC-8.
  • EXAMPLE 1 642 grams of dimethyl formamide solvent was added to 3685 grams of an epoxy resin in a reaction vessel. The mixture was stirred until the epoxy resin was dissolved in the solvent. The mixture was continuously stirred and heated to a temperature of about 60C. Then 73.3 grams of palladium chloride was slowly added to the mixture and stirred and heated to a temperature range of 1 10 to 120C. The resulting mixture was stirred at this temperature for a period of 1 hour. The liquor was a deep black opaque color. The heat was then removed and the mixture was continued to be stirred and cooled to approximately 80C. Then the material was stored in a non-metallic or a suitably lined metal drum.
  • the formulations of photosensitizers of this invention which are distributed in the present adhesive system are illustrated in the following examples.
  • the sensitizer salts i.e., diazonium salts, are dissolved in organic solvent concentrates to promote a more uniform method of distribution' of the sensitizer in the adhesive system.
  • the salts are added to the solvent and dissolved by mechanical agitation.
  • EXAMPLE 2 Dimethyl Formamide 395 grams p-diethylamino- Z-ethoxy benzenediazonium chlorozincate 5 grams EXAMPLE 3 Dimethyl Formamide 490 grams 4-Ethylamino-3-methylbenzenediazonium chlorozincate 6-10 grams EXAMPLE 4 Dimethylformamide 490 grams p-Morpholinobenzenediazonium fluoroborate grams
  • the sensitizers described in Examples 2 through 4 may be combined with a dye or pigment, and the PEG-8 catalyst. This combination is then distributed in the adhesive system.
  • EXAMPLE 5 Eriocyanine A 0.1 grams PEC-8 catalyst grams Sensitizer of example 4 50 milliliters
  • EXAMPLE 6 10501 Green 0.4 grams PEC-8 catalyst 2.0 grams Sensitizer of example 4 50 milliliters
  • EXAMPLE 7 Erythrosin B cert 0.20 grams PEG-8 catalyst 2.0 grams Sensitizer of example 4 50.0 milliliters
  • the dyes and pigments together with the PEC-S catalyst or some other suitable catalyst may be added to an adhesive base material prior to the addition of the sensitizer to form the present adhesive system.
  • EXAMPLE 10 Ethylene glycol monoethyl ether acetate (Cellosolve acetate) 175 Methyl Ethyl Ketone Acrylonitrile-butadienc (Hycar 1431) 36 Pyrogenic fumed Silicon dioxide (Cab-osil) 6 AuCl; (in 50 grams of N-methyl-Z-pyrrolidone) 2.0 Toluene 50 Oil Soluble Heat Reactive Phenolic resin (SP 126) 15 EXAMPLE 1 l Grams Ethylene glycol monoethyl ether acetate 50 Methyl Ethyl Ketone 200 Acrylonitrile-butadiene 30 Triethanolamine 0.3 Pryogenic fumed silicon dioxide 1.0 PEC-S catalyst 30 EXAMPLE 12 grams Methyl Ethyl Ketone 2000 Acrylonitrile-butadiene 300 Phenolic resin (SP-1055) 4O PEC-B catalyst 40 Ethylene glycol monoethyl ether acetate
  • EXAMPLE 15 To 100 grams of the adhesive base material of example 9, there was slowly added 60 milliliters of the photosensitizer of example 2, Le. p-diethylamino-2-ethoxy benzenediazonium chlorozincate and 40 grams of a solvent, dimethyl formamide. The sensitizer was added during mechanical agitation of the adhesive base material and sufficient time was allowed to assure complete distribution of the sensitizer. The solid content of the adhesive base was adjusted by the addition of the solvent to produce the desired film thickness of the photosensitive adhesive material to be applied to a base.
  • a film of the photosensitive material was applied to a base and allowed to dry and was exposed to ultra violet light. After being exposed, the undeveloped portion of the film was removed from the base and a printed circuit image was formed thereon. Then the printed circuit image was electrolessly plated in a copper solution. A good bond was obtained between the copper plating and the adhesive printed circuit image.
  • the bond was determined by the force required to peel the electroless copper at a 90 angle from the adhesive image. The force is measured as the peel strength in pounds per inch width of plated metal removed.
  • the peel strength of the bond was about 6.0 lbs. per inch width of the copper removed from the printed adhesive image.
  • EXAMPLE 16 Another adhesive composition was prepared as described in example 15 which consisted of the following:
  • Adhesive base of example 11 100 grams Photosensitizer of example 3 35 milliliters Methyl Ethyl Ketone 40 grams A film of the composition was applied to a base. The film was exposed to ultra-violet light, developed and electrolessly plated with a copper solution.
  • a third adhesive composition was prepared as described in Example 15, and consisted of the following:
  • Adhesive base of example 12 100 grams Ethylene glycol monoethyl ether acetate 30 grams Zirconium Silicate 1.0 grams Pthalocyanine Blue 0.3 grams Photosensitizer of example 4 50 milliliters
  • the peel strength of the bond of adhesive image to the plated copper was about 6 lbs. per inch width.
  • EXAMPLE 18 A fourth adhesive composition was prepared, and consisted of the following:
  • N-methyl-Z-pyrrolidone 25.0 grams Zinc chloride 1.0 grams 1, 3, 6 Napthalene tri sull'onic Acid tri sodium salt 0.3 grams Flouborie acid 1 grams 4-Diethylamino-Z-methylbenzencdiazonium chlnrozineate 2 0 grams Anionic Wetting Agent 0.3 grams PEC 8 3 3 grams Aniline Blue (spirit soluble) 0 I grams Adhesive base of example 7A 100.0 grams High Flash Naphtha 100.0 grams Methyl Ethyl Ketone 200.0 grams Pyrogenic fumed Silicon dioxide (eab-o-sil) 3.0 grams The peel strength of the bond of adhesive image to the plated copper was about 6 lbs. per inch width.
  • the photosensitive adhesive material may be applied to a base or substrate by any conventional means suitable for applying a uniform coat.
  • the preferred thickness is 0.001 inch.
  • the coating is dried, such as in an oven set at 45 to 70C for a minimum of 10 minutes or until the film is dry to the touch. Films of more than 0.001 inch may require a longer time in the oven.
  • the adhesive film After the adhesive film was dried, it is exposed through a negative or positive circuit pattern using an ultra-violet light source, e.g., carbon arc, pulsed xenon, mercury lamp.
  • an ultra-violet light source e.g., carbon arc, pulsed xenon, mercury lamp.
  • the time for the exposure depends on the thickness of the adhesive film, the type of base material and the light source.
  • the printed circuit image is developed by removing the unexposed portions of the adhesive film by using a suitable solvent.
  • solvents may be methyl ethyl ketone; l, l, l-trichloroethane; trichlorethylene; cyclohexanone; or any combination of these solvents.
  • One method of developing the printed circuit image is the pressure spray technique. It is particularly effective in removing tenacious residues caused by the pressure of inert fillers and pigments. Generally, multiple spray rinses are required to assure a residual free background for the plating of the electroless metal. For example, l, l, l-trichloroethane may be used in the first spray rinse, and isopropyl alcohol or water may be used in a second and/or third spray rinse.
  • the developed printed circuit image is then oven dried for about 10 to 20 minutes from 60 to C or until the solvents are evaporated. Then the developed image is precured for about 1 hour at C before it is ready for electroless metal deposition.
  • the printed circuit image Before the printed circuit image is electrolessly plated, it may be activated to remove surface contamination and to open the surface of the adhesive material to expose the catalytic sites which are receptive to electroless metal deposition.
  • the adhesive material may be activated by being successively (a) immersed in a chromicfluoboric acid etchant for about 5 to 10 minutes, (b) water rinsed for about 5 minutes, (c) immersed in a sodium bisulfite neutralizer for about 1 minute and (d) finally rinsed with water for about 5 minutes.
  • the time in the chromic-fluoboric etchant is dependent on the film thickness of the photoprinted adhesive material during the immersion period.
  • the image may be plated with an electroless metal by any conventional method.
  • the printed circuit image may be immersed in an electroless copper bath for a period of 1/2 to 1 hour, for complete coverage of the adhesive image with copper.
  • the length of time in the electroless copper bath is dependent on the density of the printed circuit pattern and the desired copper thickness.
  • a process for producing printed circuits on an insulated base which comprises applying to said base a film of a copolymer of acrylonitrile-butadiene having dispersed therein a catalyst selected from the group consisting of the salts, oxides or metals of Groups 18 and 8 of the Periodic Table of Elements including mixtures thereof and a light sensitive diazonium compound for enhancing the light sensitiveness of said composition, exposing said film imagewise to an actinic light source, removing the unexposed portion of the film with an organic solvent for said film whereby printed circuit images are formed on the surface of the base in exposed areas, and immersing the printed circuit images in an electroless metal plating solution containing the metallic salt of the metal to be plated and a reducing agent.
  • a catalyst selected from the group consisting of the salts, oxides or metals of Groups 18 and 8 of the Periodic Table of Elements including mixtures thereof and a light sensitive diazonium compound for enhancing the light sensitiveness of said composition
  • diazonium compounds are selected from the group consisting of p-diethyl-amino-2-ethoxy benzenediazonium chlorozincate, 4-ethylamino-3-methylbenzenediazonium chlorozincate, p-diethyl-amino-2- ethoxybenzenedizaonium chlorozincate, 4- diethylamino-2-Methyl-benzenediazonium chlorozincate and p-morpholinobenzene-diazonium fluoroborate.
  • catalyst comprises palladium chloride in admixture with an epoxy resin and an organic solvent.
  • a process for producing printed circuits on an insulated base which comprises applying to said base a film of a composition which comprises acrylonitrilebutadiene and a thermosetting phenolic or epoxy resin having dispersed therein a catalyst selected from the group consisting of the salts, oxides or metals ofGroups 1B and 8 of the Periodic Table of Elements including mixtures thereof and a light sensitive diazonium compound for enhancing the light sensitiveness of said composition, exposing said film imagewise to an actinic light source, removing the unexposed portion of the film with an organic solvent for said film whereby printed circuit images are formed on the surface of the base in the exposed areas, and immersing the printed circuit images in an electroless metal plating solution containing the metallic salt of the metal to be plated and a reducing agent.
  • a catalyst selected from the group consisting of the salts, oxides or metals ofGroups 1B and 8 of the Periodic Table of Elements including mixtures thereof and a light sensitive diazonium compound for enhancing the light sensitiveness of
  • the catalyst comprises palladium chloride in admixuture with an epoxy resin and an organic solvent.

Abstract

An adhesive system which provides adhesive compositions to be applied to an insulating base and form printed images thereon. The adhesive compositions include agents which render them photosensitive, and receptive to electroless metals.

Description

United States Patent [1 1 Polichette 5] Dec. 18, 1973 1 1 PI-IOTOSENSITIVE PROCESS FOR PRODUCING PRINTED CIRCUITS EMPLOYING ELECTROLESS DEPOSITION [75] Inventor: Joseph Polichette, South Farmingdale, NY.
[73] Assignee: Photocircuits Corporation, Glen Cove, NY.
[22] Filed: Mar. 25, 1969 [21] Appl. No.: 810,378
[52] US. Cl 96/36.2, 9.6/36, 96/75,
[51] Int. Cl G03c 5/00, G03c 5/18 [58] Field of Search 96/49, 75, 91 N, 96/91 R, 36.2, 36, 48 PD, 92, 93, 36.1;
2,695,846 11/1954 Mally 96/49 X 2,852,379 9/1958 Hepher et a1.
2,914,404 11/1959 Fanselau et a1 96/362 3,006,819 10/1961 Wilson et a1 96/36.2 X 3,222,173 12/1965 Belko et a1 1. 96/38.3 X 3,223,525 12/1965 Jonker et a1. 96/49 X 3,259,559 7/1966 Schneble et a1. 1 17/213 X 3,281,244 10/1966 Endermann et a1. 96/49 X 3,294,534 12/1966 Halperin 96/49 3,316,092 4/1967 Klimkowski et a1.
3,458,313 7/1969 Webb 96/49 FOREIGN PATENTS OR APPLICATIONS 1,064,725 4/1967 Great Britain 96/48 764,959 8/1967 Italy 6/49 OTHER PUBLICATIONS Dinaburg, M. S., Photosensitive Diazo Cpds, The Focal Press, p. 170 relied on, 1964.
- Primary Examiner-Charles L. Bowers, Jr.
Att0rneyMorgan, Finnegan, Durham and Pine [57] ABSTRACT An adhesive system which provides adhesive compositions to be applied to an insulating base and form printed images thereon. The adhesive compositions include agents which render them photosensitive, and receptive to electroless metals.
9 Claims, N0 Drawings PHQTOSENSllTlll/E PROCESS FOR PRODUCING PRINTED CllRClUlTS EMPLOYHNG ELECTROLESS DEPOSHTHON This invention relates to an adhesive system whereby a film of adhesive composition is applied to an insulating substrate to form printed circuit images thereon. The adhesive composition comprises agents which render the adhesive layer sensitive to light and receptive to an electroless metal, e.g., copper.
It is an object of this invention to provide an adhesive system which is both light-sensitive and receptive to an electroless metal.
Another object of this invention is to form printed circuit images with an adhesive composition which is receptive to the deposition of an electroless metal.
A further object of this invention is to provide an adhesive composition capable of forming a good bond with an insulating base.
Heretofore, it has been customary to seed and sensitize insulating substrata on which it is desired to electrolessly deposit metal, e.g., copper, by contacting the substra'ta sequentially with aqueous acidic solutions of stannous tin ions and precious metal ions, e.g., palla dium, or with a single acidic aqueous solution comprising a mixture of stannous tin ions and precious metal ions such as palladium. For example, one such treatment involves immersing the insulating base material first in an acidic aqueous solution of stannous chloride followed by washing after which the substratum is immersed in an acidic aqueous solution of palladium chloride. In an alternative system, the substratum is immersed in an acidic aqueous solution comprising a mixture of stannous chloride and palladium chloride.
Seeding systems are known wherein electroless metal deposition is initiated on solid particles catalytic to the deposition of electroless metal and dispersed throughout an organic adhesive base.
The adhesive system of the present invention represents an improvement over the seeding and sensitizing systems heretofore available in that it greatly simplifies the application of printed circuits on an insulated base board.
Among the advantages of the present system is that a printed circuit may be provided without altering or deteriorating the base or insulating base on which the image is printed. With the present adhesive system there is no need to etch the whole base. The image may be added to the base only where it is desired or needed.
Another advantage of the present system is that it provides a clean background for selection of the area where the image may be placed. Also, with the present system, the insulated base is not tampered with by mechanical abrasion, chemical etching or with an overcoating with the adhesive composition.
An important advantage of the present invention is that it provides a sharp, clear and definable photoprint image. With the present system, the images may be printed with the lines being as thin as 0.1 millimeters or less, and the spaces in between the lines may also be 0.1 millimeters or less. This advantage of the present adhesive system is emphasized in comparison with the prior silk-screening process where the refinement of the lines could only be as low as 0.5 to 0.8 millimeters.
Moreover, the adhesives of the present system are curable by light and thus, the detrimental heat cure cycles may be eliminated which are necessary in producing images by other systems such as silk-screening.
The adhesive system of the present invention is also readily adaptable to a wide variety of substrata and economical. The present adhesive system in addition to providing printed circuits may be used to provide various designs including metallic designs, decorative designs, and the like on a variety of bases.
The present adhesive system includes an adhesive base composition having dispersed therein a catalyst, e.g. a palladium chloride catalyst and a sensitizing agent, e.g. a diazonium salt. The catalyst and sensitizing agent impart desired properties to the adhesive composition of receptiveness to electroless metals and lightsensitiveness, respectively.
The adhesive base composition of the present invention will ordinarily comprise an adhesive polymer or copolymer, an adhesive resin alone or in combination with a thermosetting resin of the type described hereinbelow, and solvent material. Typical of the adhesive polymers which may be used in the present system are polyvinyl acetal resins, polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidione, polyamides, polyvinyl butyral natural and synthetic rubbers, and the like. Preferred for use as the polymer are acrylonitrile butadi ene copolymers, and other polymers containing ethylenic groups.
The resins which may be used according to this invention include thermosetting resins such as allyl phthalate; furane; melamine formaldehyde; phenol formaldehyde and phenol-furfural copolymer, alone or compounded with butadiene acrylonitrile copolymer or acrylonitrile-butadiene-styrene copolymers; polyacrylic esters; silicones; polyesters; and the like.
The adhesive base composition may also include phenolic resins such as bromo methyl alkylated phenol formaldehyde and thermosetting phenolics, to reinforce and impart adhesive properties to the adhesive base compositions. Certain epoxy resins, epoxy-urethane resins, and urethane resin also may be used to enhance the adhesive properties of the adhesive compositions.
The adhesive base compositions of the present adhesive system have dispersed therein an agent which is catalystic to the reception of an electroless metal dissolved in an organic system which may comprise one or more organic solvents, one or more organic polymers, or one or more organic solvents in combination with one or more organic resins.
The catalytic agent may be a salt or an oxide, or may be any of the metals of Groups 8 and 1B of the Periodic Table of Elements, compounds of any of these metals or mixtures of such metals. Salts or oxides of iron, c0- balt, and iridium will ordinarily be used as the dissolved catalytic agent, with a palladium chloride catalyst being preferred, i.e. a catalyst identified as PEC-S according to the present invention, the preparation of which is described hereinbelow.
Any organic solvent which is capable of dissolving the catalytic salts or oxides are used, providing the organic solvent does not precipitate the adhesive from its solvents.
Preferred catalytic compounds for dissolution in polymers and solvents of the type described are chlorides, bromides, fluorides, fluoroborates, iodides, nitrates, sulfates, acetates, and oxides of the metals and elements described hereinabove. Complexes of rhodium, iridium, platinum and palladium with stannous chloride are also suitable catalysts for dissolution in the polymers and solvents.
According to the present invention the adhesive compositions are rendered sensitive to light by adding to the adhesive compositions diazonium compounds, azides, ferrous compounds or bichromate compounds dissolved in organic solvents as sensitizers.
The diazonium compounds that may be suitably used according to the present invention include pdiethylamino-Z-ethoxybenzenediazonium chlorozincate, 4 ethylamino-3-methyl benzenediazonium chlorozincate, p-morpholenobenzenediazonium fluoroborate, 4-Diethylamino-2-methylbenzene-diazonium chlorozincate, 2-butyl-3-diazo-3-pseudoindole, p-amino-N- benzyl-N-ethylbenzene diazonium chlorostanate, p- Amino-N-benzyl-N-ethylbenzene diazonium chlorozincate, 3-chlor-4-diethylamino benzene diazonium chlorozincate, p-diethylaminobenzene-diazonium fluoroborate, p-diethylaminobenzene-diazonium chlorozincate, 3-diazo-2-methyl-5-phenyl-3-pseudoindole, 3-diazo-2(2-naphthyl)-3-pseudoindole, 3-diazo-5- nitro-2-phenyl-pseudoindole, 3-diazo-2-phenyl-3- pseudoindole, 3-diazoindiazole, 1-diaz-1-benz(e) indiazole, 3-diazo-5,7-dibromoindiazole, 3-diazo-5- phenylindiazole, 3-diazo-2,4-diphenyl-3H-pyrrolenine, 2-p-chlorophenyl-3-diazo-4,5-diphenyl-3H- pyrrolenine, 2,5-bis(p-chlorophenyl)-3-diazo-3H- pyrrolenine, 2-(4-biphenylyl)-3-diazo-4,5-diphenyl- 3H-pyrrolenine, N-methyl-4'-(3-diazo-4,5-diphenyl- 3H-pyrrolenin-2-yl)-benzenesulfonanilide, 3-diazo-2,4, 5-triphenyl-3l-l-pyrrolenine, and 4-diazo-2,5-diphenyl- 4H-isoimidazole.
The aromatic azide compounds that may be used as a sensitizer include 4,4-diazidostibene, p-Phenylbis(azide p-Azidabenzophene, 4,4- diazidobenzophenone, and 4,4-
diazidodiphenylmethane.
The organic solvents in which the diazonium compounds, azides, and other sensitizing compounds are dissolved include diethyl formamide, dimethyl acetamide, methyl cellosolve, n-methyl-Z-pyrrolidone, dioxane and the like. The sensitizer compounds are dissolved in organic solvent concentrates to provide a more uniform distribution of the sensitizer in the adhesive system. The compounds are added to the solvent and dissolved using mechanical agitation.
There are certain types of dyes and pigments which have been found to increase the photosensitizing activity of the diazonium salt in the adhesive films to light.
The dyes are of a chemical class which include triarylmethane, anthraquinone, stilbene, xanthene, monazo compounds, e.g., Eriocyanine A, Alizarin, Alizarin Blue S, Erythrosin, Eriochrome Black T, [0501 Greene, and the like.
The pigments include, for example, ammonium ferro-ferri cyanide, phthalocyamine blue, zirconium silicate, cab-o-sil, aluminum stearate and the like. The pigments were also found to strengthen the adhesive film and provide a color contrast on certain types of base materials.
There are phenolics and epoxy resins which have been found to impart adhesive properties to the base polymers. The phenolics include bromo methyl alkylated phenol formaldehyde, oil soluble heat reactive phenolics, and thermosetting phenolics.
A chlorosulfonated polyethylene elastomer can also be used to reinforce and impart adhesive properties to the base polymers. The bromo methyl alkylated phenol-formaldehyde resin may also be used to improve the photoprintable properties of the adhesive system.
Typical of the electroless copper solutions which may be used are those described in U.S. Pat. No. 3,095,309, the description of which is incorporated herein by reference. Conventionally, such solutions comprise a source of cupric ions, e.g., copper sulfate, a reducing agent for cupric ions, e.g., formaldehyde, a complexing agent for cupric ions, e.g., tetrasodium ethylenediaminetetraacetic acid, and a pH adjustor, e.g., sodium hydroxide.
Typical electroless nickel baths which may be used are described in Brenner, Metal Finishing, November 1954, pages 68 to 76, incorporated herein by reference. They comprise aqueous solutions of a nickel salt, such as nickel chloride; an active chemical reducing agent for the nickel salt, such as the hypophosphite ion; and a complexing agent, such as carboxylic acids and salts thereof.
Electroless gold plating baths which may be used are disclosed in U. S. Pat. No. 2,976,181, hereby incorporated herein by reference. They contain a slightly water soluble gold salt, such as gold cyanide, a reducing agent for the gold salt, such as the hypophosphite ion, and a chelating or complexing agent, such as sodium or potassium cyanide. The hypophosphite ion may be introduced in the form of the acid or salts thereof, such as the sodium, calcium and the ammonium salts. The purpose of the complexing agent is to maintain a relatively small portion of the gold in solution as a water soluble gold complex, permitting a relatively large portion of the gold to remain out of solution as a gold reserve. The pH of the bath will be about 13.5, or between about 13 and 15, and the ion ratio of hypophosphite radical to insoluble gold salt may be between about 0.33 and 10.1.
In the following examples, Epon is a epoxy resin made by reacting bisphenol A with epichlorohydrin, having a melting point of 6476C., and an epoxide equivalent of 450-525. SP-l055 resin is a heat reactive, bromo-methyl alkylated phenolformaldehyde resin having a melting point of C. SP-l26 resin is an oil soluble, heat reactive lump form, phenolic resin, having a melting point of and a specific gravity of 1.10, SP-6600 resin is a powdered phenolic resin containing 6 to 8 percent hexa and has a melting point of 155-170F. and a specific gravity of 1.15-1.20.
The following example illustrates the method of producing the palladium chloride catalyst PEC-8.
EXAMPLE 1 642 grams of dimethyl formamide solvent was added to 3685 grams of an epoxy resin in a reaction vessel. The mixture was stirred until the epoxy resin was dissolved in the solvent. The mixture was continuously stirred and heated to a temperature of about 60C. Then 73.3 grams of palladium chloride was slowly added to the mixture and stirred and heated to a temperature range of 1 10 to 120C. The resulting mixture was stirred at this temperature for a period of 1 hour. The liquor was a deep black opaque color. The heat was then removed and the mixture was continued to be stirred and cooled to approximately 80C. Then the material was stored in a non-metallic or a suitably lined metal drum.
The formulations of photosensitizers of this invention which are distributed in the present adhesive system are illustrated in the following examples. The sensitizer salts, i.e., diazonium salts, are dissolved in organic solvent concentrates to promote a more uniform method of distribution' of the sensitizer in the adhesive system. The salts are added to the solvent and dissolved by mechanical agitation.
EXAMPLE 2 Dimethyl Formamide 395 grams p-diethylamino- Z-ethoxy benzenediazonium chlorozincate 5 grams EXAMPLE 3 Dimethyl Formamide 490 grams 4-Ethylamino-3-methylbenzenediazonium chlorozincate 6-10 grams EXAMPLE 4 Dimethylformamide 490 grams p-Morpholinobenzenediazonium fluoroborate grams The sensitizers described in Examples 2 through 4 may be combined with a dye or pigment, and the PEG-8 catalyst. This combination is then distributed in the adhesive system.
Typical formulations of this combination of the catalyst, dye and sensitizers are illustrated in the following examples.
EXAMPLE 5 Eriocyanine A 0.1 grams PEC-8 catalyst grams Sensitizer of example 4 50 milliliters EXAMPLE 6 10501 Green 0.4 grams PEC-8 catalyst 2.0 grams Sensitizer of example 4 50 milliliters EXAMPLE 7 Erythrosin B cert 0.20 grams PEG-8 catalyst 2.0 grams Sensitizer of example 4 50.0 milliliters The dyes and pigments together with the PEC-S catalyst or some other suitable catalyst may be added to an adhesive base material prior to the addition of the sensitizer to form the present adhesive system.
The formulation of various adhesive bases are described in the following examples.
Silane Resin 11.8 PEC-8 catalyst 68.1 Pyrogenic fumed Silicon dioxide (Cab-osil) 59.0 Zirconium Silicate 118.0 Acrylonitrile-butadiene 376.0 Thermosetting Phenolic Resin 59.0 Oil Soluble Heat Reactive Phenolic Resin 177.0 Bisphenol A type epoxy resin 118.0 High Flash Naptha Solvent 1050.0 Chlorosult'onated Polyethylene 1 18.0
EXAMPLE 10 Ethylene glycol monoethyl ether acetate (Cellosolve acetate) 175 Methyl Ethyl Ketone Acrylonitrile-butadienc (Hycar 1431) 36 Pyrogenic fumed Silicon dioxide (Cab-osil) 6 AuCl; (in 50 grams of N-methyl-Z-pyrrolidone) 2.0 Toluene 50 Oil Soluble Heat Reactive Phenolic resin (SP 126) 15 EXAMPLE 1 l Grams Ethylene glycol monoethyl ether acetate 50 Methyl Ethyl Ketone 200 Acrylonitrile-butadiene 30 Triethanolamine 0.3 Pryogenic fumed silicon dioxide 1.0 PEC-S catalyst 30 EXAMPLE 12 grams Methyl Ethyl Ketone 2000 Acrylonitrile-butadiene 300 Phenolic resin (SP-1055) 4O PEC-B catalyst 40 Ethylene glycol monoethyl ether acetate 620 EXAMPLE l3 Ethylene glycol monoethyl ether acetate (Cellosolvc acetate) Methyl Ethyl Ketone 150 Acrylonitrile-butadiene (Hycar 1431) 36 Pyrogenic fumed Silicon dioxide (Cab-o-sil) 6 AuC3 (in 50 grams of N-methyl-2- 2.00 Stannous Chloride pyrrolidone) 1.50 Toluene 50 Oil Soluble Heat Reactive Phenolic Resin (SP 126) 15 EXAMPLE 14 grams Ethylene glycol monoethyl ether acetate (Cellosolve acetate) 175 Methyl Ethyl Kctone 150 Acrylonitrile-butadiene (Hycar 1431) 36 Pyrogenic fumed Silicon dioxide (Cab-o-sil) 6 AgNO 2.0 Toluene 50 Oil Soluble Heat Reactive Phenolic resin 15 The adhesive bases of the type illustrated above and described in the various examples are then mixed with photosensitizers and solvents to produce a photosensitive adhesive system according to this invention whereby a film of adhesive material is applied to various insulated bases. The formulations of the adhesive systems are illustrated in the following examples.
EXAMPLE 15 To 100 grams of the adhesive base material of example 9, there was slowly added 60 milliliters of the photosensitizer of example 2, Le. p-diethylamino-2-ethoxy benzenediazonium chlorozincate and 40 grams of a solvent, dimethyl formamide. The sensitizer was added during mechanical agitation of the adhesive base material and sufficient time was allowed to assure complete distribution of the sensitizer. The solid content of the adhesive base was adjusted by the addition of the solvent to produce the desired film thickness of the photosensitive adhesive material to be applied to a base.
A film of the photosensitive material was applied to a base and allowed to dry and was exposed to ultra violet light. After being exposed, the undeveloped portion of the film was removed from the base and a printed circuit image was formed thereon. Then the printed circuit image was electrolessly plated in a copper solution. A good bond was obtained between the copper plating and the adhesive printed circuit image.
The bond was determined by the force required to peel the electroless copper at a 90 angle from the adhesive image. The force is measured as the peel strength in pounds per inch width of plated metal removed.
The peel strength of the bond was about 6.0 lbs. per inch width of the copper removed from the printed adhesive image.
EXAMPLE 16 Another adhesive composition was prepared as described in example 15 which consisted of the following:
Adhesive base of example 11 100 grams Photosensitizer of example 3 35 milliliters Methyl Ethyl Ketone 40 grams A film of the composition was applied to a base. The film was exposed to ultra-violet light, developed and electrolessly plated with a copper solution.
The peel strength of the bond of the plated copper to the adhesive image was about 7.0 lbs. per inch width. EXAMPLE 17 A third adhesive composition was prepared as described in Example 15, and consisted of the following:
Adhesive base of example 12 100 grams Ethylene glycol monoethyl ether acetate 30 grams Zirconium Silicate 1.0 grams Pthalocyanine Blue 0.3 grams Photosensitizer of example 4 50 milliliters The peel strength of the bond of adhesive image to the plated copper was about 6 lbs. per inch width.
EXAMPLE 18 A fourth adhesive composition was prepared, and consisted of the following:
N-methyl-Z-pyrrolidone 25.0 grams Zinc chloride 1.0 grams 1, 3, 6 Napthalene tri sull'onic Acid tri sodium salt 0.3 grams Flouborie acid 1 grams 4-Diethylamino-Z-methylbenzencdiazonium chlnrozineate 2 0 grams Anionic Wetting Agent 0.3 grams PEC 8 3 3 grams Aniline Blue (spirit soluble) 0 I grams Adhesive base of example 7A 100.0 grams High Flash Naphtha 100.0 grams Methyl Ethyl Ketone 200.0 grams Pyrogenic fumed Silicon dioxide (eab-o-sil) 3.0 grams The peel strength of the bond of adhesive image to the plated copper was about 6 lbs. per inch width.
The photosensitive adhesive material may be applied to a base or substrate by any conventional means suitable for applying a uniform coat. The preferred thickness is 0.001 inch. The coating is dried, such as in an oven set at 45 to 70C for a minimum of 10 minutes or until the film is dry to the touch. Films of more than 0.001 inch may require a longer time in the oven.
After the adhesive film was dried, it is exposed through a negative or positive circuit pattern using an ultra-violet light source, e.g., carbon arc, pulsed xenon, mercury lamp. The time for the exposure depends on the thickness of the adhesive film, the type of base material and the light source.
Following the exposure cycle of the adhesive film, the printed circuit image is developed by removing the unexposed portions of the adhesive film by using a suitable solvent. Such solvents may be methyl ethyl ketone; l, l, l-trichloroethane; trichlorethylene; cyclohexanone; or any combination of these solvents.
One method of developing the printed circuit image is the pressure spray technique. It is particularly effective in removing tenacious residues caused by the pressure of inert fillers and pigments. Generally, multiple spray rinses are required to assure a residual free background for the plating of the electroless metal. For example, l, l, l-trichloroethane may be used in the first spray rinse, and isopropyl alcohol or water may be used in a second and/or third spray rinse.
The developed printed circuit image is then oven dried for about 10 to 20 minutes from 60 to C or until the solvents are evaporated. Then the developed image is precured for about 1 hour at C before it is ready for electroless metal deposition.
Before the printed circuit image is electrolessly plated, it may be activated to remove surface contamination and to open the surface of the adhesive material to expose the catalytic sites which are receptive to electroless metal deposition.
The adhesive material, for example, may be activated by being successively (a) immersed in a chromicfluoboric acid etchant for about 5 to 10 minutes, (b) water rinsed for about 5 minutes, (c) immersed in a sodium bisulfite neutralizer for about 1 minute and (d) finally rinsed with water for about 5 minutes. The time in the chromic-fluoboric etchant is dependent on the film thickness of the photoprinted adhesive material during the immersion period.
The image may be plated with an electroless metal by any conventional method. For example, the printed circuit image may be immersed in an electroless copper bath for a period of 1/2 to 1 hour, for complete coverage of the adhesive image with copper. The length of time in the electroless copper bath is dependent on the density of the printed circuit pattern and the desired copper thickness.
The invention in its broader aspects is not limited to the specific methods, compositions and improvement described herein, but departures may be made within the scope of the appended claims without departing from the principles of the invention and without sacrificing its chief advantages.
What is claimed is:
l. A process for producing printed circuits on an insulated base which comprises applying to said base a film of a copolymer of acrylonitrile-butadiene having dispersed therein a catalyst selected from the group consisting of the salts, oxides or metals of Groups 18 and 8 of the Periodic Table of Elements including mixtures thereof and a light sensitive diazonium compound for enhancing the light sensitiveness of said composition, exposing said film imagewise to an actinic light source, removing the unexposed portion of the film with an organic solvent for said film whereby printed circuit images are formed on the surface of the base in exposed areas, and immersing the printed circuit images in an electroless metal plating solution containing the metallic salt of the metal to be plated and a reducing agent.
2. A process according to claim 1 wherein said diazonium compounds are selected from the group consisting of p-diethyl-amino-2-ethoxy benzenediazonium chlorozincate, 4-ethylamino-3-methylbenzenediazonium chlorozincate, p-diethyl-amino-2- ethoxybenzenedizaonium chlorozincate, 4- diethylamino-2-Methyl-benzenediazonium chlorozincate and p-morpholinobenzene-diazonium fluoroborate.
3. A process according to claim 1 wherein the catalyst is palladium chloride.
4. A process according to claim 1 wherein the catalyst comprises palladium chloride in admixture with an epoxy resin and an organic solvent.
5. A process according to claim 1 wherein the electroless meta] plating solution contains a source of cupric ions.
6. A process for producing printed circuits on an insulated base which comprises applying to said base a film of a composition which comprises acrylonitrilebutadiene and a thermosetting phenolic or epoxy resin having dispersed therein a catalyst selected from the group consisting of the salts, oxides or metals ofGroups 1B and 8 of the Periodic Table of Elements including mixtures thereof and a light sensitive diazonium compound for enhancing the light sensitiveness of said composition, exposing said film imagewise to an actinic light source, removing the unexposed portion of the film with an organic solvent for said film whereby printed circuit images are formed on the surface of the base in the exposed areas, and immersing the printed circuit images in an electroless metal plating solution containing the metallic salt of the metal to be plated and a reducing agent.
7. A process according to claim 6 wherein the catalyst is palladium chloride.
8. A process according to claim 6 wherein the catalyst comprises palladium chloride in admixuture with an epoxy resin and an organic solvent.
9. A process according to claim 6 wherein the electroless metal plating solution contains a source of cupric ions.

Claims (8)

  1. 2. A process according to claim 1 wherein said diazonium compounds are selected from the group consisting of p-diethyl-amino-2-ethoxy benzenediazonium chlorozincate, 4-ethylamino-3-methyl-benzenediazonium chlorozincate, p-diethyl-amino-2-ethoxybenzene- dizaonium chlorozincate, 4-diethylamino-2-Methyl-benzenediazonium chlorozincate and p-morpholinobenzene-diazonium fluoroborate.
  2. 3. A process according to claim 1 wherein the catalyst is palladium chloride.
  3. 4. A process according to claim 1 wherein the catalyst comprises palladium chloride in admixture with an epoxy resin and an organic solvent.
  4. 5. A process according to claim 1 wherein the electroless metal plating solution contains a source of cupric ions.
  5. 6. A process for producing printed circuits on an insulated base which comprises applying to said base a film of a composition which comprises acrylonitrile-butadiene and a thermosetting phenolic or epoxy resin having dispersed therein a catalyst selected from the group consisting of the salts, oxides or metals of Groups 1B and 8 of the Periodic Table of Elements including mixtures thereof and a light sensitive diazonium compound for enhancing the light sensitiveness of said composition, exposing said film imagewise to an actinic light source, removing the unexposed portion of the film with an organic solvent for said film whereby printed circuit images are formed on the surface of the base in the exposed areas, and immersing the printed circuit images in an electroless metal plating solution containing the metallic salt of the metal to be plated and a reducing agent.
  6. 7. A process according to claim 6 wherein the catalyst is palladium chloride.
  7. 8. A process according to claim 6 wherein the catalyst comprises palladium chloride in admixuture with an epoxy resin and an organic solvent.
  8. 9. A process according to claim 6 wherein the electroless metal plating solution contains a source of cupric ions.
US00810378A 1969-03-25 1969-03-25 Photosensitive process for producing printed circuits employing electroless deposition Expired - Lifetime US3779758A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81037869A 1969-03-25 1969-03-25

Publications (1)

Publication Number Publication Date
US3779758A true US3779758A (en) 1973-12-18

Family

ID=25203717

Family Applications (1)

Application Number Title Priority Date Filing Date
US00810378A Expired - Lifetime US3779758A (en) 1969-03-25 1969-03-25 Photosensitive process for producing printed circuits employing electroless deposition

Country Status (11)

Country Link
US (1) US3779758A (en)
JP (1) JPS5040221B1 (en)
AT (1) AT307846B (en)
CA (1) CA958936A (en)
CH (1) CH549098A (en)
DE (1) DE2014737B2 (en)
DK (1) DK141823B (en)
FR (1) FR2039963A5 (en)
GB (1) GB1310580A (en)
NL (1) NL167032C (en)
SE (1) SE372351B (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887373A (en) * 1973-04-11 1975-06-03 Motorola Inc Non-polluting photoresist developing process
US3900320A (en) * 1971-09-30 1975-08-19 Bell & Howell Co Activation method for electroless plating
US3928670A (en) * 1974-09-23 1975-12-23 Amp Inc Selective plating on non-metallic surfaces
US3945830A (en) * 1972-12-20 1976-03-23 Fuji Photo Film Co., Ltd. Dry pre-sensitized azide and silicone rubber containing planographic plates and methods of preparation
US4028114A (en) * 1974-03-12 1977-06-07 International Standard Electric Corporation Photochemical system for coating the luminescent screen of a color television picture tube
US4107351A (en) * 1976-10-15 1978-08-15 Rca Corporation Method of depositing or repairing a patterned metal layer on a substrate
US4191573A (en) * 1974-10-09 1980-03-04 Fuji Photo Film Co., Ltd. Photosensitive positive image forming process with two photo-sensitive layers
US4388351A (en) * 1979-08-20 1983-06-14 Western Electric Company, Inc. Methods of forming a patterned metal film on a support
EP0089221A1 (en) * 1982-03-15 1983-09-21 EASTMAN KODAK COMPANY (a New Jersey corporation) Electrographic method of forming conductive circuit patterns and circuit boards formed thereby
US4555414A (en) * 1983-04-15 1985-11-26 Polyonics Corporation Process for producing composite product having patterned metal layer
US4666735A (en) * 1983-04-15 1987-05-19 Polyonics Corporation Process for producing product having patterned metal layer
US4737438A (en) * 1985-10-30 1988-04-12 Tokyo Ohka Kogyo Co., Ltd. Negative-working photosensitive composition comprising a diphenylamine-melamine condensate and an azide compound
US4851159A (en) * 1988-05-02 1989-07-25 Monsanto Company Process for the preparation of N- phosphonomethylglycine
US4910072A (en) * 1986-11-07 1990-03-20 Monsanto Company Selective catalytic activation of polymeric films
US5075037A (en) * 1986-11-07 1991-12-24 Monsanto Company Selective catalytic activation of polymeric films
AU642915B2 (en) * 1989-10-27 1993-11-04 Rohm And Haas Company Positive acting photoresist and method of producing same
US5506091A (en) * 1990-04-20 1996-04-09 Nisshinbo Industries, Inc. Photosensitive resin composition and method of forming conductive pattern
US5532105A (en) * 1992-08-07 1996-07-02 Hitachi Chemical Company, Ltd. Photolithographically viahole-forming photosensitive element comprising two photosensitive layers for the fabrication process of multilayer wiring board
US5631753A (en) * 1991-06-28 1997-05-20 Dai Nippon Printing Co., Ltd. Black matrix base board and manufacturing method therefor, and liquid crystal display panel and manufacturing method therefor
US5854231A (en) * 1995-04-12 1998-12-29 The Procter & Gamble Company Pharmaceutical composition for inhibiting the growth of cancers
US5902804A (en) * 1995-04-12 1999-05-11 The Procter & Gamble Company Pharmaceutical composition for inhibiting the growth of viruses and cancers
US20030152842A1 (en) * 2000-05-23 2003-08-14 Aprilis, Inc. Data storage medium comprising colloidal metal and preparation process thereof
US20130160939A1 (en) * 2011-12-22 2013-06-27 Fih (Hong Kong) Limited Film, method for manufacturing the film and masking method using the film

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1588475A (en) * 1977-05-14 1981-04-23 Hitachi Chemical Co Ltd Method of adhesion between insulating substrates and metal deposits electrolessly plated thereon and method of making additive printed circuit boards
DK427780A (en) * 1980-10-10 1982-04-11 Neselco As POWDER USED BY THROTTLE SENSIBILIZATION FOR CURRENT METALLIZATION
DE3130159A1 (en) * 1981-07-30 1983-02-17 Preh, Elektrofeinmechanische Werke, Jakob Preh, Nachf. Gmbh & Co, 8740 Bad Neustadt "METHOD FOR PRODUCING BOARD"
FR3064010B1 (en) * 2017-03-14 2022-11-18 Commissariat Energie Atomique PRECURSOR SOLUTION FOR FORMING A METALLIC OXIDE LAYER AND METHOD FOR COATING A SUBSTRATE WITH A METALLIC OXIDE LAYER

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2067690A (en) * 1930-02-05 1937-01-12 Philips Nv Method and material for obtaining photographic contrasts
US2501874A (en) * 1946-06-12 1950-03-28 Gen Aniline & Film Corp Photographic diazo-sensitized glassine paper
US2618555A (en) * 1949-04-09 1952-11-18 Kalle & Co Ag Process for positive diazotype and negative metal reduction images and light-sensitive material therefor
US2695846A (en) * 1952-11-04 1954-11-30 Powers Chemco Inc Developing of diazo and azide sensitized colloids
US2852379A (en) * 1955-05-04 1958-09-16 Eastman Kodak Co Azide resin photolithographic composition
US2914404A (en) * 1953-07-31 1959-11-24 Blaupunkt Werke Gmbh Method of producing two-dimensional circuits or circuit elements on supporting bases
US2996380A (en) * 1957-10-08 1961-08-15 Sylvania Electric Prod Method of fabricating image display screens
US3006819A (en) * 1955-06-13 1961-10-31 Sanders Associates Inc Method of photo-plating electrical circuits
US3222173A (en) * 1961-05-15 1965-12-07 Vitramon Inc Method of making an electrical unit
US3223525A (en) * 1959-07-22 1965-12-14 Philips Corp Method of manufacturing, by photographic means, external, electrically conductive noble-metal patterns on non-metallic, electrically non-conductive, macromolecular supports and products obtained by these methods
US3259559A (en) * 1962-08-22 1966-07-05 Day Company Method for electroless copper plating
US3281244A (en) * 1962-01-27 1966-10-25 Keuffel & Esser Co Heat-developable two-component diazotype reproduction material
US3294534A (en) * 1963-05-31 1966-12-27 Gen Aniline & Film Corp Diazotype photoprinting material susceptible to thermal development
GB1064725A (en) * 1962-09-07 1967-04-05 Philips Nv Improvements in or relating to manufacturing metallic images by photographic means
US3316092A (en) * 1963-05-09 1967-04-25 Dietzgen Co Eugene Diazotype material comprising a metal sulfate nitrogenous compound and polymeric anhydride
US3406068A (en) * 1951-07-30 1968-10-15 Rca Corp Photographic methods of making electron-sensitive mosaic screens
US3458313A (en) * 1966-09-07 1969-07-29 Nasa High resolution developing of photosensitive resists
US3469984A (en) * 1965-05-17 1969-09-30 Addressograph Multigraph Heat-sensitive diazotype materials
US3529965A (en) * 1965-08-10 1970-09-22 Eduard Roell Irradiation-sensitive material adapted for development by aqueous developer solution

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2067690A (en) * 1930-02-05 1937-01-12 Philips Nv Method and material for obtaining photographic contrasts
US2501874A (en) * 1946-06-12 1950-03-28 Gen Aniline & Film Corp Photographic diazo-sensitized glassine paper
US2618555A (en) * 1949-04-09 1952-11-18 Kalle & Co Ag Process for positive diazotype and negative metal reduction images and light-sensitive material therefor
US3406068A (en) * 1951-07-30 1968-10-15 Rca Corp Photographic methods of making electron-sensitive mosaic screens
US2695846A (en) * 1952-11-04 1954-11-30 Powers Chemco Inc Developing of diazo and azide sensitized colloids
US2914404A (en) * 1953-07-31 1959-11-24 Blaupunkt Werke Gmbh Method of producing two-dimensional circuits or circuit elements on supporting bases
US2852379A (en) * 1955-05-04 1958-09-16 Eastman Kodak Co Azide resin photolithographic composition
US3006819A (en) * 1955-06-13 1961-10-31 Sanders Associates Inc Method of photo-plating electrical circuits
US2996380A (en) * 1957-10-08 1961-08-15 Sylvania Electric Prod Method of fabricating image display screens
US3223525A (en) * 1959-07-22 1965-12-14 Philips Corp Method of manufacturing, by photographic means, external, electrically conductive noble-metal patterns on non-metallic, electrically non-conductive, macromolecular supports and products obtained by these methods
US3222173A (en) * 1961-05-15 1965-12-07 Vitramon Inc Method of making an electrical unit
US3281244A (en) * 1962-01-27 1966-10-25 Keuffel & Esser Co Heat-developable two-component diazotype reproduction material
US3259559A (en) * 1962-08-22 1966-07-05 Day Company Method for electroless copper plating
GB1064725A (en) * 1962-09-07 1967-04-05 Philips Nv Improvements in or relating to manufacturing metallic images by photographic means
US3316092A (en) * 1963-05-09 1967-04-25 Dietzgen Co Eugene Diazotype material comprising a metal sulfate nitrogenous compound and polymeric anhydride
US3294534A (en) * 1963-05-31 1966-12-27 Gen Aniline & Film Corp Diazotype photoprinting material susceptible to thermal development
US3469984A (en) * 1965-05-17 1969-09-30 Addressograph Multigraph Heat-sensitive diazotype materials
US3529965A (en) * 1965-08-10 1970-09-22 Eduard Roell Irradiation-sensitive material adapted for development by aqueous developer solution
US3458313A (en) * 1966-09-07 1969-07-29 Nasa High resolution developing of photosensitive resists

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Dinaburg, M. S., Photosensitive Diazo Cpds, The Focal Press, p. 170 relied on, 1964. *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900320A (en) * 1971-09-30 1975-08-19 Bell & Howell Co Activation method for electroless plating
US3945830A (en) * 1972-12-20 1976-03-23 Fuji Photo Film Co., Ltd. Dry pre-sensitized azide and silicone rubber containing planographic plates and methods of preparation
US3887373A (en) * 1973-04-11 1975-06-03 Motorola Inc Non-polluting photoresist developing process
US4028114A (en) * 1974-03-12 1977-06-07 International Standard Electric Corporation Photochemical system for coating the luminescent screen of a color television picture tube
US3928670A (en) * 1974-09-23 1975-12-23 Amp Inc Selective plating on non-metallic surfaces
US4191573A (en) * 1974-10-09 1980-03-04 Fuji Photo Film Co., Ltd. Photosensitive positive image forming process with two photo-sensitive layers
US4107351A (en) * 1976-10-15 1978-08-15 Rca Corporation Method of depositing or repairing a patterned metal layer on a substrate
US4388351A (en) * 1979-08-20 1983-06-14 Western Electric Company, Inc. Methods of forming a patterned metal film on a support
EP0089221A1 (en) * 1982-03-15 1983-09-21 EASTMAN KODAK COMPANY (a New Jersey corporation) Electrographic method of forming conductive circuit patterns and circuit boards formed thereby
US4555414A (en) * 1983-04-15 1985-11-26 Polyonics Corporation Process for producing composite product having patterned metal layer
US4666735A (en) * 1983-04-15 1987-05-19 Polyonics Corporation Process for producing product having patterned metal layer
US4737438A (en) * 1985-10-30 1988-04-12 Tokyo Ohka Kogyo Co., Ltd. Negative-working photosensitive composition comprising a diphenylamine-melamine condensate and an azide compound
US5075037A (en) * 1986-11-07 1991-12-24 Monsanto Company Selective catalytic activation of polymeric films
US4910072A (en) * 1986-11-07 1990-03-20 Monsanto Company Selective catalytic activation of polymeric films
US4851159A (en) * 1988-05-02 1989-07-25 Monsanto Company Process for the preparation of N- phosphonomethylglycine
US5650261A (en) * 1989-10-27 1997-07-22 Rohm And Haas Company Positive acting photoresist comprising a photoacid, a photobase and a film forming acid-hardening resin system
AU642915B2 (en) * 1989-10-27 1993-11-04 Rohm And Haas Company Positive acting photoresist and method of producing same
US5506091A (en) * 1990-04-20 1996-04-09 Nisshinbo Industries, Inc. Photosensitive resin composition and method of forming conductive pattern
US5631753A (en) * 1991-06-28 1997-05-20 Dai Nippon Printing Co., Ltd. Black matrix base board and manufacturing method therefor, and liquid crystal display panel and manufacturing method therefor
US5532105A (en) * 1992-08-07 1996-07-02 Hitachi Chemical Company, Ltd. Photolithographically viahole-forming photosensitive element comprising two photosensitive layers for the fabrication process of multilayer wiring board
US5854231A (en) * 1995-04-12 1998-12-29 The Procter & Gamble Company Pharmaceutical composition for inhibiting the growth of cancers
US5902804A (en) * 1995-04-12 1999-05-11 The Procter & Gamble Company Pharmaceutical composition for inhibiting the growth of viruses and cancers
US20030152842A1 (en) * 2000-05-23 2003-08-14 Aprilis, Inc. Data storage medium comprising colloidal metal and preparation process thereof
US7297448B2 (en) * 2000-05-23 2007-11-20 Aprilis, Inc. Data storage medium comprising colloidal metal and preparation process thereof
US20080044737A1 (en) * 2000-05-23 2008-02-21 Aprilis, Inc. Data storage medium comprising colloidal metal and preparation process thereof
US20090325079A1 (en) * 2000-05-23 2009-12-31 Cetin Erdem A Data storage medium comprising colloidal metal and preparation process thereof
US20130160939A1 (en) * 2011-12-22 2013-06-27 Fih (Hong Kong) Limited Film, method for manufacturing the film and masking method using the film
US9017920B2 (en) * 2011-12-22 2015-04-28 Shenzhen Futaihong Precision Industry Co., Ltd. Film, method for manufacturing the film and masking method using the film

Also Published As

Publication number Publication date
DE2014737B2 (en) 1975-03-06
DK141823B (en) 1980-06-23
FR2039963A5 (en) 1971-01-15
AT307846B (en) 1973-06-12
NL167032B (en) 1981-05-15
DK141823C (en) 1980-11-10
SE372351B (en) 1974-12-16
CA958936A (en) 1974-12-10
JPS5040221B1 (en) 1975-12-23
NL167032C (en) 1981-10-15
NL7004323A (en) 1970-09-29
DE2014737A1 (en) 1970-10-01
GB1310580A (en) 1973-03-21
CH549098A (en) 1974-05-15

Similar Documents

Publication Publication Date Title
US3779758A (en) Photosensitive process for producing printed circuits employing electroless deposition
US3925578A (en) Sensitized substrates for chemical metallization
US3772078A (en) Process for the formation of real images and products produced thereby
KR890001078B1 (en) Process for preparing relief images
US3994727A (en) Formation of metal images using reducible non-noble metal salts and light sensitive reducing agents
US4455364A (en) Process for forming metallic image, composite material for the same
US3904783A (en) Method for forming a printed circuit
JPH01128062A (en) Screening resistable photoresist clad
US4181750A (en) Method of depositing a metal on a surface
JPS60206085A (en) Method of producing printed circuit board
US3656952A (en) Non-reversal imaging process and recording elements produced thereby
US3493371A (en) Radiation-sensitive recording material
US3642476A (en) Method of preparing glass masters
US5948592A (en) Water-soluble photoresist composition
US4230788A (en) Method of manufacturing an external electrically conducting metal pattern
US5476690A (en) Process for preparing printed circuit board
US2533454A (en) Method of plating nonmetallic surfaces
JPH08319307A (en) Resin composition, resist ink composition and its cured material
JPH048958B2 (en)
US2819164A (en) Method of manufacturing metallic patterns
US4579804A (en) Method and material for image formation
JP2016213299A (en) Method for forming metal pattern and substrate with metal pattern
US3661573A (en) Light-sensitive compounds
US4075016A (en) Positive-working photographic process and radiation elements utilizing a chalcogenide of arsenic imaging compound and a noble plating metal
JP3142423B2 (en) Printed wiring board

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOLLMORGEN CORPORATION, A CORP. OF NY, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KOLLMORGEN TECHNOLOGIES CORPORATION, A TX CORP.;REEL/FRAME:005356/0276

Effective date: 19900615