US3781721A - Acoustic surface wave device eliminating spurious end reflections - Google Patents

Acoustic surface wave device eliminating spurious end reflections Download PDF

Info

Publication number
US3781721A
US3781721A US00311007A US3781721DA US3781721A US 3781721 A US3781721 A US 3781721A US 00311007 A US00311007 A US 00311007A US 3781721D A US3781721D A US 3781721DA US 3781721 A US3781721 A US 3781721A
Authority
US
United States
Prior art keywords
acoustic
slab
surface wave
acoustic surface
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00311007A
Inventor
G Judd
C Stout
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Hughes Aircraft Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hughes Aircraft Co filed Critical Hughes Aircraft Co
Application granted granted Critical
Publication of US3781721A publication Critical patent/US3781721A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02842Means for compensation or elimination of undesirable effects of reflections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02614Treatment of substrates, e.g. curved, spherical, cylindrical substrates ensuring closed round-about circuits for the acoustical waves
    • H03H9/02622Treatment of substrates, e.g. curved, spherical, cylindrical substrates ensuring closed round-about circuits for the acoustical waves of the surface, including back surface

Definitions

  • ABSTRACT An acoustic surface wave device is disclosed wherein spurious response levels are considerably reduced.
  • the ends of an elongated substrate capable of propagating acoustic surface waves are rounded to allow acoustic surface waves launched on the front broad face of the substrate to propagate around these ends to the reverse broad face of the substrate.
  • a roughened area is provided on the reverse broad substrate face to dissipate the acoustic surface waves propagated thereto by scattering.
  • This invention relates generally to ultrasonic acoustics, and more particularly relates to an acoustic surface wave device wherein spurious reflections from the ends of the device are substantially eliminated.
  • acoustic delay lines In some electromagnetic applications, such as surveillance radar, delay times as long as several milliseconds are required. An electromagnetic delay line providing a delay time of this magnitude would be prohibitively long.
  • the desired delay can be accomplished through the use of microwave acoustic devices. In such devices, rf energy is converted into acoustic waves and the delay is achieved in the acoustic device, after which the acoustic waves are converted back into rf energy.
  • the velocity of electromagnetic waves in free space is of the order of meters per second.
  • acoustic waves do not exist in free space and velocities of these waves depend strongly on the medium in which propagation occurs.
  • the velocity of acoustic waves is of the order of 10 that of electromagnetic waves; hence acoustic delay lines can be made of considerably smaller and more practical physical dimensions.
  • an acoustic surface wave circuit comprises a source of rf signals, a smooth slab-like element or substrate of a material capable of propagating acoustic surface waves, and a load or utilization device. Electroacoustic transducers are attached or held in close proximity to the substrate to convert the rf energy to surface waves in the material and vice versa.
  • a transducer used to convert rf energy to surface waves will be referred to as an input transducer, while a transducer performing the function of reconverting the surface wave energy to rf energy will be referred to as an output transducer.
  • Electro-acoustic transducers of the foregoing type are inherently bidirectional in that they launch two acoustic waves of equal magnitude traveling in opposite directions. The wave traveling in the direction away from the output transducer is reflected upon reaching the end of the substrate near the input transducer, and it then propagates toward the output transducer. Upon reaching the output transducer, this wave gives rise to a large, undesired spurious signal.
  • Still another object of the present invention is to provide a surface wave acoustic delay line that is relatively easy and economical to fabricate.
  • An acoustic surface wave device includes a substrate of a material capable of propagating acoustic surface wave energy.
  • the ends of the substrate are rounded to allow acoustic surface wave energy launched on one surface of the substrate to propagate to the opposite substrate surface.
  • Means are provided on this opposite substrate surface to dissipate acoustic surface wave energy propagated thereto.
  • FIG. 1 is a simplified pictorial view illustrating an acoustic surface wave delay line in accordance with the present invention
  • FIG. 2 is an enlarged side elevational view of a rounded end portion of the delay line substrate of FIG. 2;
  • FIG. 3 is an enlarged view of the central portion of the underside of the delay line substrate of FIG. 1.
  • Substrate surface 8 is provided with an input transducer 11 and an output transducer 12.
  • a source of rf energy indicated generally by block 13 is electrically coupled to input transducer 11 by means of electrical leads l5 and 16, respectively, connected to elongated conductive pads 17 and 18 of transducer 11.
  • a utilization circuit indicated generally as block 14 is electrically coupled to output transducer 12 by means of electrical leads 19 and 20, respectively, connected to elongated conductive pads 21 and 22 of transducer 12.
  • the material from which substrate 8 is fabricated is of the type suitable for the propagation of acoustic surface waves. Many suitable piezoelectric materials have been employed for this purposeand their characteristics can be found in the recent technical literature. For example, LiNbO CdS, ZnO, Bi GeO and SiO form an inclusive, though not exhaustive, list of materials which have been so employed.
  • the surface 9 of substrate 8 that carries the tranducers 11 and 12 is ground and polished to an optical finish, that is, surface irregularities have dimensions that do not exceed the order of wavelengths of visible light.
  • Input and output transducers 11 and 12 are deposited, bonded or otherwise mechanically attached to the substrate surface 9.
  • Transducers l1 and 12 can be formed of any suitable electrically conductive material such as aluminum or gold. The thickness of the conductive material is typically of the order of 500 to 1,000 Angstroms.
  • the ends of the substrate 8 define respective curved surfaces 23 and 24 extending between the substrate broad surfaces 9 and 10 and disposed about an axis perpendicular to the length of the substrate 8 and parallel to the surfaces 9 and 10.
  • each of the curved surfaces 23 and 24 is of a semicylindrical configuration with a radius R.
  • the radius R is preferably at least about an order of magnitude greater than the wavelength of the acoustic surface waves propagating along the substrate 8 to insure that these acoustic surface waves will propagate around the ends of the substrate with essentially no reflections.
  • the surface 10 may be provided with a scattering region 40.
  • the scattering region 40 preferably consists of a roughened surface wherein surface irregularities have dimensions of the order of the wavelength of the acoustic surface waves propagating along the substrate 8.
  • rf energy is appliedto transducer 11 from rf input source 13 by means of leads l and 16. This rf energy is converted into acoustic surface waves propagating along the surface 9 of substrate 8. Due to the inherent bidirectional nature of transducer 11, two acoustic surface waves of equal magnitude traveling in opposite directions are launched as indicated by the arrows 60 and 61 in FIG. 1. The wave 61 traveling in the direction away from the output transducer 12 propagates around the curved end surface 23 to the back surface of the substrate 8. After traversing the roughened region 40 on the substrate back surface 10, this acoustic wave is substantially dissipated by scattering.
  • the undesired acoustic surface wave 61 is transmitted to a scattering area and dissipated in a device according to the invention. Moreover, after forwardly traveling acoustic surface wave 60 has passed the output transducer 12, this wave propagates around the curved end surface 24 of the substrate 8 and is subsequently dissipated in the scattering region 40 on the substrate back surface 10. Thus, reflections from the end of the substrate adjacent to the output transducer 12 are also eliminated.
  • the present invention provides an acoustic delay line that is relatively simple and economical to fabricate.
  • the considerable reduction in the spurious signal level achieved by the invention is the considerable reduction in the spurious signal level achieved by the invention.
  • the roughened substrate region 40 does result in some acoustic surface wave reflection, the magnitude of this reflection is exceedingly small.
  • Spurious responses from this small discontinuity have been measured to be at levels more than 45 db below the desired output signals. Since the best reduction in spurious response levels achieved with the prior art is about 35 db below the signal level, the present invention reduces the delay line spurious response level in an acoustic surface wave delay line by approximately an order of magnitude.
  • An acoustic surface wave device comprising in combination:
  • At least one electro-acoustic transducer coupled to a first surface of said substrate for launching acoustic surface waves propagating along said first surface in a predetermined direction;
  • said substrate having an end region defining a curved surface about an axis substantially perpendicular to said predetermined direction;
  • An acoustic surface wave device according to claim 1 wherein said curved surface is of a substantially semi-cylindrical configuration with a radius at least about an order of magnitude greater than the wavelength of said acoustic surface waves.
  • An acoustic surface wave device comprising in combination:
  • At least one electro-acoustic transducer coupled to a first surface of said substrate for launching acoustic surface waves propagating along said first surface in a predetermined direction;
  • said substrate having an end region defining a curved surface about an axis substantially perpendicular to said predetermined direction; and said substrate further having a scattering region defined on a second surface of said substrate opposite to said first surface for dissipatingacoustic surface wave energy, said scattering region including a roughened surface wherein surface irregularities have dimensions of the order of the wavelength of said acoustic surface waves.
  • said curved surface is of a substantially semi-cylindrical configuration with a radius atleast about an order of magnitude greater than the wavelength of said acoustic surface waves.
  • An acoustic surface wave device comprising in combination:
  • An acoustic surface wave device wherein said means for dissipating acoustic surface wave energy comprises a scattering region including a roughened surface wherein surface irregularities have dimensions of the order of the wavelength of the acoustic surface wave energy propagated along said slab.
  • An acoustic surface wave device comprising in combination:
  • an elongated slab of a material capable of propagating acoustic surface wave energy said slab having first and second opposing broad faces;
  • first and second electro-acoustic transducers disposed adjacent to respective regions of said first broad face near the respective end regions of said slab;
  • the respective end regions of said slab each defining a curved surface extending between said first and second broad faces about an axis substantially parallel to said first and second broad faces and substantially perpendicular to the length of said slab;
  • each said curved surface is of a substantially semi-cylindrical configuration with a radius at least about an order of magnitude greater than the wavelength of the acoustic surface wave energy propagated along said slab.
  • An acoustic surface wave device comprising in combination:
  • an elongated slab of a material capable of propagating acoustic surface wave energy said slab having first and second opposing broad faces;
  • first and second electro-acoustic transducers disposed adjacent to respective regions of said first broad face near the respective end regions of said slab;
  • the respective end regions of said slab each defining a curved surface extending between said first and second broad faces about an axis substantially parallel to said first and second broad faces and substantially perpendicular to the length of said slab;
  • said slab further having a scattering region defined on said second broad face for dissipating acoustic surfaces wave energy, said scattering region including a roughened surface wherein surface irregularities have dimensions of the order of the wavelength of the acoustic surface wave energy propagated along said slab.

Abstract

An acoustic surface wave device is disclosed wherein spurious response levels are considerably reduced. The ends of an elongated substrate capable of propagating acoustic surface waves are rounded to allow acoustic surface waves launched on the front broad face of the substrate to propagate around these ends to the reverse broad face of the substrate. A roughened area is provided on the reverse broad substrate face to dissipate the acoustic surface waves propagated thereto by scattering.

Description

United States Patent Judd et al.
[451 Dec. 25, 1973 ACOUSTIC SURFACE WAVE DEVICE ELIMINATING SPURIOUS END REFLECTIONS Inventors: Gordon W. Judd, Yorba Linda;
Charles R. Stout, Fullerton, both of Calif.
Hughes Aircraft Company, Culver City, Calif.
Filed: Nov. 30, 1972 Appl. No.: 311,007
Assignee:
US. Cl 333/30 R, 333/72, 310/8, 310/9.8
Int. Cl H03h 7/30, H03h 9/32, HOlv 7/00 Field of Search 333/30 R, 92; 310/9.7, 9.8, 8, 8.1
References Cited UNITED STATES PATENTS 10/1972 Gerard 310/9.8
Primary Examiner-Rudolph V. Rolinec Assistant Examiner-Marvin Nussbaum Attorney-W. H. MacAllister, Jr. et al.
[5 7 ABSTRACT An acoustic surface wave device is disclosed wherein spurious response levels are considerably reduced. The ends of an elongated substrate capable of propagating acoustic surface waves are rounded to allow acoustic surface waves launched on the front broad face of the substrate to propagate around these ends to the reverse broad face of the substrate. A roughened area is provided on the reverse broad substrate face to dissipate the acoustic surface waves propagated thereto by scattering.
10 Claims, 3 Drawing Figures Utilization Circuit ACOUSTIC SURFACE WAVE DEVICE ELIMINATING SPURIOUS END REFLECTIONS This invention relates generally to ultrasonic acoustics, and more particularly relates to an acoustic surface wave device wherein spurious reflections from the ends of the device are substantially eliminated.
In some electromagnetic applications, such as surveillance radar, delay times as long as several milliseconds are required. An electromagnetic delay line providing a delay time of this magnitude would be prohibitively long. However, the desired delay can be accomplished through the use of microwave acoustic devices. In such devices, rf energy is converted into acoustic waves and the delay is achieved in the acoustic device, after which the acoustic waves are converted back into rf energy. The velocity of electromagnetic waves in free space is of the order of meters per second. On the other hand, acoustic waves do not exist in free space and velocities of these waves depend strongly on the medium in which propagation occurs. The velocity of acoustic waves is of the order of 10 that of electromagnetic waves; hence acoustic delay lines can be made of considerably smaller and more practical physical dimensions.
Basically, an acoustic surface wave circuit comprises a source of rf signals, a smooth slab-like element or substrate of a material capable of propagating acoustic surface waves, and a load or utilization device. Electroacoustic transducers are attached or held in close proximity to the substrate to convert the rf energy to surface waves in the material and vice versa. A transducer used to convert rf energy to surface waves will be referred to as an input transducer, while a transducer performing the function of reconverting the surface wave energy to rf energy will be referred to as an output transducer.
Electro-acoustic transducers of the foregoing type are inherently bidirectional in that they launch two acoustic waves of equal magnitude traveling in opposite directions. The wave traveling in the direction away from the output transducer is reflected upon reaching the end of the substrate near the input transducer, and it then propagates toward the output transducer. Upon reaching the output transducer, this wave gives rise to a large, undesired spurious signal.
Acoustic energy absorbent materials have been attached to end regions of acoustic surface wave substrates in an effort to attenuate the undesired acoustic energy. However, at frequencies commonly of interest, no material has been found that functions as a perfectly matched load for acoustic surface waves, and unwanted spurious responses are still excessive. For example, some applications require more than 40 db suppression of spurious responses. However, the maximum spurious response suppression thathas been achieved for a variety of absorbent materials applied to devices operating at frequencies of around 30 MHz has been found to be about 35 db.
Accordingly, it is an object of the present invention to improve the characteristics of acoustic surface wave devices.
It is a further object of the present invention to substantially eliminate spurious responses in acoustic surface wave devices as a result of the reflection of surface waves from the ends of the device substrate.
Still another object of the present invention is to provide a surface wave acoustic delay line that is relatively easy and economical to fabricate.
An acoustic surface wave device according to the invention includes a substrate of a material capable of propagating acoustic surface wave energy. The ends of the substrate are rounded to allow acoustic surface wave energy launched on one surface of the substrate to propagate to the opposite substrate surface. Means are provided on this opposite substrate surface to dissipate acoustic surface wave energy propagated thereto.
As a result, spurious signals due to the reflection of acoustic surface wave energy from the ends of the substrate are substantially eliminated.
In addition, fabrication of acoustic surface wave devices employing the aforementioned acoustic absorbers involves a very difficult and tedious procedure. It is necessary to apply the absorber to the substrate and at the same time monitor the output of the acoustic device in response to an applied rf signal. Moreover, it is important to prevent any deposition of the acoustic absorber on the electro-acoustic transducer itself, as such deposition will seriously impair the operating properties of the transducer.
The foregoing and other objects and features of the present invention may be more readily apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
FIG. 1 is a simplified pictorial view illustrating an acoustic surface wave delay line in accordance with the present invention;
FIG. 2 is an enlarged side elevational view of a rounded end portion of the delay line substrate of FIG. 2; and
FIG. 3 is an enlarged view of the central portion of the underside of the delay line substrate of FIG. 1.
Referring to FIG. 1 with greater particularity, there is shown an elongated slab, or substrate, 8 having opposing broad surfaces 9 and 10, respectively. Substrate surface 8 is provided with an input transducer 11 and an output transducer 12. A source of rf energy, indicated generally by block 13, is electrically coupled to input transducer 11 by means of electrical leads l5 and 16, respectively, connected to elongated conductive pads 17 and 18 of transducer 11. A utilization circuit indicated generally as block 14 is electrically coupled to output transducer 12 by means of electrical leads 19 and 20, respectively, connected to elongated conductive pads 21 and 22 of transducer 12. The material from which substrate 8 is fabricated is of the type suitable for the propagation of acoustic surface waves. Many suitable piezoelectric materials have been employed for this purposeand their characteristics can be found in the recent technical literature. For example, LiNbO CdS, ZnO, Bi GeO and SiO form an inclusive, though not exhaustive, list of materials which have been so employed.
Generally, the surface 9 of substrate 8 that carries the tranducers 11 and 12 is ground and polished to an optical finish, that is, surface irregularities have dimensions that do not exceed the order of wavelengths of visible light. Input and output transducers 11 and 12 are deposited, bonded or otherwise mechanically attached to the substrate surface 9. Transducers l1 and 12 can be formed of any suitable electrically conductive material such as aluminum or gold. The thickness of the conductive material is typically of the order of 500 to 1,000 Angstroms.
The ends of the substrate 8 define respective curved surfaces 23 and 24 extending between the substrate broad surfaces 9 and 10 and disposed about an axis perpendicular to the length of the substrate 8 and parallel to the surfaces 9 and 10. As shown, each of the curved surfaces 23 and 24 is of a semicylindrical configuration with a radius R. The radius R is preferably at least about an order of magnitude greater than the wavelength of the acoustic surface waves propagating along the substrate 8 to insure that these acoustic surface waves will propagate around the ends of the substrate with essentially no reflections.
In order to dissipate the acoustic surface wave energy propagated around to the back surface 10 of the substrate 8, the surface 10 may be provided with a scattering region 40. The scattering region 40 preferably consists of a roughened surface wherein surface irregularities have dimensions of the order of the wavelength of the acoustic surface waves propagating along the substrate 8.
In operation, rf energy is appliedto transducer 11 from rf input source 13 by means of leads l and 16. This rf energy is converted into acoustic surface waves propagating along the surface 9 of substrate 8. Due to the inherent bidirectional nature of transducer 11, two acoustic surface waves of equal magnitude traveling in opposite directions are launched as indicated by the arrows 60 and 61 in FIG. 1. The wave 61 traveling in the direction away from the output transducer 12 propagates around the curved end surface 23 to the back surface of the substrate 8. After traversing the roughened region 40 on the substrate back surface 10, this acoustic wave is substantially dissipated by scattering. Thus, instead of being reflected from an acoustic discontinuity at the end of the substrate as in the prior art, the undesired acoustic surface wave 61 is transmitted to a scattering area and dissipated in a device according to the invention. Moreover, after forwardly traveling acoustic surface wave 60 has passed the output transducer 12, this wave propagates around the curved end surface 24 of the substrate 8 and is subsequently dissipated in the scattering region 40 on the substrate back surface 10. Thus, reflections from the end of the substrate adjacent to the output transducer 12 are also eliminated.
It is pointed out that the techniques required to grind and polish the end regions 23 and 24 of the substrate to the desired curvature are easy to implement and no tedious application of absorbent materials to the substrate is required. Thus the present invention provides an acoustic delay line that is relatively simple and economical to fabricate.
Of even more significance, however, is the considerable reduction in the spurious signal level achieved by the invention. Although the roughened substrate region 40 does result in some acoustic surface wave reflection, the magnitude of this reflection is exceedingly small. Spurious responses from this small discontinuity have been measured to be at levels more than 45 db below the desired output signals. Since the best reduction in spurious response levels achieved with the prior art is about 35 db below the signal level, the present invention reduces the delay line spurious response level in an acoustic surface wave delay line by approximately an order of magnitude.
Although the present invention has been shown and described with respect to a preferred embodiment, nevertheless various changes and modifications obvious to one skilled in the art are deemed to lie within the spirit and scope of the invention.
What is claimed is:
1. An acoustic surface wave device comprising in combination:
a substrate of a material capable of propagating acoustic surface wave energy;
at least one electro-acoustic transducer coupled to a first surface of said substrate for launching acoustic surface waves propagating along said first surface in a predetermined direction;
said substrate having an end region defining a curved surface about an axis substantially perpendicular to said predetermined direction; and
means on a second surface of said substrate opposite to said first surface for dissipating acoustic surface wave energy.
2. An acoustic surface wave device according to claim 1 wherein said curved surface is of a substantially semi-cylindrical configuration with a radius at least about an order of magnitude greater than the wavelength of said acoustic surface waves.
3. An acoustic surface wave device comprising in combination:
a substrate of a material capable of propagating acoustic surface wave energy;
at least one electro-acoustic transducer coupled to a first surface of said substrate for launching acoustic surface waves propagating along said first surface in a predetermined direction;
said substrate having an end region defining a curved surface about an axis substantially perpendicular to said predetermined direction; and said substrate further having a scattering region defined on a second surface of said substrate opposite to said first surface for dissipatingacoustic surface wave energy, said scattering region including a roughened surface wherein surface irregularities have dimensions of the order of the wavelength of said acoustic surface waves. 4. An acoustic surface wave device according to claim 3 wherein said curved surface is of a substantially semi-cylindrical configuration with a radius atleast about an order of magnitude greater than the wavelength of said acoustic surface waves.
5. An acoustic surface wave device comprising in combination:
an elongated slab of a material capable of propagating acoustic surface wave energy, the ends of said slab being rounded; I
a pair of electro-acoustic transducers disposed adjacent to respective spaced regions along a surface of said slab; and
means on the opposite surface of said slab for dissipating acoustic surface wave energy.
6. An acoustic surface wave device according to claim 5 wherein said means for dissipating acoustic surface wave energy comprises a scattering region including a roughened surface wherein surface irregularities have dimensions of the order of the wavelength of the acoustic surface wave energy propagated along said slab.
7. An acoustic surface wave device comprising in combination:
an elongated slab of a material capable of propagating acoustic surface wave energy, said slab having first and second opposing broad faces;
first and second electro-acoustic transducers disposed adjacent to respective regions of said first broad face near the respective end regions of said slab;
the respective end regions of said slab each defining a curved surface extending between said first and second broad faces about an axis substantially parallel to said first and second broad faces and substantially perpendicular to the length of said slab; and
means on said second broad face of said slab for dissipating acoustic surface wave energy.
8. An acoustic surface wave device according to claim 7 wherein each said curved surface is of a substantially semi-cylindrical configuration with a radius at least about an order of magnitude greater than the wavelength of the acoustic surface wave energy propagated along said slab.
9. An acoustic surface wave device comprising in combination:
an elongated slab of a material capable of propagating acoustic surface wave energy, said slab having first and second opposing broad faces;
first and second electro-acoustic transducers disposed adjacent to respective regions of said first broad face near the respective end regions of said slab;
the respective end regions of said slab each defining a curved surface extending between said first and second broad faces about an axis substantially parallel to said first and second broad faces and substantially perpendicular to the length of said slab; and
said slab further having a scattering region defined on said second broad face for dissipating acoustic surfaces wave energy, said scattering region including a roughened surface wherein surface irregularities have dimensions of the order of the wavelength of the acoustic surface wave energy propagated along said slab.

Claims (10)

1. An acoustic surface wave device comprising in combination: a substrate of a material capable of propagating acoustic surface wave energy; at least one electro-acoustic transducer coupled to a first surface of said substrate for launching acoustic surface waves propagating along said first surface in a predetermined direction; said substrate having an end region defining a curved surface about an axis substantially perpendicular to said predetermined direction; and means on a second surface of said substrate opposite to said first surface for dissipating acoustic surface wave energy.
2. An acoustic surface wave device according to claim 1 wherein said curved surface is of a substantially semi-cylindrical configuration with a radius at least about an order of magnitude greater than the wavelength of said acoustic surface waves.
3. An acoustic surface wave device comprising in combination: a substrate of a material capable of propagating acoustic surface wave energy; at least one electro-acoustic transducer coupled to a first surface of said substrate for launching acoustic surface waves propagating along said first surface in a predetermined direction; said substrate having an end region defining a curved surface about an axis substantially perpendicular to said predetermined direction; and said substrate further having a scattering region defined on a second surface of said substrate opposite to said first surface for dissipating acoustic surface wave energy, said scattering region including a roughened surface wherein surface irregularities have dimensions of the order of the wavelength of said acoustic surface waves.
4. An acoustic surface wave device according to claim 3 wherein said curved surface is of a substantially semi-cylindrical configuration with a radius at least about an order of magnitude greater than the wavelength of said acoustic surface waves.
5. An acoustic surface wave device comprising in combination: an elongated slab of a material capable of propagating acoustic surface wave energy, the ends of said slab being rounded; a pair of electro-acoustic transducers disposed adjacent to respective spaced regions along a surface of said slab; and means on the opposite surface of said slab for dissipating acoustic surface wave energy.
6. An acoustic surface wave device according to claim 5 wherein said means for dissipating acoustic surface wave energy comprises a scattering region including a roughened surface wherein surface irregularities have dimensions of the order of the wavelength of the acoustic surface wave energy propagated along said slab.
7. An acoustic surface wave device comprising in combination: an elongated slab of a material capable of propagating acoustic surface wave energy, said slab having first and second opposing broad faces; first and second electro-acoustic transducers disposed adjacent to respective regions of said first broad face near the respective end regions of said slab; the respective end regions of said slab each defining a curved surface extending between said first and second broad faces about an axis substantially parallel to said first and second broad faces and substantially perpendicular to the length of said slab; and means on said second broad face of said slab for dissipating acoustic surface wave energy.
8. An acoustic surface wave device according to claim 7 wherein each said curved surface is of a substantially semi-cylindrical configuration with a radius at least about an order of magnitude greater than the wavelength of the acoustic surface wave energy propagated along said slab.
9. An acoustic surface wave device comprising in combination: an elongated slab of a material capable of propagating acoustic surface wave energy, said slab having first and second opposing broad faces; first and second electro-acoustic transducers disposed adjacent to respective regions of said first broad face near the respective end regions of said slab; the respective end regions of said slab each defining a curved surface extending between said first and second broad faces about an axis substantially parallel to said first and second broad faces and substantially perpendicular to the length of said slab; and said slab further having a scattering region defined on said second broad face for dissipating acoustic surfaces wave energy, said scattering region including a rouGhened surface wherein surface irregularities have dimensions of the order of the wavelength of the acoustic surface wave energy propagated along said slab.
10. An acoustic surface wave device according to claim 9 wherein each said curved surface is of a substantially semi-cylindrical configuration with a radius at least about an order of magnitude greater than the wavelength of the acoustic surface wave energy propagated along said slab.
US00311007A 1972-11-30 1972-11-30 Acoustic surface wave device eliminating spurious end reflections Expired - Lifetime US3781721A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US31100772A 1972-11-30 1972-11-30

Publications (1)

Publication Number Publication Date
US3781721A true US3781721A (en) 1973-12-25

Family

ID=23204977

Family Applications (1)

Application Number Title Priority Date Filing Date
US00311007A Expired - Lifetime US3781721A (en) 1972-11-30 1972-11-30 Acoustic surface wave device eliminating spurious end reflections

Country Status (1)

Country Link
US (1) US3781721A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858064A (en) * 1973-08-30 1974-12-31 Sperry Rand Corp Stable acoustic delay surface wave motion transducer systems
US3878407A (en) * 1972-12-22 1975-04-15 Thomson Csf Surface wave electromechanical filter
US3886484A (en) * 1974-06-24 1975-05-27 Hewlett Packard Co Acoustic surface wave devices having improved performance versus temperature characteristics
US3887887A (en) * 1973-12-28 1975-06-03 Texas Instruments Inc Acoustic bulk mode suppressor
DE2505819A1 (en) * 1974-02-15 1975-08-21 Thomson Csf SURFACE SHAFT DEVICE
US3979700A (en) * 1974-08-01 1976-09-07 International Telephone And Telegraph Corporation Video processor
US3980904A (en) * 1973-10-26 1976-09-14 Tokyo Shibaura Electric Co., Ltd. Elastic surface wave device
US4051448A (en) * 1974-02-15 1977-09-27 Thomson-Csf Surface acoustic wave transmission device and method of manufacturing same
EP0002595A1 (en) * 1977-12-09 1979-06-27 Lintech Instruments Limited Transponders
US6018211A (en) * 1993-04-28 2000-01-25 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device and method of manufacturing the same
US6362561B1 (en) * 1999-03-18 2002-03-26 Murata Manufacturing Co., Ltd Piezoelectric vibration device and piezoelectric resonance component
US20060202780A1 (en) * 2004-04-08 2006-09-14 Yuichi Takamine Surface acoustic wave filter and manufacturing method thereof
US20170111021A1 (en) * 2015-10-14 2017-04-20 Qorvo Us, Inc. Methods for fabricating acoustic structure with inclined c-axis piezoelectric bulk and crystalline seed layers
US20180062063A1 (en) * 2016-08-29 2018-03-01 Murata Manufacturing Co., Ltd. Elastic wave device
US10571437B2 (en) 2015-12-15 2020-02-25 Qorvo Us, Inc. Temperature compensation and operational configuration for bulk acoustic wave resonator devices
US11381212B2 (en) 2018-03-21 2022-07-05 Qorvo Us, Inc. Piezoelectric bulk layers with tilted c-axis orientation and methods for making the same
US11401601B2 (en) 2019-09-13 2022-08-02 Qorvo Us, Inc. Piezoelectric bulk layers with tilted c-axis orientation and methods for making the same
US11824511B2 (en) 2018-03-21 2023-11-21 Qorvo Us, Inc. Method for manufacturing piezoelectric bulk layers with tilted c-axis orientation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3699364A (en) * 1971-06-04 1972-10-17 Hughes Aircraft Co Acoustic surface wave device having improved transducer structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3699364A (en) * 1971-06-04 1972-10-17 Hughes Aircraft Co Acoustic surface wave device having improved transducer structure

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878407A (en) * 1972-12-22 1975-04-15 Thomson Csf Surface wave electromechanical filter
US3858064A (en) * 1973-08-30 1974-12-31 Sperry Rand Corp Stable acoustic delay surface wave motion transducer systems
US3980904A (en) * 1973-10-26 1976-09-14 Tokyo Shibaura Electric Co., Ltd. Elastic surface wave device
US3887887A (en) * 1973-12-28 1975-06-03 Texas Instruments Inc Acoustic bulk mode suppressor
DE2505819A1 (en) * 1974-02-15 1975-08-21 Thomson Csf SURFACE SHAFT DEVICE
US3983514A (en) * 1974-02-15 1976-09-28 Thomson-Csf Surface acoustic wave device and method of manufacturing same
US4051448A (en) * 1974-02-15 1977-09-27 Thomson-Csf Surface acoustic wave transmission device and method of manufacturing same
US3886484A (en) * 1974-06-24 1975-05-27 Hewlett Packard Co Acoustic surface wave devices having improved performance versus temperature characteristics
US3979700A (en) * 1974-08-01 1976-09-07 International Telephone And Telegraph Corporation Video processor
EP0002595A1 (en) * 1977-12-09 1979-06-27 Lintech Instruments Limited Transponders
US6018211A (en) * 1993-04-28 2000-01-25 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device and method of manufacturing the same
US6362561B1 (en) * 1999-03-18 2002-03-26 Murata Manufacturing Co., Ltd Piezoelectric vibration device and piezoelectric resonance component
US20060202780A1 (en) * 2004-04-08 2006-09-14 Yuichi Takamine Surface acoustic wave filter and manufacturing method thereof
US7397327B2 (en) * 2004-04-08 2008-07-08 Murata Manufacturing Co., Ltd. Surface acoustic wave filter and method of producing the same
US10574204B2 (en) 2015-10-14 2020-02-25 Qorvo Biotechnologies, Llc Acoustic resonator structure with inclined C-axis piezoelectric bulk and crystalline seed layers
US10541662B2 (en) * 2015-10-14 2020-01-21 Qorvo Us, Inc. Methods for fabricating acoustic structure with inclined c-axis piezoelectric bulk and crystalline seed layers
US10541663B2 (en) 2015-10-14 2020-01-21 Qorvo Us, Inc. Multi-stage deposition system for growth of inclined c-axis piezoelectric material structures
US20170111021A1 (en) * 2015-10-14 2017-04-20 Qorvo Us, Inc. Methods for fabricating acoustic structure with inclined c-axis piezoelectric bulk and crystalline seed layers
US10571437B2 (en) 2015-12-15 2020-02-25 Qorvo Us, Inc. Temperature compensation and operational configuration for bulk acoustic wave resonator devices
US10866216B2 (en) 2015-12-15 2020-12-15 Qorvo Biotechnologies, Llc Temperature compensation and operational configuration for bulk acoustic wave resonator devices
US20180062063A1 (en) * 2016-08-29 2018-03-01 Murata Manufacturing Co., Ltd. Elastic wave device
US10741745B2 (en) * 2016-08-29 2020-08-11 Murata Manufacturing Co., Ltd. Elastic wave device
US11381212B2 (en) 2018-03-21 2022-07-05 Qorvo Us, Inc. Piezoelectric bulk layers with tilted c-axis orientation and methods for making the same
US11824511B2 (en) 2018-03-21 2023-11-21 Qorvo Us, Inc. Method for manufacturing piezoelectric bulk layers with tilted c-axis orientation
US11401601B2 (en) 2019-09-13 2022-08-02 Qorvo Us, Inc. Piezoelectric bulk layers with tilted c-axis orientation and methods for making the same
US11885007B2 (en) 2019-09-13 2024-01-30 Qorvo Us, Inc. Piezoelectric bulk layers with tilted c-axis orientation and methods for making the same

Similar Documents

Publication Publication Date Title
US3781721A (en) Acoustic surface wave device eliminating spurious end reflections
KR940006926B1 (en) Method of making sam filter
US2415352A (en) Lens for radio-frequency waves
US2839731A (en) Multi-facet ultrasonic delay line
US3818379A (en) Acoustic surface wave device
US3662293A (en) Acoustic-wave transmitting device
JPH06112763A (en) Surface acoustic wave device
US3596211A (en) Surface-wave filter reflection cancellation
US4047130A (en) Surface acoustic wave filter
US4406964A (en) Acoustic surface wave transducer with improved inband frequency characteristics
Uozumi et al. Generation and detection of ultrasonic Lamb waves in a thin deposited film by using interdigital transducers
US3803520A (en) Acoustic surface wave device with improved transducer
US3942139A (en) Broadband microwave bulk acoustic delay device
US4242653A (en) Triple transit suppression for bulk acoustic delay lines
US2727214A (en) Acoustic delay line using solid rods
US4117424A (en) Acoustic wave devices
US4048594A (en) Surface acoustic wave filter
US3680009A (en) Acoustic surface wave delay line
JPS63215108A (en) Surface elastic wave device
US4099147A (en) Bulk acoustic delay device
JPS6228609B2 (en)
US4426595A (en) Acoustic surface wave device with improved band-pass characteristics
US4237432A (en) Surface acoustic wave filter with feedforward to reduce triple transit effects
US3873946A (en) Acoustic surface wave tapped delay line
US3366896A (en) Microwave magneto-acoustic delay line