US3795247A - Passive pacer refractory circuit - Google Patents

Passive pacer refractory circuit Download PDF

Info

Publication number
US3795247A
US3795247A US00301395A US3795247DA US3795247A US 3795247 A US3795247 A US 3795247A US 00301395 A US00301395 A US 00301395A US 3795247D A US3795247D A US 3795247DA US 3795247 A US3795247 A US 3795247A
Authority
US
United States
Prior art keywords
transistor
capacitor
discharging
last stage
pacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00301395A
Inventor
S Thaler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
American Optical Corp
Original Assignee
American Optical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Optical Corp filed Critical American Optical Corp
Application granted granted Critical
Publication of US3795247A publication Critical patent/US3795247A/en
Assigned to COOK PACEMAKER CORPORATION reassignment COOK PACEMAKER CORPORATION LICENSE (SEE DOCUMENT FOR DETAILS). EFFECTIVE 03/27/81 Assignors: ATLANTIC RICHFIELD COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential

Definitions

  • ABSTRACT There is disclosed an implantable pacer having a onelzll PP 0 301,395 shot multivibrator refractory circuit which does not require the use of any active elements other than ⁇ 52] CL 128/419 P, [28/422, 307/268, those normally found in an implantable pacer.
  • the last 307/273, 323/)2, 328/207 stage of the heartbeat detector and amplifier is capaci- 51 Int.
  • the human heart cannot be stimulated once again. Even if a stimulus is provided, the heart does not respond.
  • the pacer is often designed to exhibit a refractory period. For approximately 200 milliseconds following each heartbeat, the heart activity is not sensed, or if it is sensed no action is taken in response tothe detection of a beat. The reason for this is that any heart activity during the refractory period is a. reflection of the previous beat; there should be no heart signals (ventricular beat) which can be detected during the refractory period.
  • a timing circuit In a demand pacer, a timing circuit is usually proa when this level is reached a stimulating pulse is generated. In the case of a natural heartbeat which occurs prior to the capacitor reaching the firing level, the detection of the heartbeat results in the discharge of the capacitor and the start of a new timing cycle.
  • the output pulse of the multivibrator controls the discharge of the capacitor to the minimum level following the detection of even a marginal heartbeat.
  • This same one-shot multivibrator functions as a refractory circuit because any reflection signals whichare detected during the refractory period (the multivibrator pulse period) have no effect on the multivibrator and are effectively ignored.
  • I interconnect t'wo transistors which are already included in an existing implantable pacer in such a way that in addition to performing their usual functions, they further function as a one-shot multivibrator refractory circuit.
  • a discharge transistor is placed across a timing capacitor.
  • the capacitor charges from a potential source, and when it reaches a firing level it discharges through a stimulating pulse forming circuit.
  • the discharging transistor which is placed in parallel across the timing capcitor is normally non-conductive, and thus allows the timing capacitor to charge and then discharge through the stimulating pulse forming circuit. However, whenever a natural heartbeat is detected, the discharging transistor is turned on to provide an alternate discharge path for the timing capacitor.
  • the pulse for turning on the discharging transistor is usually derived from the last transistor stage in theheartbeat detecting circuit. This circuit responds to the appearance of an electrical signal on the ventricular electrodes -which signal indicates the occurrence ofa heartbeat-amplifies thesignal, and then applies the pulse to trigger the discharging transistor.
  • a capacitor for coupling the pulsefr om the output stage of the amplifier to the trigger terminal of the discharging transistor but there is generally no feedback from the discharging transistor back to the last stage of the amplifier.
  • a refractory circuit for the pacer is achieved without requiring any additional active elements other than those usually found in an implantable pacer; the additional elements required for the refractory circuit are passive only.
  • FIG. 2 depicts the modifications required thereto in accordance with the principles of my invention to provide a one-shot multivibrator refractory circuit without requiring the use of additional active elements.
  • FIG. 1 isthe same as the drawing in U.S. Pat. application Ser. No. 214,218, filed Dec. 30, 1971, of Barouh V. Berkovits entitled Synchronized Atrial and Ventricular Pacer, which application is hereby incorporated by reference.
  • the pacer of FIG. 1 provides stimulating pulses for a pendeds atria as well as his ventricles, it will be apparent that the principles of the present invention are applicable 'to pacers without an atrial stimulating capability.
  • Capacitor 57 is the timing capacitor. It is bridged by transistor T6 which is normally off. The capacitor charges from batteries 1-5 through potentiometers 35 and 37, and when the voltage across it reaches the firing level, the capacitor discharges tnrough transistors T7 and T8, and a stimulating pulse is applied to ventricular electrodes E1 and E2.
  • THe electrodes are coupled to the base and emitter terminals of transistor T1, this transistor being the first V in a 3-stage amplifier for detecting and amplifying heartbeat signals which appear on the electrodes.
  • a heartbeat is detected, a negative pulse is applied at the base of transistor T4 to turn this transistor on.
  • the junction of resistors 34, 45- and 32 rises in potential.
  • the positive pulse is extended through capacitor 53 to the base of transistor T6 to turn the latter on.
  • capacitor 57 discharges through it; the capacitor is not allowed to charge to the firing level because a natural heartbeat has been detected. Instead, the capacitor is discharged and a new timing cycle begins. The capacitor must charge from a minimum level up to the firing level before a stimulating pulse is next generated.
  • FIG. 2 depicts the changes required in the prior art circuit of FIG. I to provide a one-shot multivibrator refractory circuit without the inclusion of any addtional active elements in the circuit.
  • two elemenets have been added resistor 91 connected between the collector of transistor T6 and the base oftransistor T4, and diode 93 connected between the upper end of capacitor 57 and the collector of transistor T6.
  • diode 93 connected between the upper end of capacitor 57 and the collector of transistor T6.
  • resistor 91 The function of resistor 91 is to provide regenerative feedback from the collector of transistor T6 to the base of transistor T4.
  • the detecting circuit applies a negative pulse to the base of transistor T4. This causes a positive pulse to be extended to the base of transistor T6 and this transistor to turn on for discharging capacitor 57.
  • transistor T6 turns on, its collector drops in potential, and this drop in potential is extended through resistor 91 to the base of transistor T4. Consequently, transistor T4 is held on even after termination of the negative pulse which is extended through resistor 30 to its base terminal. Both transistors remain on and capacitor 53 charges from current flowing through resistor 32 and the capacitor.
  • transistors T4 and T6 convert transistors T4 and T6 to a one-shot multivibrator. Even' though transistor T4 still functions as the last stage of the input amplifier, and even though transistor T6 still functions to discharge capacitor 57 when a natural heartbeat is detected, the two transistors together also function as a one-shot multivibrator. As such, they provide the known advantages of a one-shot multivibrator refractory circuit, without however requiring any additional active elements.
  • capacitor 57 is discharged only so long as a pulse is extended through resistor 30 to the base of transistor T4.
  • said detecting and amplifying means including a transistor in the last stage thereof, transistor means for selectively discharging said timing'capacitor, said last stage transistor and said discharging transistor means each having a base terminal and a collector terminal, means for capacitively coupling the collector terminal of said last stage transistor to said base terminal of said discharging transistor means for controlling the conduction thereof responsive to the detection of a heartbeat signal, the improvement comprising diode means connected between said timing capacitor and the collector terminal of said discharging transistor means poled in a direction to permit easy current flow from said timing capacitor to the collector terminal of said discharging transistor means, and regenerative resistive feedback means connected between the collector terminal of said discharging transistor means and the base terminal of said last stage transistor for controlling said last stage transistor and said discharging transistor to function as a one shot

Abstract

There is disclosed an implantable pacer having a one-shot multivibrator refractory circuit which does not require the use of any active elements other than those normally found in an implantable pacer. The last stage of the heartbeat detector and amplifier is capacitively coupled to the base of the discharging transistor which is in parallel with the conventional timing capacitor. Positive resistive feedback is provided between the collector of the discharging transistor and the input terminal of the last stage of the amplifier. While the last stage of the amplifier and the discharging transistor both perform their usual functions, together they also function as a one-shot multivibrator refractory circuit.

Description

United States Patent H 1 Thaler 1 Mar. 5, 1974 1 1 PASSIVE PACER REFRACTORY CIRCUIT 3,727,082 4/1973 Cedina 307 273 [75] Inventor. idlizsrgwood S. Thaler, Lexington, Primary Examiner wimam E Kamm Attorney, Agent, or Firm-Joel Wall; William C. [73] Assignee: American Optical Corporation, Nealon Southbridge,- Mass. 221 Filed: Oct. 27', 1972 ABSTRACT There is disclosed an implantable pacer having a onelzll PP 0 301,395 shot multivibrator refractory circuit which does not require the use of any active elements other than {52] CL 128/419 P, [28/422, 307/268, those normally found in an implantable pacer. The last 307/273, 323/)2, 328/207 stage of the heartbeat detector and amplifier is capaci- 51 Int. Cl A61n l/36 tive'y coupled to the we of the discharging transistor 5 Field of Search 128/419 P 421, 422; 307/260, which is in parallel with the conventional timing ca- 307/267, 268,273, 274; 328/191 192, 207 pacitor. Positive resistive feedback is provided between the collector of the discharging transistor and 5 R f n e Cited the input terminal of the last stage of the amplifier.
UNITED STATES PATENTS While the last stage of the amplifier and the discharg- 3 469 H6 9/19 Nemura 307/273 mg transistor both perform their usual funct ons, to- 3,528,428 9/1970 Berkovits 128/419 P ggggl giti iifi as a one Shot mumvlbrator 3,287,574 11/1966 Jenkins 307/268 3,547,127 12/1970 Anderson 128/419 P 1 Claim, 2 Drawing Figures This invention relates to refractory circuits for heart pacers, and more particularly to a passive refractory circuit for an implantable pacer.
During a short refractory period following a heartbeat, the human heart cannot be stimulated once again. Even if a stimulus is provided, the heart does not respond. When a patient is provided with aheart pacer, the pacer is often designed to exhibit a refractory period. For approximately 200 milliseconds following each heartbeat, the heart activity is not sensed, or if it is sensed no action is taken in response tothe detection of a beat. The reason for this is that any heart activity during the refractory period is a. reflection of the previous beat; there should be no heart signals (ventricular beat) which can be detected during the refractory period.
In a demand pacer, a timing circuit is usually proa when this level is reached a stimulating pulse is generated. In the case of a natural heartbeat which occurs prior to the capacitor reaching the firing level, the detection of the heartbeat results in the discharge of the capacitor and the start of a new timing cycle.
There are two reasons for providing a refractory cir-- cuit in a pacer. First, if a reflection signal were to be detected and to result in the discharge'of the capacitor, it is apparent that in the absence of a natural heartbeat, the next stimulating pulse would occur after the lapse of too long a time interval. This is because upon the occurrence of the previous heartbeat the capacitor started to. charge toward the firing level, but thecharging was interrupted and the capacitor was discharged upon the detection of the reflection signal. Since the capacitor must start to charge all overagaim'an extra time interval elapses between the previous heartbeat and the next stimulating pulse.
The second reason for providing a refractory circuit in a pacer relates to the particular refractory circuit which is usually provided. Thecircuit isusually a oneshot multivibrator. In the absence of the multivibrator, marginal heartbeats which aredetected might control only the partial discharging of the timing capacitor. In such a case, the capacitor would start to charge from an intermediate level rather than froma minimum level, and the next stimulating pulse would be generated too early. In fact, the next stimulatingpulse might even be generated during the natural T wave, and. this can be dangerous to the patient. For this reason, a oneshot multivibrator is used because once it is triggered, even following the detectlon'ofa marginal heartbeat, it can be designed to fully discharge the timingcapacitor. The output pulse of the multivibrator controls the discharge of the capacitor to the minimum level following the detection of even a marginal heartbeat. This same one-shot multivibrator functions as a refractory circuit because any reflection signals whichare detected during the refractory period (the multivibrator pulse period) have no effect on the multivibrator and are effectively ignored.
Thusit is known to be desirable to utilize a one-shot multivibrator to insure the full discharge of the timing capacitor upon the detection of a heartbeat, and to pro vide for a pacer refractory period. Nevertheless, such refractory one-shot multivibrators, while used in external pacers, are not usually incorporated in implantable pacers. The reason for this is that'they add to the volume of the unit, they draw current and thus reduce the life of. the batteries, and they represent two additional active devices which may fail. In general, only absolutely necessary active devices are included in implantable pacers.
It is a general object of my invention to provide a one-shot multivibrator refractory circuit for an implantable pacer which does not require any additional active elements.
Briefly, in accordance with the principles of my invention, I interconnect t'wo transistors which are already included in an existing implantable pacer in such a way that in addition to performing their usual functions, they further function as a one-shot multivibrator refractory circuit. In some pacers, a discharge transistor is placed across a timing capacitor. Ordinarily, the capacitor charges from a potential source, and when it reaches a firing level it discharges through a stimulating pulse forming circuit. The discharging transistor which is placed in parallel across the timing capcitor is normally non-conductive, and thus allows the timing capacitor to charge and then discharge through the stimulating pulse forming circuit. However, whenever a natural heartbeat is detected, the discharging transistor is turned on to provide an alternate discharge path for the timing capacitor. The pulse for turning on the discharging transistor is usually derived from the last transistor stage in theheartbeat detecting circuit. This circuit responds to the appearance of an electrical signal on the ventricular electrodes -which signal indicates the occurrence ofa heartbeat-amplifies thesignal, and then applies the pulse to trigger the discharging transistor.
In some prior art implantablepacers, there is provided a capacitor for coupling the pulsefr om the output stage of the amplifier to the trigger terminal of the discharging transistor. But there is generally no feedback from the discharging transistor back to the last stage of the amplifier. In accordance with the principles ofmy invention, I provide regenerative resistive feedback. This feedback, together with the coupling capacitor, converts the last stage of the amplifierand the discharging transistor'to a one-shot multivibrator. Even though the last stage of the amplifier still performs its amplification function, and the discharging transistor still performs its discharging function, thetwo of them together further function as a refractory circuit. In effect, a refractory circuit for the pacer is achieved without requiring any additional active elements other than those usually found in an implantable pacer; the additional elements required for the refractory circuit are passive only.
Further objects, features and advantages of my invention will become apparent upon consideration of the following detailed description in conjunction with the drawing, in which:
FIG. 1 depicts a prior art implantable pacer; and
FIG. 2 depicts the modifications required thereto in accordance with the principles of my invention to provide a one-shot multivibrator refractory circuit without requiring the use of additional active elements.
FIG. 1 isthe same as the drawing in U.S. Pat. application Ser. No. 214,218, filed Dec. 30, 1971, of Barouh V. Berkovits entitled Synchronized Atrial and Ventricular Pacer, which application is hereby incorporated by reference. Although the pacer of FIG. 1 provides stimulating pulses for a paients atria as well as his ventricles, it will be apparent that the principles of the present invention are applicable 'to pacers without an atrial stimulating capability. The atrial stimulating circuit of FIG. 1 includes those elements in the bottom half of the drawing, and if they are omitted from the circuit, tgether with resistors 89 and 38, capacitor 54 and diodes 36 and 40 (with diode 40 being replaced by a short circuit), there results a prior art type ventricular pacer. It is this ventricular pacer which will now be described briefly.
Capacitor 57 is the timing capacitor. It is bridged by transistor T6 which is normally off. The capacitor charges from batteries 1-5 through potentiometers 35 and 37, and when the voltage across it reaches the firing level, the capacitor discharges tnrough transistors T7 and T8, and a stimulating pulse is applied to ventricular electrodes E1 and E2.
THe electrodes are coupled to the base and emitter terminals of transistor T1, this transistor being the first V in a 3-stage amplifier for detecting and amplifying heartbeat signals which appear on the electrodes. Whenever a heartbeat is detected, a negative pulse is applied at the base of transistor T4 to turn this transistor on. As a result of current flowing through transistor T4, the junction of resistors 34, 45- and 32 rises in potential. The positive pulse is extended through capacitor 53 to the base of transistor T6 to turn the latter on. When the transistor turns on, capacitor 57 discharges through it; the capacitor is not allowed to charge to the firing level because a natural heartbeat has been detected. Instead, the capacitor is discharged and a new timing cycle begins. The capacitor must charge from a minimum level up to the firing level before a stimulating pulse is next generated.
It is thus apparent that in the pacer of FIG. 1 the last stage T4 of the heartbeat detector and amplifier extends a pulse directly to the base of discharging transistor T6. There are two problems with this configuration. First, reflection signals which occur during the hearts refractory period can cause transistors T4 and T6 to conduct and to thus discharge capacitor 57, with the result that the next stimulating pulse, if one is required, may be delayed unnecessarily. Second, a marginal heartbeat which is detected may not result in the full discharge of capacitor 57 and thusit is possible for the next stimulating pulse to be generated prematurely.
FIG. 2 depicts the changes required in the prior art circuit of FIG. I to provide a one-shot multivibrator refractory circuit without the inclusion of any addtional active elements in the circuit. In the circuit of FIG. 2, two elemenets have been added resistor 91 connected between the collector of transistor T6 and the base oftransistor T4, and diode 93 connected between the upper end of capacitor 57 and the collector of transistor T6. (In the event that a prior art pacer does not include capacitor 53, such a capacitor shouldbe added to the circuit.) i
The function of resistor 91 is to provide regenerative feedback from the collector of transistor T6 to the base of transistor T4. When a natural heartbeat is detected, the detecting circuit applies a negative pulse to the base of transistor T4. This causes a positive pulse to be extended to the base of transistor T6 and this transistor to turn on for discharging capacitor 57. When transistor T6 turns on, its collector drops in potential, and this drop in potential is extended through resistor 91 to the base of transistor T4. Consequently, transistor T4 is held on even after termination of the negative pulse which is extended through resistor 30 to its base terminal. Both transistors remain on and capacitor 53 charges from current flowing through resistor 32 and the capacitor. After the capacitor has charged to an extent such that a sufficiently positive potential is no longer extended to the base of transistor T6, this transistor turns off. The increased potential which is now extended through resistor 91 to the base of transistor T4 turns the latter transistor off. Capacitor 53 then discharges through the various resistors connected across it preparatory to the next cycle of operation.
In effect, the combination of resistor 32 and capacitor 53 between the collector of transistor T4 and the base of transistor T6, and the regenerative feedback provided by resistor 91, convert transistors T4 and T6 to a one-shot multivibrator. Even' though transistor T4 still functions as the last stage of the input amplifier, and even though transistor T6 still functions to discharge capacitor 57 when a natural heartbeat is detected, the two transistors together also function as a one-shot multivibrator. As such, they provide the known advantages of a one-shot multivibrator refractory circuit, without however requiring any additional active elements. Even marginal R waves which are detected result in the complete discharge of capacitor 57 because once the multivibrator is triggered, both of transistors T4 and T6 remain on until the termination of the multivibrator pulse period. Even though the input pulse to the base of transistor T4 may be only marginal, transistor T6 remains fully on for the multivibrator pulse period (typically, -500 milliseconds, depending upon the magnitudes of resistor 32 and capacitor 53). As for reflection signals which are applied to the base of transistor T4 during the refractory period, they have no effect because the oneashot multivibrator remains on for the entire refractory period, during which time the voltage across capacitor 57 remains at the minimum level. Charging of the capacitor begins only after termination of the multivibrator pulse, that is, at the end of the refractory period, and any reflection signals which are detected during this refractory period have no effect on the circuit.
It should be noted that without the refractory circuit,-
capacitor 57 is discharged only so long as a pulse is extended through resistor 30 to the base of transistor T4.
The capacitor then starts to charge immediately. With the refractory circuit, however, the capacitor does not start to charge once again until after the refractory period is over. For this reason, the potentiometers in the charging circuit of capacitor 57 should be decreased in magnitude when the refractory circuit is used so that the capacitor, once it starts to charge, can reach the firing level by the time that the next stimulating pulse is required.
It should also be noted that with the addition of feedback resistor 91 in the circuit, and if diode 93 is not included, the charging current for capacitor 57 which flows through potentiometer 37 could be diverted through resistor 91. This would necessarily interfere with the charging of the capacitor. It is for this reason that diode 93 is provided. When transistor T6 is off, its collector is at a higher potential (as a result of the potential extended through resistor 91) than the upper end of capacitor 57. Thus, diode 93 is reverse biased and current through potentiometer 37 flows only into capacitor 57. It is only when transistor T6 is turned on that its collector potential drops and the diode is forward biased; at this time, capacitor 57 discharges through the diode and transistor T6.
Although the invention has been described with reference to a particular embodiment, it is to be understood that this embodiment is merely illustrative of the application of the principles of the invention. Numerous modifications may be made therein andother arrangements may be devised without departing from the spirit and scope of the invention.
What I claim is:
1. in a pacer having a pair of ventricular electrodes, a timing capacitor, means for charging said capacitor,
means responsive to the voltage across said capacitor reaching a predetermined value for discharging said capacitor and for supplying a stimulating pulse on said ventricular electrodes, means coupled to said ventricular electrodes for detecting and amplifying a heartbeat signal, said detecting and amplifying means including a transistor in the last stage thereof, transistor means for selectively discharging said timing'capacitor, said last stage transistor and said discharging transistor means each having a base terminal and a collector terminal, means for capacitively coupling the collector terminal of said last stage transistor to said base terminal of said discharging transistor means for controlling the conduction thereof responsive to the detection of a heartbeat signal, the improvement comprising diode means connected between said timing capacitor and the collector terminal of said discharging transistor means poled in a direction to permit easy current flow from said timing capacitor to the collector terminal of said discharging transistor means, and regenerative resistive feedback means connected between the collector terminal of said discharging transistor means and the base terminal of said last stage transistor for controlling said last stage transistor and said discharging transistor to function as a one shot multivibrator refractory circuit.

Claims (1)

1. In a pacer having a pair of ventricular electrodes, a timing capacitor, means for charging said capacitor, means responsive to the voltage across said capacitor reaching a predetermined value for discharging said capacitor and for supplying a stimulating pulse on said ventricular electrodes, means coupled to said ventricular electrodes for detecting and amplifying a heartbeat signal, said detecting and amplifying means including a transistor in the last stage thereof, transistor means for selectively discharging said timing capacitor, said last stage transistor and said discharging transistor means each having a base terminal and a collector terminal, means for capacitively coupling the collector terminal of said last stage transistor to said base terminal of said discharging transistor means for controlling the conduction thereof responsive to the detection of a heartbeat signal, the improvement comprising diode means connected between said timing capacitor and the collector terminal of said discharging transistor means poled in a direction to permit easy current flow from said timing capacitor to the collector terminal of said discharging transistor means, and regenerative resistive feedback means connected between the collector terminal of said discharging transistor means and the base terminal of said last stage transistor for controlling said last stage transistor and said discharging transistor to function as a one-shot multivibrator refractory circuit.
US00301395A 1972-10-27 1972-10-27 Passive pacer refractory circuit Expired - Lifetime US3795247A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US30139572A 1972-10-27 1972-10-27

Publications (1)

Publication Number Publication Date
US3795247A true US3795247A (en) 1974-03-05

Family

ID=23163157

Family Applications (1)

Application Number Title Priority Date Filing Date
US00301395A Expired - Lifetime US3795247A (en) 1972-10-27 1972-10-27 Passive pacer refractory circuit

Country Status (2)

Country Link
US (1) US3795247A (en)
GB (1) GB1408489A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908667A (en) * 1973-01-17 1975-09-30 Robert I Bernstein Cardiac pacer
US4694837A (en) * 1985-08-09 1987-09-22 Picker International, Inc. Cardiac and respiratory gated magnetic resonance imaging
US5170806A (en) * 1989-11-10 1992-12-15 Lewicki Microelectronic Gmbh Protective circuit
US20130249508A1 (en) * 2012-03-26 2013-09-26 International Rectifier Corporation Voltage Regulator Having an Emulated Ripple Generator
US10193442B2 (en) 2016-02-09 2019-01-29 Faraday Semi, LLC Chip embedded power converters
US10504848B1 (en) 2019-02-19 2019-12-10 Faraday Semi, Inc. Chip embedded integrated voltage regulator
US11063516B1 (en) 2020-07-29 2021-07-13 Faraday Semi, Inc. Power converters with bootstrap
US11069624B2 (en) 2019-04-17 2021-07-20 Faraday Semi, Inc. Electrical devices and methods of manufacture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287574A (en) * 1964-03-11 1966-11-22 Glenn E Jenkins Regenerative and-gate circuit producing output during shaping-pulse input upon coincidence with but regardless of continuous presence of other input
US3469116A (en) * 1965-05-04 1969-09-23 Nippon Electric Co Pulse timer circuit
US3528428A (en) * 1968-04-11 1970-09-15 American Optical Corp Demand pacer
US3547127A (en) * 1968-04-29 1970-12-15 Medtronic Inc Cardiac pacemaker with regulated power supply
US3727082A (en) * 1971-10-04 1973-04-10 Comard Controls Inc Code converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287574A (en) * 1964-03-11 1966-11-22 Glenn E Jenkins Regenerative and-gate circuit producing output during shaping-pulse input upon coincidence with but regardless of continuous presence of other input
US3469116A (en) * 1965-05-04 1969-09-23 Nippon Electric Co Pulse timer circuit
US3528428A (en) * 1968-04-11 1970-09-15 American Optical Corp Demand pacer
US3547127A (en) * 1968-04-29 1970-12-15 Medtronic Inc Cardiac pacemaker with regulated power supply
US3727082A (en) * 1971-10-04 1973-04-10 Comard Controls Inc Code converter

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908667A (en) * 1973-01-17 1975-09-30 Robert I Bernstein Cardiac pacer
US4694837A (en) * 1985-08-09 1987-09-22 Picker International, Inc. Cardiac and respiratory gated magnetic resonance imaging
US5170806A (en) * 1989-11-10 1992-12-15 Lewicki Microelectronic Gmbh Protective circuit
US20130249508A1 (en) * 2012-03-26 2013-09-26 International Rectifier Corporation Voltage Regulator Having an Emulated Ripple Generator
US9588532B2 (en) * 2012-03-26 2017-03-07 Infineon Technologies Americas Corp. Voltage regulator having an emulated ripple generator
US11557962B2 (en) 2016-02-09 2023-01-17 Faraday Semi, Inc. Chip embedded power converters
US10193442B2 (en) 2016-02-09 2019-01-29 Faraday Semi, LLC Chip embedded power converters
US10924011B2 (en) 2016-02-09 2021-02-16 Faraday Semi, Inc. Chip embedded power converters
US10504848B1 (en) 2019-02-19 2019-12-10 Faraday Semi, Inc. Chip embedded integrated voltage regulator
US11652062B2 (en) 2019-02-19 2023-05-16 Faraday Semi, Inc. Chip embedded integrated voltage regulator
US11069624B2 (en) 2019-04-17 2021-07-20 Faraday Semi, Inc. Electrical devices and methods of manufacture
US11621230B2 (en) 2019-04-17 2023-04-04 Faraday Semi, Inc. Electrical devices and methods of manufacture
US11063516B1 (en) 2020-07-29 2021-07-13 Faraday Semi, Inc. Power converters with bootstrap
US11855534B2 (en) 2020-07-29 2023-12-26 Faraday Semi, Inc. Power converters with bootstrap

Also Published As

Publication number Publication date
GB1408489A (en) 1975-10-01

Similar Documents

Publication Publication Date Title
US3835865A (en) Body organ stimulator
US3648707A (en) Multimode cardiac paces with p-wave and r-wave sensing means
US3433228A (en) Multimode cardiac pacer
US3528428A (en) Demand pacer
US4312355A (en) Heart pacemaker
US4108148A (en) Pacer with automatically variable A-V interval
US3656487A (en) Electronic demand heart pacemaker with different pacing and standby rates
US4091817A (en) P-Wave control, R-wave inhibited ventricular stimulation device
US4386610A (en) Ventricular-inhibited cardiac pacer
US3678937A (en) Demand cardiac pacer with interference protection
US3631860A (en) Variable rate pacemaker, counter-controlled, variable rate pacer
US3618615A (en) Self checking cardiac pacemaker
US3693626A (en) Demand pacer with heart rate memory
GB1307912A (en) Heart pacemakers
US3985142A (en) Demand heart pacer with improved interference discrimination
US3841336A (en) Pacer battery failure detection circuit
US3757791A (en) Synchronized atrial and ventricular pacer and timing circuitry therefor
US3795247A (en) Passive pacer refractory circuit
CA1098587A (en) Atrial-ventricular synchronized pacemaker
US3783878A (en) Atrial and ventricular pacer having independent rate and av delay controls
JPS626824B2 (en)
US3661158A (en) Atrio-ventricular demand pacer with atrial stimuli discrimination
US3625201A (en) Tester for standby cardiac pacing
GB1600437A (en) Signal suppression circuits
US3768486A (en) Atrial and ventricular demand pacer having wide range atrial escape interval

Legal Events

Date Code Title Description
AS Assignment

Owner name: COOK PACEMAKER CORPORATION, INDIANA

Free format text: LICENSE;ASSIGNOR:ATLANTIC RICHFIELD COMPANY;REEL/FRAME:003852/0285

Effective date: 19810327

Owner name: COOK PACEMAKER CORPORATION, P.O. BOX 99, BLOOMINGT

Free format text: LICENSE;ASSIGNOR:ATLANTIC RICHFIELD COMPANY;REEL/FRAME:003852/0285

Effective date: 19810327