US3803453A - Synthetic filament having antistatic properties - Google Patents

Synthetic filament having antistatic properties Download PDF

Info

Publication number
US3803453A
US3803453A US00371507A US37150773A US3803453A US 3803453 A US3803453 A US 3803453A US 00371507 A US00371507 A US 00371507A US 37150773 A US37150773 A US 37150773A US 3803453 A US3803453 A US 3803453A
Authority
US
United States
Prior art keywords
filament
sheath
core
filaments
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00371507A
Inventor
D Hull
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US00371507A priority Critical patent/US3803453A/en
Priority to IE1128/73A priority patent/IE38213B1/en
Priority to AU58209/73A priority patent/AU477185B2/en
Priority to CA176,772A priority patent/CA1019127A/en
Priority to DK405073AA priority patent/DK141205B/en
Priority to LU68056A priority patent/LU68056A1/xx
Priority to NL7310184.A priority patent/NL159731C/en
Priority to FI732298A priority patent/FI52476C/en
Priority to DE2337103A priority patent/DE2337103C3/en
Priority to SE7310158A priority patent/SE394697B/en
Priority to IT26874/73A priority patent/IT998268B/en
Priority to AR24918673A priority patent/AR202536A1/en
Priority to FR7326818A priority patent/FR2193888B1/fr
Priority to BE133699A priority patent/BE802604A/en
Priority to NO2949/73A priority patent/NO131732C/no
Priority to GB3464373A priority patent/GB1393234A/en
Application granted granted Critical
Publication of US3803453A publication Critical patent/US3803453A/en
Priority to JP52015079A priority patent/JPS5945769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/904Flame retardant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/905Bicomponent material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core

Definitions

  • ABSTRACT Novel synthetic filament having antistatic properties 317/2 57/157 6 comprising a continuous nonconducting sheath of syn- 161/175, 317/2 C, 139/426 R thetic polymer surrounding a conductive polymeric 51] Int. Cl. 05f 3/00 ore containing carbon black, [58] Field of Search I. 317/2 R, 2 C; l6l/l75;
  • This invention provides a novel synthetic filament having antistatic properties comprising a continuous nonconductive sheath of a synthetic, thermoplastic, fiber-forming polymer surrounding an electrically conductive core comprised of electrically conductive carbon black dispersed in a thermoplastic, synthetic polymer, said sheath comprising at least 50 percent of the filament cross-sectional area (i.e., at least 50 percentby volume) and said filament core having an electrical resistance of less than ohms per inch at a direct current potential of 2 kilovolts.
  • the filaments of the invention preferably have a core resistance of less than 10 ohms/inch at a direct current potential of 2 kilovolts.
  • said filaments have a molecularly oriented sheath as the result of attenuation during spinning and/or drawing in the course of their preparation.
  • Highly conductive core compositions i.e., those containing more than percent by weight of said carbon black are preferably employed in filaments having a sheath content of at least 80 percent.
  • the present invention permits antistatic filaments which may be used in light-colored textile goods.
  • the sheath comprises at least 90 percent of the filament and the sheath is delustered to partially conceal the black core such that the filament has a light reflectance value as described herein of greater than 20 percent.
  • a preferred delustered filament contains 2 to 7 percent by weight of titanium dioxide pigment in the sheath.
  • antistatic fibers of this invention may be dyed as desired, cobulked under a variety of conditions and employed in end uses where sheath toughness comes into play.
  • the fibers of this invention avoid the dangers of too high electrical conductivity. They also possess a high level of crush-resistance as compared with for antistatic purposes.
  • the filaments of this invention can be effectively employed for antistatic protection independent of relative humidity as a very minor component of a fabric, yarn or other textile material comprised predominantly of other synthetic fibers or filaments needing antistatic protection. Accordingly, the invention also comprehends antistatic yarn and staple fibers comprised of a mixture of nonconducting synthetic filaments and less than 20 percent by weight of the mixture of filaments of the invention described heretofore. Concentrations of filaments of the invention in such mixtures can provide excellent antistatic performance even when present at concentrations of less than 2 percent, but preferably the mixtures contain at least about 0.05 percent by weight of wire used said filaments.
  • the sheath polymer may be mutually dyeable with the nonconducting filaments; more specifically, it may be of the same polymeric class or genus as the polymer of the nonconducting filaments, e.g., nylon sheath fiber with nylon homofiber.
  • the invention is also directed to a process for the preparation of cospun antistatic filaments comprising the steps of cospinning in a sheath/core filament configuration an electrically conductive core composition comprised of an electrically conductive carbon black dispersed in a thermoplastic synthetic polymer surrounded by a nonconductive sheath composition of a synthetic, thermoplastic, fiber-forming polymer, said composition being spun in such proportion that said sheath composition comprises at least 50 percent by volume of said filaments.
  • FIG. 1 is a schematic cross-sectional view of a sheathcore filament of the invention.
  • FIG. 2 is a schematic cross-sectional view of an antistatic yarn comprised of a mixture of filaments of the type depicted in FIG. 1 and nonconducting, synthetic filaments.
  • the core material 1 comprises a conductive composition of carbon black 3 dispersed in a polymer matrix 4 surrounded by a sheath material 2 comprising a nonconducting polymer.
  • filaments of cross-section 5 of the type of FIG. 1 are among the substantially greater number of nonconducting synthetic filaments 6.
  • the nonconductive sheath" of the filaments of the invention is comprised of a synthetic, fiber-forming polymer.
  • the filaments have a surface filament resistance that is greater than 10 ohms per inch as measured by contacting the subject filament surfaces at low direct current voltages, e.g., of volts or less.
  • Homofibers of such sheath materials would also have resistances greater than 10 ohms per inch measured accordingly.
  • fiber-forming is used in the conventional sense to denote linear, high molecular weight polymers which can be formed into fibers of sufficient strength and toughness to be useful.
  • the core of the filaments will have a low resistance and high electrical conductivity once electrical contact therewith is established either by the use of electrodes which penetrate the sheath and directly contact the core or by the use of surface contacting electrodes and the application of a sufficiently high voltage to electrically break down the sheath and thereby establish electrical contact with the core.
  • the use of surface contacting electrodes as an applied DC voltage is increased to several hundred and particularly several thousand volts, a point will occur at which a noted or sudden increase in current will begin to flow as described in the test procedure herein. Once conductivity has been established in this way, the current usually continues to flow even when the voltage is reduced to a lower level, provided filament contact with the electrodes of the measuring device is not altered.
  • the low resistance properties exhibited by the core of these filaments is evidence that the core maintains its electrical continuity throughout the length of the filament being measured. Breaks in the core continuity between the measuring electrodes are evidenced by a much higher electrical resistance approaching that of the sheath. Occasional breaks in core continuity are found not to be significantly detrimental to the antistatic performance of the filaments of this invention.
  • the'core remains continuous throughout the entire length of the fibers and filaments of the invention whether they be staple or continuous filaments. It is essential that the core remain continuous for a sufficiently long length along the filament to establish an effective antistatic network in combination with other such antistatic filaments. Filaments having the specified degree of core conductivity when tested by the methods described herein are found to provide highly effective antistatic protection.
  • the filamentsheath may consist of any extrudable, synthetic, thermoplastic, fiber-forming polymer or copolymer.
  • Particularly suitable sheath polymers are the condensationpolyamides of diamines and dicarboxylic acids and those of amino acids; the condensation polyesters, particularly those of terephthalic or isophthalic acids and lower glycols such as ethylene glycol, tetramethylene glycol and hexahydro-p-xylene' diol; and the poly(acrylonitriles).
  • Such polymers may be modified as to their dye receptivities as is known in the art, e.g., by copolymerization to incorporate basic or acidic dye sites, to facilitate their blending and mutual dyeing with other dyed or dyeable synthetic fibers.
  • Tensile and other physical properties of the filaments of the invention are primarily dependent on the sheath polymer.
  • polymers of higher molecular weight and those permitting higher draw ratios are used in the sheath. While undrawn filaments of the invention may provide adequate strength for some purposes, the drawn filaments are preferred.
  • the sheath thickness must be sufficient to provide the desired protection to the core, e.g., strength and heat and abrasion resistance as well as to assist in visu ally hiding the core where this is important.
  • a sheath thickness of at least 3 microns is desired, with greater thicknesses being governed by the filament denier or diameter which can be used.
  • Suitable sheath thicknesses for normal textile deniers are in the range of 8 to 22 microns.
  • it is essential that the sheath have a sufficiently high melting point to avoid undue softening or melting under such conditions.
  • a higher melting sheath polymer such as poly(hexamethylene adipamide) is preferred over poly(e -caproamide).
  • the filament core consists of a conducting carbon black dispersed in a polymeric, thermoplastic matrix material.
  • the core material is selected with primary consideration for conductivity and processability. Carbon black concentrations in the core of 15 to 50 percent may be employed. It is found that 20 to 35 percent provides the preferred level of high conductivity while retaining a reasonable level of processability. The use of known, specially prepared more highly conducting carbon blacks are helpful in minimizing the amount required.
  • the core polymer is preferably lower melting than the sheath polymer with a lower second order transition temperature than that of the sheath. It is, not essential that the core composition be capable of being spun into filaments by itself and therefore the core polymer need not be fiber-forming.
  • the core polymer should be thermally stable and extrudable under the conditions required for spinning the sheath polymer.
  • Suitable core matrix polymers include those selected from the polyamides, polyesters, polyacrylics, polyethers, polycaprolactone, and polyolefins (e.g., polypropylene, low and high density polyethylenes).
  • the polymers may be blended with other materials such as oils and waxes to facilitate processing.
  • Copolymers may also be employed such as poly(ethylene/vinyl acetate) copolymers.
  • the carbon black may be dispersed in the core polymer by known mixing techniques. Care must be exercised to avoid overmixing and consequent loss in conductivity while still achieving a sufficiently uniform dispersion of carbon black in the core polymer to permit extrusion and spinning.
  • Carbon black containing compositions useful for forming the core in spinning of the filaments of the invention preferably will have a specific resistance of less than 200 ohm-centimeters, and more preferably less than 50 ohm-centimeters.
  • the cross-sectional area (which relates directly to filament volume) of the conductive core in the composite filament need only be sufficient to impart the desired resistance properties thereto and may be as low as 0.5 percent by volume.
  • the lower limit is governed primarily by the capability of manufacturing sheath/core filaments of sufficiently uniform quality while maintaining adequate core continuity at the low core volume levels.
  • Spinning of the filaments of the invention can be accomplished by conventional two-polymer sheath/core spinning equipment with appropriate considerations for the differing properties of the two components. They are readily prepared by known spinning techniques and with polymers as taught for example in US. Pat. Nos. 2,936,482. 2,989,798 contains additional teaching of such spinning with polyamides.
  • the subject filaments are readily prepared having a tenacity of at least 1.5 grams per denier, which is quite adequate when said filaments are blended as a minor component with other filaments.
  • the subject filaments preferably have an elongation-at-break of at least percent and less than 150 percent.
  • the resulting textile properties are dependent primarily upon the properties of the other filaments of the blend.
  • the filaments of this invention have a denier per filament( dpf) of less than 50 and preferably less than 25 dpf.
  • the filaments may be of round or non-round, eccentric or concentric sheath/core configurations and combinations thereof.
  • the concentric configuration provides maximum protection and hiding of the core.
  • the fineness of the core greatly aids in its concealment, and the filaments with fine cores can be employed in dyed or patterned textile goods with no other concealing factor. Further concealment where needed is realized by the presence of an opacifier such as voids or a white, solid, particulate delusterant such as titanium dioxide pigment in the sheath.
  • Non-round filament configurations e.g., multilobal, tend to further conceal the core.
  • sheath thickness and dyeability a sheath/core ratio
  • delustrant such as titanium dioxide in the sheath
  • voids formed by separation of the sheath and core which is found in oriented filament having dissimilar sheath and core polymers, such as a polyamide sheath anda polyethylene core.
  • carbon black filled fibers Without a concealing sheath to hide the blackness, carbon black filled fibers generally have a light reflectance of less than 5 percent. Reflectance levels above about 20 percent, which can be achieved with this invention, provide a very significant improvement in avoiding coloration problems from the subject filaments in lightly dyed goods.
  • the filamentsof this invention are capable of providing excellent antistatic protection in all types of textile end uses including knitted, tufted, woven and nonwoven textiles. They may contain conventional additives and stabilizers such as dyes and antioxidants. They may be subjected to all types of textile processing including DESCRIPTION OF THE TEST PROCEDURES Filament Core Resistance Filament core resistance is determined from current flow measured at 2 kilovolts on a 2-inch sample length. Suitable apparatus is a 15 KV Biddle Dielectric Tester (James G. Biddle Company, Plymouth Meeting, Pennsylvania). A three filament bundle is clamped straight between pairs of electrodes 2 inches apart and a sufficiently high voltage is applied to achieve current flow (e.g., 1-4 KV).
  • the voltage is adjusted to 2 KV and the yarn resistance is calculated from the current flow according to Ohms Law where R E/l. For example, if at 2 KV the current flow is 10 microamps for the 2-inch sample, the resistance for the three filaments is 10 ohm/inch. Resistance per filament is then'3 X 10 ohms/in. To achieve current flow as above, the voltage should be increased gradually to avoid a sudden current surge which may burn out the filaments. Burn-out is readily detected visually by broken or fused or charred filaments) and such samples should be disregarded. The resistance of filaments of lengths less than 2 inches can be measured by appropriately adjusting the distance between the electrodes.
  • Reflectance Light reflectance the lightness or whiteness of the specimen as compared to a magnesium oxide standard, is measured using a pnotoelectric reflection meter.
  • a suitable apparatus is the Photoelectric Reflection Meter Model 610 with a green tristimulus filter Catalog No. 6130), Search Unit Model 610-Y and a white enamel working standard calibrated having a -75 percent reflectance (Catalog No. 6162), obtainable from the Photovolt Corp., Madison Avenue, New York, New York 10016.
  • the conductive filament sample to be measured is wound on 2-inch by 3-inch black mirror cards (approximately six layers of filaments) and the reflectance is measured from the cards (average of 10 measurements).
  • Percent Core in the Filament Percent core by volume is most conveniently determined by comparing the cross-sectional area of the black core to the total filament by measuring under a microscope. This is conveniently done at a magnification of about 400x. For round filaments this can readily be calculated from the ratio of the square of the core diameter to the square of the total filament diameter. The average of 10 determinations is used to compensate for irregularities. For nonround cross-sections, measurements taken on photographs of filament crosssections at a known magnification permit ready calculation.
  • the percent core material can be determined gravimetrically by dissolving the sheath and comparing the weight of the insoluble core to the weight of the original sample.
  • formic acid can be used to dissolve a 66-nylon sheath from a polyethylene core.
  • the specific resistance of the core material containing carbon black is determined by measuring the DC. resistance across a two-inch length of a film strip of the sample 1 inch wide, and having a thickness of about 0.01 inch.
  • Such films are conveniently prepared by pressing a powder or pelletized sample of the core material between two sheets of aluminum foil in a press, heated above the melting point under a pressure of 20,000 psig. for 1 to 2 minutes. After cooling, the foil is siripp'eariam the saniiilfilm' and 1-inch wide strips about 2.5-3 inches long are cut from the sample.
  • thickness of the film is measured with a micrometer.
  • Percent Carbon Black in Core Standard analytical methods can be employed for determining the concentration of carbon black in the filament or core material.
  • a method suitable for use on ethylene plastics containing carbon black is described in or can be derived from the ASTM Method D1603-68. This is a thermogravimetric method suitable for use in the absence of any nonvolatile pigments or filler materials other than carbon black.
  • Concentric sheath/core filaments are prepared having a sheath of 45 RV 66-nylon and a polyethylene core containing 20 percent extra-conductive furnace black.
  • the carbon black is an oil furnace black, extraconductive Vulcan XC-72, (Fixed Carbon 98 percent, Volatiles 2 percent, Particle Size 30 millimicrons, Electrical Resistivity lowest) available from the Cabot Corp., 125 High St.,' Boston, Mass. 02110. This black is described in their Technical Bulletins S-8 and 1518/173.
  • the carbon black dispersion is prepared by mixing the carbon black at about 120C.
  • sheath/core continuous filaments (three 65 denier monofilaments), are spun at 425 ypm wherein the total I denier is held constant and the core volume decreased by changing pump speeds to produce the items of Table l.
  • the core volume is established from the pumping rate and confirmed by cross-section analysis of the fila ments at 200 X magnification.
  • a 3-hole stainless steel spinneret is used wherein the sheath and core polymers are fed concentrically and individually until emerging at the face of the spinneret.
  • An insert capillary is used to carry the core polymer composition to the spinneret face where it exits surrounded by the sheath polymer
  • the filaments are spun at about 65 'dpf. They are then drawn 3.06X at about 200 ypm ona curved heated plate maintained at 150C. Yarn physical and electrical properties are shown in Table 1.
  • the test'ca'rpets of Table l are made of a commercial 3700 denier/204 filament 66-ny1on bulked, trilobal, continuous filament carpet yarn in a -inch pile height.
  • One yarn end of the conductive fiber (about 0.56 percent by weight) is plied upon coning with the carpet yarn, and tufted. The visibility of the conductive fila-.
  • EXAMPLE 11 Preparation of Sheath Polymer A 317.5 kilogram aqueous solution containing 50 percent by weight of hexamethylene diammonium adipate (66-nylon salt) is charged into a stainless steel vessel to which is added 721 grams of a solution containing 10 percent by weight manganous hypophosphite [Mn( H PO in water; 70 grams of a solution containing 25 percent by weight acetic acid, and 100 m1. of a silicone antifoam 11.2 percent concentration. The charge is concentrated by evaporation to about percent solids by weight and transferred to a stainless steel autoclave equipped with an agitator. The autoclave is purged of air with inert gas and is heated to about 200C. to a pressure of 17 atmospheres.
  • a 14.83 kilogram titanium dioxide (Ti-pure Rutile, Titanium Dioxide R-960, E. I. du Pont' de Nemours & Co., Wilmington, Delaware) slurry prepared as 49 percent by weight in water is charged with agitation into the pressurized autoclave. The heating is continued until the temperature reaches 273C. and the pressure is gradually re- I pokerd to the atmospheric pressure. The polymerization cycle is continued as in Example I of US. Pat. No. 2,163,636. Upon completion of the polymerization reaction, the molten polymer is extruded in the form of about A inch strands. After quenching with water they are cut into A X 3/ 16 inch chips suitable for remelting in a spinning assembly. The flake has these properties:
  • Relative viscosity 43.5 (NH 46.0 eq./l0 g.
  • Polyethylene Alathon PE-4318 Low density polyethylene (density 0.916, Melt lndex 23 ASTM-D- 1238) manufactured by E. l. du Pont de Nemours.& Co., for injection molding. It contains 50 ppm antioxidant to improve thermal and aging stability.
  • the product shows the following properties:
  • the pellets should be dried at 70C. and under vacuum for 24 hours before spinning.
  • the sheath and core polymers are cospun on a screw melter spinning machine using a spinneret assembly to spin concentric sheath/core filaments bythe technique shown in US Pat. No. 2,936,482.
  • the sheath polymer is-fed at 19.8 gm./min. (as calculated from pump capacity and speed) and core polymer at 0.7 gm./min. (as calculated from pump capacity and speed) throughputs to provide a concentric sheath- /core composition of 96 percent sheath and 4 percent core by volume.
  • the sheath and core polymer temperatures in the screw melter are set at:
  • Sheath Polymer Core Polymer The spinning block temperature is 293C. Both sheath and core polymer supply hoppers are purged with inert gas.
  • the relative viscosity of sheath polymer as coming from the spinneret (free fall) is about 56, the increased RV resulting from further polymerization of dried 66- nylon in the screw melter.
  • the spinning speed is approximately 890 ypm.
  • the collected spun yarn is gray in color and has these properties:
  • the drawn yarn properties are:
  • Cobulking One end of an approximately 3400 denier, 160 filament nylon 4-void hollow filament yarn of the type shown in Br. Pat. No. 1,292,388 is cobulked with one end of the conductive yarn on one position of the hollow filament spinning machine.
  • the yarns are combined in a hot chest under 10-20 g. tension at the last chest roll wrap before entering the bulking jet.
  • the chest roll is at 195C. and yarn velocity is 1185 ypm.
  • the cobulking is done by passing the yarn through an air jet operated at psig and 240C. as described in Belgium Patent No. 573,230 to produce filaments having random, three-dimensional curvilinear crimp with alternating regions of S and Z filament twist.
  • the yarn is then cooled and passed to windup.
  • the tensile properties of the cobulked yarn are essentially the same as the unmodified product.
  • Mockdyed level loop carpets k inch pile height, 29.4 ounces/- square yard, 5/32 inch gauge, 7 stiches per inch) made from yarns containing the conductive filaments (test) and from yarns containing no conductive filaments (control) with a commercial nonwoven polypropylene backing (Typar by Du Font) and latexed with a commercial latex give the following static propensities at 20 percent RH and 70F.
  • Test Control The static test is AATCC Test Method 134-1969 with changes as adopted by the Carpet and Rug lnstitute, September, 1971.
  • the filaments of the invention may be used in staple form, e.g., at from 0.5 to 5 percent by weight with nonconductive staple in carpet yarn.
  • Filaments are spun of an eccentric sheath/core configuration with a 66-nylon sheath of 44 relative viscosity and containing 0.3 percent TiO and a 6-nylon core (45 relative viscosity 31.8 equiv. NH end groups/ 10 grams) having nominally 20 percent carbon black of the type in Example 1.
  • the filaments are 40 percent core by volume.
  • the 3-filament yarn has a spun denier of about 79.
  • the yarn is cold drawn using a draw-pin. As shown in Table 2, the yarn resistance upon cold drawing is found to increase as a function of the draw ratio. When the yarn is hot drawn without a pin using a curved heated plate at about C., essentially no increase in resistance is encountered. It is speculated that heating of the yarn in a heated draw zone upon drawing permits softening of the core enough to prevent core breakage or disruption of the carbon particle distribution required for conductivity.
  • EXAMPLE IV Sheath Polymer Poly(ethylene terephthalate) flake having a relative viscosity of 23 i 2 measured on 0.8 gm. polymer in ml. of hexafluoroisopropanol at C.
  • the specific resistance of films cast from this polymer varies between 10-60 ohm-cm.
  • the sheath and core polymers are co-spun and drawn on a coupled spin-draw machine at 1500 ypm windup speed (as calculated from the speed of the windup roll in rpm).
  • the sheath polymer is fed to a spinneret at 29.7 gm./min. (as calculated from denier spun and windup speed) and core polymer at 6.7 gm./min. (as calculated from denier spun and windup speed) throughputs to provide a concentric sheath- /core composition at 81 percentsheath (as calculated from throughputs) and 19 percent core (as. calculated from throughputs) by weight.
  • the screw melters temperatures are set at:
  • the drawn yarn is black in color and has these properties:
  • the sheath and core polymers are co-spun as in Example II at 860 ypm.
  • the sheath polymer is fed at 36.3 grams/minute (as calculated from pump speed and capacity) and core polymer 1.38 grams/minute (as calculated from pump speed and capacity). throughputs to provide a concentric sheath/core composition of 96 percent sheath and 4 percent core by volume as determined by measurement of the cross-section under magnification.
  • the screw melter temperature for the sheath polymer is set at:
  • Zone 1 286 114 Top
  • Zone 2 284 184
  • Middle 242 (Bottom)
  • spinning block temperature at 292C.
  • the yarn is spun at 60 denier/ 3 filaments (60-3).
  • Drawing 60-3 Denier sheath/core yarn is drawn at 454 ypm and 3.8X draw ratio and 97C. hot shoe temperature.
  • the drawn yarn properties are:
  • the sheath/ core test yarn is cotextured with a commercial l50-34-polyester yarn on a Leesoria 570 falsetwist texturing machine.
  • the cotextured yarn (1 end 17.2-3 sheath-core with 1 end -34 polyester) is woven into a Canal Pique double knit fabric. This fabric is dyedand finished using conventional methods. After 30 washes the fabric is tested on asta tic tester (Presco Scientific Co., electrometer model E525) and compared with the control fabric made from the same polyester yarn alone and processed under identical conditions.
  • Example II a 6-nylon core polymer con-' taining 28% carbon black prepared as in Example IV. Filaments 96 percent by volume sheath and 4 percent core are drawn 3.0X over a 180C. curved (24 inch) hot plate.
  • the yarn properties are:
  • Example II The conductive yarn is cobulked as in Example II with basic dyeable 1225-68 66-nylon hollow (4 voids) continuous filament carpet yarn (Type 854 Antron II by Du Font) and tufted at A inch pile height, 14 ounces/square yard level loop carpets as outlined in Example II.
  • basic dyeable 1225-68 66-nylon hollow (4 voids) continuous filament carpet yarn Type 854 Antron II by Du Font
  • tufted at A inch pile height, 14 ounces/square yard level loop carpets as outlined in Example II.
  • Mockdyed carpet reflectance and static propensity are compared against a control carpet made without conductive yarn.
  • EXAMPLE VII Filaments (4 ends of 60 spun denier, 3 filaments) having a nylon sheath and a polyethylene core essentially the same as those in Example [I are prepared, for use in staple, having properties as follows:
  • the spun yarn is drawn by combining eight ends, on an experimental draw machine at 3.0X draw ratio, 230 ypm. winding speed and 180C. hot shoe temperature.
  • the drawn yarn properties are:
  • This conductive yarn bundle is cut to approximately 6.5 inch length pieces and blended with commercial Du Pont T-838, 66-nylon carpet staple during carding at 0.6, 2 and 5 percent quantities.
  • the blends are processed under normal staple conditions to make spun yarns of 2.4 cotton count/2 ply, 3.5Z/3.5S twist.
  • yarns are heat set in an autoclave and then tufted into 35 oz./square yard, 5/32 inch gauge, A inch pile height saxony style cut pile carpets with a Typar polypropylene backing and latexed with a commercial latex.
  • the carpets are scoured and dyed conventionally with a mixture of 3 commercial yellow, red and blue acid dyes.
  • the dyed carpets give the following static propensi ties on shuffle test at 20 percent RH and -.70F.
  • Item C comprises filaments having a 66-nylon sheath containing 5 percent titanium dioxide and a core containing 30 percent carbon black in a polyolefin base comprised of 40 percent polypropylene, 20 percent polyethylene and 10 percent Nordel 1500, a commercial elastomer based on a terpolymer of ethylene, propylene and a non-conjugated diene from E. I. du Pont Nemours and Company.
  • Item D comprises filaments having a sheath of a commercial polypropylene resin (Shell PWD-15 2) and core composition as in Item A.
  • a polycaprolactone commercial resin Union Carbide PCL-700
  • Item F employs a sheath of 66-nylon containing 5 percent titanium dioxide pigment and a core of a commercial polypropylene resin (Hercules 8MSR) containing 25 percent carbon black.
  • Item G employs a polypropylene sheath as in Item D and a core of a commercial polyethylene ether resin (Du Pont TLF 16815) containing 26 percent carbon black.
  • Item H is a non-antistatic control item having a nylon sheath as in Item A and the same polyethylene resin core containing no carbon black.
  • a novel synthetic filament having antistatic properties comprising a continuous, nonconductive sheath of a synthetic thermoplastic fiber-forming polymer surrounding an electrically conductive polymeric core comprised of electrically conductive carbon black dispersed in a thermoplastic synthetic polymer, said sheath comprising at least 50 percent of the filament cross-sectional area and said filament core having an electrical resistance of less than 10 ohms per inch at a direct current potential of two kilovolts.
  • the filament of claim 1 wherein the sheath constitutes at least 80 percent of the filament cross-sectional area and the conductive core contains more than percent by weight of carbon black.
  • the filament of claim 1 having a tenacity of at least 1.5 grams per denier.
  • the filament of claim 4 wherein the sheath contains from 2 to 7 percent by weight of titanium dioxide as a delusterant.
  • the filament of claim 1 having a denier of less than 50.
  • a continuous filament yarn comprising a mixture of nonconducting synthetic filaments and less than 20 percent by weight of filaments of claim 1.
  • a continuous filament yarn comprising a cobulked mixture of nonconducting synthetic filaments and less than 20 percent by weight of filaments of claim 1.
  • a mixture of staple fibers comprising nonconducting synthetic filaments and less than 20 percent by weight of filaments of claim 1.
  • a novel synthetic filament having antistatic properties comprising a continuous nonconductive polyamide sheath surrounding an electrically conductive core electrical resistance of less than 10 ohms/inch at a direct current potential of two kilovolts.
  • a continuous filament yarn comprising a co- I bulked mixture of nonconducting synthetic filaments and less than 20 percent by weight of filaments of claim

Abstract

Novel synthetic filament having antistatic properties comprising a continuous nonconducting sheath of synthetic polymer surrounding a conductive polymeric core containing carbon black.

Description

United States Patent 1 1 p 11 1 3,803,453
Hull Apr. 9, 1974 SYNTHETIC FILAMENT HAVING ANTISTATIC PROPERTIES [56] References Cited [75] Inventor: I Donald Robert Hull, Wilmington, UNITED STATES PATENTS I 3,678,675 7/1972 Klein 317/2 C 7 Assigneez E L du p m d Nemours and 3,639,807 2/1972 McCune 1. 317/2 C 3,582,445 6/1971 Okuhashi.... 57/157 AS Company wllmmgton 3,551,279 12/1970 Ando et al. 161/175 [22] Filed: June 19, 1973 [2]] App]. No.: 371,507 Primary Examiner-J. D. Miller Assistant Examiner-Harry E. Moose, .lr. Related U.S. Apphcation Data 63 Continuation-inart of Ser. No. 273,793, Jul 21, 1 1972, abandoned y [57] ABSTRACT Novel synthetic filament having antistatic properties 317/2 57/157 6 comprising a continuous nonconducting sheath of syn- 161/175, 317/2 C, 139/426 R thetic polymer surrounding a conductive polymeric 51] Int. Cl. 05f 3/00 ore containing carbon black, [58] Field of Search I. 317/2 R, 2 C; l6l/l75;
5 /1 7 AS 20 Clalms, 2 Drawmg Flgures 1 SYNTHETIC F ILAMENT HAVING ANTISTATIC PROPERTIES CROSS-REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of my copending application Ser. No. 273,793 filed July 21, 1972 now abandoned.
BACKGROUND OF THE INVENTION 3,639,807; such wire in the face yarn tends to lose effectiveness as it bends and becomes pressed down into the carpet.
SUMMARY OF THE INVENTION This invention provides a novel synthetic filament having antistatic properties comprising a continuous nonconductive sheath of a synthetic, thermoplastic, fiber-forming polymer surrounding an electrically conductive core comprised of electrically conductive carbon black dispersed in a thermoplastic, synthetic polymer, said sheath comprising at least 50 percent of the filament cross-sectional area (i.e., at least 50 percentby volume) and said filament core having an electrical resistance of less than ohms per inch at a direct current potential of 2 kilovolts. For use'at low concentrations in admixture with other filaments, the filaments of the invention preferably have a core resistance of less than 10 ohms/inch at a direct current potential of 2 kilovolts. Preferably, said filaments have a molecularly oriented sheath as the result of attenuation during spinning and/or drawing in the course of their preparation.
Highly conductive core compositions, i.e., those containing more than percent by weight of said carbon black are preferably employed in filaments having a sheath content of at least 80 percent.
The present invention permits antistatic filaments which may be used in light-colored textile goods. For such end-uses the sheath comprises at least 90 percent of the filament and the sheath is delustered to partially conceal the black core such that the filament has a light reflectance value as described herein of greater than 20 percent. A preferred delustered filament contains 2 to 7 percent by weight of titanium dioxide pigment in the sheath.
By appropriate selection of the sheath polymer, antistatic fibers of this invention may be dyed as desired, cobulked under a variety of conditions and employed in end uses where sheath toughness comes into play. The fibers of this invention avoid the dangers of too high electrical conductivity. They also possess a high level of crush-resistance as compared with for antistatic purposes.
Surprisingly, in spite of the fact that a major portion of the filament consists of the nonconducting sheath whichacts as electrical insulation, the filaments of this invention can be effectively employed for antistatic protection independent of relative humidity as a very minor component of a fabric, yarn or other textile material comprised predominantly of other synthetic fibers or filaments needing antistatic protection. Accordingly, the invention also comprehends antistatic yarn and staple fibers comprised of a mixture of nonconducting synthetic filaments and less than 20 percent by weight of the mixture of filaments of the invention described heretofore. Concentrations of filaments of the invention in such mixtures can provide excellent antistatic performance even when present at concentrations of less than 2 percent, but preferably the mixtures contain at least about 0.05 percent by weight of wire used said filaments. In such mixtures the sheath polymer may be mutually dyeable with the nonconducting filaments; more specifically, it may be of the same polymeric class or genus as the polymer of the nonconducting filaments, e.g., nylon sheath fiber with nylon homofiber.
The invention is also directed to a process for the preparation of cospun antistatic filaments comprising the steps of cospinning in a sheath/core filament configuration an electrically conductive core composition comprised of an electrically conductive carbon black dispersed in a thermoplastic synthetic polymer surrounded by a nonconductive sheath composition of a synthetic, thermoplastic, fiber-forming polymer, said composition being spun in such proportion that said sheath composition comprises at least 50 percent by volume of said filaments.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view of a sheathcore filament of the invention.
FIG. 2 is a schematic cross-sectional view of an antistatic yarn comprised of a mixture of filaments of the type depicted in FIG. 1 and nonconducting, synthetic filaments.
In the filament cross-section 5 depicted in FIG. 1, the core material 1 comprises a conductive composition of carbon black 3 dispersed in a polymer matrix 4 surrounded by a sheath material 2 comprising a nonconducting polymer.
In FIG. 2, filaments of cross-section 5 of the type of FIG. 1 are among the substantially greater number of nonconducting synthetic filaments 6.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The nonconductive sheath" of the filaments of the invention is comprised of a synthetic, fiber-forming polymer. The filaments have a surface filament resistance that is greater than 10 ohms per inch as measured by contacting the subject filament surfaces at low direct current voltages, e.g., of volts or less. Homofibers of such sheath materials would also have resistances greater than 10 ohms per inch measured accordingly. The term fiber-forming is used in the conventional sense to denote linear, high molecular weight polymers which can be formed into fibers of sufficient strength and toughness to be useful.
Compared to the high resistance, nonconductive sheath, the core of the filaments will have a low resistance and high electrical conductivity once electrical contact therewith is established either by the use of electrodes which penetrate the sheath and directly contact the core or by the use of surface contacting electrodes and the application of a sufficiently high voltage to electrically break down the sheath and thereby establish electrical contact with the core. With regard to the latter, i.e., the use of surface contacting electrodes, as an applied DC voltage is increased to several hundred and particularly several thousand volts, a point will occur at which a noted or sudden increase in current will begin to flow as described in the test procedure herein. Once conductivity has been established in this way, the current usually continues to flow even when the voltage is reduced to a lower level, provided filament contact with the electrodes of the measuring device is not altered.
The low resistance properties exhibited by the core of these filaments is evidence that the core maintains its electrical continuity throughout the length of the filament being measured. Breaks in the core continuity between the measuring electrodes are evidenced by a much higher electrical resistance approaching that of the sheath. Occasional breaks in core continuity are found not to be significantly detrimental to the antistatic performance of the filaments of this invention. Preferably, however, the'core remains continuous throughout the entire length of the fibers and filaments of the invention whether they be staple or continuous filaments. It is essential that the core remain continuous for a sufficiently long length along the filament to establish an effective antistatic network in combination with other such antistatic filaments. Filaments having the specified degree of core conductivity when tested by the methods described herein are found to provide highly effective antistatic protection. The filamentsheath may consist of any extrudable, synthetic, thermoplastic, fiber-forming polymer or copolymer. This includes the polyolefins, such as the polyethylenes and the polypropylenes, polyacrylics, polyamides and polyesters of fiber-forming molecular weight. Particularly suitable sheath polymers are the condensationpolyamides of diamines and dicarboxylic acids and those of amino acids; the condensation polyesters, particularly those of terephthalic or isophthalic acids and lower glycols such as ethylene glycol, tetramethylene glycol and hexahydro-p-xylene' diol; and the poly(acrylonitriles). Such polymers may be modified as to their dye receptivities as is known in the art, e.g., by copolymerization to incorporate basic or acidic dye sites, to facilitate their blending and mutual dyeing with other dyed or dyeable synthetic fibers.
Tensile and other physical properties of the filaments of the invention are primarily dependent on the sheath polymer. For high strength filaments, polymers of higher molecular weight and those permitting higher draw ratios are used in the sheath. While undrawn filaments of the invention may provide adequate strength for some purposes, the drawn filaments are preferred.
The sheath thickness must be sufficient to provide the desired protection to the core, e.g., strength and heat and abrasion resistance as well as to assist in visu ally hiding the core where this is important. In general, a sheath thickness of at least 3 microns is desired, with greater thicknesses being governed by the filament denier or diameter which can be used. Suitable sheath thicknesses for normal textile deniers are in the range of 8 to 22 microns. In some applications, for example where the filaments of the invention are to be subjected to high temperature processing with other filaments such as in hot fluid jet bulking or other texturing operations, it is essential that the sheath have a sufficiently high melting point to avoid undue softening or melting under such conditions. For such applications,a higher melting sheath polymer such as poly(hexamethylene adipamide) is preferred over poly(e -caproamide).
The filament core consists of a conducting carbon black dispersed in a polymeric, thermoplastic matrix material. The core material is selected with primary consideration for conductivity and processability. Carbon black concentrations in the core of 15 to 50 percent may be employed. It is found that 20 to 35 percent provides the preferred level of high conductivity while retaining a reasonable level of processability. The use of known, specially prepared more highly conducting carbon blacks are helpful in minimizing the amount required.
Due to the tendency of high loadings of carbon black to reinforce or stiffen plastic compositions, for preparation purposes the softer, lower melting (also lower second order transition temperature) polymeric core matrix materials are preferred to stiffer higher melting ones. The core polymer is preferably lower melting than the sheath polymer with a lower second order transition temperature than that of the sheath. It is, not essential that the core composition be capable of being spun into filaments by itself and therefore the core polymer need not be fiber-forming. The core polymer should be thermally stable and extrudable under the conditions required for spinning the sheath polymer. Suitable core matrix polymers include those selected from the polyamides, polyesters, polyacrylics, polyethers, polycaprolactone, and polyolefins (e.g., polypropylene, low and high density polyethylenes). The polymers may be blended with other materials such as oils and waxes to facilitate processing. Copolymers may also be employed such as poly(ethylene/vinyl acetate) copolymers.
The carbon black may be dispersed in the core polymer by known mixing techniques. Care must be exercised to avoid overmixing and consequent loss in conductivity while still achieving a sufficiently uniform dispersion of carbon black in the core polymer to permit extrusion and spinning. Carbon black containing compositions useful for forming the core in spinning of the filaments of the invention preferably will have a specific resistance of less than 200 ohm-centimeters, and more preferably less than 50 ohm-centimeters.
For satisfactory spinning it is important to remove volatile material from polymers into which the carbon black has been added, prior to melt spinningyThis may be done during or after compounding the carbon black with the polymeric matrix material. It can be helpful to vacuum dry such polymers for example for 16 hours under slight vacuum at 68C. Standard precautions to prevent oxidative degradation during spinning such as the exclusion of oxygen with inert gas in polymer lines, etc. are employed.
The cross-sectional area (which relates directly to filament volume) of the conductive core in the composite filament need only be sufficient to impart the desired resistance properties thereto and may be as low as 0.5 percent by volume. The lower limit is governed primarily by the capability of manufacturing sheath/core filaments of sufficiently uniform quality while maintaining adequate core continuity at the low core volume levels.
Spinning of the filaments of the invention can be accomplished by conventional two-polymer sheath/core spinning equipment with appropriate considerations for the differing properties of the two components. They are readily prepared by known spinning techniques and with polymers as taught for example in US. Pat. Nos. 2,936,482. 2,989,798 contains additional teaching of such spinning with polyamides.
Conventional drawing processes for the filaments can be used but care should be exercised to avoid sharp corners which would tend to break or damage the core. In general, hot drawing, i.e., where some auxiliary filament heating is employed during drawing, is preferred. This tends to soften the core material further and aid drawing of the filaments. These antistatic filaments may be plied with conventional synthetic, undrawn filaments and codrawn.
The subject filaments are readily prepared having a tenacity of at least 1.5 grams per denier, which is quite adequate when said filaments are blended as a minor component with other filaments. The subject filaments preferably have an elongation-at-break of at least percent and less than 150 percent. The resulting textile properties are dependent primarily upon the properties of the other filaments of the blend.
For general applications the filaments of this invention have a denier per filament( dpf) of less than 50 and preferably less than 25 dpf.
The filaments may be of round or non-round, eccentric or concentric sheath/core configurations and combinations thereof. The concentric configuration provides maximum protection and hiding of the core. The fineness of the core greatly aids in its concealment, and the filaments with fine cores can be employed in dyed or patterned textile goods with no other concealing factor. Further concealment where needed is realized by the presence of an opacifier such as voids or a white, solid, particulate delusterant such as titanium dioxide pigment in the sheath. Non-round filament configurations, e.g., multilobal, tend to further conceal the core.
Among variables which affect concealment of the core are sheath thickness and dyeability, sheath/core ratio,'concentration of delustrant such as titanium dioxide in the sheath, and also voids formed by separation of the sheath and core which is found in oriented filament having dissimilar sheath and core polymers, such as a polyamide sheath anda polyethylene core.
Without a concealing sheath to hide the blackness, carbon black filled fibers generally have a light reflectance of less than 5 percent. Reflectance levels above about 20 percent, which can be achieved with this invention, provide a very significant improvement in avoiding coloration problems from the subject filaments in lightly dyed goods.
The filamentsof this invention are capable of providing excellent antistatic protection in all types of textile end uses including knitted, tufted, woven and nonwoven textiles. They may contain conventional additives and stabilizers such as dyes and antioxidants. They may be subjected to all types of textile processing including DESCRIPTION OF THE TEST PROCEDURES Filament Core Resistance Filament core resistance is determined from current flow measured at 2 kilovolts on a 2-inch sample length. Suitable apparatus is a 15 KV Biddle Dielectric Tester (James G. Biddle Company, Plymouth Meeting, Pennsylvania). A three filament bundle is clamped straight between pairs of electrodes 2 inches apart and a sufficiently high voltage is applied to achieve current flow (e.g., 1-4 KV). When current flows, the voltage is adjusted to 2 KV and the yarn resistance is calculated from the current flow according to Ohms Law where R E/l. For example, if at 2 KV the current flow is 10 microamps for the 2-inch sample, the resistance for the three filaments is 10 ohm/inch. Resistance per filament is then'3 X 10 ohms/in. To achieve current flow as above, the voltage should be increased gradually to avoid a sudden current surge which may burn out the filaments. Burn-out is readily detected visually by broken or fused or charred filaments) and such samples should be disregarded. The resistance of filaments of lengths less than 2 inches can be measured by appropriately adjusting the distance between the electrodes.
Reflectance Light reflectance, the lightness or whiteness of the specimen as compared to a magnesium oxide standard, is measured using a pnotoelectric reflection meter. A suitable apparatus is the Photoelectric Reflection Meter Model 610 with a green tristimulus filter Catalog No. 6130), Search Unit Model 610-Y and a white enamel working standard calibrated having a -75 percent reflectance (Catalog No. 6162), obtainable from the Photovolt Corp., Madison Avenue, New York, New York 10016. The conductive filament sample to be measured is wound on 2-inch by 3-inch black mirror cards (approximately six layers of filaments) and the reflectance is measured from the cards (average of 10 measurements).
Percent Core in the Filament Percent core by volume is most conveniently determined by comparing the cross-sectional area of the black core to the total filament by measuring under a microscope. This is conveniently done at a magnification of about 400x. For round filaments this can readily be calculated from the ratio of the square of the core diameter to the square of the total filament diameter. The average of 10 determinations is used to compensate for irregularities. For nonround cross-sections, measurements taken on photographs of filament crosssections at a known magnification permit ready calculation.
Where the sheath polymer is sufficiently different in solution properties from the core that it can be removed by differential solvent action, the percent core material can be determined gravimetrically by dissolving the sheath and comparing the weight of the insoluble core to the weight of the original sample. For example, formic acid can be used to dissolve a 66-nylon sheath from a polyethylene core.
Specific Resistivity Test of Core Material The specific resistance of the core material containing carbon black is determined by measuring the DC. resistance across a two-inch length of a film strip of the sample 1 inch wide, and having a thickness of about 0.01 inch. Such films are conveniently prepared by pressing a powder or pelletized sample of the core material between two sheets of aluminum foil in a press, heated above the melting point under a pressure of 20,000 psig. for 1 to 2 minutes. After cooling, the foil is siripp'eariam the saniiilfilm' and 1-inch wide strips about 2.5-3 inches long are cut from the sample. The
. thickness of the film is measured with a micrometer. A
strip is clamped between two copper electrodes spaced two inches apart and the DC. resistance measured with an ohmmeter. Specific resistance of the film in ohmcm. is calculated from the instrument reading in ohms as the product of the measured resistance times the width times the thickness all divided by the sample length, all in centimeter units.
Percent Carbon Black in Core Standard analytical methods can be employed for determining the concentration of carbon black in the filament or core material. A method suitable for use on ethylene plastics containing carbon black is described in or can be derived from the ASTM Method D1603-68. This is a thermogravimetric method suitable for use in the absence of any nonvolatile pigments or filler materials other than carbon black.
EXAMPLE 1 Concentric sheath/core filaments are prepared having a sheath of 45 RV 66-nylon and a polyethylene core containing 20 percent extra-conductive furnace black. The carbon black is an oil furnace black, extraconductive Vulcan XC-72, (Fixed Carbon 98 percent, Volatiles 2 percent, Particle Size 30 millimicrons, Electrical Resistivity lowest) available from the Cabot Corp., 125 High St.,' Boston, Mass. 02110. This black is described in their Technical Bulletins S-8 and 1518/173. The carbon black dispersion is prepared by mixing the carbon black at about 120C. with a low density (0.9T6) poly ethylene resinfrnel t index 23; (Alat hon 2821 by Du Pont), by milling in a dough mixer. The black is added slowly and the mixture cast 10 minutes after completion of addition. This polyethylene resin is selected for its softness. (Other useful resin compositions are a low density (0.919) polyethylene, melt index 1.9 [Alathon 20 by Du Pont] alone and blended 'with to 40 percent of an oil or wax). The molten carbon black mixture is filtered through a 100 X 100 mesh screen and extruded. Pressed films show excellent dispersion and conductivity with a specific resistance of 12.7 ohm-cm. Using this as the core, sheath/core continuous filaments, (three 65 denier monofilaments), are spun at 425 ypm wherein the total I denier is held constant and the core volume decreased by changing pump speeds to produce the items of Table l. The core volume is established from the pumping rate and confirmed by cross-section analysis of the fila ments at 200 X magnification. A 3-hole stainless steel spinneret is used wherein the sheath and core polymers are fed concentrically and individually until emerging at the face of the spinneret. An insert capillary is used to carry the core polymer composition to the spinneret face where it exits surrounded by the sheath polymer The filaments are spun at about 65 'dpf. They are then drawn 3.06X at about 200 ypm ona curved heated plate maintained at 150C. Yarn physical and electrical properties are shown in Table 1.
TABLE 1 Item 1 2 3 4 5 Core Volume 50 40 25 18 12 Yarn (Filament) Denier 21.4 20.6 21.4 21.2 19,9 Tenacity, gpd 1.5 1.9 2.4 2.8 3.4 Elongation, 26.2 36.4 30.3 54.7 57.4 lnitial Modulus, gpd 15.3 17.9 25.1 20.3 25.2 Core Resistance X 10, ohms/inch/ filament 2.5 6.7 4.0 13.3 Breakdown Voltage, KV 1.6 3.4 3.4 4.6 Carpet Static Propensity, KV (as in Ex-' ample 11 2.0 3.0 2.8 3.0 2.6
*As calculated from microamperes measured at 2 kilovolts The test'ca'rpets of Table l are made of a commercial 3700 denier/204 filament 66-ny1on bulked, trilobal, continuous filament carpet yarn in a -inch pile height. One yarn end of the conductive fiber (about 0.56 percent by weight) is plied upon coning with the carpet yarn, and tufted. The visibility of the conductive fila-.
ments decreases noticeably in the carpet with the reduction in core volume.
EXAMPLE 11 Preparation of Sheath Polymer A 317.5 kilogram aqueous solution containing 50 percent by weight of hexamethylene diammonium adipate (66-nylon salt) is charged into a stainless steel vessel to which is added 721 grams of a solution containing 10 percent by weight manganous hypophosphite [Mn( H PO in water; 70 grams of a solution containing 25 percent by weight acetic acid, and 100 m1. of a silicone antifoam 11.2 percent concentration. The charge is concentrated by evaporation to about percent solids by weight and transferred to a stainless steel autoclave equipped with an agitator. The autoclave is purged of air with inert gas and is heated to about 200C. to a pressure of 17 atmospheres. A 14.83 kilogram titanium dioxide (Ti-pure Rutile, Titanium Dioxide R-960, E. I. du Pont' de Nemours & Co., Wilmington, Delaware) slurry prepared as 49 percent by weight in water is charged with agitation into the pressurized autoclave. The heating is continued until the temperature reaches 273C. and the pressure is gradually re- I duced to the atmospheric pressure. The polymerization cycle is continued as in Example I of US. Pat. No. 2,163,636. Upon completion of the polymerization reaction, the molten polymer is extruded in the form of about A inch strands. After quenching with water they are cut into A X 3/ 16 inch chips suitable for remelting in a spinning assembly. The flake has these properties:
Relative viscosity 43.5 (NH 46.0 eq./l0 g.
TiO 5.04%
Mn(H PO 0.048%
Core Polymer Composition (by weight) Polyethylene: 70%
Conductive Carbon of Example I: 30%
Polyethylene. Alathon PE-4318 Low density polyethylene (density 0.916, Melt lndex 23 ASTM-D- 1238) manufactured by E. l. du Pont de Nemours.& Co., for injection molding. It contains 50 ppm antioxidant to improve thermal and aging stability.
Preparation In a 1 gallon capacity double arm dough mixer are charged 1905 grams of polyethylene and 816.5 grams of the carbon black. The composition is mixed for 30 minutes at 140C., extruded, filtered through a 100 X 100 mesh screen and pelletized.
The product shows the following properties:
Specific Resistance: (of a film cast at about 180C.)
2.9 to 4.2 ohm-cm.
% Carbon Black Analysis: 30.2%
% Moisture: 0.04%
If the moisture content is greater than 0.1 percent the pellets should be dried at 70C. and under vacuum for 24 hours before spinning.
Spinning The sheath and core polymers are cospun on a screw melter spinning machine using a spinneret assembly to spin concentric sheath/core filaments bythe technique shown in US Pat. No. 2,936,482.
The sheath polymer is-fed at 19.8 gm./min. (as calculated from pump capacity and speed) and core polymer at 0.7 gm./min. (as calculated from pump capacity and speed) throughputs to provide a concentric sheath- /core composition of 96 percent sheath and 4 percent core by volume. During spinning the sheath and core polymer temperatures in the screw melter are set at:
Sheath Polymer Core Polymer The spinning block temperature is 293C. Both sheath and core polymer supply hoppers are purged with inert gas.
The relative viscosity of sheath polymer as coming from the spinneret (free fall) is about 56, the increased RV resulting from further polymerization of dried 66- nylon in the screw melter. The spinning speed is approximately 890 ypm. The collected spun yarn is gray in color and has these properties:
Finish on yarn: 1.0%
Percent Core, by Volume: 4%
Percent Sheath, by Volume: 96%
Bundle Spun Denier: 60
No. of Filaments/Bundle: 3
Reflectance: 37-40% Drawing The'conductive 60-3 denier spun yarn is drawn on a draw-twisting machine at 2.7X draw ratio, 400 ypm winding speed, and 180C. shoe temperature.
The drawn yarn properties are:
No. of Filaments: 3
Tenacity, gpd: 3.8
Elongation: 35%
Modulus: l3 (gpd at elongation) Core Resistance (Bundle): 4.7 X 10" ohm/inch Reflectance: 34%
Cobulking One end of an approximately 3400 denier, 160 filament nylon 4-void hollow filament yarn of the type shown in Br. Pat. No. 1,292,388 is cobulked with one end of the conductive yarn on one position of the hollow filament spinning machine. The yarns are combined in a hot chest under 10-20 g. tension at the last chest roll wrap before entering the bulking jet. The chest roll is at 195C. and yarn velocity is 1185 ypm. The cobulking is done by passing the yarn through an air jet operated at psig and 240C. as described in Belgium Patent No. 573,230 to produce filaments having random, three-dimensional curvilinear crimp with alternating regions of S and Z filament twist. The yarn is then cooled and passed to windup.
The tensile properties of the cobulked yarn are essentially the same as the unmodified product. Mockdyed level loop carpets k inch pile height, 29.4 ounces/- square yard, 5/32 inch gauge, 7 stiches per inch) made from yarns containing the conductive filaments (test) and from yarns containing no conductive filaments (control) with a commercial nonwoven polypropylene backing (Typar by Du Font) and latexed with a commercial latex give the following static propensities at 20 percent RH and 70F.
Test Control The static test is AATCC Test Method 134-1969 with changes as adopted by the Carpet and Rug lnstitute, September, 1971.
ln greige or mockdyed carpets the 20-3 denier conductive filaments give a very slight blueish cast. Dyed bulked continuous filament carpets containing conductive filaments show no difference in most of the solid color shades and only slight differences in certain solid light colors, e.g., yellow, orange and pink, when compared with the control carpet.
If desired, the filaments of the invention may be used in staple form, e.g., at from 0.5 to 5 percent by weight with nonconductive staple in carpet yarn.
EXAMPLE III This example demonstrates that care must be exercised in drawing filaments of this invention to avoid loss of conductivity.
Filaments are spun of an eccentric sheath/core configuration with a 66-nylon sheath of 44 relative viscosity and containing 0.3 percent TiO and a 6-nylon core (45 relative viscosity 31.8 equiv. NH end groups/ 10 grams) having nominally 20 percent carbon black of the type in Example 1. The filaments are 40 percent core by volume. The 3-filament yarn has a spun denier of about 79. The yarn is cold drawn using a draw-pin. As shown in Table 2, the yarn resistance upon cold drawing is found to increase as a function of the draw ratio. When the yarn is hot drawn without a pin using a curved heated plate at about C., essentially no increase in resistance is encountered. It is speculated that heating of the yarn in a heated draw zone upon drawing permits softening of the core enough to prevent core breakage or disruption of the carbon particle distribution required for conductivity.
TABLE 2 Draw Ratio Core Resistance (ohgns/inch/ '3-filaments 1 (undrawn) 1.5 l 1.5 6.l l0 3.0 5X10 3.0 (hot drawn) 0.7 l0"" *As calculated from the three filaments measured individually.
EXAMPLE IV Sheath Polymer Poly(ethylene terephthalate) flake having a relative viscosity of 23 i 2 measured on 0.8 gm. polymer in ml. of hexafluoroisopropanol at C.
Core Polymer 6-Nylon 22 percent conductive carbon black of Example '1.
Preparation A p're-dispersed slurry of 22.680 kilograms conductive carbon (Cabot XC-72), 86.180 kilograms of cap- I to 7 hours, the pressure is reduced gradually within 1V2 hours from 250 psig to atmospheric pressure (reducing cycle). The polymer is then extruded at 278C. into a continuous ribbon which is quenched with water and cut into Vs inch flake. The flake is washed with water for about 4 hours in a stirred kettle heated at 95C., to
remove monomer. This operation is repeated three times and at the end about 6.3 percent caprolactam is extracted. The polymer is then dried under vacuum (25 inches Hg) until the moisture content is less than 0.3 percent. The flake is remelted, extruded and filtered through a screen filter of increasing mesh (30 to 200) and pelletized, then vacuum dried to less than 0.03 percent moisture content.
The specific resistance of films cast from this polymer varies between 10-60 ohm-cm.
Spinning and Drawing The sheath and core polymers are co-spun and drawn on a coupled spin-draw machine at 1500 ypm windup speed (as calculated from the speed of the windup roll in rpm).
Using a screw melterthe sheath polymer is fed to a spinneret at 29.7 gm./min. (as calculated from denier spun and windup speed) and core polymer at 6.7 gm./min. (as calculated from denier spun and windup speed) throughputs to provide a concentric sheath- /core composition at 81 percentsheath (as calculated from throughputs) and 19 percent core (as. calculated from throughputs) by weight. During spinning the screw melters temperatures are set at:
Sheath Polymer Core Polymer Screw Melter Zone Temperature C. Temperature C. Top 249 206 Middle 281 250 Bottom 289 265 The drawn yarn is black in color and has these properties:
No. of Filaments/Bundle 1 Denier 19.02
Total Finish on Yarn 1.83
Core Resistance 3.3 X 10 ohm/in.
Tenacity, gpd 2.5
Elongation, 39.9 v
Modulus, gpd at 10% Elongation 13.6
EXAMPLE V Sheath Polymer Poly(ethylene terephthalate) flake having an RV of Core Polymer Prepared as in Example II.
Spinning The sheath and core polymers are co-spun as in Example II at 860 ypm. The sheath polymer is fed at 36.3 grams/minute (as calculated from pump speed and capacity) and core polymer 1.38 grams/minute (as calculated from pump speed and capacity). throughputs to provide a concentric sheath/core composition of 96 percent sheath and 4 percent core by volume as determined by measurement of the cross-section under magnification.
During spinning the screw melter temperature for the sheath polymer is set at:
Core Polymer Screw Melter Temperature C.
Zone 1 286 114 (Top) Zone 2 284 184 (Middle) 242 (Bottom) and the spinning block temperature at 292C.
The yarn is spun at 60 denier/ 3 filaments (60-3). Drawing 60-3 Denier sheath/core yarn is drawn at 454 ypm and 3.8X draw ratio and 97C. hot shoe temperature.
The drawn yarn properties are:
Denier 17.2
No. of Filaments 3 Core Resistance, ohm/in./fil. 6.76 X 10 Tenacity, gpd 5.3
Elongation, 21.5
Modulus, M, 43.2 gpd at 10% elongation The sheath/ core test yarn is cotextured with a commercial l50-34-polyester yarn on a Leesoria 570 falsetwist texturing machine. The cotextured yarn (1 end 17.2-3 sheath-core with 1 end -34 polyester) is woven into a Suisse Pique double knit fabric. This fabric is dyedand finished using conventional methods. After 30 washes the fabric is tested on asta tic tester (Presco Scientific Co., electrometer model E525) and compared with the control fabric made from the same polyester yarn alone and processed under identical conditions.
Electrostatic Charge on Fabric (volts) After 0 second After I20 seconds Test Fabric 380 Control Fabric 2750 25 50 Good electrostatic protection for the test item is indicated.
mer as in Example II, and a 6-nylon core polymer con-' taining 28% carbon black prepared as in Example IV. Filaments 96 percent by volume sheath and 4 percent core are drawn 3.0X over a 180C. curved (24 inch) hot plate. The yarn properties are:
Bundle denier 20.2
Tenacity, gpd 3.18
Elongation, 49.1
Modulus, Mi, gpd 24.4
Core Resistance 4.5 X 10 ohm/in.fil.
Reflectance, 32 l Cobulking The conductive yarn is cobulked as in Example II with basic dyeable 1225-68 66-nylon hollow (4 voids) continuous filament carpet yarn (Type 854 Antron II by Du Font) and tufted at A inch pile height, 14 ounces/square yard level loop carpets as outlined in Example II. I
Mockdyed carpet reflectance and static propensity are compared against a control carpet made without conductive yarn.
Carpet Static Carpet Propensity* Reflectance Test 1.5 to 2.4 K Volts 65 Control 8.6 to 9.8 75
* As in Example II Visual rankings of the carpets are in agreement with the measured carpet reflectance.
EXAMPLE VII Filaments (4 ends of 60 spun denier, 3 filaments) having a nylon sheath and a polyethylene core essentially the same as those in Example [I are prepared, for use in staple, having properties as follows:
Finish on Yarn, 0.43
Percent Core, by weight: 3.5%
Percent Sheath, by weight: 96.5%
Percent Carbon in Core: 32.3%
Reflectance: 39%
Bundle (12 fil.) Core Resistance: X ohm/inch The spun yarn is drawn by combining eight ends, on an experimental draw machine at 3.0X draw ratio, 230 ypm. winding speed and 180C. hot shoe temperature.
The drawn yarn properties are:
Bundle denier: 690
No. of Filaments: 96
Tenacity, gpd.: 4.72
Elongation, 18.5
This conductive yarn bundle is cut to approximately 6.5 inch length pieces and blended with commercial Du Pont T-838, 66-nylon carpet staple during carding at 0.6, 2 and 5 percent quantities. The blends are processed under normal staple conditions to make spun yarns of 2.4 cotton count/2 ply, 3.5Z/3.5S twist. The
yarns are heat set in an autoclave and then tufted into 35 oz./square yard, 5/32 inch gauge, A inch pile height saxony style cut pile carpets with a Typar polypropylene backing and latexed with a commercial latex. The carpets are scoured and dyed conventionally with a mixture of 3 commercial yellow, red and blue acid dyes.
The dyed carpets give the following static propensi ties on shuffle test at 20 percent RH and -.70F.
Ratio of Antistat Fiber Carpet Static Propensity,
to Base Fiber Kilovolts 0/100 9.4 0.6/99.4 3.2 2.0/98.0 2.5 5.0/95.0 1.9 as in Example II EXAMPLE VIII having a trilobal cross-section with a modification ratio Items C through I-I have round filament crosssections.
Item C comprises filaments having a 66-nylon sheath containing 5 percent titanium dioxide and a core containing 30 percent carbon black in a polyolefin base comprised of 40 percent polypropylene, 20 percent polyethylene and 10 percent Nordel 1500, a commercial elastomer based on a terpolymer of ethylene, propylene and a non-conjugated diene from E. I. du Pont Nemours and Company.
Item D comprises filaments having a sheath of a commercial polypropylene resin (Shell PWD-15 2) and core composition as in Item A.
Item Eemploys the same sheath as in Item D with a core material consisting of a polycaprolactone commercial resin (Union Carbide PCL-700) containing 30 percent carbon black.
Item F employs a sheath of 66-nylon containing 5 percent titanium dioxide pigment and a core of a commercial polypropylene resin (Hercules 8MSR) containing 25 percent carbon black.
Item G employs a polypropylene sheath as in Item D and a core of a commercial polyethylene ether resin (Du Pont TLF 16815) containing 26 percent carbon black.
Item H is a non-antistatic control item having a nylon sheath as in Item A and the same polyethylene resin core containing no carbon black.
Filament properties for these items are shown in Table 3.
TABLE 3 Percent core (by Yarn Core yarn/ Draw Tenacity, Elong., volume refiec., resist.. Item ratio Denier g./d. percent Mod. mi. X-section) percent ohm/inch/fil.
21.6 2.65 68.4 21.6 10 28.5 3 21.1 3.00 81.8 22.1 35 2.46 110.!) 2.1!] ($2.8 l4.2 3 49 ll 42. 3.6) 120 28.3 7.5 11 ll 104.4 1.72 I50 [4.7 7.4 12.6 0.3 33.3 2.4!! 34.2 17. 7.5 31.3 80 56. 7 3. 2!! lllhl 28. 7 ll 0. 3 19. l 3. 87 34. 5 23. 6 4 10 What is claimed is:
l. A novel synthetic filament having antistatic properties comprising a continuous, nonconductive sheath of a synthetic thermoplastic fiber-forming polymer surrounding an electrically conductive polymeric core comprised of electrically conductive carbon black dispersed in a thermoplastic synthetic polymer, said sheath comprising at least 50 percent of the filament cross-sectional area and said filament core having an electrical resistance of less than 10 ohms per inch at a direct current potential of two kilovolts.
2. The filament of claim 1 wherein the sheath constitutes at least 80 percent of the filament cross-sectional area and the conductive core contains more than percent by weight of carbon black.
3. The filament of claim 1 having a tenacity of at least 1.5 grams per denier.
4. The filament of claim 1 wherein the sheath constitutes at least 90 percent of the filament cross-sectional area.
5. The filament of claim 4 wherein the sheath is at least 3 microns in thickness.
6. The filament of claim 4 wherein the sheath is delustered such that the filament has a light reflectance value of greater than 20 percent.
- 7. The filament of claim 4 wherein the sheath contains from 2 to 7 percent by weight of titanium dioxide as a delusterant.
8. The filament of claim 1 wherein the sheath is 6-6 nylon and the synthetic polymer of the core is 6-nylon.
9. The filament of claim 1 wherein the sheath is a polyamide and the synthetic polymer of the core is polyethylene. v g
10. The filament of claim 1 wherein the sheath is a polyester and the synthetic polymer of the core is polyethylene.
11. The filament of claim 1 wherein the core is lower melting than the sheath.
12. The filament of claim 1 having a denier of less than 50.
13. The filament of claim 1 wherein the filament core has an electrical resistance of less than 10 ohms per inch at a direct current potential of two kilovolts.
14. A continuous filament yarn comprising a mixture of nonconducting synthetic filaments and less than 20 percent by weight of filaments of claim 1.
15. A continuous filament yarn comprising a cobulked mixture of nonconducting synthetic filaments and less than 20 percent by weight of filaments of claim 1.
. 16. A mixture of nonconducting polyamide filaments and less than 20 percent by weight of filaments of claim 1 having a polyamide sheath.
17. A mixture of staple fibers comprising nonconducting synthetic filaments and less than 20 percent by weight of filaments of claim 1. v
18. A carpet wherein the face yarn contains a filament of claim 1.
19. A novel synthetic filament having antistatic properties comprising a continuous nonconductive polyamide sheath surrounding an electrically conductive core electrical resistance of less than 10 ohms/inch at a direct current potential of two kilovolts.
20. A continuous filament yarn comprising a co- I bulked mixture of nonconducting synthetic filaments and less than 20 percent by weight of filaments of claim

Claims (19)

  1. 2. The filament of claim 1 wherein the sheath constitutes at least 80 percent of the filament cross-sectional area and the conductive core contains more than 20 percent by weight of carbon black.
  2. 3. The filament of claim 1 having a tenacity of at least 1.5 grams per denier.
  3. 4. The filament of claim 1 wherein the sheath constitutes at least 90 percent of the filament cross-sectional area.
  4. 5. The filament of claim 4 wherein the sheath is at least 3 microns in thickness.
  5. 6. The filament of claim 4 wherein the sheath is delustered such that the filament has a light reflectance value of greater than 20 percent.
  6. 7. The filament of claim 4 wherein the sheath contains from 2 to 7 percent by weight of titanium dioxide as a delusterant.
  7. 8. The filament of claim 1 wherein the sheath is 6-6 nylon and the synthetic polymer of the core is 6-nylon.
  8. 9. The filament of claim 1 wherein the sheath is a polyamide and the synthetic polymer of the core is polyethylene.
  9. 10. The filament of claim 1 wherein the sheath is a polyester and the synthetic polymer of the core is polyethylene.
  10. 11. The filament of claim 1 wherein the core is lower melting than the sheath.
  11. 12. The filament of claim 1 having a denier of less than 50.
  12. 13. The filament of claim 1 wherein the filament core has an electrical resistance of less than 109 ohms per inch at a direct current potential of two kilovolts.
  13. 14. A continuous filament yarn comprising a mixture of nonconducting synthetic filaments and less than 20 percent by weight of filaments of claim 1.
  14. 15. A continuous filament yarn comprising a cobulked mixture of nonconducting synthetic filaments and less than 20 percent by weight of filaments of claim 1.
  15. 16. A mixture of nonconducting polyamide filaments and less than 20 percent by weight of filaments of claim 1 having a polyamide sheath.
  16. 17. A mixture of staple fibers comprising non-conducting synthetic filaments and less than 20 percent by weight of filaments of claim 1.
  17. 18. A carpet wherein the face yarn contains a filament of claim
  18. 19. A novel synthetic filament having antistatic properties comprising a continuous nonconductive polyamide sheath surrounding an electrically conductive core comprised of electrically conductive carbon black dispersed in polyethylene, said sheath comprising at least 90 percent of the filament cross-sectional area and containing from 2 to 7 percent by weight of titanium dioxide as a delusterant and said filament core having an electrical resistance of less than 109 ohms/inch at a direct current potential of two kilovolts.
  19. 20. A continuous filament yarn comprising a cobulked mixture of nonconducting synthetic filaments and less than 20 percent by weight of filaments of claim 19, filaments of said yarn having random, three-dimensional curvilinear crimp with alternating regions of S and Z filament twist.
US00371507A 1972-07-21 1973-06-19 Synthetic filament having antistatic properties Expired - Lifetime US3803453A (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
US00371507A US3803453A (en) 1972-07-21 1973-06-19 Synthetic filament having antistatic properties
IE1128/73A IE38213B1 (en) 1972-07-21 1973-07-05 Antistatic filament
CA176,772A CA1019127A (en) 1972-07-21 1973-07-18 Antistatic synthetic filament with electrically conductive core
AU58209/73A AU477185B2 (en) 1972-07-21 1973-07-18 Synthetic filament having antistatic properties
SE7310158A SE394697B (en) 1972-07-21 1973-07-20 SYNTHETIC, ANTISTATIC THREAD AND PROCEDURE FOR MANUFACTURE
NL7310184.A NL159731C (en) 1972-07-21 1973-07-20 METHOD FOR MANUFACTURING A COAT-CORE ELEMENTARY WIRE WITH ANTISTATIC PROPERTIES.
FI732298A FI52476C (en) 1972-07-21 1973-07-20 Synthetic antistatic thread.
DE2337103A DE2337103C3 (en) 1972-07-21 1973-07-20 Antistatic synthetic two-component thread, process for its production and mixed continuous filament yarn or staple fiber mixture
DK405073AA DK141205B (en) 1972-07-21 1973-07-20 Synthetic antistatic core / sheath filament or staple fiber.
IT26874/73A IT998268B (en) 1972-07-21 1973-07-20 ANTISTATIC FILAMENTS
AR24918673A AR202536A1 (en) 1972-07-21 1973-07-20 SYNTHETIC ANTISTATIC FILAMENT AND PROCEDURE TO PRODUCE IT
FR7326818A FR2193888B1 (en) 1972-07-21 1973-07-20
BE133699A BE802604A (en) 1972-07-21 1973-07-20 NEW SYNTHETIC FILAMENT WITH ANTISTATIC PROPERTIES
NO2949/73A NO131732C (en) 1972-07-21 1973-07-20
GB3464373A GB1393234A (en) 1972-07-21 1973-07-20 Antistatic filament
LU68056A LU68056A1 (en) 1972-07-21 1973-07-20
JP52015079A JPS5945769B2 (en) 1972-07-21 1977-02-16 Yarn containing antistatic synthetic filaments or staple fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27379372A 1972-07-21 1972-07-21
US00371507A US3803453A (en) 1972-07-21 1973-06-19 Synthetic filament having antistatic properties

Publications (1)

Publication Number Publication Date
US3803453A true US3803453A (en) 1974-04-09

Family

ID=26956436

Family Applications (1)

Application Number Title Priority Date Filing Date
US00371507A Expired - Lifetime US3803453A (en) 1972-07-21 1973-06-19 Synthetic filament having antistatic properties

Country Status (16)

Country Link
US (1) US3803453A (en)
JP (1) JPS5945769B2 (en)
AU (1) AU477185B2 (en)
BE (1) BE802604A (en)
CA (1) CA1019127A (en)
DE (1) DE2337103C3 (en)
DK (1) DK141205B (en)
FI (1) FI52476C (en)
FR (1) FR2193888B1 (en)
GB (1) GB1393234A (en)
IE (1) IE38213B1 (en)
IT (1) IT998268B (en)
LU (1) LU68056A1 (en)
NL (1) NL159731C (en)
NO (1) NO131732C (en)
SE (1) SE394697B (en)

Cited By (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969559A (en) * 1975-05-27 1976-07-13 Monsanto Company Man-made textile antistatic strand
DE2611830A1 (en) * 1975-03-20 1976-09-30 Du Pont MIXTURE AND MIXED YARN MADE OF CRIMPED POLYAMIDE STAPLE FIBER AND METHOD OF MANUFACTURING THE SAME
DE2707275A1 (en) * 1976-02-24 1977-08-25 Toray Industries ACRYLIC FIBER OR FIBER WITH REDUCED STATIC ELECTRICITY
DE2718343A1 (en) * 1976-04-29 1977-11-17 Dow Badische Co INTEGRAL, ELECTRICALLY CONDUCTIVE TEXTILE FILAMENT
US4115620A (en) * 1977-01-19 1978-09-19 Hercules Incorporated Conjugate filaments
US4129677A (en) * 1977-05-31 1978-12-12 Monsanto Company Melt spun side-by-side biconstituent conductive fiber
FR2400071A1 (en) * 1977-08-08 1979-03-09 Kanebo Ltd CONDUCTIVE COMPOSITE FILAMENTS
US4145473A (en) * 1975-02-05 1979-03-20 E. I. Du Pont De Nemours And Company Antistatic filament having a polymeric sheath and a conductive polymeric core
US4205359A (en) * 1976-03-08 1980-05-27 Onoda Cement Co., Ltd. Safety type electric field curtain apparatus
US4207376A (en) * 1978-06-15 1980-06-10 Toray Industries, Inc. Antistatic filaments having an internal layer comprising carbon particles and process for preparation thereof
US4234655A (en) * 1976-10-20 1980-11-18 Chisso Corporation Heat-adhesive composite fibers
US4258097A (en) * 1979-04-26 1981-03-24 Brunswick Corporation Non-woven low modulus fiber fabrics
US4289627A (en) * 1979-01-15 1981-09-15 Hoechst Aktiengesellschaft Liquid filtration process
US4303733A (en) * 1979-01-24 1981-12-01 Akzona Incorporated Filament with conductive layers
EP0056667A1 (en) * 1981-01-15 1982-07-28 Akzo N.V. Synthetic technical multifilament yarn and process for the manufacture thereof
EP0072550A1 (en) * 1981-08-14 1983-02-23 Toray Industries, Inc. A neutron-shielding composite fiber and a method of manufacturing same
US4420534A (en) * 1980-06-06 1983-12-13 Kanebo Synthetic Fibers Ltd. Conductive composite filaments and methods for producing said composite filaments
US4432924A (en) * 1981-04-10 1984-02-21 Lion Corporation Process for producing an electrically conductive monofilament
US4756969A (en) * 1984-11-28 1988-07-12 Toray Industries, Inc. Highly electrically conductive filament and a process for preparation thereof
US4900495A (en) * 1988-04-08 1990-02-13 E. I. Du Pont De Nemours & Co. Process for producing anti-static yarns
EP0356100A2 (en) * 1988-08-17 1990-02-28 Herschel Sternlieb White blackout fabric
EP0399397A2 (en) * 1989-05-22 1990-11-28 E.I. Du Pont De Nemours And Company Sheath-core spinning of multilobal conductive core filaments
US4997712A (en) * 1988-04-08 1991-03-05 E. I. Du Pont De Nemours And Company Conductive filaments containing polystyrene and anti-static yarns and carpets made therewith
US5001813A (en) * 1989-06-05 1991-03-26 E. I. Du Pont De Nemours And Company Staple fibers and process for making them
US5026603A (en) * 1989-06-05 1991-06-25 E. I. Du Pont De Nemours And Company Staple fibers and process for making them
US5116681A (en) * 1988-04-08 1992-05-26 E. I. Du Pont De Nemours And Company Anti-static yarns containing polystyrene
US5126201A (en) * 1988-12-28 1992-06-30 Kao Corporation Absorbent article
US5147704A (en) * 1988-04-08 1992-09-15 E. I. Du Pont De Nemours And Company Carpets made with anti-static yarns containing polystyrene
US5202185A (en) * 1989-05-22 1993-04-13 E. I. Du Pont De Nemours And Company Sheath-core spinning of multilobal conductive core filaments
US5213865A (en) * 1988-07-02 1993-05-25 Daiwa Co., Ltd. Antistatic mat
US5213892A (en) * 1989-07-13 1993-05-25 Hoechst Aktiengesellschaft Antistatic core-sheath filament
US5260013A (en) * 1989-05-22 1993-11-09 E. I. Du Pont De Nemours And Company Sheath-core spinning of multilobal conductive core filaments
US5318845A (en) * 1988-05-27 1994-06-07 Kuraray Co., Ltd. Conductive composite filament and process for producing the same
US5549957A (en) * 1992-07-08 1996-08-27 Negola; Edward J. Bulked continuous filament carpet yarn
US5632944A (en) * 1995-11-20 1997-05-27 Basf Corporation Process of making mutlicomponent fibers
US5641570A (en) * 1995-11-20 1997-06-24 Basf Corporation Multicomponent yarn via liquid injection
US5645782A (en) * 1994-06-30 1997-07-08 E. I. Du Pont De Nemours And Company Process for making poly(trimethylene terephthalate) bulked continuous filaments
US5660804A (en) * 1995-03-02 1997-08-26 Toray Industries, Inc. Highly oriented undrawn polyester fibers and process for producing the same
US5698148A (en) * 1996-07-26 1997-12-16 Basf Corporation Process for making electrically conductive fibers
US5780156A (en) * 1996-10-03 1998-07-14 Basf Corporation Biocomponet fibers having distinct crystaline and amorphous polymer domains and method making same
US5820805A (en) * 1996-12-06 1998-10-13 Basf Corporation Process for making multicomponent antistatic fibers
US5851668A (en) * 1992-11-24 1998-12-22 Hoechst Celanese Corp Cut-resistant fiber containing a hard filler
US5876849A (en) * 1997-07-02 1999-03-02 Itex, Inc. Cotton/nylon fiber blends suitable for durable light shade fabrics containing carbon doped antistatic fibers
EP0899364A2 (en) * 1997-08-25 1999-03-03 Basf Corporation Colored bicomponent fibers
US5885705A (en) * 1997-01-10 1999-03-23 Basf Corporation Bicomponent fibers having contaminant-containing core domain and methods of making the same
US5916506A (en) * 1996-09-30 1999-06-29 Hoechst Celanese Corp Electrically conductive heterofil
US6047775A (en) * 1996-06-27 2000-04-11 Bucyrus International, Inc. Blast hole drill pipe gripping mechanism
US6057032A (en) * 1997-10-10 2000-05-02 Green; James R. Yarns suitable for durable light shade cotton/nylon clothing fabrics containing carbon doped antistatic fibers
US6136436A (en) * 1996-08-23 2000-10-24 Nyltec Inc. Soft silky large denier bicomponent synthetic filament
US6159598A (en) * 1998-12-14 2000-12-12 The Pilot Ink Co., Ltd. Core/sheath type temperature-sensitive shape-transformable composite filaments
US6159895A (en) * 1998-07-07 2000-12-12 E. I. Du Pont De Nemours And Company Aramid polymer catalyst supports
US6162538A (en) * 1992-11-24 2000-12-19 Clemson University Research Foundation Filled cut-resistant fibers
US6287689B1 (en) 1999-12-28 2001-09-11 Solutia Inc. Low surface energy fibers
US20020009571A1 (en) * 2000-07-24 2002-01-24 Abrams Louis Brown Flocked transfer and article of manufacture including the application of the transfer by thermoplastic polymer film
US20020136859A1 (en) * 1999-06-03 2002-09-26 Solutia Inc. Antistatic Yarn, Fabric, Carpet and Fiber Blend Formed From Conductive or Quasi-Conductive Staple Fiber
US6528139B2 (en) 1996-10-03 2003-03-04 Basf Corporation Process for producing yarn having reduced heatset shrinkage
US20030119402A1 (en) * 2001-12-20 2003-06-26 Kimberly-Clark Worldwide, Inc. Absorbent article with stabilized absorbent structure
US20030119394A1 (en) * 2001-12-21 2003-06-26 Sridhar Ranganathan Nonwoven web with coated superabsorbent
US20030119401A1 (en) * 2001-12-20 2003-06-26 Kimberly-Clark Worldwide, Inc. Absorbent article with stabilized absorbent structure having non-uniform lateral compression stiffness
US20030116888A1 (en) * 2001-12-20 2003-06-26 Rymer Timothy James Method and apparatus for making on-line stabilized absorbent materials
US20030119405A1 (en) * 2001-12-20 2003-06-26 Kimberly-Clark Worldwide, Inc. Absorbent article with stabilized absorbent structure
US20030129392A1 (en) * 2001-12-20 2003-07-10 Abuto Francis Paul Targeted bonding fibers for stabilized absorbent structures
US20030186019A1 (en) * 2000-07-24 2003-10-02 High Voltage Graphics, Inc. Flocked transfer and article of manufacture including the application of the transfer by thermoplastic polymer film
US20030186608A1 (en) * 2002-03-28 2003-10-02 Arthur Goldberg Fabric with pain-relieving characteristics and structures fabricated therefrom, and method
US6630087B1 (en) 2001-11-16 2003-10-07 Solutia Inc. Process of making low surface energy fibers
US6637085B2 (en) 2001-10-26 2003-10-28 E. I. Du Pont De Nemours And Company Process for recycling articles containing high-performance fiber
US20030207072A1 (en) * 2000-07-24 2003-11-06 Abrams Louis Brown Co-molded direct flock and flock transfer and methods of making same
US6666235B2 (en) 2001-10-26 2003-12-23 E. I. Du Pont De Nemours And Company Lightweight denim fabric containing high strength fibers and clothing formed therefrom
US20040001978A1 (en) * 2002-07-01 2004-01-01 Yves Bader Molten metal resistant fabrics
US6675838B2 (en) * 2000-10-25 2004-01-13 Ipg Technologies, Inc. Anti-static woven fabric and flexible bulk container
US20040053001A1 (en) * 2002-07-03 2004-03-18 Abrams Louis Brown Process for printing and molding a flocked article
US20040081791A1 (en) * 2002-07-03 2004-04-29 Abrams Louis Brown Flocked articles and methods of making same
US20040078903A1 (en) * 2002-10-24 2004-04-29 Teijin Monofilament Germany Gmbh Conductive soil-repellent core-sheath fiber of high chemical resistance, its preparation and use
US20040204698A1 (en) * 2001-12-20 2004-10-14 Kimberly-Clark Worldwide, Inc. Absorbent article with absorbent structure predisposed toward a bent configuration
US20050026526A1 (en) * 2003-07-30 2005-02-03 Verdegan Barry M. High performance filter media with internal nanofiber structure and manufacturing methodology
US20050032449A1 (en) * 2003-08-06 2005-02-10 Lovasic Susan L. Lightweight protective apparel
US20050103396A1 (en) * 2003-11-18 2005-05-19 Larry Schwartz Coreless synthetic yarns and woven articles therefrom
US20050106974A1 (en) * 2003-11-18 2005-05-19 Larry Schwartz Coreless synthetic yarns and woven articles therefrom
US20050154118A1 (en) * 2004-01-09 2005-07-14 Hayes Richard A. Polyester composition comprising carbon black
US20050266204A1 (en) * 2004-01-16 2005-12-01 Abrams Louis B Process for printing and molding a flocked article
US20050268407A1 (en) * 2004-05-26 2005-12-08 Abrams Louis B Process for high and medium energy dye printing a flocked article
US20070003761A1 (en) * 2003-05-19 2007-01-04 Toray Industries, Inc. Fibers excellent in magnetic field responsiveness and conductivity and product consisting of it
US20070007495A1 (en) * 2004-06-18 2007-01-11 Hayes Richard A Electrically conductive polyetherester composition comprising carbon black and product made therefrom
US20070022548A1 (en) * 2005-08-01 2007-02-01 High Voltage Graphics, Inc. Process for heat setting polyester fibers for sublimation printing
US20070102093A1 (en) * 2005-09-20 2007-05-10 High Voltage Graphics, Inc. Flocked elastomeric articles
US20070113956A1 (en) * 2003-11-18 2007-05-24 Casual Living Worldwide, Inc. D/B/A Bji, Inc. Woven articles from synthetic yarns
WO2007105494A1 (en) * 2006-03-10 2007-09-20 Kuraray Co., Ltd. Conductive composite fiber and method for producing same
US20070289688A1 (en) * 2000-07-24 2007-12-20 High Voltage Graphics, Inc. Processes for precutting laminated flocked articles
US20080150186A1 (en) * 2000-07-24 2008-06-26 High Voltage Graphics, Inc. Co-molded direct flock and flock transfer and methods of making same
US7410682B2 (en) 2002-07-03 2008-08-12 High Voltage Graphics, Inc. Flocked stretchable design or transfer
US7465485B2 (en) 2003-12-23 2008-12-16 High Voltage Graphics, Inc. Process for dimensionalizing flocked articles or wear, wash and abrasion resistant flocked articles
US20090053951A1 (en) * 2007-08-22 2009-02-26 Reiyao Zhu Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone and textile fibers and fabrics and garments made therefrom and methods for making same
US20090049816A1 (en) * 2007-08-22 2009-02-26 Anil Kohli Filter felts and bag filters comprising blends of fibers derived from diamino diphenyl sulfone and heat resistant fibers
US20090050860A1 (en) * 2007-08-22 2009-02-26 Vlodek Gabara Fibers comprising copolymers containing structures derived from a plurality of amine monomers including 4,4" diamino diphenyl sulfone and methods for making same
US20090053954A1 (en) * 2007-08-22 2009-02-26 Reiyao Zhu Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone and high modulus fibers and fabrics and garments made therefrom and methods for making same
US20090053952A1 (en) * 2007-08-22 2009-02-26 Reiyao Zhu Spun staple yarns made from blends of rigid-rod fibers and fibers derived from diamino diphenyl sulfone and fabrics and garments made therefrom and methods for making same
US20090053956A1 (en) * 2007-08-22 2009-02-26 Reiyao Zhu Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone, low thermal shrinkage fibers, flame resistant fibers, and antitstatic fibers and fabrics and garments made therefrom and methods for making same
US20090053957A1 (en) * 2007-08-22 2009-02-26 Reiyao Zhu Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone and modacrylic fibers and fabrics and garments made therefrom and methods for making same
US20090239025A1 (en) * 2008-03-04 2009-09-24 High Voltage Graphics, Inc. Flocked articles having a woven graphic design insert and methods of making the same
US7618707B2 (en) 2007-08-22 2009-11-17 E.I. Du Pont De Nemours And Company Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone and modacrylic fibers and fabrics and garments made therefrom and methods for making same
US20100009186A1 (en) * 2008-07-11 2010-01-14 Reiyao Zhu Crystallized meta-aramid blends for improved flash fire and arc protection
US20100143669A1 (en) * 2008-12-04 2010-06-10 High Voltage Graphics, Inc. Sublimation dye printed textile design having metallic appearance and article of manufacture thereof
US20100209654A1 (en) * 2009-02-16 2010-08-19 High Voltage Graphics, Inc. Flocked stretchable design or transfer including thermoplastic film and method for making the same
US20100233410A1 (en) * 2005-12-07 2010-09-16 High Voltage Graphics, Inc. Wet-on-wet method for forming flocked adhesive article
US7799164B2 (en) 2005-07-28 2010-09-21 High Voltage Graphics, Inc. Flocked articles having noncompatible insert and porous film
US20100299817A1 (en) * 2009-06-02 2010-12-02 E.I. Du Pont De Nemours And Company Limited-antimony-content and antimony-free modacrylic / aramid blends for improved flash fire and arc protection
US20100299816A1 (en) * 2009-06-02 2010-12-02 E.I. Du Pont De Nemours And Company Crystallized meta-aramid blends for improved flash fire and superior arc protection
WO2010136729A1 (en) 2009-05-27 2010-12-02 Arkema France Multilayer conductive fiber and method for producing the same by coextrusion
US8007889B2 (en) 2005-04-28 2011-08-30 High Voltage Graphics, Inc. Flocked multi-colored adhesive article with bright lustered flock and methods for making the same
WO2011126999A1 (en) 2010-04-08 2011-10-13 E. I. Du Pont De Nemours And Company Crystallized meta-aramid blends for flash fire and arc protection having improved comfort
US20120100386A1 (en) * 2010-10-20 2012-04-26 Toyota Boshoku Kabushiki Kaisha Heating yarn and woven or knitted fabric using this heating yarn
WO2012057992A2 (en) 2010-10-28 2012-05-03 E. I. Du Pont De Nemours And Company Arc resistant garment containing a multilayer fabric laminate and processes for making same
US20120237766A1 (en) * 2011-03-16 2012-09-20 Kb Seiren, Ltd. Conductive conjugate fiber
WO2013032562A1 (en) 2011-09-02 2013-03-07 E. I. Du Pont De Nemours And Company High moisture regain yarn, fabrics, and garments having superior arc protection
WO2013032563A1 (en) 2011-09-02 2013-03-07 E. I. Du Pont De Nemours And Company Article of thermal protective clothing
US8475905B2 (en) 2007-02-14 2013-07-02 High Voltage Graphics, Inc Sublimation dye printed textile
WO2014018697A1 (en) 2012-07-27 2014-01-30 E. I. Du Pont De Nemours And Company Fiber blends, yarns, fabrics, and garments for arc and flame protection
US8973164B2 (en) 2010-04-30 2015-03-10 Drifire, Llc Fiber blends for garments with high thermal, abrasion resistance, and moisture management properties
US9034777B2 (en) 2010-07-29 2015-05-19 Drifire, Llc Fire resistant woven fabrics and garments
US9193214B2 (en) 2012-10-12 2015-11-24 High Voltage Graphics, Inc. Flexible heat sealable decorative articles and method for making the same
US20160122912A1 (en) * 2013-06-05 2016-05-05 Toray Industries, Inc. Polyamide woven fabric and down product using same
US20160244649A1 (en) * 2013-03-12 2016-08-25 Dowco Llc Fiber blends
US9598797B1 (en) 2016-09-01 2017-03-21 E I Du Pont De Nemours And Company Carbon-containing arc-resistant aramid fabrics from dissimilar yarns
US9745674B2 (en) 2012-07-27 2017-08-29 Drifire, Llc Fiber blends for wash durable thermal and comfort properties
CN107177892A (en) * 2017-04-26 2017-09-19 西安交通大学 A kind of core shell structure fiber based on carbon nanomaterial and preparation method thereof
US9797070B1 (en) 2016-09-01 2017-10-24 E I Du Pont De Nemours And Company Intimate blends of carbon-containing and dyeable fibers
US20180057964A1 (en) * 2016-09-01 2018-03-01 E I Du Pont De Nemours And Company Carbon-containing aramid bicomponent filament yarns
WO2018038919A1 (en) 2016-08-25 2018-03-01 Invista North America S.A.R.L. Sustained release fibers
WO2018044527A1 (en) 2016-09-01 2018-03-08 E. I. Du Pont De Nemours And Company Carbon-containing fiber blends including aramid and modacrylic fiber
WO2018044530A1 (en) 2016-09-01 2018-03-08 E. I. Du Pont De Nemours And Company Lightweight fabrics containing carbon-containing aramid fiber blend including modacrylic fiber
WO2018044532A1 (en) 2016-09-01 2018-03-08 E. I. Du Pont De Nemours And Company Carbon-containing modacrylic & aramid bicomponent filament yarns
US10030326B2 (en) 2014-07-15 2018-07-24 Drifire, Llc Lightweight, dual hazard fabrics
US20180228225A1 (en) * 2015-10-20 2018-08-16 Mitsubishi Chemical Corporation Garment having antistatic capability
US10323361B1 (en) 2011-06-12 2019-06-18 Dale Karmie Synthetic turf system made with antistatic yarns and method of making
CN109952395A (en) * 2016-11-15 2019-06-28 东丽株式会社 Gloss fiber
US10760186B2 (en) 2017-03-29 2020-09-01 Welspun Flooring Limited Manufacture of bi-component continuous filaments and articles made therefrom
CN111713771A (en) * 2020-05-20 2020-09-29 国网吉林省电力有限公司电力科学研究院 Anti-static protective clothing
CN111719192A (en) * 2020-07-02 2020-09-29 北京中丽制机工程技术有限公司 Production method and system of nylon 66 antistatic fiber
US11078608B2 (en) * 2016-11-01 2021-08-03 Teijin Limited Fabric, method for manufacturing same, and fiber product
US20220010467A1 (en) * 2018-12-17 2022-01-13 Teijin Limited Cloth and protective product
US20220112630A1 (en) * 2019-06-27 2022-04-14 Kuraray Co., Ltd. Electroconductive composite fibers and fiber structure using same
US11473224B1 (en) 2019-04-23 2022-10-18 Denim North America Fire resistant fabric and process to produce same
US20230018241A1 (en) * 2019-09-04 2023-01-19 Milliken & Company Flame-Resistant Fabric
WO2023147257A1 (en) 2022-01-27 2023-08-03 Dupont Safety & Construction, Inc. Flame-resistant garments and fabrics with yarns comprising a polymer blend of meta-aramid and polyvinylpyrrolidone
EP4335953A1 (en) 2022-09-09 2024-03-13 Teufelberger Fiber Rope GmbH Antistatic core/sheath rope

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185137A (en) * 1976-01-12 1980-01-22 Fiber Industries, Inc. Conductive sheath/core heterofilament
DE2730643A1 (en) * 1977-07-07 1979-01-25 Bayer Ag FIBER AND FAED MIXTURES CONTAINING SOOT MODIFIED, HIGH-SHRINKAGE POLY (MOD) ACRYLIC BIFILAR FIBERS OR FIBERS
DE2850713C2 (en) * 1978-11-23 1986-10-09 Akzo Gmbh, 5600 Wuppertal Antistatic thread structure
DE2908376C2 (en) * 1979-03-03 1985-09-26 Akzo Gmbh, 5600 Wuppertal Process for making an antistatic carpet fiber
CH639700A5 (en) * 1979-10-04 1983-11-30 Schweizerische Viscose Antistatic two-component yarn and manufacture thereof
JPS5721517A (en) * 1980-07-16 1982-02-04 Teijin Ltd Electrically conductive fiber
JPS5725415A (en) * 1980-07-18 1982-02-10 Teijin Ltd Electrically conductive fiber
JPS5725416A (en) * 1980-07-18 1982-02-10 Teijin Ltd Electrically conductive fiber
JPS57183426A (en) * 1981-05-08 1982-11-11 Kanebo Gosen Kk Conductive blended fiber yarn
AR231552A1 (en) * 1982-10-04 1984-12-28 Du Pont AN ANTI-STATIC COILED WIRE
DE3469766D1 (en) * 1984-12-06 1988-04-14 Badische Corp Supported antistatic yarn, products incorporating same, and method for its production
US4743505A (en) * 1985-08-27 1988-05-10 Teijin Limited Electroconductive composite fiber and process for preparation thereof
JPS62223373A (en) * 1986-03-18 1987-10-01 東洋紡績株式会社 Conductive fiber and its production
DE8915193U1 (en) * 1989-12-27 1991-04-25 Bwf Offermann, Zeiler, Schmid & Co Kg, 8875 Offingen, De
WO2023127174A1 (en) * 2021-12-29 2023-07-06 Kbセーレン株式会社 Electroconductive polyamide composite fibers and fiber structure comprising same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2302003A (en) * 1940-08-02 1942-11-17 Us Rubber Co Static discharging floor covering
US2849414A (en) * 1954-09-21 1958-08-26 Polymer Corp Nylon-carbon black composition and article
GB860443A (en) * 1956-08-09 1961-02-08 American Viscose Corp Conjugated artificial filaments
US3324072A (en) * 1963-08-12 1967-06-06 Monsanto Co Nylon filled with carbon black
GB1229841A (en) * 1967-03-15 1971-04-28
NO126383B (en) * 1967-11-18 1973-01-29 Teijin Ltd
US3639807A (en) * 1970-06-10 1972-02-01 Hudson Wire Co Low-static carpet
GB1391262A (en) * 1971-06-22 1975-04-16 Ici Ltd Conductive bicomponent fibres

Cited By (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145473A (en) * 1975-02-05 1979-03-20 E. I. Du Pont De Nemours And Company Antistatic filament having a polymeric sheath and a conductive polymeric core
DE2611830A1 (en) * 1975-03-20 1976-09-30 Du Pont MIXTURE AND MIXED YARN MADE OF CRIMPED POLYAMIDE STAPLE FIBER AND METHOD OF MANUFACTURING THE SAME
US3969559A (en) * 1975-05-27 1976-07-13 Monsanto Company Man-made textile antistatic strand
DE2707275A1 (en) * 1976-02-24 1977-08-25 Toray Industries ACRYLIC FIBER OR FIBER WITH REDUCED STATIC ELECTRICITY
US4107129A (en) * 1976-02-24 1978-08-15 Toray Industries, Inc. Antistatic acrylic fiber
US4205359A (en) * 1976-03-08 1980-05-27 Onoda Cement Co., Ltd. Safety type electric field curtain apparatus
DE2718343A1 (en) * 1976-04-29 1977-11-17 Dow Badische Co INTEGRAL, ELECTRICALLY CONDUCTIVE TEXTILE FILAMENT
FR2361485A1 (en) * 1976-04-29 1978-03-10 Dow Badische Co INTEGRAL TEXTILE FILAMENT CONDUCTING ELECTRICITY
US4234655A (en) * 1976-10-20 1980-11-18 Chisso Corporation Heat-adhesive composite fibers
US4323626A (en) * 1976-10-20 1982-04-06 Chisso Corporation Heat-adhesive composite fibers
US4115620A (en) * 1977-01-19 1978-09-19 Hercules Incorporated Conjugate filaments
US4129677A (en) * 1977-05-31 1978-12-12 Monsanto Company Melt spun side-by-side biconstituent conductive fiber
FR2400071A1 (en) * 1977-08-08 1979-03-09 Kanebo Ltd CONDUCTIVE COMPOSITE FILAMENTS
US4216264A (en) * 1977-08-08 1980-08-05 Kanebo, Ltd. Conductive composite filaments
US4309479A (en) * 1977-08-08 1982-01-05 Kanebo, Ltd. Conductive composite filaments
US4207376A (en) * 1978-06-15 1980-06-10 Toray Industries, Inc. Antistatic filaments having an internal layer comprising carbon particles and process for preparation thereof
US4289627A (en) * 1979-01-15 1981-09-15 Hoechst Aktiengesellschaft Liquid filtration process
US4303733A (en) * 1979-01-24 1981-12-01 Akzona Incorporated Filament with conductive layers
US4258097A (en) * 1979-04-26 1981-03-24 Brunswick Corporation Non-woven low modulus fiber fabrics
US4420534A (en) * 1980-06-06 1983-12-13 Kanebo Synthetic Fibers Ltd. Conductive composite filaments and methods for producing said composite filaments
EP0056667A1 (en) * 1981-01-15 1982-07-28 Akzo N.V. Synthetic technical multifilament yarn and process for the manufacture thereof
US4473617A (en) * 1981-01-15 1984-09-25 Akzo Nv Synthetical technical multifilament yarn and a process for the manufacture thereof
US4432924A (en) * 1981-04-10 1984-02-21 Lion Corporation Process for producing an electrically conductive monofilament
EP0072550A1 (en) * 1981-08-14 1983-02-23 Toray Industries, Inc. A neutron-shielding composite fiber and a method of manufacturing same
US4756969A (en) * 1984-11-28 1988-07-12 Toray Industries, Inc. Highly electrically conductive filament and a process for preparation thereof
US4997712A (en) * 1988-04-08 1991-03-05 E. I. Du Pont De Nemours And Company Conductive filaments containing polystyrene and anti-static yarns and carpets made therewith
US4900495A (en) * 1988-04-08 1990-02-13 E. I. Du Pont De Nemours & Co. Process for producing anti-static yarns
US5116681A (en) * 1988-04-08 1992-05-26 E. I. Du Pont De Nemours And Company Anti-static yarns containing polystyrene
US5147704A (en) * 1988-04-08 1992-09-15 E. I. Du Pont De Nemours And Company Carpets made with anti-static yarns containing polystyrene
US5318845A (en) * 1988-05-27 1994-06-07 Kuraray Co., Ltd. Conductive composite filament and process for producing the same
US5213865A (en) * 1988-07-02 1993-05-25 Daiwa Co., Ltd. Antistatic mat
EP0356100A3 (en) * 1988-08-17 1990-08-16 Herschel Sternlieb White blackout fabric
EP0356100A2 (en) * 1988-08-17 1990-02-28 Herschel Sternlieb White blackout fabric
US5126201A (en) * 1988-12-28 1992-06-30 Kao Corporation Absorbent article
EP0399397A3 (en) * 1989-05-22 1991-06-12 E.I. Du Pont De Nemours And Company Sheath-core spinning of multilobal conductive core filaments
EP0399397A2 (en) * 1989-05-22 1990-11-28 E.I. Du Pont De Nemours And Company Sheath-core spinning of multilobal conductive core filaments
US5202185A (en) * 1989-05-22 1993-04-13 E. I. Du Pont De Nemours And Company Sheath-core spinning of multilobal conductive core filaments
US5260013A (en) * 1989-05-22 1993-11-09 E. I. Du Pont De Nemours And Company Sheath-core spinning of multilobal conductive core filaments
US5026603A (en) * 1989-06-05 1991-06-25 E. I. Du Pont De Nemours And Company Staple fibers and process for making them
US5001813A (en) * 1989-06-05 1991-03-26 E. I. Du Pont De Nemours And Company Staple fibers and process for making them
US5213892A (en) * 1989-07-13 1993-05-25 Hoechst Aktiengesellschaft Antistatic core-sheath filament
US5549957A (en) * 1992-07-08 1996-08-27 Negola; Edward J. Bulked continuous filament carpet yarn
US6162538A (en) * 1992-11-24 2000-12-19 Clemson University Research Foundation Filled cut-resistant fibers
US5976998A (en) * 1992-11-24 1999-11-02 Hoechst Celanese Corporation Cut resistant non-woven fabrics
US6126879A (en) * 1992-11-24 2000-10-03 Honeywell International Inc. Method of making a cut-resistant fiber and fabrics, and the fabric made thereby
US6127028A (en) * 1992-11-24 2000-10-03 Hoechst Celanese Corporation Composite yarn comprising filled cut-resistant fiber
US6159599A (en) * 1992-11-24 2000-12-12 Honeywell International, Inc. Cut-resistant sheath/core fiber
US6103372A (en) * 1992-11-24 2000-08-15 Hoechst Celanese Corporation Filled cut-resistant fiber
US6210798B1 (en) 1992-11-24 2001-04-03 Honeywell International, Inc. Cut-resistant gloves
US5851668A (en) * 1992-11-24 1998-12-22 Hoechst Celanese Corp Cut-resistant fiber containing a hard filler
US20050060980A1 (en) * 1994-06-30 2005-03-24 E.I. Du Pont De Nemours And Company Process for making poly(trimethyleneterephthalate) bulked continuous filaments, the filaments thereof and carpets made therefrom
US7013628B2 (en) 1994-06-30 2006-03-21 E. I. Du Pont De Nemours And Company Process for making poly(trimethyleneterephthalate) bulked continuous filaments, the filaments thereof and carpets made therefrom
US6242091B1 (en) 1994-06-30 2001-06-05 E. I. Du Pont De Nemours And Company Yarns comprised of bulked continuous filaments of poly(trimethylene terephthalate)
US5662980A (en) * 1994-06-30 1997-09-02 E.I. Du Pont De Nemours And Company Carpets made from poly(trimethylene terephthalate) bulked continuous filaments
US5645782A (en) * 1994-06-30 1997-07-08 E. I. Du Pont De Nemours And Company Process for making poly(trimethylene terephthalate) bulked continuous filaments
US5849232A (en) * 1995-03-02 1998-12-15 Toray Industries, Inc. Process for producing highly oriented undrawn polyester fibers
US5660804A (en) * 1995-03-02 1997-08-26 Toray Industries, Inc. Highly oriented undrawn polyester fibers and process for producing the same
US5632944A (en) * 1995-11-20 1997-05-27 Basf Corporation Process of making mutlicomponent fibers
US5641570A (en) * 1995-11-20 1997-06-24 Basf Corporation Multicomponent yarn via liquid injection
US6047775A (en) * 1996-06-27 2000-04-11 Bucyrus International, Inc. Blast hole drill pipe gripping mechanism
US5776608A (en) * 1996-07-26 1998-07-07 Basf Corporation Process for making electrically conductive fibers
US5952099A (en) * 1996-07-26 1999-09-14 Basf Corporation Process for making electrically conductive fibers
US5698148A (en) * 1996-07-26 1997-12-16 Basf Corporation Process for making electrically conductive fibers
US6136436A (en) * 1996-08-23 2000-10-24 Nyltec Inc. Soft silky large denier bicomponent synthetic filament
US5916506A (en) * 1996-09-30 1999-06-29 Hoechst Celanese Corp Electrically conductive heterofil
US6881468B2 (en) 1996-10-03 2005-04-19 Honeywell International Inc. Process for producing yarn having reduced heatset shrinkage
US5780156A (en) * 1996-10-03 1998-07-14 Basf Corporation Biocomponet fibers having distinct crystaline and amorphous polymer domains and method making same
US20030104162A1 (en) * 1996-10-03 2003-06-05 Basf Corporation Process for producing yarn having reduced heatset shrinkage
US6528139B2 (en) 1996-10-03 2003-03-04 Basf Corporation Process for producing yarn having reduced heatset shrinkage
US20050008857A1 (en) * 1996-10-03 2005-01-13 Honeywell International, Inc. Process for producing yarn having reduced heatset shrinkage
US5820805A (en) * 1996-12-06 1998-10-13 Basf Corporation Process for making multicomponent antistatic fibers
US5840425A (en) * 1996-12-06 1998-11-24 Basf Corp Multicomponent suffused antistatic fibers and processes for making them
US6039903A (en) * 1997-01-10 2000-03-21 Basf Corporation Process of making a bicomponent fiber
US6004674A (en) * 1997-01-10 1999-12-21 Basf Corporation Bicomponent fibers having contaminant-containing core domain and methods of making the same
US5885705A (en) * 1997-01-10 1999-03-23 Basf Corporation Bicomponent fibers having contaminant-containing core domain and methods of making the same
US5876849A (en) * 1997-07-02 1999-03-02 Itex, Inc. Cotton/nylon fiber blends suitable for durable light shade fabrics containing carbon doped antistatic fibers
EP0899364A3 (en) * 1997-08-25 1999-09-22 Basf Corporation Colored bicomponent fibers
EP0899364A2 (en) * 1997-08-25 1999-03-03 Basf Corporation Colored bicomponent fibers
US5888651A (en) * 1997-08-25 1999-03-30 Basf Corporation Colored bicomponent fibers
US6057032A (en) * 1997-10-10 2000-05-02 Green; James R. Yarns suitable for durable light shade cotton/nylon clothing fabrics containing carbon doped antistatic fibers
US6159895A (en) * 1998-07-07 2000-12-12 E. I. Du Pont De Nemours And Company Aramid polymer catalyst supports
US6159598A (en) * 1998-12-14 2000-12-12 The Pilot Ink Co., Ltd. Core/sheath type temperature-sensitive shape-transformable composite filaments
US20020136859A1 (en) * 1999-06-03 2002-09-26 Solutia Inc. Antistatic Yarn, Fabric, Carpet and Fiber Blend Formed From Conductive or Quasi-Conductive Staple Fiber
US6287689B1 (en) 1999-12-28 2001-09-11 Solutia Inc. Low surface energy fibers
US20080150186A1 (en) * 2000-07-24 2008-06-26 High Voltage Graphics, Inc. Co-molded direct flock and flock transfer and methods of making same
US7632371B2 (en) 2000-07-24 2009-12-15 High Voltage Graphics, Inc. Flocked transfer and article of manufacture including the application of the transfer by thermoplastic polymer film
US7402222B2 (en) 2000-07-24 2008-07-22 High Voltage Graphics, Inc. Flocked transfer and article of manufacture including the flocked transfer
US7381284B2 (en) 2000-07-24 2008-06-03 High Voltage Graphics, Inc. Flocked transfer and article of manufacture including the application of the transfer by thermoplastic polymer film
US20030186019A1 (en) * 2000-07-24 2003-10-02 High Voltage Graphics, Inc. Flocked transfer and article of manufacture including the application of the transfer by thermoplastic polymer film
US7364782B2 (en) 2000-07-24 2008-04-29 High Voltage Graphics, Inc. Flocked transfer and article of manufacture including the application of the transfer by thermoplastic polymer film
US20020009571A1 (en) * 2000-07-24 2002-01-24 Abrams Louis Brown Flocked transfer and article of manufacture including the application of the transfer by thermoplastic polymer film
US8354050B2 (en) 2000-07-24 2013-01-15 High Voltage Graphics, Inc. Co-molded direct flock and flock transfer and methods of making same
US20030207072A1 (en) * 2000-07-24 2003-11-06 Abrams Louis Brown Co-molded direct flock and flock transfer and methods of making same
US20100092719A1 (en) * 2000-07-24 2010-04-15 High Voltage Graphics, Inc. Flocked transfer and article of manufacture including the application of the transfer by thermoplastic polymer film
US7344769B1 (en) 2000-07-24 2008-03-18 High Voltage Graphics, Inc. Flocked transfer and article of manufacture including the flocked transfer
US7390552B2 (en) 2000-07-24 2008-06-24 High Voltage Graphics, Inc. Flocked transfer and article of manufacturing including the flocked transfer
US7338697B2 (en) 2000-07-24 2008-03-04 High Voltage Graphics, Inc. Co-molded direct flock and flock transfer and methods of making same
US20070289688A1 (en) * 2000-07-24 2007-12-20 High Voltage Graphics, Inc. Processes for precutting laminated flocked articles
US20110052859A1 (en) * 2000-07-24 2011-03-03 High Voltage Graphics, Inc. Processes for precutting laminated flocked articles
US6675838B2 (en) * 2000-10-25 2004-01-13 Ipg Technologies, Inc. Anti-static woven fabric and flexible bulk container
US20040086673A1 (en) * 2000-10-25 2004-05-06 Trevor Arthurs Anti-static woven flexible bulk container
US7115311B2 (en) 2000-10-25 2006-10-03 Central Products Company Anti-static woven flexible bulk container
US6666235B2 (en) 2001-10-26 2003-12-23 E. I. Du Pont De Nemours And Company Lightweight denim fabric containing high strength fibers and clothing formed therefrom
US6637085B2 (en) 2001-10-26 2003-10-28 E. I. Du Pont De Nemours And Company Process for recycling articles containing high-performance fiber
US6630087B1 (en) 2001-11-16 2003-10-07 Solutia Inc. Process of making low surface energy fibers
US20030119405A1 (en) * 2001-12-20 2003-06-26 Kimberly-Clark Worldwide, Inc. Absorbent article with stabilized absorbent structure
US6846448B2 (en) 2001-12-20 2005-01-25 Kimberly-Clark Worldwide, Inc. Method and apparatus for making on-line stabilized absorbent materials
US20030119402A1 (en) * 2001-12-20 2003-06-26 Kimberly-Clark Worldwide, Inc. Absorbent article with stabilized absorbent structure
US7732039B2 (en) 2001-12-20 2010-06-08 Kimberly-Clark Worldwide, Inc. Absorbent article with stabilized absorbent structure having non-uniform lateral compression stiffness
US20030119401A1 (en) * 2001-12-20 2003-06-26 Kimberly-Clark Worldwide, Inc. Absorbent article with stabilized absorbent structure having non-uniform lateral compression stiffness
US20030116888A1 (en) * 2001-12-20 2003-06-26 Rymer Timothy James Method and apparatus for making on-line stabilized absorbent materials
US20030129392A1 (en) * 2001-12-20 2003-07-10 Abuto Francis Paul Targeted bonding fibers for stabilized absorbent structures
US20040204698A1 (en) * 2001-12-20 2004-10-14 Kimberly-Clark Worldwide, Inc. Absorbent article with absorbent structure predisposed toward a bent configuration
US20030119394A1 (en) * 2001-12-21 2003-06-26 Sridhar Ranganathan Nonwoven web with coated superabsorbent
US20030118825A1 (en) * 2001-12-21 2003-06-26 Kimberly-Clark Worldwide,Inc Microwave heatable absorbent composites
US20030186608A1 (en) * 2002-03-28 2003-10-02 Arthur Goldberg Fabric with pain-relieving characteristics and structures fabricated therefrom, and method
US20040001978A1 (en) * 2002-07-01 2004-01-01 Yves Bader Molten metal resistant fabrics
US7410682B2 (en) 2002-07-03 2008-08-12 High Voltage Graphics, Inc. Flocked stretchable design or transfer
US7413581B2 (en) 2002-07-03 2008-08-19 High Voltage Graphics, Inc. Process for printing and molding a flocked article
US20040081791A1 (en) * 2002-07-03 2004-04-29 Abrams Louis Brown Flocked articles and methods of making same
US20040053001A1 (en) * 2002-07-03 2004-03-18 Abrams Louis Brown Process for printing and molding a flocked article
US7351368B2 (en) 2002-07-03 2008-04-01 High Voltage Graphics, Inc. Flocked articles and methods of making same
US20040078903A1 (en) * 2002-10-24 2004-04-29 Teijin Monofilament Germany Gmbh Conductive soil-repellent core-sheath fiber of high chemical resistance, its preparation and use
US8017233B2 (en) * 2003-05-19 2011-09-13 Toray Industries, Inc. Fibers having excellent responsiveness to magnetic fields and excellent conductivity, as well as articles made of the same
US20070003761A1 (en) * 2003-05-19 2007-01-04 Toray Industries, Inc. Fibers excellent in magnetic field responsiveness and conductivity and product consisting of it
US20050026526A1 (en) * 2003-07-30 2005-02-03 Verdegan Barry M. High performance filter media with internal nanofiber structure and manufacturing methodology
EP1754812A2 (en) 2003-08-06 2007-02-21 E.I.Du pont de nemours and company Fabric for use in protective apparel
US7156883B2 (en) 2003-08-06 2007-01-02 E. I. Du Pont De Nemours And Company Lightweight protective apparel
US20050032449A1 (en) * 2003-08-06 2005-02-10 Lovasic Susan L. Lightweight protective apparel
US20050277353A1 (en) * 2003-08-06 2005-12-15 Lovasic Susan L Lightweight protective apparel
US7472536B2 (en) * 2003-11-18 2009-01-06 Casual Living Worldwide, Inc. Coreless synthetic yarns and woven articles therefrom
US20090134685A1 (en) * 2003-11-18 2009-05-28 Casual Living Worldwide, Inc. D/B/A Bji, Inc. Woven articles from synthetic yarn
US20070113956A1 (en) * 2003-11-18 2007-05-24 Casual Living Worldwide, Inc. D/B/A Bji, Inc. Woven articles from synthetic yarns
US7472535B2 (en) * 2003-11-18 2009-01-06 Casual Living Worldwide, Inc. Coreless synthetic yarns and woven articles therefrom
US7823979B2 (en) 2003-11-18 2010-11-02 Casual Living Worldwide, Inc. Woven articles from synthetic yarn
US20050106974A1 (en) * 2003-11-18 2005-05-19 Larry Schwartz Coreless synthetic yarns and woven articles therefrom
US20050103396A1 (en) * 2003-11-18 2005-05-19 Larry Schwartz Coreless synthetic yarns and woven articles therefrom
US7465485B2 (en) 2003-12-23 2008-12-16 High Voltage Graphics, Inc. Process for dimensionalizing flocked articles or wear, wash and abrasion resistant flocked articles
US20050154118A1 (en) * 2004-01-09 2005-07-14 Hayes Richard A. Polyester composition comprising carbon black
US7393576B2 (en) * 2004-01-16 2008-07-01 High Voltage Graphics, Inc. Process for printing and molding a flocked article
US20050266204A1 (en) * 2004-01-16 2005-12-01 Abrams Louis B Process for printing and molding a flocked article
US20050268407A1 (en) * 2004-05-26 2005-12-08 Abrams Louis B Process for high and medium energy dye printing a flocked article
US20070007495A1 (en) * 2004-06-18 2007-01-11 Hayes Richard A Electrically conductive polyetherester composition comprising carbon black and product made therefrom
US8007889B2 (en) 2005-04-28 2011-08-30 High Voltage Graphics, Inc. Flocked multi-colored adhesive article with bright lustered flock and methods for making the same
USRE45802E1 (en) 2005-07-28 2015-11-17 High Voltage Graphics, Inc. Flocked articles having noncompatible insert and porous film
US7799164B2 (en) 2005-07-28 2010-09-21 High Voltage Graphics, Inc. Flocked articles having noncompatible insert and porous film
US20070022548A1 (en) * 2005-08-01 2007-02-01 High Voltage Graphics, Inc. Process for heat setting polyester fibers for sublimation printing
US7749589B2 (en) 2005-09-20 2010-07-06 High Voltage Graphics, Inc. Flocked elastomeric articles
US8168262B2 (en) 2005-09-20 2012-05-01 High Voltage Graphics, Inc. Flocked elastomeric articles
US20070102093A1 (en) * 2005-09-20 2007-05-10 High Voltage Graphics, Inc. Flocked elastomeric articles
US20100276060A1 (en) * 2005-09-20 2010-11-04 High Voltage Graphics, Inc. Flocked elastomeric articles
US20100233410A1 (en) * 2005-12-07 2010-09-16 High Voltage Graphics, Inc. Wet-on-wet method for forming flocked adhesive article
WO2007105494A1 (en) * 2006-03-10 2007-09-20 Kuraray Co., Ltd. Conductive composite fiber and method for producing same
US20090047516A1 (en) * 2006-03-10 2009-02-19 Kuraray Co., Ltd. Conductive composite fiber and method for producing same
US8475905B2 (en) 2007-02-14 2013-07-02 High Voltage Graphics, Inc Sublimation dye printed textile
US7819936B2 (en) 2007-08-22 2010-10-26 E.I. Du Pont De Nemours And Company Filter felts and bag filters comprising blends of fibers derived from diamino diphenyl sulfone and heat resistant fibers
US7618707B2 (en) 2007-08-22 2009-11-17 E.I. Du Pont De Nemours And Company Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone and modacrylic fibers and fabrics and garments made therefrom and methods for making same
US20090053951A1 (en) * 2007-08-22 2009-02-26 Reiyao Zhu Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone and textile fibers and fabrics and garments made therefrom and methods for making same
US7537831B2 (en) 2007-08-22 2009-05-26 E.I. Du Pont De Nemours And Company Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone and modacrylic fibers and fabrics and garments made therefrom and methods for making same
US20090053954A1 (en) * 2007-08-22 2009-02-26 Reiyao Zhu Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone and high modulus fibers and fabrics and garments made therefrom and methods for making same
US7749601B2 (en) 2007-08-22 2010-07-06 E. I. Du Pont De Nemours And Company Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone, low thermal shrinkage fibers, flame resistant fibers, and antistatic fibers and fabrics and garments made therefrom and methods for making same
US7700190B2 (en) 2007-08-22 2010-04-20 E.I. Du Pont De Nemours And Company Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone and textile fibers and fabrics and garments made therefrom and methods for making same
US20090188024A1 (en) * 2007-08-22 2009-07-30 E. I. Du Pont De Nemours And Company Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone, low thermal shrinkage fibers, flame resistant fibers, and antitstatic fibers and fabrics and garments made therefrom and methods for making same
US20090049816A1 (en) * 2007-08-22 2009-02-26 Anil Kohli Filter felts and bag filters comprising blends of fibers derived from diamino diphenyl sulfone and heat resistant fibers
US20090053957A1 (en) * 2007-08-22 2009-02-26 Reiyao Zhu Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone and modacrylic fibers and fabrics and garments made therefrom and methods for making same
US20090050860A1 (en) * 2007-08-22 2009-02-26 Vlodek Gabara Fibers comprising copolymers containing structures derived from a plurality of amine monomers including 4,4" diamino diphenyl sulfone and methods for making same
US7537830B2 (en) 2007-08-22 2009-05-26 E.I. Du Pont De Nemours And Company Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone, low thermal shrinkage fibers, flame resistant fibers, and antistatic fibers and fabrics and garments made therefrom and methods for making same
US8166743B2 (en) 2007-08-22 2012-05-01 E.I. Du Pont De Nemours And Company Spun staple yarns made from blends of rigid-rod fibers and fibers derived from diamino diphenyl sulfone and fabrics and garments made therefrom and methods for making same
US20090053956A1 (en) * 2007-08-22 2009-02-26 Reiyao Zhu Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone, low thermal shrinkage fibers, flame resistant fibers, and antitstatic fibers and fabrics and garments made therefrom and methods for making same
US20090053952A1 (en) * 2007-08-22 2009-02-26 Reiyao Zhu Spun staple yarns made from blends of rigid-rod fibers and fibers derived from diamino diphenyl sulfone and fabrics and garments made therefrom and methods for making same
US7700191B2 (en) 2007-08-22 2010-04-20 E.I. Du Pont De Nemours And Company Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone and high modulus fibers and fabrics and garments made therefrom and methods for making same
US20090239025A1 (en) * 2008-03-04 2009-09-24 High Voltage Graphics, Inc. Flocked articles having a woven graphic design insert and methods of making the same
US20100009186A1 (en) * 2008-07-11 2010-01-14 Reiyao Zhu Crystallized meta-aramid blends for improved flash fire and arc protection
US7744999B2 (en) 2008-07-11 2010-06-29 E. I. Du Pont De Nemours And Company Crystallized meta-aramid blends for improved flash fire and arc protection
US20100143669A1 (en) * 2008-12-04 2010-06-10 High Voltage Graphics, Inc. Sublimation dye printed textile design having metallic appearance and article of manufacture thereof
US20100209654A1 (en) * 2009-02-16 2010-08-19 High Voltage Graphics, Inc. Flocked stretchable design or transfer including thermoplastic film and method for making the same
WO2010136729A1 (en) 2009-05-27 2010-12-02 Arkema France Multilayer conductive fiber and method for producing the same by coextrusion
CN102449211A (en) * 2009-05-27 2012-05-09 阿克马法国公司 Multilayer conductive fiber and method for producing the same by coextrusion
US8069643B2 (en) 2009-06-02 2011-12-06 E. I. Du Pont De Nemours And Company Limited-antimony-content and antimony-free modacrylic / aramid blends for improved flash fire and arc protection
US8069642B2 (en) 2009-06-02 2011-12-06 E.I. Du Pont De Nemours And Company Crystallized meta-aramid blends for improved flash fire and superior arc protection
WO2010141549A1 (en) 2009-06-02 2010-12-09 E. I. Du Pont De Nemours And Company Crystallized meta-aramid blends for improved flash fire and superior arc protection
WO2010141554A1 (en) 2009-06-02 2010-12-09 E.I. Du Pont De Nemours And Company Limited-antimony-content and antimony-free modacrylic / aramid blends for improved flash fire and arc protection
US20100299816A1 (en) * 2009-06-02 2010-12-02 E.I. Du Pont De Nemours And Company Crystallized meta-aramid blends for improved flash fire and superior arc protection
US20100299817A1 (en) * 2009-06-02 2010-12-02 E.I. Du Pont De Nemours And Company Limited-antimony-content and antimony-free modacrylic / aramid blends for improved flash fire and arc protection
US8133584B2 (en) 2010-04-08 2012-03-13 E.I. Du Pont De Nemours And Company Crystallized meta-aramid blends for flash fire and arc protection having improved comfort
WO2011126999A1 (en) 2010-04-08 2011-10-13 E. I. Du Pont De Nemours And Company Crystallized meta-aramid blends for flash fire and arc protection having improved comfort
US8973164B2 (en) 2010-04-30 2015-03-10 Drifire, Llc Fiber blends for garments with high thermal, abrasion resistance, and moisture management properties
US9034777B2 (en) 2010-07-29 2015-05-19 Drifire, Llc Fire resistant woven fabrics and garments
US20120100386A1 (en) * 2010-10-20 2012-04-26 Toyota Boshoku Kabushiki Kaisha Heating yarn and woven or knitted fabric using this heating yarn
WO2012057992A2 (en) 2010-10-28 2012-05-03 E. I. Du Pont De Nemours And Company Arc resistant garment containing a multilayer fabric laminate and processes for making same
US20120237766A1 (en) * 2011-03-16 2012-09-20 Kb Seiren, Ltd. Conductive conjugate fiber
US10323361B1 (en) 2011-06-12 2019-06-18 Dale Karmie Synthetic turf system made with antistatic yarns and method of making
US9169582B2 (en) 2011-09-02 2015-10-27 E I Du Pont De Nemours And Company High moisture regain yarn, fabrics, and garments having superior arc protection
WO2013032562A1 (en) 2011-09-02 2013-03-07 E. I. Du Pont De Nemours And Company High moisture regain yarn, fabrics, and garments having superior arc protection
US9370212B2 (en) 2011-09-02 2016-06-21 E I Du Pont De Nemours And Company Article of thermal protective clothing
WO2013032563A1 (en) 2011-09-02 2013-03-07 E. I. Du Pont De Nemours And Company Article of thermal protective clothing
WO2014018697A1 (en) 2012-07-27 2014-01-30 E. I. Du Pont De Nemours And Company Fiber blends, yarns, fabrics, and garments for arc and flame protection
US9745674B2 (en) 2012-07-27 2017-08-29 Drifire, Llc Fiber blends for wash durable thermal and comfort properties
US9193214B2 (en) 2012-10-12 2015-11-24 High Voltage Graphics, Inc. Flexible heat sealable decorative articles and method for making the same
US10017676B2 (en) * 2013-03-12 2018-07-10 Dowco, Llc Fiber blends
US20160244649A1 (en) * 2013-03-12 2016-08-25 Dowco Llc Fiber blends
US20160122912A1 (en) * 2013-06-05 2016-05-05 Toray Industries, Inc. Polyamide woven fabric and down product using same
US9732449B2 (en) * 2013-06-05 2017-08-15 Toray Industries, Inc. Polyamide woven fabric and down product using same
US10030326B2 (en) 2014-07-15 2018-07-24 Drifire, Llc Lightweight, dual hazard fabrics
US20180228225A1 (en) * 2015-10-20 2018-08-16 Mitsubishi Chemical Corporation Garment having antistatic capability
WO2018038919A1 (en) 2016-08-25 2018-03-01 Invista North America S.A.R.L. Sustained release fibers
US10590567B2 (en) 2016-09-01 2020-03-17 Dupont Safety & Construction, Inc. Carbon-containing modacrylic and aramid bicomponent filament yarns
US9598797B1 (en) 2016-09-01 2017-03-21 E I Du Pont De Nemours And Company Carbon-containing arc-resistant aramid fabrics from dissimilar yarns
WO2018044525A1 (en) 2016-09-01 2018-03-08 E. I. Du Pont De Nemours And Company Intimate blends of carbon-containing and dyeable flame resistant fibers
US10982353B2 (en) * 2016-09-01 2021-04-20 Dupont Safety & Construction, Inc. Carbon-containing aramid bicomponent filament yarns
WO2018044531A1 (en) 2016-09-01 2018-03-08 E. I. Du Pont De Nemours And Company Carbon-containing aramid bicomponent filament yarns
WO2018044532A1 (en) 2016-09-01 2018-03-08 E. I. Du Pont De Nemours And Company Carbon-containing modacrylic & aramid bicomponent filament yarns
US9797070B1 (en) 2016-09-01 2017-10-24 E I Du Pont De Nemours And Company Intimate blends of carbon-containing and dyeable fibers
WO2018044530A1 (en) 2016-09-01 2018-03-08 E. I. Du Pont De Nemours And Company Lightweight fabrics containing carbon-containing aramid fiber blend including modacrylic fiber
WO2018044527A1 (en) 2016-09-01 2018-03-08 E. I. Du Pont De Nemours And Company Carbon-containing fiber blends including aramid and modacrylic fiber
US10253435B2 (en) 2016-09-01 2019-04-09 E I Du Pont De Nemours And Company Carbon-containing fiber blends including aramid and modacrylic fiber
CN109661484A (en) * 2016-09-01 2019-04-19 纳幕尔杜邦公司 Carbon containing aromatic polyamides bicomponent filament yarn
WO2018044345A1 (en) 2016-09-01 2018-03-08 E I Du Pont De Nemours And Company Carbon-containing arc-resistant aramid fabrics from dissimilar yarns
US20180057964A1 (en) * 2016-09-01 2018-03-01 E I Du Pont De Nemours And Company Carbon-containing aramid bicomponent filament yarns
EP3901337A1 (en) 2016-09-01 2021-10-27 DuPont Safety & Construction, Inc. Carbon-containing aramid bicomponent filament yarns
US11078608B2 (en) * 2016-11-01 2021-08-03 Teijin Limited Fabric, method for manufacturing same, and fiber product
CN109952395A (en) * 2016-11-15 2019-06-28 东丽株式会社 Gloss fiber
EP3543382A4 (en) * 2016-11-15 2020-07-01 Toray Industries, Inc. Glossy fiber
CN109952395B (en) * 2016-11-15 2021-10-12 东丽株式会社 Lustrous fibres
US11255027B2 (en) 2016-11-15 2022-02-22 Toray Industries, Inc. Glossy fiber
KR20190080886A (en) * 2016-11-15 2019-07-08 도레이 카부시키가이샤 Polished fiber
US10760186B2 (en) 2017-03-29 2020-09-01 Welspun Flooring Limited Manufacture of bi-component continuous filaments and articles made therefrom
CN107177892A (en) * 2017-04-26 2017-09-19 西安交通大学 A kind of core shell structure fiber based on carbon nanomaterial and preparation method thereof
US20220010467A1 (en) * 2018-12-17 2022-01-13 Teijin Limited Cloth and protective product
US11846047B2 (en) * 2018-12-17 2023-12-19 Teijin Limited Cloth and protective product
US11473224B1 (en) 2019-04-23 2022-10-18 Denim North America Fire resistant fabric and process to produce same
US20220112630A1 (en) * 2019-06-27 2022-04-14 Kuraray Co., Ltd. Electroconductive composite fibers and fiber structure using same
US20230018241A1 (en) * 2019-09-04 2023-01-19 Milliken & Company Flame-Resistant Fabric
CN111713771A (en) * 2020-05-20 2020-09-29 国网吉林省电力有限公司电力科学研究院 Anti-static protective clothing
CN111713771B (en) * 2020-05-20 2023-12-29 国网吉林省电力有限公司电力科学研究院 Antistatic protective clothing
CN111719192A (en) * 2020-07-02 2020-09-29 北京中丽制机工程技术有限公司 Production method and system of nylon 66 antistatic fiber
WO2023147257A1 (en) 2022-01-27 2023-08-03 Dupont Safety & Construction, Inc. Flame-resistant garments and fabrics with yarns comprising a polymer blend of meta-aramid and polyvinylpyrrolidone
EP4335953A1 (en) 2022-09-09 2024-03-13 Teufelberger Fiber Rope GmbH Antistatic core/sheath rope
EP4339340A1 (en) 2022-09-09 2024-03-20 Teufelberger Fiber Rope GmbH Antistatic core/sheath rope

Also Published As

Publication number Publication date
JPS5945769B2 (en) 1984-11-08
FI52476C (en) 1977-09-12
NL159731C (en) 1981-04-15
DE2337103A1 (en) 1974-02-14
DK141205C (en) 1980-07-21
GB1393234A (en) 1975-05-07
DE2337103C3 (en) 1985-01-24
FR2193888B1 (en) 1975-08-22
AU5820973A (en) 1975-01-23
CA1019127A (en) 1977-10-18
IE38213B1 (en) 1978-01-18
NL159731B (en) 1979-03-15
SE394697B (en) 1977-07-04
LU68056A1 (en) 1974-01-28
IT998268B (en) 1976-01-20
NO131732B (en) 1975-04-07
FR2193888A1 (en) 1974-02-22
DK141205B (en) 1980-02-04
JPS52107350A (en) 1977-09-08
AU477185B2 (en) 1976-10-14
NO131732C (en) 1975-07-16
FI52476B (en) 1977-05-31
NL7310184A (en) 1974-01-23
DE2337103B2 (en) 1975-01-16
IE38213L (en) 1974-01-21
BE802604A (en) 1974-01-21

Similar Documents

Publication Publication Date Title
US3803453A (en) Synthetic filament having antistatic properties
JP3769013B2 (en) Hollow nylon filament, hollow nylon yarn, and production method thereof
US4492731A (en) Trilobal filaments exhibiting high bulk and sparkle
US4085182A (en) Process for producing electrically conductive synthetic fibers
CA2208494C (en) Polyamide/polyolefin bicomponent fibers and methods of making same
EP0661391B1 (en) Trilobal and tetralobal cross-section filaments containing voids
CN1028177C (en) Sheath-core spinning of multilobal conductive
AU632238B2 (en) Dyeable hot-bulked polypropylene fibers modified with a copolyamide
MXPA97007067A (en) Two-component polyamide / polyolefine fibers, novedosas and methods for elaborating
EP0353386B1 (en) Conductive filaments containing polystyrene and process for producing antistatic yarns
US6312783B1 (en) Polypropylene-based carpet yarn
AU690915B2 (en) Fiber bilobal cross sections and carpets prepared therefrom having a silk-like luster and soft hand
CA2208493C (en) Bicomponent fibers having distinct crystalline and amorphous polymer domains and methods of making the same
US4997712A (en) Conductive filaments containing polystyrene and anti-static yarns and carpets made therewith
US7029611B2 (en) Process of making poly(trimethylene terephthalate) bulked continuous filament carpet yarn
US5116681A (en) Anti-static yarns containing polystyrene
US5147704A (en) Carpets made with anti-static yarns containing polystyrene
JPS6257330B2 (en)
JPH0959838A (en) Spun yarn
EP0250664B1 (en) Process for combining and codrawing antistatic filaments with undrawn nylon filaments
JP3252615B2 (en) Polyester crimped yarn for carpet and tufting carpet
JPS6312728A (en) Blended fiber multifilament and its production
US3817823A (en) Crimpable composite polycarbonamide filament
JP2008081911A (en) Crimped yarn and method for producing the same, and carpet using the same
DE7326768U (en) yarn