US3812482A - Air emboli detector - Google Patents

Air emboli detector Download PDF

Info

Publication number
US3812482A
US3812482A US00336112A US33611273A US3812482A US 3812482 A US3812482 A US 3812482A US 00336112 A US00336112 A US 00336112A US 33611273 A US33611273 A US 33611273A US 3812482 A US3812482 A US 3812482A
Authority
US
United States
Prior art keywords
light
signal
alarm
detector
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00336112A
Inventor
J Clark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PRIMARY CHILDRENS HOSPITAL
Original Assignee
PRIMARY CHILDRENS HOSPITAL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PRIMARY CHILDRENS HOSPITAL filed Critical PRIMARY CHILDRENS HOSPITAL
Priority to US00336112A priority Critical patent/US3812482A/en
Application granted granted Critical
Publication of US3812482A publication Critical patent/US3812482A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3626Gas bubble detectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/13Infusion monitoring

Definitions

  • Liquid such as blood or saline, whether opaque or clear, flowing in the tubing defracts the light emitted by the diode out of the straight optical path so that only an insignificant portion thereof reaches the detector, but gas, such as air emboli, due to lower indexes of refraction than liquids, hardly defracts the light, so that a significant portion reaches the optical detector.
  • An output of the optical detector in excess of a setable threshhold causes an alarm and a disablement of the blood handlingsystem.
  • the optical system is tested with liquid in the tubing by over-driving the light emitting diode so that, despite defraction, sufficient light should reach the detector to'cause it to provide an output equivalent to the output it would normally have when detecting gas in the tubing with the light emitting diode driven in a normal manner.
  • air emboli can be extremely dangerous in a patient, particularly when the patient is very sick, and more particularly in the case of premature or sick newborn infants.
  • the object of the present invention is to provide an improved air emboli detector.
  • light is transmitted at an angle through a substantially clear fluid conduit to an optical detector, the presence of liquid in the conduit defracting the light from reaching the detector, the presence of gas in the conduit causing the light to pass substantially straight through the conduit to the detector.
  • the output of an optical detector in such a system is compared with a threshold, and an excess of optical detector output comprises an alarm condition; the alarm condition may be signaled, and may in addition be utilized to disable the related blood handling system.
  • an optical air emboli detector which senses the presence of gas by a lack of defraction of light passing through a conduit from a light emitter to an optical detector is tested with liquid in the conduit by over-driving the light emitter sufficiently for reflected light to generate a significant output from the optical detector.
  • the present invention provides optical isolation of blood and other fluids being tested for air emboli and bubbles from electric circuitry related therewith.
  • the invention treates liquids as being proper, whether they are clear or opaque, and treats gases as being different than liquids.
  • the invention is simple to implement, and is readily configured utilizing technology and compo nents which are readily'available in the market.
  • the invention permits checking of a gas detector without necessitating the presence of gas in the conduit to be monitored.
  • FIGURE herein comprises a simplified schematic block diagram of one embodiment of an air emboli detector according to the present invention.
  • a fluid conduit such as a tube 2 (which might comprise clear plastic tubing) of a relatively small bore (on the order of 35 mils) is disposed within a bore 4 of a block 6.
  • a second bore passes through the bore 4 so as to form a pair of optical paths 8, 10 on either side of and at an angle with respect to the bore 4.
  • Each of the bores 8, 10 is bored out to a larger diameter at either end thereof so as to form receptacles 12, 14 for an optical detector 16 and a light emitting diode 18.
  • the light emitting diode (LED) 18 may emit infrared light, or electromagnetic radiation at any suitable wave length, and the detector 16 may comprise any incoherent optical detector operative over a wave length including that of the diode 18.
  • the light emitting diode may be that sold under the trade designation Monsanto ME4; similarly, the detector may be that sold under the trade designation Fairchild 2175.
  • the light emitting diode 18 is driven by current supplied on a line 20 from a suitable source'of current 22 through a resistor 24.
  • the current may be on the order of 100 milliamperes.
  • the intensity'of electromagnetic radiation emitted by the diode 18 is such that when there is liquid (which has a higher index of refraction) within the tube 2, the light is defracted as indicated by the arrow 26 so that an appreciably reduced amount of it reaches the optical detector 16;
  • the detector 16 will have sub- I stantially reduced output when there is blood, saline, or
  • the resistor 24, however, is shunted by a selectively operable switch 30 which may comprise a field effect transistor and which, when operated, shorts out the resistor 24 so that the current source 22 will supply significantly greater current on the line 20 to the diode 18;
  • a selectively operable switch 30 which may comprise a field effect transistor and which, when operated, shorts out the resistor 24 so that the current source 22 will supply significantly greater current on the line 20 to the diode 18;
  • the output of the photodetector is applied by a line 32 to a compare circuit 34, the other input to which comprises a line 36 from a suitable source of a threshold or other reference potential, such as a potentiometer 38 attached to a suitable source of voltage (V1) 40.
  • the wiper of the potentiometer 38 together with choice of the magnitude of voltage at the source 40, can be adjusted to provide a voltage on the line 36 equivalent to an output of the detector 16 which represents the amount of light received at the detector 16 expected in response to an air emboli within the liquid in the tubing 2.
  • the comparecircuit 34 may comprise any suitable circuit such as, for example, that shown in US. Pat. No.
  • the compare circuit 34 provides an output signal on a line 42 which passes through an EXCLUSIVE OR circuit 44, the output of which on the line 46 will register an alarm condition in a suitable device such as a bistable Y device 48.
  • the bistable device 48 may comprise any suitable circuit such as, for example, that shown in US. Pat. No. 3,588,545.
  • the EXCLUSIVE OR circuit 44 may comprise any suitable circuit such as that shown, for instance, in US. Pat. No. 3,384,759.
  • the bistable device 48 is set by a signal on the line 46, and may be reset by a signal on a line 50 in response to any suitable means, such as a manually operable push button or other momentary contact switch 52 connected to a suitable voltage source (V2) 54.
  • V2 voltage source
  • the bistable device 48 provides a signal on a line 56 which may actuate a suitable alarm signaling device 58; when reset, the bistable device 48 provides a condition on a line 60 which may provide an enabling input to the blood handling system 62 with which the air emboli detector of the present invention is associated.
  • the blood handling system 62 may include timing means for providing a test signal on aline 64, which is utilized to actuate the switch 30 thereby to over-drive the LED 18 for testing of the air emboli detector as described hereinbefore, and for also applying the test signal on the line 64 to a second input of the EXCLUSIVE OR circuit 44.
  • the optical detector 16 is supposed to provide a suitable output signal, so that the compare circuit 34 will provide an output on the line 42. If it does, then there is currently two inputs to the EXCLUSIVE OR circuit 44 so there will be no output therefrom on the line 46 and the alarm condition registering bistable 48 will not be operated.
  • the blood handling system 62 may comprise the Automated Blood Analysis System of the aforementioned copending application, or other systems.
  • the air emboli detector of the present invention is briefly disclosed in an embodiment differing somewhat from that herein, and in which the timing of the blood handling system is effected by a drum contact timer. However, it should be apparent that any sort of timing, or manual operation of a switch to cause testing of the air emboli detector may be utilized if desired.
  • a system for detecting gas bubbles in a liquid comprising:
  • substantiallytranslucent conduit for conducting a flow of liquid in which the presence of gas bubbles is to be detected, said conduitdisposed in a first one of said bores;
  • a light emitter and an optical detector disposed at opposite ends of a substantially straight optical path within said second bore, said optical detectorproviding an output signal, the magnitude of which is a function of the intensity of light delivered thereto along said optical path, such that the presence of fluid in said conduit at the intersection therewith of said light path defracts light from said optical path, whereby said optical detector has an insignificant output;
  • a system acocording to claim 2 further comprising: alarm signaling means responsive to said alarm registering means for signaling an alarm condition.
  • said alarm registering means comprises means setable in either of two states, said means when set in afirst one of said states generating an enable signal indicative of the lack of an alarm condition, said means when set in the other of said states generating a signal indicating a registered alarm condition, said means being set in said second state by said alarm signal, and further comprising:
  • a system according to claim 4 wherein said selectively operable means comprises a manually operable switch.
  • said means for exciting said light emitter comprises means for providing normal excitation to said light emitter, and selectively operable means for providing excitation to said light emitter which is significantly greater than normal, whereby said light emitter emits light of a given intensity normally, and emits light of intensity significantly greater than normal in response to the operation of said selectively operable means.

Abstract

A light emitting diode and a photodetector are disposed on opposite ends of an optical path oriented at an angle with respect to a substantially transparent blood conduit, such as clear plastic tubing. Liquid, such as blood or saline, whether opaque or clear, flowing in the tubing defracts the light emitted by the diode out of the straight optical path so that only an insignificant portion thereof reaches the detector, but gas, such as air emboli, due to lower indexes of refraction than liquids, hardly defracts the light, so that a significant portion reaches the optical detector. An output of the optical detector in excess of a setable threshhold causes an alarm and a disablement of the blood handling system. The optical system is tested with liquid in the tubing by over-driving the light emitting diode so that, despite defraction, sufficient light should reach the detector to cause it to provide an output equivalent to the output it would normally have when detecting gas in the tubing with the light emitting diode driven in a normal manner.

Description

United States Patent [191 Clark AIR EMBOLl DETECTOR Justin S. Clark, Salt Lake City, Utah [73] Assignee: Primary Childrens Hospital, Salt Lake City, Utah [22] Filed: Feb. 26, 1973 [21] Appl. No; 336,112
Inventor:
[52] US. Cl... 340/237 R, 128/214 E, l28/D1G. 13, 250/573, 356/39, 356/103 [51] Int. Cl. G08b 21/00 Primary ExaminerJohn W. Caldwell Assistant Examiner-Daniel Myer Attorney, Agent, or FirmMr. Lynn G. Foster May 21, 1974 5 7 ABSTRACT A light emitting diode and. a photodetector are dis-- posed on opposite ends of an optical path oriented at an angle with respect to a substantially transparent blood conduit, such as clear plastic tubing. Liquid, such as blood or saline, whether opaque or clear, flowing in the tubing defracts the light emitted by the diode out of the straight optical path so that only an insignificant portion thereof reaches the detector, but gas, such as air emboli, due to lower indexes of refraction than liquids, hardly defracts the light, so that a significant portion reaches the optical detector. An output of the optical detector in excess of a setable threshhold causes an alarm and a disablement of the blood handlingsystem. The optical system is tested with liquid in the tubing by over-driving the light emitting diode so that, despite defraction, sufficient light should reach the detector to'cause it to provide an output equivalent to the output it would normally have when detecting gas in the tubing with the light emitting diode driven in a normal manner.
7 Claims, 1 Drawing Figure TO/FROM v PATIENT- ZA/ SOURCE -22 .ATENTEU MAY 21 I974 TEST-J swx.
ALARM ENABLE LOOD HANDLING STEM TIYMING CURRENT AIR EMBOLI DETECTOR BACKGROUND 1. Field of Invention This invention relates to an improved air emboli detector employing optical defraction.
2. Prior Art Recent advances in technology include an automated blood analysis system which is disclosed and claimed in a commonly owned copending US. Pat. application of Justin S. Clark and Lloyd George Veasy, Ser. No. 319,561, Filed on Dec. 29, 1972, and entitled AUTO- MATED BLOOD ANALYSIS SYSTEM. In such a system, the health and safety of a patient is paramount. Such systems employ sources of fluids, such as irrigation fluids and pumping fluids (which may comprise saline solutions), and include pumps, valves and conduits (such as tubing). As a result, it is possible, at times, that small amounts of air may enter the system and form bubbles in any of the system fluids, which may be transferred to blood moving in the system, or may directly form as air emboli within the blood. Depending on the particular function being performed, it is not uncommon for such systems to frequently return a certain portion of blood to the patient, or to infuse other solutions into the patient. As is known, air emboli can be extremely dangerous in a patient, particularly when the patient is very sick, and more particularly in the case of premature or sick newborn infants.
It is therefore desirable to provide automatically operated means for detecting the presence of air emboli in blood, or air bubbles in other solutions in a blood handling system. However, such a system must distinguish between gases and liquids as such, and therefore clear fluids (such as saline) must cause a response which is similar to the response caused by opaque fluids (such as blood), and must cause a response which is different from the response caused by clear gases (such as air). In addition, it is necessary that the patient be well protected, and that the blood or other fluids be isolated from any electrical means utilized in such a system.
BRIEF SUMMARY AND OBJECTS OF INVENTION The object of the present invention is to provide an improved air emboli detector.
According to the present invention, light is transmitted at an angle through a substantially clear fluid conduit to an optical detector, the presence of liquid in the conduit defracting the light from reaching the detector, the presence of gas in the conduit causing the light to pass substantially straight through the conduit to the detector. In accordance further with the present invention, the output of an optical detector in such a system is compared with a threshold, and an excess of optical detector output comprises an alarm condition; the alarm condition may be signaled, and may in addition be utilized to disable the related blood handling system. In still further accord with the present invention, an optical air emboli detector which senses the presence of gas by a lack of defraction of light passing through a conduit from a light emitter to an optical detector is tested with liquid in the conduit by over-driving the light emitter sufficiently for reflected light to generate a significant output from the optical detector.
The present invention provides optical isolation of blood and other fluids being tested for air emboli and bubbles from electric circuitry related therewith. The invention treates liquids as being proper, whether they are clear or opaque, and treats gases as being different than liquids. The invention is simple to implement, and is readily configured utilizing technology and compo nents which are readily'available in the market. The invention permits checking of a gas detector without necessitating the presence of gas in the conduit to be monitored. Y
Other objects, features and advantages of the present invention will become more apparent in light of the following detailed description of a preferred embodiment thereof, as illustrated in the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWING The sole FIGURE herein comprises a simplified schematic block diagram of one embodiment of an air emboli detector according to the present invention.
. DETAILED DESCRIPTION OF PREFERRED EMBODIMENT Referring to the drawing, a fluid conduit such as a tube 2 (which might comprise clear plastic tubing) of a relatively small bore (on the order of 35 mils) is disposed within a bore 4 of a block 6. A second bore passes through the bore 4 so as to form a pair of optical paths 8, 10 on either side of and at an angle with respect to the bore 4. Each of the bores 8, 10 is bored out to a larger diameter at either end thereof so as to form receptacles 12, 14 for an optical detector 16 and a light emitting diode 18. The light emitting diode (LED) 18 may emit infrared light, or electromagnetic radiation at any suitable wave length, and the detector 16 may comprise any incoherent optical detector operative over a wave length including that of the diode 18. As an example, the light emitting diode may be that sold under the trade designation Monsanto ME4; similarly, the detector may be that sold under the trade designation Fairchild 2175.
The light emitting diode 18 is driven by current supplied on a line 20 from a suitable source'of current 22 through a resistor 24. In normal operation, the current may be on the order of 100 milliamperes. In such a case, the intensity'of electromagnetic radiation emitted by the diode 18 is such that when there is liquid (which has a higher index of refraction) within the tube 2, the light is defracted as indicated by the arrow 26 so that an appreciably reduced amount of it reaches the optical detector 16; Thus, the detector 16 will have sub- I stantially reduced output when there is blood, saline, or
other liquid within the tubing 2. on the other hand, with normal excitation of the LED 18, should there be a bubble of gas, which is of a size on the same order of magnitude as the diameter of the bore of the tubing 2, present between the optical paths 8, 10, it will not appreciably defract the light beam so that it will pass directly into the optical path 8 and to the detector 16 as indicated by the dashed arrow 28.
The resistor 24, however, is shunted by a selectively operable switch 30 which may comprise a field effect transistor and which, when operated, shorts out the resistor 24 so that the current source 22 will supply significantly greater current on the line 20 to the diode 18;
for instance, currents on the order of 200 milliamperes may typically be provided'when the switch 30 is operated. Under such a condition, even though there be liquid in the tubing 2, the intensity of light emitted by the diode 18 is sufficiently great that through deflection, a significant amount of light will activate the detector 16 so as to supply an output therefrom which is on the same order of magnitude as the output resulting from sensing of an air bubble with normal excitation.
The output of the photodetector is applied by a line 32 to a compare circuit 34, the other input to which comprises a line 36 from a suitable source of a threshold or other reference potential, such as a potentiometer 38 attached to a suitable source of voltage (V1) 40. The wiper of the potentiometer 38, together with choice of the magnitude of voltage at the source 40, can be adjusted to provide a voltage on the line 36 equivalent to an output of the detector 16 which represents the amount of light received at the detector 16 expected in response to an air emboli within the liquid in the tubing 2. The comparecircuit 34 may comprise any suitable circuit such as, for example, that shown in US. Pat. No. 2,851,638 wherein there is a voltage source (22) and a potentiometer (21) equivalent to the source 40 and potentiometer 38 herein. In such a case, the compare circuit 34 provides an output signal on a line 42 which passes through an EXCLUSIVE OR circuit 44, the output of which on the line 46 will register an alarm condition in a suitable device such as a bistable Y device 48. The bistable device 48 may comprise any suitable circuit such as, for example, that shown in US. Pat. No. 3,588,545. The EXCLUSIVE OR circuit 44 may comprise any suitable circuit such as that shown, for instance, in US. Pat. No. 3,384,759. The bistable device 48 is set by a signal on the line 46, and may be reset by a signal on a line 50 in response to any suitable means, such as a manually operable push button or other momentary contact switch 52 connected to a suitable voltage source (V2) 54. When set, the bistable device 48 provides a signal on a line 56 which may actuate a suitable alarm signaling device 58; when reset, the bistable device 48 provides a condition on a line 60 which may provide an enabling input to the blood handling system 62 with which the air emboli detector of the present invention is associated. The blood handling system 62 may include timing means for providing a test signal on aline 64, which is utilized to actuate the switch 30 thereby to over-drive the LED 18 for testing of the air emboli detector as described hereinbefore, and for also applying the test signal on the line 64 to a second input of the EXCLUSIVE OR circuit 44. Thus, when-the diode 18 is overdriven as a result of operation of the switch 30 during a test of the air emboli detector, the optical detector 16 is supposed to provide a suitable output signal, so that the compare circuit 34 will provide an output on the line 42. If it does, then there is currently two inputs to the EXCLUSIVE OR circuit 44 so there will be no output therefrom on the line 46 and the alarm condition registering bistable 48 will not be operated. On the other hand, if there is an insufficient output from the optical detector 16, then there will be no output from the comparator 34, no signal on the line 42, so that the EXCLUSIVE OR circuit 44 will provide a signal on the line 46 to register an alarm condition in the bistable device 48. When the test signal is no longer present, the driving current on the line 20 to the diode 18 is again reduced, and, the test signal on the line 64 no longer being present at one input of the EXCLU- SIVE OR circuit 44, then the operation of the compare circuit 34 as a result of a large output from the optical detector 16 will pass through the EXCLUSIVE OR circuit so as to register an alarm condition in the bistable 48. Thus, no gas need be introduced into the system for test purposes.
The blood handling system 62 may comprise the Automated Blood Analysis System of the aforementioned copending application, or other systems. In the aforementioned copending application, the air emboli detector of the present invention is briefly disclosed in an embodiment differing somewhat from that herein, and in which the timing of the blood handling system is effected by a drum contact timer. However, it should be apparent that any sort of timing, or manual operation of a switch to cause testing of the air emboli detector may be utilized if desired.
Similarly, although the invention has been shown and described with respect to an illustrated embodiment thereof, it should be understood by those skilled in the art that the foregoing and various other changes and omissions in the form and detail thereof may be made therein without departing from the spirit and the scope of the invention.
Having thus described a typical embodiment of my invention, that which I claim as new and desire to secure by Letters Patent is:
l. A system for detecting gas bubbles in a liquid comprising:
an opaque block having first and second bores therethrough intersecting each other at an angle;
a substantiallytranslucent conduit for conducting a flow of liquid in which the presence of gas bubbles is to be detected, said conduitdisposed in a first one of said bores;
a light emitter and an optical detector disposed at opposite ends of a substantially straight optical path within said second bore, said optical detectorproviding an output signal, the magnitude of which is a function of the intensity of light delivered thereto along said optical path, such that the presence of fluid in said conduit at the intersection therewith of said light path defracts light from said optical path, whereby said optical detector has an insignificant output;
means for exciting said light emitter;
a source of a reference signal; and
means for comparing the output signal of said optical detector with the reference signal of said source and for providing an alarm signal in response to the signal output of said optical detector being of a greater magnitude than said reference signal.
2. A system according to claim 1 and further comprising means responsive to said alarm signal for registering an alarm condition.
' 3. A system acocording to claim 2 further comprising: alarm signaling means responsive to said alarm registering means for signaling an alarm condition.
4. A system according to claim 2 wherein said alarm registering means comprises means setable in either of two states, said means when set in afirst one of said states generating an enable signal indicative of the lack of an alarm condition, said means when set in the other of said states generating a signal indicating a registered alarm condition, said means being set in said second state by said alarm signal, and further comprising:
selectively operable means for-setting said bistable means into said first state.
5. A system according to claim 4 wherein said selectively operable means comprises a manually operable switch.
6. A system according to claim 1 wherein said means for exciting said light emitter comprises means for providing normal excitation to said light emitter, and selectively operable means for providing excitation to said light emitter which is significantly greater than normal, whereby said light emitter emits light of a given intensity normally, and emits light of intensity significantly greater than normal in response to the operation of said selectively operable means.
7. A system according to claim 6 including test means signal.

Claims (7)

1. A system for detecting gas bubbles in a liquid comprising: an opaque block having first and second bores therethrough intersecting each other at an angle; a substantially translucent conduit for conducting a flow of liquid in which the presence of gas bubbles is to be detected, said conduit disposed in a first one of said bores; a light emitter and an optical detector disposed at opposite ends of a substantially straight optical path within said second bore, said optical detector providing an output signal, the magnitude of which is a function of the intensity of light delivered thereto along said optical path, such that the presence of fluid in said conduit at the intersection therewith of said light path defracts light from said optical path, whereby said optical detector has an insignificant output; means for exciting said light emitter; a source of a reference signal; and means for comparing the output signal of said optical detector with the reference signal of said source and for providing an alarm signal in response to the signal output of said optical detector being of a greater magnitude than said reference signal.
2. A system according to claim 1 and further comprising means responsive to said alarm signal for registering an alarm condition.
3. A system acocording to claim 2 further comprising: alarm signaling means responsive to said alarm registering means for signaling an alarm condition.
4. A system according to claim 2 wherein said alarm registering means comprises means setable in either of two states, said means when set in a first one of said states generating an enable signal indicative of the lack of an alarm condition, said means when set in the other of said states generating a signal indicating a registered alarm condition, said means being set in said second state by said alarm signal, and further comprising: selectively operable means for setting said bistable means into said first state.
5. A system according to claim 4 wherein said selectively operable means comprises a manually operable switch.
6. A system according to claim 1 wherein said means for exciting said light emitter comprises means for providing normal excitation to said light emitter, and selectively operable means for providing excitation to said light emitter which is significantly greater than normal, whereby said light emitter emits light of a given intensity normally, and emits light of intensity significantly greater than normal in response to the operation of said selectively operable means.
7. A system according to claim 6 including test means presenting a test manifestation which by its presence controls the testing of said system, said test manifestation connected to said selectively operable means foR operating the same, thereby to increase the intensity of light emitted by said light emitter, and wherein said test means includes means responsive to said test manifestation in the absence of a signal from said compare circuit to generate said alarm signal and responsive to the presence of an output from said compare circuit in the absence of test manifestation to generate said alarm signal.
US00336112A 1973-02-26 1973-02-26 Air emboli detector Expired - Lifetime US3812482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00336112A US3812482A (en) 1973-02-26 1973-02-26 Air emboli detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00336112A US3812482A (en) 1973-02-26 1973-02-26 Air emboli detector

Publications (1)

Publication Number Publication Date
US3812482A true US3812482A (en) 1974-05-21

Family

ID=23314623

Family Applications (1)

Application Number Title Priority Date Filing Date
US00336112A Expired - Lifetime US3812482A (en) 1973-02-26 1973-02-26 Air emboli detector

Country Status (1)

Country Link
US (1) US3812482A (en)

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900396A (en) * 1974-03-22 1975-08-19 Baxter Laboratories Inc Blood leak detector
US3908441A (en) * 1972-06-02 1975-09-30 Instr De Controle Et D Analyse Level detecting device
US3935876A (en) * 1974-11-15 1976-02-03 Renal Systems, Inc. Air leak detector
US3989625A (en) * 1975-02-25 1976-11-02 Ma-De Inc. Detector for air in blood dialysis systems
US3990444A (en) * 1972-11-22 1976-11-09 Vial S.A.R.L. Blood transfusion apparatus
US4122713A (en) * 1977-05-19 1978-10-31 Medtronic, Inc. Liquid velocity measuring system
US4127231A (en) * 1977-11-11 1978-11-28 Baxter Travenol Laboratories, Inc. Support arm for centrifugal liquid processing apparatus
US4137913A (en) * 1975-02-28 1979-02-06 Ivac Corporation Fluid flow control system
US4151844A (en) * 1977-11-11 1979-05-01 Baxter Travenol Laboratories, Inc. Method and apparatus for separating whole blood into its components and for automatically collecting one component
US4168700A (en) * 1976-10-13 1979-09-25 Richard Wolf Gmbh Determination of blood losses during endoscopic operations
US4213454A (en) * 1977-12-02 1980-07-22 Baxter Travenol Laboratories, Inc. Control system for metering apparatus for a fluid infusion system
US4227814A (en) * 1979-02-01 1980-10-14 Baxter Travenol Laboratories, Inc. Optical density detector
US4260258A (en) * 1978-08-14 1981-04-07 Pacific Scientific Company Compact, rugged sensor for optical measurement of the size of particles suspended in a fluid
US4280495A (en) * 1978-11-24 1981-07-28 Sarns, Inc. Air emboli detection
WO1982000591A1 (en) * 1980-08-25 1982-03-04 Travenol Lab Baxter System for detecting bubble formation in clear and opaque fluids
US4321466A (en) * 1979-11-26 1982-03-23 Isotec Industries Limited Sensitivity test system for photoelectric smoke detector by changing light source intensity
DE3115567A1 (en) * 1980-04-18 1982-04-08 Beckman Instruments Inc., 92634 Fullerton, Calif. METHOD FOR GUARANTEING THE RECORDING AND DELIVERING OF A DESIRED VOLUME VOLUME, AND AUTOMATED PIPETTE HERE
US4352374A (en) * 1976-11-29 1982-10-05 Gambro Ab Apparatus for diluting a concentrated solution
WO1983003009A1 (en) * 1982-02-22 1983-09-01 Beckman Instruments Inc Method and apparatus for detecting insufficient liquid sample quantity
US4447191A (en) * 1981-12-15 1984-05-08 Baxter Travenol Laboratories, Inc. Control circuit for a blood fractionation apparatus
US4501531A (en) * 1981-12-15 1985-02-26 Baxter Travenol Laboratories, Inc. Control circuit for a blood fractionation apparatus
EP0050812B1 (en) * 1980-10-29 1985-08-07 Miles Laboratories, Inc. Method and apparatus for detecting bubbles in a liquid
US4658244A (en) * 1985-03-28 1987-04-14 Imed Corporation Air-in-line detector
EP0238809A2 (en) * 1986-03-24 1987-09-30 Gambro Ab A detector system for the checking of a fluid tube connectable to a monitor
US4784494A (en) * 1986-12-31 1988-11-15 Anthony R. Torres Method and apparatus for detecting universal and selectively concentration gradients, and for deflecting a light beam in a controlled fashion
US4816695A (en) * 1987-08-31 1989-03-28 Lavin Thomas N Optical fluid detector
US4940333A (en) * 1986-12-31 1990-07-10 Anthony R. Torres Method and apparatus for detecting universally and selectively concentration gradients, and for deflecting a light beam in a controlled fashion
US5001938A (en) * 1989-09-07 1991-03-26 Downie Ronald A Sampling system
FR2655424A1 (en) * 1989-12-01 1991-06-07 Espa Cie Sarl Ets F METHOD AND DEVICE FOR DETECTING BUBBLES IN A LIQUID FLUID AND APPARATUS EMPLOYING THE SAME.
EP0467805A1 (en) * 1990-07-17 1992-01-22 Hospal Ag Equipment for detecting the presence of a tube and/or the presence of fluid within it
US5083862A (en) * 1990-08-13 1992-01-28 City Of Hope Liquid bubble detector
FR2691258A1 (en) * 1992-05-13 1993-11-19 Debiotech Device for detecting bubbles in a liquid flowing in a pipe.
US5533512A (en) * 1994-03-18 1996-07-09 Ohmeda Inc. Method and apparatus for detection of venous air emboli
WO1998048867A1 (en) * 1997-04-29 1998-11-05 Medtronic, Inc. Optical detection and quantification of microair in blood
US5868710A (en) * 1996-11-22 1999-02-09 Liebel Flarsheim Company Medical fluid injector
US20050027253A1 (en) * 2003-07-29 2005-02-03 Thomas Castellano Sheath with air trap
US20070225675A1 (en) * 2005-11-15 2007-09-27 Mark Ries Robinson Blood Analyte Determinations
US20090048576A1 (en) * 2007-08-13 2009-02-19 Mark Ries Robinson Managing Cross-contamination in Blood Samples Withdrawn from a Multilumen Catheter
US20090054754A1 (en) * 2007-08-21 2009-02-26 Mcmahon Dave Clinician-controlled semi-automated medication management
US20090054753A1 (en) * 2007-08-21 2009-02-26 Mark Ries Robinson Variable Sampling Interval for Blood Analyte Determinations
US20090088615A1 (en) * 2007-10-01 2009-04-02 Mark Ries Robinson Indwelling Fiber Optic Probe for Blood Glucose Measurements
US20090156975A1 (en) * 2007-11-30 2009-06-18 Mark Ries Robinson Robust System and Methods for Blood Access
US20090281460A1 (en) * 2008-05-08 2009-11-12 Hospira, Inc. Automated point-of-care fluid testing device and method of using the same
US20100094113A1 (en) * 2008-10-09 2010-04-15 Mark Ries Robinson Hemodynamic monitoring during automated measurement of blood constituents
US20100094114A1 (en) * 2008-10-09 2010-04-15 Mark Ries Robinson Use of multiple calibration solutions with an analyte sensor with use in an automated blood access system
US20100114002A1 (en) * 2004-04-08 2010-05-06 O'mahony John J Method and apparatus for an extracorporeal control of blood glucose
US20100168535A1 (en) * 2006-04-12 2010-07-01 Mark Ries Robinson Methods and apparatuses related to blood analyte measurement system
US20110009800A1 (en) * 2007-02-06 2011-01-13 Fresenius Medical Care Holdings, Inc. Dialysis systems including non-invasive multi-function sensor systems
US20110152642A1 (en) * 2009-12-18 2011-06-23 Mak Ries Robinson Detection of bubbles during hemodynamic monitoring when performing automated measurement of blood constituents
US20120065482A1 (en) * 2005-04-08 2012-03-15 Mark Ries Robinson Determination of blood pump system performance and sample dilution using a property of fluid being transported
US9078981B2 (en) 2012-09-21 2015-07-14 Boston Scientific Scimed Inc. Catheter system including an embolism protection device
US10143795B2 (en) 2014-08-18 2018-12-04 Icu Medical, Inc. Intravenous pole integrated power, control, and communication system and method for an infusion pump
US10352866B1 (en) 2018-04-09 2019-07-16 Mehmet Arbatli System and method of detecting within a liquid flow of a pipe
US10918787B2 (en) 2015-05-26 2021-02-16 Icu Medical, Inc. Disposable infusion fluid delivery device for programmable large volume drug delivery
USD939079S1 (en) 2019-08-22 2021-12-21 Icu Medical, Inc. Infusion pump
US11213619B2 (en) 2013-11-11 2022-01-04 Icu Medical, Inc. Thermal management system and method for medical devices
US11517734B2 (en) 2017-06-21 2022-12-06 Kristin Rossodivito System and method for detecting air embolisms in lines for hemodynamic monitoring
US11768142B1 (en) 2021-04-12 2023-09-26 Mehmet Arbatli Bubble detection system and method within a liquid flow of a pipe by sensing changes in local liquid pressure

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908441A (en) * 1972-06-02 1975-09-30 Instr De Controle Et D Analyse Level detecting device
US3990444A (en) * 1972-11-22 1976-11-09 Vial S.A.R.L. Blood transfusion apparatus
US3900396A (en) * 1974-03-22 1975-08-19 Baxter Laboratories Inc Blood leak detector
US3935876A (en) * 1974-11-15 1976-02-03 Renal Systems, Inc. Air leak detector
US3989625A (en) * 1975-02-25 1976-11-02 Ma-De Inc. Detector for air in blood dialysis systems
US4137913A (en) * 1975-02-28 1979-02-06 Ivac Corporation Fluid flow control system
US4168700A (en) * 1976-10-13 1979-09-25 Richard Wolf Gmbh Determination of blood losses during endoscopic operations
US4352374A (en) * 1976-11-29 1982-10-05 Gambro Ab Apparatus for diluting a concentrated solution
US4122713A (en) * 1977-05-19 1978-10-31 Medtronic, Inc. Liquid velocity measuring system
US4151844A (en) * 1977-11-11 1979-05-01 Baxter Travenol Laboratories, Inc. Method and apparatus for separating whole blood into its components and for automatically collecting one component
US4127231A (en) * 1977-11-11 1978-11-28 Baxter Travenol Laboratories, Inc. Support arm for centrifugal liquid processing apparatus
US4213454A (en) * 1977-12-02 1980-07-22 Baxter Travenol Laboratories, Inc. Control system for metering apparatus for a fluid infusion system
US4260258A (en) * 1978-08-14 1981-04-07 Pacific Scientific Company Compact, rugged sensor for optical measurement of the size of particles suspended in a fluid
US4280495A (en) * 1978-11-24 1981-07-28 Sarns, Inc. Air emboli detection
US4227814A (en) * 1979-02-01 1980-10-14 Baxter Travenol Laboratories, Inc. Optical density detector
US4321466A (en) * 1979-11-26 1982-03-23 Isotec Industries Limited Sensitivity test system for photoelectric smoke detector by changing light source intensity
US4399711A (en) * 1980-04-18 1983-08-23 Beckman Instruments, Inc. Method and apparatus ensuring full volume pickup in an automated pipette
DE3115567A1 (en) * 1980-04-18 1982-04-08 Beckman Instruments Inc., 92634 Fullerton, Calif. METHOD FOR GUARANTEING THE RECORDING AND DELIVERING OF A DESIRED VOLUME VOLUME, AND AUTOMATED PIPETTE HERE
US4367736A (en) * 1980-08-25 1983-01-11 Baxter Travenol Laboratories, Inc. System for detecting bubble formation in clear and opaque fluids
WO1982000591A1 (en) * 1980-08-25 1982-03-04 Travenol Lab Baxter System for detecting bubble formation in clear and opaque fluids
EP0050812B1 (en) * 1980-10-29 1985-08-07 Miles Laboratories, Inc. Method and apparatus for detecting bubbles in a liquid
US4447191A (en) * 1981-12-15 1984-05-08 Baxter Travenol Laboratories, Inc. Control circuit for a blood fractionation apparatus
US4501531A (en) * 1981-12-15 1985-02-26 Baxter Travenol Laboratories, Inc. Control circuit for a blood fractionation apparatus
WO1983003009A1 (en) * 1982-02-22 1983-09-01 Beckman Instruments Inc Method and apparatus for detecting insufficient liquid sample quantity
US4419903A (en) * 1982-02-22 1983-12-13 Beckman Instruments, Inc. Method and apparatus for detecting insufficient liquid levels
US4658244A (en) * 1985-03-28 1987-04-14 Imed Corporation Air-in-line detector
EP0238809A3 (en) * 1986-03-24 1988-06-29 Gambro Ab A detector system for the checking of a fluid tube connectable to a monitor
EP0238809A2 (en) * 1986-03-24 1987-09-30 Gambro Ab A detector system for the checking of a fluid tube connectable to a monitor
US4784494A (en) * 1986-12-31 1988-11-15 Anthony R. Torres Method and apparatus for detecting universal and selectively concentration gradients, and for deflecting a light beam in a controlled fashion
US4940333A (en) * 1986-12-31 1990-07-10 Anthony R. Torres Method and apparatus for detecting universally and selectively concentration gradients, and for deflecting a light beam in a controlled fashion
US4816695A (en) * 1987-08-31 1989-03-28 Lavin Thomas N Optical fluid detector
US5001938A (en) * 1989-09-07 1991-03-26 Downie Ronald A Sampling system
FR2655424A1 (en) * 1989-12-01 1991-06-07 Espa Cie Sarl Ets F METHOD AND DEVICE FOR DETECTING BUBBLES IN A LIQUID FLUID AND APPARATUS EMPLOYING THE SAME.
EP0445477A2 (en) * 1989-12-01 1991-09-11 Ets. F. Espa Et Cie Method and device for detecting bubbles in a liquid
EP0445477A3 (en) * 1989-12-01 1991-09-25 Ets. F. Espa Et Cie Method and device for detecting bubbles in a liquid
EP0467805A1 (en) * 1990-07-17 1992-01-22 Hospal Ag Equipment for detecting the presence of a tube and/or the presence of fluid within it
US5083862A (en) * 1990-08-13 1992-01-28 City Of Hope Liquid bubble detector
WO1993023740A1 (en) * 1992-05-13 1993-11-25 Debiotech Device for bubble detection in a liquid flowing through a tube
FR2691258A1 (en) * 1992-05-13 1993-11-19 Debiotech Device for detecting bubbles in a liquid flowing in a pipe.
US5533512A (en) * 1994-03-18 1996-07-09 Ohmeda Inc. Method and apparatus for detection of venous air emboli
US5868710A (en) * 1996-11-22 1999-02-09 Liebel Flarsheim Company Medical fluid injector
US6004292A (en) * 1996-11-22 1999-12-21 Liebel Flarsheim Company Medical fluid injector
US6159183A (en) * 1996-11-22 2000-12-12 Liebel Flarsheim Company Medical fluid injector having face plate with magnetic conductors
US6254572B1 (en) 1996-11-22 2001-07-03 Liebel Flarsheim Company Medical fluid injector having watchdog circuit
WO1998048867A1 (en) * 1997-04-29 1998-11-05 Medtronic, Inc. Optical detection and quantification of microair in blood
US6529751B1 (en) 1997-04-29 2003-03-04 Medtronic, Inc. Optical detection and quantification of microair in blood
US20050027253A1 (en) * 2003-07-29 2005-02-03 Thomas Castellano Sheath with air trap
US20100114002A1 (en) * 2004-04-08 2010-05-06 O'mahony John J Method and apparatus for an extracorporeal control of blood glucose
US20120065482A1 (en) * 2005-04-08 2012-03-15 Mark Ries Robinson Determination of blood pump system performance and sample dilution using a property of fluid being transported
US20070225675A1 (en) * 2005-11-15 2007-09-27 Mark Ries Robinson Blood Analyte Determinations
US20070244381A1 (en) * 2005-11-15 2007-10-18 Mark Ries Robinson Blood Analyte Determinations
EP1954190A2 (en) * 2005-11-15 2008-08-13 Luminous Medical, Inc. Blood analyte determinations
US20090043240A1 (en) * 2005-11-15 2009-02-12 Mark Ries Robinson Method and apparatus for blood transport using a pressure controller in measurement of blood characteristics
EP1954190A4 (en) * 2005-11-15 2010-10-13 Luminous Medical Inc Blood analyte determinations
US20100168535A1 (en) * 2006-04-12 2010-07-01 Mark Ries Robinson Methods and apparatuses related to blood analyte measurement system
US8631683B2 (en) * 2007-02-06 2014-01-21 Fresenius Medical Care Holdings, Inc. Dialysis systems including non-invasive multi-function sensor systems
US20110009800A1 (en) * 2007-02-06 2011-01-13 Fresenius Medical Care Holdings, Inc. Dialysis systems including non-invasive multi-function sensor systems
US20090048576A1 (en) * 2007-08-13 2009-02-19 Mark Ries Robinson Managing Cross-contamination in Blood Samples Withdrawn from a Multilumen Catheter
US20090048535A1 (en) * 2007-08-13 2009-02-19 Mark Ries Robinson Detecting Cross-contamination in Blood Measurements with a Multilumen Catheter
US20090054753A1 (en) * 2007-08-21 2009-02-26 Mark Ries Robinson Variable Sampling Interval for Blood Analyte Determinations
US20090054754A1 (en) * 2007-08-21 2009-02-26 Mcmahon Dave Clinician-controlled semi-automated medication management
US20090088615A1 (en) * 2007-10-01 2009-04-02 Mark Ries Robinson Indwelling Fiber Optic Probe for Blood Glucose Measurements
US20090156975A1 (en) * 2007-11-30 2009-06-18 Mark Ries Robinson Robust System and Methods for Blood Access
US8523797B2 (en) 2008-05-08 2013-09-03 Hospira, Inc. Automated point-of-care fluid testing device and method of using the same
US20090281460A1 (en) * 2008-05-08 2009-11-12 Hospira, Inc. Automated point-of-care fluid testing device and method of using the same
US20100094113A1 (en) * 2008-10-09 2010-04-15 Mark Ries Robinson Hemodynamic monitoring during automated measurement of blood constituents
US20100094114A1 (en) * 2008-10-09 2010-04-15 Mark Ries Robinson Use of multiple calibration solutions with an analyte sensor with use in an automated blood access system
US8323194B2 (en) 2009-12-18 2012-12-04 Inlight Solutions, Inc. Detection of bubbles during hemodynamic monitoring when performing automated measurement of blood constituents
US20110152642A1 (en) * 2009-12-18 2011-06-23 Mak Ries Robinson Detection of bubbles during hemodynamic monitoring when performing automated measurement of blood constituents
US9078981B2 (en) 2012-09-21 2015-07-14 Boston Scientific Scimed Inc. Catheter system including an embolism protection device
US11213619B2 (en) 2013-11-11 2022-01-04 Icu Medical, Inc. Thermal management system and method for medical devices
US10143795B2 (en) 2014-08-18 2018-12-04 Icu Medical, Inc. Intravenous pole integrated power, control, and communication system and method for an infusion pump
US10918787B2 (en) 2015-05-26 2021-02-16 Icu Medical, Inc. Disposable infusion fluid delivery device for programmable large volume drug delivery
US11660386B2 (en) 2015-05-26 2023-05-30 Icu Medical, Inc. Disposable infusion fluid delivery device for programmable large volume drug delivery
US11517734B2 (en) 2017-06-21 2022-12-06 Kristin Rossodivito System and method for detecting air embolisms in lines for hemodynamic monitoring
US10352866B1 (en) 2018-04-09 2019-07-16 Mehmet Arbatli System and method of detecting within a liquid flow of a pipe
USD939079S1 (en) 2019-08-22 2021-12-21 Icu Medical, Inc. Infusion pump
US11768142B1 (en) 2021-04-12 2023-09-26 Mehmet Arbatli Bubble detection system and method within a liquid flow of a pipe by sensing changes in local liquid pressure

Similar Documents

Publication Publication Date Title
US3812482A (en) Air emboli detector
US4181610A (en) Blood leak detector suitable for use with artificial kidneys
US5083862A (en) Liquid bubble detector
ATE41311T1 (en) DETECTOR OF AIR IN A DUCT.
US6331704B1 (en) Hydraulic fluid contamination monitor
US4631529A (en) Electro-optical fluid detector
ES2071959T3 (en) EQUIPMENT TO DETECT THE PRESENCE OF A TUBE AND / OR THE PRESENCE OF A FLUID WITHIN IT.
US4816695A (en) Optical fluid detector
ES2163838T3 (en) SYSTEM FOR MONITORING THE SUPPLY OF A FLUID.
RU94044338A (en) Level gage
ES2127545T3 (en) PRESSURE FLUID FEEDING SYSTEM.
EP0180410B1 (en) Liquid quality monitor
US3851181A (en) Blood level detector
US4575718A (en) Component state monitoring
US3740562A (en) Retro-reflective type detector head with fail-safe feature
US3628141A (en) Self-contained probe for delineating characteristics of logic circuit signals
US4213340A (en) Oil-water interfacial detector
US5831268A (en) Sensing device for reflective clear material using infrared LED
US3440016A (en) Colorimetric analyzer
CA1051539A (en) Led smoke detector circuit
WO1986004409A1 (en) A device for detecting the presence or absence of liquid in a vessel
US6420974B1 (en) Control system for pressure-sensitive protective devices
US4677426A (en) Dust detecting ring assembly
US3493304A (en) Electronic microparticle counter
US4687327A (en) Oil mist monitor