US3832530A - Object identifying apparatus - Google Patents

Object identifying apparatus Download PDF

Info

Publication number
US3832530A
US3832530A US00380928A US38092873A US3832530A US 3832530 A US3832530 A US 3832530A US 00380928 A US00380928 A US 00380928A US 38092873 A US38092873 A US 38092873A US 3832530 A US3832530 A US 3832530A
Authority
US
United States
Prior art keywords
field
region
identifying
energy
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00380928A
Inventor
H Reitboeck
T Brody
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Priority to US00380928A priority Critical patent/US3832530A/en
Application granted granted Critical
Publication of US3832530A publication Critical patent/US3832530A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • G06K7/10336Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers the antenna being of the near field type, inductive coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C3/00Sorting according to destination
    • B07C3/10Apparatus characterised by the means used for detection ofthe destination
    • B07C3/12Apparatus characterised by the means used for detection ofthe destination using electric or electronic detecting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/34Devices for discharging articles or materials from conveyor 
    • B65G47/46Devices for discharging articles or materials from conveyor  and distributing, e.g. automatically, to desired points
    • B65G47/48Devices for discharging articles or materials from conveyor  and distributing, e.g. automatically, to desired points according to bodily destination marks on either articles or load-carriers
    • B65G47/49Devices for discharging articles or materials from conveyor  and distributing, e.g. automatically, to desired points according to bodily destination marks on either articles or load-carriers without bodily contact between article or load carrier and automatic control device, e.g. the destination marks being electrically or electronically detected
    • B65G47/496Devices for discharging articles or materials from conveyor  and distributing, e.g. automatically, to desired points according to bodily destination marks on either articles or load-carriers without bodily contact between article or load carrier and automatic control device, e.g. the destination marks being electrically or electronically detected by use of magnetic responsive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10366Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications
    • G06K7/10415Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications the interrogation device being fixed in its position, such as an access control device for reading wireless access cards, or a wireless ATM
    • G06K7/10425Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications the interrogation device being fixed in its position, such as an access control device for reading wireless access cards, or a wireless ATM the interrogation device being arranged for interrogation of record carriers passing by the interrogation device
    • G06K7/10435Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications the interrogation device being fixed in its position, such as an access control device for reading wireless access cards, or a wireless ATM the interrogation device being arranged for interrogation of record carriers passing by the interrogation device the interrogation device being positioned close to a conveyor belt or the like on which moving record carriers are passing
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points

Definitions

  • the object is a mail sach or baggage which is 21 A L N 38 2 to be d1rected along a predetermlned path.
  • the label is randomly Related US- Applic ion Data positioned in the region.
  • a substantially homogeneous [63] Continuation of Ser. No. 215,333, Jan. 4, 1972, electromagnetic field is produced in the region and as abandoned. the object moves through the region, the circuit on the label is powered by, and reacts with, the field, absorb- [52] [1.5. CI..,.. 235/6l.ll H, 235/6l.12 R, 343/65, ing energy from the field.
  • the circuit on the label in- 340/280, 340/224 cludes counter elements such, as a chain of multivi- [51] Int. Cl... G06k 7/10, G061: 19/06, G08b 13/14, brators which are flopped from OFF to ON in prede- GOls 9/56 termined succession.
  • a circuit is connected to the [58] Field of Search 343/65; 340/280, 258, field which differentiates the energy absorbed by the 340/224 R; 235/6l.ll H, 61.6 J, 61.7 B, flopping of the multivibratorsresponding to the 6111 A changes in the conduction of the multivibrators.
  • a succession of pulses are thus produced which serve as [56] References Cited a code to identify the object.
  • the 3,299,424 1/1967 Vinding 343/65 circuit includes an antenna connected to the counting 3,752,960 8/1973 Walton ..235/61.11 l me ts, for example, interrupted-ring counters or D lw C k shift registers.
  • the circuit may be set for different Primary Examiner ary 00 odes.
  • This invention relates to automatic object identification and automatic object classification and sorting and has particular relationship to such identification and sorting where the identifying intelligence is randomly positioned.
  • this invention is described in this application as used in the sorting of such objects as mail sacks in an automatic Post-Office facility or of baggage in an airport. Such objects are moved usually by a conveyor in being sorted.
  • this invention may also be applied to identification and classification of objects moving under their own power, for example, vehicles or persons passing into a military compound or other secure area. It is an object of this invention to achieve high reliability in such an automatic identification, classification and sorting.
  • This invention arises from the realization that reliability of the prior-art apparatus as typified by Cambornac is wanting because in such apparatus the identify ing intelligence is actively transmitted back from the label in the mailbag to the sorting receiver.
  • the magnitude of the received signal then depends on the signal transmitted from the label and may be larger or smaller or lost in the noise of the sorting detector depending on the position of the label with respect to the transmitting and receiving antennas of the sorting apparatus.
  • the identifying intelligence which is embodied in a circuit on the label produces energy absorption from an electromagnetic field through which the object with the label attached to it passes.
  • the energy absorption is converted into impulses in groups or trains, each group or set of groups constituting an identifying code which serves to produce an identifying or classifying signal.
  • the label carries a solid-state circuit on a flexible substrate, as disclosed in References I and 11 above, which may be called an electronic post stamp.
  • the circuit includes an antenna or coil for deriving energy from the field and counter means energized from the antenna or coil.
  • the counter means is typically a plurality of interrupted ring counters or shift registers which are pre-set to produce the groups of energy-absorbing pulses constituting the identifying code for each object. Such counter means is shown in Reference III, for example, EO3-18 shown on page 238.
  • the counter means may be made up of sets of monostable multivibrators preferably formed of field effect transistors, each set being connected to flop from OFF to ON in sequence and the sets being interrelated to produce an adequate number of digits for the code (for example, five digits for a ZIP code).
  • the conduction of the transistors forming the multivibrators changes in sequence, the energy absorption from the field changes. The changes are abrupt, particularly if field-effect transistors are used, and can be differentiated electrically to produce sharp pulses.
  • the field through which the object passes is substantially homogeneous; that is, of sufficient magnitude throughout the identifying region to reflect accurately and reliably identifiable the changes in the absorption of energy from, the labels.
  • the field is produced by three pairs of orthogonal Helmholtz coils bounding the identifying region. These coils are energized from an adequate radio-frequency source.
  • the, source may have a frequency of about 1 megacycle (1 Me).
  • a differentiating circuit is coupled to the field and produces pulses dependent on the changes in the absorbed energy.
  • the sensing system should be enclosed in a magnetically shielded box.
  • the shielding must be of a material of low loss and of high magnetic permeability. This shielding also increases the coupling between the antenna on the label and coils producing the field.
  • the identification achieved with this apparatus is highly reliable because the code is composed'of the seqential order of ON-OFF pulses and does not depend on the magnitude of these pulses.
  • the apparatus lends itself readily to use of the electronic post stamp on the label since it operates in a simple manner with induced or received power.
  • FIG. 1 is a view partly in perspective with parts broken away and partly diagrammatic showing an embodi ment of this invention
  • FIG. 2 is a view in perspective showing particularly the electromagnetic field producing coils and the shield for the field of the apparatus shown in FIG. 1;
  • FIG. 3 is a plan view of the object-identifying label of apparatus in accordance with this invention.
  • FIG. 4 is a schematic of counting means of relatively simple structure which is impressed on a flexible substrate for a label in the practice of this invention
  • FIG. 5 is a like schematic of counting means for producing a coded absorption impulse train having a plurality of digits
  • FIGS. 6A, B, C are graphs showing the operation of the counting means of FIG. 5;
  • FIG. 7 is a schematic of a circuit for reliable detecting and differentiating the energy absorption in the practice of this invention.
  • FIGS. 8, 9 and 10 are diagrams used in computations of the electrical parameters which are involved in the practice of this invention.
  • the apparatus shown in the drawings includes a conveyor system 21 along which objects 23 to be classified or sorted are advanced.
  • Each object 23 carries a label 25.
  • the label 25 (FIG. 3) typically comprises a rectangular plate 27 of cardboard or the like to which is secured a flexible substrate 29 having impressed thereon an object-identifying circuit.
  • This circuit includes a coil or antenna 31 to which'is connected a network 33. When electrical energy is induced by an electromagnetic field in the antenna, the circuit absorbs energy from the field.
  • the network 33 is structured so that the absorbed energy varies in such a way as to produce an object-identifying code.
  • the plate 27 has wire or strings 35, or may be provided with a pressure-sensitive adhesive on its back face (not shown) for attachment to the object 23.
  • the conveyor 21 carries the object 23 through a substantially homogeneous electromagnetic field.
  • This field is produced by an assembly 41 of three pairs 43, 43a, 45, 45a, 47, 47a of Helmholtz coils mutually at right angles to each other.
  • the pairs of coils are energized from a radio-frequency source 49 which may typically have a frequency of the order of l Mega-Hertz through a resistor 51 (or other type of impedance) across which is produced a voltage drop corresponding to the time-differential of the energy absorption reflected by the antenna 31 (see FIG. 7).
  • the connection to two of three pairs of coils includes variable impedances 53 and 54 for setting the phase of the current flowing through the two pairs of coils.
  • the assembly 41 produces a substantially homogeneous electromagnetic field; the coupling between the field and the antenna 31 may be improved in reliability by automatic setting of the impedance 54 to two opposite values by phase-shift setter 56 while the object 23 is moving through the field.
  • the setter 56 may be shifted between the two settings responsive to switches 58 and 60 (photo-electric typically) which set the phase shift in one position when the object 23 enters, the field and in a second opposite position after it passes part way through the field.
  • the assembly 41 is enclosed in a magnetically shielded box 61.
  • This box is generally in the form of a rectangular parallelepiped whose faces typically consist of a foil of plastic that contains magnetic particles in an insulating suspension.
  • a second shield such as copper wire mesh, or laminar metal foils (not shown) can be added on the outside.
  • the box is provided either with hinged flaps 69 or photo cell controlled doors, made of the abovementioned shielding material (FIG. 2).
  • the resistor 51 is connected to derive signal current pulses from a bridge network 71 shown in FIG. 7.
  • the voltage pulses which appear across resistor 51 are impressed on the input of an amplifier 73 through conductors 75 and 77.
  • the output of the amplifier impresses pulses on a decoder 79 which supplies the signals resulting from the decoding to a control 81 (a logic network) that actuates mechanical gates 83 to sort the objects 23 in accordance with the codes.
  • FIG. 4 A circuit imprinted on a substrate 29 on a label 25, with which a simple number code can be produced is shown in FIG. 4.
  • This circuit includes a start network or electronic gate 91 and a succession of counter elements 93, 95, 101.
  • the network 33 is supplied with power from the antenna 31 through a rectifier and voltage stabilizer 111 which supplies potential between its hot terminal 113 and ground.
  • the start network 91 is connected directly to terminal 113; the elements 93 through 101 are each connected to the terminal 113 through perforable knock-out I1, 12-110, any of which may be perforated to interrupt the connection of the element to the terminal 113.
  • the start network is connected to the start input of the first element 93; the element 93 and each element thereafter is connected to the start input of a succeeding element 95 through 101.
  • an element 93 through 101 When an element 93 through 101 receives power from terminal 113 and in addition receives a start sig nal, it is actuated or flops and a valve, for example, a field-effect transistor, is rendered conducting. Each element in its turn remains actuated for a predetermined interval and then becomes quiescent and transmits a starting signal to the next element.
  • the number N of successive elements 93, 95-101 which are actuated is determined by interrupting the conduction through the n lst element by perforating its associated knockout In 1. Thus, if knock-out I2 is perforated, only element 93 is actuated; if knock-out I10 is perforated, nine elements are actuated.
  • terminal 1 13 and the start network 91 are actuated when the label 23 with circuit 33 is moved into the electromagnetic field.
  • Element 93 is then actuated.
  • a predetermined time interval after 93 is actuated it impresses a starting signal on element 95 and the latter is actuated; a predetermined time interval later, 95 impresses a signal on the next element actuating it, and so on until the element preceding the one whose connection to terminal 113 is interrupted is actuated.
  • a current flows through the element absorbing energy from the field.
  • the code in this case is produced by differentiating the absorbed energy and consists of a number of im pulses.
  • Apparatus in which the label includes a circuit as shown in FIG. 4 could serve to direct objects 23 along separate paths corresponding to the number of absorbed impulses.
  • the control 81 responds to the number of impulses to set the gates 83 accordingly.
  • FIG. 5 shows a coding circuit 33a which is capable of producing a more complex code, for example, a ZIP code.
  • the antenna 31a is connected to the coding network through a rectifier 121 having hot output terminal 123.
  • the terminal 123 supplies a start network 125 which in turn is connected to turn on in sequence a succession of counting elements 127, 129, 131, 133 and 141 and another sequence of counting elements 143,
  • the elements 127-141 are free running and once actuated by the start network 125 through terminal 150, operate in the same sequence or cycle on each start.
  • the timing components of these elements is such that they shift from each to the succeeding element at a relatively low rate, for example, 1 millisecond.
  • each element 127-141 times out, it sends a starting signal to the succeeding element through terminals 151.
  • it is necessary that it receive a start signal through terminal 150 or 151 and voltage through terminal 123.
  • the counting elements 143-149 are connected respectively to terminals 150 and 151 through conductors 161, 163, 165, 167, 169, 171 and through diodes 173.
  • the conductors 161171 includes knock-outs or interrupting positions 175 where the conductors 161 may be interrupted to set the numbers of elements 143 through 149 connected to each terminal 150 or 151. For example, if the upper knock-out" 175 in conductor 161 is perforated, only element 143 is actuated through terminal 150; if the lower knock-out 175 in conductor 165 is perforated, only elements 143, 145, 147 are actuated through the terminal 150 through which conductor 165 is connected to element 129.
  • the elements connected to any conductor 161171 flop at a frequency which is substantially higher than the frequency at which the elements 127-141 flop. Typically, the elements 143-149 may flop in succession in 0.05 millisecond after they are actuated.
  • the interruption of the conductors 161-171 at positions 175 of FIG. 5 and at I1 through I of FIG. 4 can be carried out in a number of different ways; for example by key punching or by etching.
  • etching a sheet of plastic or paper that contains on one side microscopic bubbles with sealed-in acid would be opposite to the printed circuitry. When pressure is applied (e.g., by writing on the sheet) the bubbles break and the released acid locally interrupts the circuitry.
  • FIG. 5 The operation of the circuit shown in FIG. 5 will be explained with reference to FIG. 6, particularly FIGS. 6A and 6B.
  • current is plotted vertically and time horizontally. Points along the time axis on all graphs 6A, 6B, 6C which are at the same distance from the ordinate axes represent the same time instant.
  • the actuation of the start network also causes the counter elements 143 through 149 to be actuated up to the element preceding the open knock-out point 175 in line 161.
  • This actuation of elements 143 through 149 is represented by the narrow trapezoidal curves on the right of FIG. 6B which are identified as C-143-149. This set of curves corresponds to a condition in which there are 10 elements 143-149 and no knock-out in line 161 is perforated.
  • the first digit of the code 15 Zero.
  • element 127 causes elements 143 through 149 to be actuated up to the perforated knock-out in line 163 which is the first knock-out. In this case, only element 143 is actuated.
  • the curve is identifiedas C127143149 in FIG. 6B. This actuation produces the second digit 1. In the same manner, the
  • third digit, 3, and the fourth digit, 4 are produced as shown in FIG. 6B.
  • a fifth digit (not shown) is produced through element 141 and line 171.
  • FIG. 7 shows the detector circuit which responds to the absorption of energy by the circuits of FIGS. 4 or 5 and converts the variations in this absorption into an object-identifying code.
  • the current pulses produced in these circuits are of the order of a few microamperes compared to field-producing current which may be as high as l0 amperes.
  • the circuit shown in FIG. 7 takes advantage of the fact that the current pulses caused by the power absorption have an approximate phase shift of 90. To achieve this advantage, the detector circuit is phase sensitive.
  • the detector circuit includes the bridge network 71.
  • the network 71 includes the power supply 49, a sensing resistor or impedance 201 and balancing impedances 203, 205, 207.
  • the impedance 201 may be a standard resistor of 1 ohm, for example, and the other impedances may be appropriately dimensioned.
  • the source 49 and the assembly 41 are connected across the sensing impedance 201.
  • the source 49 is also connected to the junction 211 of the bridge through variable attenuation impedance 213 and phase-shifter 215.
  • the output terminals of the bridge 71 are at the junctions 217 of the source 49 and the impedance 201 and the junction 219 of resistors 203 and 205. Between terminals 217 and 219 a voltage U, is derived which varies with the power absorbed by the object identifying circuit (FIGS. 4, 5).
  • the potential U is impressed across an impedance 221 through a diode 223 which operates as a rectifier.
  • the rectified voltage U has a low frequency (slow) component, caused by the movement of the object 23 and label 25 and the varying absorption of the object 23 as it moves, and a high frequency (fast), pulsed component, produced by the circuit in the label.
  • the slow component is impressed across a capacitor 225 through a resistor 227 which operate as an integrating network.
  • the voltage of capacitor 225 supplies a bridge alignment network 229 which is connected to attenuator 213 and phase shifter 215 to maintain the bridge 71 in alignment.
  • the pulsed component is passed through a differentiating network including capacitor 231 and resistor 51 and it delivers the code signals to amplifier 73 (FIG. 1).
  • FIG. 6C The operation of the detector circuit is illustrated in FIG. 6C in which time-rate-of-change of the currents represented in FIGS. 6A and 6B is plotted vertically and time horizontally.
  • the sharply peaked curves identified by C0, C1, C3, C4 are the pulses transmitted to amplifier 73. These pulses depend on the rate at which the counter elements 127 to 149 pass from nonconducting state to fully conducting state and are positively and reliably identifiable.
  • Apparatus for identifying objects in a region including means for producing an electromagnetic field in said region, object-identifying means carried by each said object, electromagnetically coupled to said field, to absorb energy of variable magnitude from said field while said object is in said region, said objectidentifying means including circuit means powered only by said field, for converting said absorbed energy into sequential pulses defining a code for identifying said last-named object, the said object-identifying means also including means for selecting different sequences of pulses to define different codes for different objects, said object-identifying means while in said region being randomly positioned in said field but the flux of said field permeating said region so that the energy absorbed from said field by electromagnetic linkage of said circuit means with said field defines reliably distinguishable pulses regardless of the random positioning of said object-identifying means, and means responsive to said pulses for producing an identification of said last-named object.
  • identification-producing means includes differentiating means to convert the pulses derived from the energy absorbed from the field into impulses constituting the identifying code.
  • the objectidentifying means for each object includes a plurality of ring counters connected in an electrical circuit to convert the energy absorbed from the field into a predetermined number of sets of digital counts defining the code corresponding to said object.
  • the apparatus of claim 5 including field-producing means having means for maintaining the field in effective energy transfer relationship with the path defining means, such as to produce reliably distinguishable code-defining pulses derived from absorption of energy in said field regardless of the random orientation in said field of the path-defming means which random orientation might in the absence of said maintaining means produce low absorption of energy from said resultant field.
  • Apparatus for identifying objects in a region including means for producing an electromagnetic field in said region, said field-producing means including a plurality of pairs of Helmholtz coils bounding said region and also including means for energizing said Helmholtz coils to produce said field, objectidentifying means carried by each said object, electromagnetically coupled to said field, to absorb energy of variable magnitude from said field while said object is in said region, said object-identifying means including circuit means for converting said absorbed energy into variations defining a code for identifying said lastnamed object, said object-identifying means while in said region being randomly positioned in said field but being electromagnetically linked to said field so that the variations derived from the energy absorbed from said field by said object-identifying means defines a reliably distinguishable code regardless of the random positioning of said object-identifying means, and means responsive to said energy absorbed from said field for producing an identification of said last-named object.
  • Apparatus for identifying objects in a region including means for producing an electromagnetic field in said region, object-identifying means carried by each said object, electromagnetically coupled to said field, to absorb energy of variable magnitude from said field while said object is in said region, said objectidentifying means including circuit means for converting said absorbed energy into pulses distinguishing a code for identifying said last-named object, said objectidentifying means while in said region being randomly positioned in said field but said field permeating said region so that the energy absorbed therefrom by said object-identifying means in said field defines reliably distinguishable pulses regardless of the random positioning of said object-identifying means, and means responsive to the pulses derived from said energy absorbed from said field for producing an identification of said last-named object, said responsive means including a balanced network unbalanced by each said pulse as it is absorbed and said network including means, responsive to the movement of the object through the region, for maintaining the network in balance in the absence of pulses.
  • Apparatus for identifying objects in a region including means for producing an electromagnetic field in said region, object-identifying means carried by each said object, electromagnetically coupled to said field, to absorb energy of variable magnitude from said field while said object is in said region, said objectidentifying means having circuit means for converting said absorbed energy into variations defining a code for identifying said last-named object, said objectidentifying means while in said region being randomly positioned in said field but said field permeating said region so that the energy absorbed therefrom by said object-identifying means in said field defines reliably distinguishable variations regardless of the random positioning of said object-identifying means, means re sponsive to said object, for changing the orientation of said field relative to said object-identifying means while said object is in said region, and means, responsive to said variations, for producing an identification of said last-named object.
  • the objectidentifying means includes a plurality of digital counters and also includes means powered only by the energy absorbed from the field for selectively actuating said counters to count in a predetermined succession, said counters being interconnected so that on actuation of said actuating means each succeeding counter is actuated to count responsive to the actuation of a preceding counter.
  • the changing means includes means responsive to the object for setting the field in a first orientation when the object enters the region and means responsive to the object for thereafter setting the field in at least one second orientation after said object has passed a predetermined distance through the region.

Abstract

There is disclosed object identifying apparatus for an object carrying an identifying label having an identifying electrical circuit and moving or being moved through a region where the identifying circuit is read. Typically, the object is a mail sack or baggage which is to be directed along a predetermined path. When the object moves through the region, the label is randomly positioned in the region. A substantially homogeneous electromagnetic field is produced in the region and as the object moves through the region, the circuit on the label is powered by, and reacts with, the field, absorbing energy from the field. The circuit on the label includes counter elements such, as a chain of multivibrators which are flopped from OFF to ON in predetermined succession. A circuit is connected to the field which differentiates the energy absorbed by the flopping of the multivibrators responding to the changes in the conduction of the multivibrators. A succession of pulses are thus produced which serve as a code to identify the object. There is also disclosed a label having a throwaway flexible substrate on which the circuit is printed. The circuit includes an antenna connected to the counting elements, for example, interrupted-ring counters or shift registers. The circuit may be set for different codes.

Description

[ Aug. 27, 1974 OBJECT IDENTIFYING APPARATUS [75] Inventors: Herbert J. P. Reitboeck; Thomas F. [57] ABSTRACT Brody, both of Pittsburgh, Pa. There is disclosed object identifying apparatus for an [73] Assignee: Westinghouse Electric Corporation, .oblect cari'ymg i lqemlfymg label havmg 1 Identifymg electrlcal circuit and movmg or being moved Pittsburgh, Pa. through a reg1on where the ldentifying c1rcu1t 1s read. [22] Filed: July 19, 1973 Typically, the object is a mail sach or baggage which is 21 A L N 38 2 to be d1rected along a predetermlned path. When the 1 pp 0 0,9 8 object moves through the region, the label is randomly Related US- Applic ion Data positioned in the region. A substantially homogeneous [63] Continuation of Ser. No. 215,333, Jan. 4, 1972, electromagnetic field is produced in the region and as abandoned. the object moves through the region, the circuit on the label is powered by, and reacts with, the field, absorb- [52] [1.5. CI..,.. 235/6l.ll H, 235/6l.12 R, 343/65, ing energy from the field. The circuit on the label in- 340/280, 340/224 cludes counter elements such, as a chain of multivi- [51] Int. Cl... G06k 7/10, G061: 19/06, G08b 13/14, brators which are flopped from OFF to ON in prede- GOls 9/56 termined succession. A circuit is connected to the [58] Field of Search 343/65; 340/280, 258, field which differentiates the energy absorbed by the 340/224 R; 235/6l.ll H, 61.6 J, 61.7 B, flopping of the multivibratorsresponding to the 6111 A changes in the conduction of the multivibrators. A succession of pulses are thus produced which serve as [56] References Cited a code to identify the object.
UNIT D ST T S PATENTS There is also disclosed a label having a throwaway 2,774,060 12/1956 Thompson 340/258 flexible substrate on which the circuit is printed. The 3,299,424 1/1967 Vinding 343/65 circuit includes an antenna connected to the counting 3,752,960 8/1973 Walton ..235/61.11 l me ts, for example, interrupted-ring counters or D lw C k shift registers. The circuit may be set for different Primary Examiner ary 00 odes. Assistant ExaminerRobert M. Kilgore I Attorney, Agent, or F irm-D. Schron l2 Chums 10 Drawmg figures PHASE 45 5 2211152 450 Q CONTROL DECODER -AMPLIFIER 23 Q I 27 f )9 0 i 58 I 470 I I 0 H: \qlbk MECHA mm. H
GAT i-IS B3 0 60 wimmuszv I974 3.532530 SHEEI 2 0F 4 FIG. 5
START VOLTAGE STABILIZER RECTIFIER AND RQTENFEMH? SHEET '& 0F
FIG. IO
JdL
FIG. 8
OBJECT IDENTIFYING APPARATUS This is a continuation, of application Ser. No. 215,333 filed Jan. 4, 1972, now abandoned.
CROSS-REFERENCE TO RELATED DOCUMENTS The following documents are incorporated in this application by reference as of special significance to this invention unlike the significance of the prior art as a whole:
Reference 1 Flexible Thin-Film Transistors Stretch Performance, Shrink Cost Peter Brody and Derrick Page Electronics Aug. 19, 1968.
Reference lI Flexible Transistors, Large-Scale Ingegration and Displays T. P. Brody and D. J. Page Digest of Techanical Papers 1969 Government Microcircuits Applications Conference, Washington, Dc. September, 1969.
Reference lll Digital Integrated Circuit D.A.T.A.
Book 12th Edition.
BACKGROUND OF THE INVENTION This invention relates to automatic object identification and automatic object classification and sorting and has particular relationship to such identification and sorting where the identifying intelligence is randomly positioned. In the interest of concreteness, this invention is described in this application as used in the sorting of such objects as mail sacks in an automatic Post-Office facility or of baggage in an airport. Such objects are moved usually by a conveyor in being sorted. However, this invention may also be applied to identification and classification of objects moving under their own power, for example, vehicles or persons passing into a military compound or other secure area. It is an object of this invention to achieve high reliability in such an automatic identification, classification and sorting.
As typical of the prior art in the area of this invention are the US. Pat. Nos, Vinding 3,299,424 and Cambornac, 3,438,489. Vinding is not applicable to a situation where the object to be identified carries the identifying intelligence and is not addressed to random disposition of such intelligence. Cambomac discloses the sorting of mail sacks having tickets which carry the sorting intelligence (20 FIG. la) However, Cambomac does not have the reliability that is indispensable for such a sorting operation.
It is an object of this invention to overcome the disadvantages of the prior art and to provide highly reliable identification, classification and sorting apparatus for objects which have the identifying intelligence attached to them and assume a random position or orientation during the identification.
SUMMARY OF THE INVENTION This invention arises from the realization that reliability of the prior-art apparatus as typified by Cambornac is wanting because in such apparatus the identify ing intelligence is actively transmitted back from the label in the mailbag to the sorting receiver. The magnitude of the received signal then depends on the signal transmitted from the label and may be larger or smaller or lost in the noise of the sorting detector depending on the position of the label with respect to the transmitting and receiving antennas of the sorting apparatus.
In accordance with this invention, the identifying intelligence which is embodied in a circuit on the label produces energy absorption from an electromagnetic field through which the object with the label attached to it passes. The energy absorption is converted into impulses in groups or trains, each group or set of groups constituting an identifying code which serves to produce an identifying or classifying signal.
More concretely, the label carries a solid-state circuit on a flexible substrate, as disclosed in References I and 11 above, which may be called an electronic post stamp. Typically, the circuit includes an antenna or coil for deriving energy from the field and counter means energized from the antenna or coil. The counter means is typically a plurality of interrupted ring counters or shift registers which are pre-set to produce the groups of energy-absorbing pulses constituting the identifying code for each object. Such counter means is shown in Reference III, for example, EO3-18 shown on page 238. 'However, typically the counter means may be made up of sets of monostable multivibrators preferably formed of field effect transistors, each set being connected to flop from OFF to ON in sequence and the sets being interrelated to produce an adequate number of digits for the code (for example, five digits for a ZIP code). As the conduction of the transistors forming the multivibrators changes in sequence, the energy absorption from the field changes. The changes are abrupt, particularly if field-effect transistors are used, and can be differentiated electrically to produce sharp pulses.
The field through which the object passes is substantially homogeneous; that is, of sufficient magnitude throughout the identifying region to reflect accurately and reliably identifiable the changes in the absorption of energy from, the labels. Typically, the field is produced by three pairs of orthogonal Helmholtz coils bounding the identifying region. These coils are energized from an adequate radio-frequency source. Typically, the, source may have a frequency of about 1 megacycle (1 Me). A differentiating circuit is coupled to the field and produces pulses dependent on the changes in the absorbed energy.
To avoid distortions of the readout due to stray fields from electric power devices and/0r inteference from radio transmitters, the sensing system should be enclosed in a magnetically shielded box. The shielding must be of a material of low loss and of high magnetic permeability. This shielding also increases the coupling between the antenna on the label and coils producing the field.
The identification achieved with this apparatus is highly reliable because the code is composed'of the seqential order of ON-OFF pulses and does not depend on the magnitude of these pulses. The apparatus lends itself readily to use of the electronic post stamp on the label since it operates in a simple manner with induced or received power.
BRIEF DESCRIPTION OF THE DRAWING For a better understanding of this invention, both as to its organization and as to its method of operation, together with additional objects and advantages thereof, reference is made to the following description, taken in connection with the accompanying drawings, in which:
FIG. 1 is a view partly in perspective with parts broken away and partly diagrammatic showing an embodi ment of this invention;
FIG. 2 is a view in perspective showing particularly the electromagnetic field producing coils and the shield for the field of the apparatus shown in FIG. 1;
FIG. 3 is a plan view of the object-identifying label of apparatus in accordance with this invention;
FIG. 4 is a schematic of counting means of relatively simple structure which is impressed on a flexible substrate for a label in the practice of this invention;
FIG. 5 is a like schematic of counting means for producing a coded absorption impulse train having a plurality of digits;
FIGS. 6A, B, C are graphs showing the operation of the counting means of FIG. 5;
FIG. 7 is a schematic of a circuit for reliable detecting and differentiating the energy absorption in the practice of this invention; and
FIGS. 8, 9 and 10 are diagrams used in computations of the electrical parameters which are involved in the practice of this invention.
DETAILED DESCRIPTION OF EMBODIMENTS The apparatus shown in the drawings includes a conveyor system 21 along which objects 23 to be classified or sorted are advanced. Each object 23 carries a label 25. The label 25 (FIG. 3) typically comprises a rectangular plate 27 of cardboard or the like to which is secured a flexible substrate 29 having impressed thereon an object-identifying circuit. This circuit includes a coil or antenna 31 to which'is connected a network 33. When electrical energy is induced by an electromagnetic field in the antenna, the circuit absorbs energy from the field. The network 33 is structured so that the absorbed energy varies in such a way as to produce an object-identifying code. The plate 27 has wire or strings 35, or may be provided with a pressure-sensitive adhesive on its back face (not shown) for attachment to the object 23.
The conveyor 21 carries the object 23 through a substantially homogeneous electromagnetic field. This field is produced by an assembly 41 of three pairs 43, 43a, 45, 45a, 47, 47a of Helmholtz coils mutually at right angles to each other. The pairs of coils are energized from a radio-frequency source 49 which may typically have a frequency of the order of l Mega-Hertz through a resistor 51 (or other type of impedance) across which is produced a voltage drop corresponding to the time-differential of the energy absorption reflected by the antenna 31 (see FIG. 7). The connection to two of three pairs of coils includes variable impedances 53 and 54 for setting the phase of the current flowing through the two pairs of coils. The assembly 41 produces a substantially homogeneous electromagnetic field; the coupling between the field and the antenna 31 may be improved in reliability by automatic setting of the impedance 54 to two opposite values by phase-shift setter 56 while the object 23 is moving through the field. The setter 56 may be shifted between the two settings responsive to switches 58 and 60 (photo-electric typically) which set the phase shift in one position when the object 23 enters, the field and in a second opposite position after it passes part way through the field. Thus, any difficulty with obtaining a reliable signal by reason of parallelism between the antenna 31 and the field is avoided.
The assembly 41 is enclosed in a magnetically shielded box 61. This box is generally in the form of a rectangular parallelepiped whose faces typically consist of a foil of plastic that contains magnetic particles in an insulating suspension. As an additional protection against the influence of external electric fields, a second shield such as copper wire mesh, or laminar metal foils (not shown) can be added on the outside. At the opposite faces 65 and 67 through which the object 23 is carried by the conveyor in and out of the box 61, the box is provided either with hinged flaps 69 or photo cell controlled doors, made of the abovementioned shielding material (FIG. 2).
The resistor 51 is connected to derive signal current pulses from a bridge network 71 shown in FIG. 7. The voltage pulses which appear across resistor 51 are impressed on the input of an amplifier 73 through conductors 75 and 77. The output of the amplifier impresses pulses on a decoder 79 which supplies the signals resulting from the decoding to a control 81 (a logic network) that actuates mechanical gates 83 to sort the objects 23 in accordance with the codes.
A circuit imprinted on a substrate 29 on a label 25, with which a simple number code can be produced is shown in FIG. 4. This circuit includes a start network or electronic gate 91 and a succession of counter elements 93, 95, 101. The network 33 is supplied with power from the antenna 31 through a rectifier and voltage stabilizer 111 which supplies potential between its hot terminal 113 and ground. The start network 91 is connected directly to terminal 113; the elements 93 through 101 are each connected to the terminal 113 through perforable knock-out I1, 12-110, any of which may be perforated to interrupt the connection of the element to the terminal 113. The start network is connected to the start input of the first element 93; the element 93 and each element thereafter is connected to the start input of a succeeding element 95 through 101. When an element 93 through 101 receives power from terminal 113 and in addition receives a start sig nal, it is actuated or flops and a valve, for example, a field-effect transistor, is rendered conducting. Each element in its turn remains actuated for a predetermined interval and then becomes quiescent and transmits a starting signal to the next element. The number N of successive elements 93, 95-101 which are actuated is determined by interrupting the conduction through the n lst element by perforating its associated knockout In 1. Thus, if knock-out I2 is perforated, only element 93 is actuated; if knock-out I10 is perforated, nine elements are actuated.
In the use of the network 33 shown in FIG. 4, terminal 1 13 and the start network 91 are actuated when the label 23 with circuit 33 is moved into the electromagnetic field. Element 93 is then actuated. A predetermined time interval after 93 is actuated, it impresses a starting signal on element 95 and the latter is actuated; a predetermined time interval later, 95 impresses a signal on the next element actuating it, and so on until the element preceding the one whose connection to terminal 113 is interrupted is actuated. On each actuating, a current flows through the element absorbing energy from the field.
The code in this case is produced by differentiating the absorbed energy and consists of a number of im pulses. Apparatus in which the label includes a circuit as shown in FIG. 4 could serve to direct objects 23 along separate paths corresponding to the number of absorbed impulses. In this case, the control 81 responds to the number of impulses to set the gates 83 accordingly.
FIG. 5 shows a coding circuit 33a which is capable of producing a more complex code, for example, a ZIP code. The antenna 31a is connected to the coding network through a rectifier 121 having hot output terminal 123. The terminal 123 supplies a start network 125 which in turn is connected to turn on in sequence a succession of counting elements 127, 129, 131, 133 and 141 and another sequence of counting elements 143,
145, 147, 149 For producing a ZIP code, there may be four elements 127-141 and ten elements 143-149.
The elements 127-141 are free running and once actuated by the start network 125 through terminal 150, operate in the same sequence or cycle on each start. The timing components of these elements is such that they shift from each to the succeeding element at a relatively low rate, for example, 1 millisecond. When each element 127-141 times out, it sends a starting signal to the succeeding element through terminals 151. For any element l27141 to be actuated, it is necessary that it receive a start signal through terminal 150 or 151 and voltage through terminal 123.
The counting elements 143-149 are connected respectively to terminals 150 and 151 through conductors 161, 163, 165, 167, 169, 171 and through diodes 173. The conductors 161171 includes knock-outs or interrupting positions 175 where the conductors 161 may be interrupted to set the numbers of elements 143 through 149 connected to each terminal 150 or 151. For example, if the upper knock-out" 175 in conductor 161 is perforated, only element 143 is actuated through terminal 150; if the lower knock-out 175 in conductor 165 is perforated, only elements 143, 145, 147 are actuated through the terminal 150 through which conductor 165 is connected to element 129. The elements connected to any conductor 161171 flop at a frequency which is substantially higher than the frequency at which the elements 127-141 flop. Typically, the elements 143-149 may flop in succession in 0.05 millisecond after they are actuated.
The interruption of the conductors 161-171 at positions 175 of FIG. 5 and at I1 through I of FIG. 4 can be carried out in a number of different ways; for example by key punching or by etching. For etching, a sheet of plastic or paper that contains on one side microscopic bubbles with sealed-in acid would be opposite to the printed circuitry. When pressure is applied (e.g., by writing on the sheet) the bubbles break and the released acid locally interrupts the circuitry.
The operation of the circuit shown in FIG. 5 will be explained with reference to FIG. 6, particularly FIGS. 6A and 6B. In FIGS. 6A and 613 current is plotted vertically and time horizontally. Points along the time axis on all graphs 6A, 6B, 6C which are at the same distance from the ordinate axes represent the same time instant.
When the label carrying an appropriately set circuit as is shown in FIG. 5 moves into the field produced by assembly 41 (FIG. 1) power is impressed on terminal 123 and the start network 125 is actual and then the counter elements 127 to 141 are actuated in succession, each element conducting for an interval of the order of l millisecond and then rendering the succeeding one conducting while it is rendered non-conducting by the reaction of the succeeding element. The generally trapezoidal curves of FIG. 6A represent the conduction of each of the elements 127 to 141 in its turn and are labelled accordingly with a prefix C. The rising and falling ends of each of the curves C127 to C141 have a high slope, particularly as the elements 127-141 are formed of field-effect transistors.
The actuation of the start network also causes the counter elements 143 through 149 to be actuated up to the element preceding the open knock-out point 175 in line 161. This actuation of elements 143 through 149 is represented by the narrow trapezoidal curves on the right of FIG. 6B which are identified as C-143-149. This set of curves corresponds to a condition in which there are 10 elements 143-149 and no knock-out in line 161 is perforated. The first digit of the code 15 Zero.
The actuation of element 127 causes elements 143 through 149 to be actuated up to the perforated knock-out in line 163 which is the first knock-out. In this case, only element 143 is actuated. The curve is identifiedas C127143149 in FIG. 6B. This actuation produces the second digit 1. In the same manner, the
third digit, 3, and the fourth digit, 4, are produced as shown in FIG. 6B. A fifth digit (not shown) is produced through element 141 and line 171.
FIG. 7 shows the detector circuit which responds to the absorption of energy by the circuits of FIGS. 4 or 5 and converts the variations in this absorption into an object-identifying code. The current pulses produced in these circuits are of the order of a few microamperes compared to field-producing current which may be as high as l0 amperes. The circuit shown in FIG. 7 takes advantage of the fact that the current pulses caused by the power absorption have an approximate phase shift of 90. To achieve this advantage, the detector circuit is phase sensitive.
The detector circuit includes the bridge network 71. The network 71 includes the power supply 49, a sensing resistor or impedance 201 and balancing impedances 203, 205, 207. The impedance 201 may be a standard resistor of 1 ohm, for example, and the other impedances may be appropriately dimensioned. The source 49 and the assembly 41 are connected across the sensing impedance 201. The source 49 is also connected to the junction 211 of the bridge through variable attenuation impedance 213 and phase-shifter 215. The output terminals of the bridge 71 are at the junctions 217 of the source 49 and the impedance 201 and the junction 219 of resistors 203 and 205. Between terminals 217 and 219 a voltage U, is derived which varies with the power absorbed by the object identifying circuit (FIGS. 4, 5).
The potential U, is impressed across an impedance 221 through a diode 223 which operates as a rectifier. The rectified voltage U, has a low frequency (slow) component, caused by the movement of the object 23 and label 25 and the varying absorption of the object 23 as it moves, and a high frequency (fast), pulsed component, produced by the circuit in the label. The slow component is impressed across a capacitor 225 through a resistor 227 which operate as an integrating network. The voltage of capacitor 225 supplies a bridge alignment network 229 which is connected to attenuator 213 and phase shifter 215 to maintain the bridge 71 in alignment. The pulsed component is passed through a differentiating network including capacitor 231 and resistor 51 and it delivers the code signals to amplifier 73 (FIG. 1).
The operation of the detector circuit is illustrated in FIG. 6C in which time-rate-of-change of the currents represented in FIGS. 6A and 6B is plotted vertically and time horizontally. The sharply peaked curves identified by C0, C1, C3, C4 are the pulses transmitted to amplifier 73. These pulses depend on the rate at which the counter elements 127 to 149 pass from nonconducting state to fully conducting state and are positively and reliably identifiable.
COMPUTATION ON TYPICAL APPARATUS The following computation of the voltage induction in the coil or antenna 31 of the circuit on the label is made with reference to the simplified structure shown in FIG. 8.
It is assumed that the assembly 41 and antenna 31 are coplanar and are represented by coils 251 and 271 having parameters as indicated. It should be noted, however, that in the actual design, a Helmholtz arrangement of the antennas should be used, since coplanarity of the antennas 41 and 31 is generally not fulfilled in practice.
The mutual inductivity between two coils (FIG. 1) is:
where W and W are the respective number of turns in coils 251 and 271. The voltage induced in coil 2 (antenna 31) is given by where i is the instantaneous value of the current in the coil 251. With cos (27Tfl) we obtain for the peak value of the voltage in the coin 271:
For r =50 cm, r Z cm, W =l W IOO, we obtain from Eq. 3:
IVI 510-6 lAJ Eq. 4 applies to unshielded coil 25] and a coil 271 without ferrite.
The power requirement for the field produced by assembly 41 will be computed with reference to FIG. 9. An antenna 251 (loop antenna) of one turn has been chosen above for the following reasons:
From Eq. 3 it follows that the voltage, U which is induced in the antenna 31 on the label, is proportional to the number of windings W, of the antenna 251, at a given current, 1,, for coil 251.
The inductivity, L, of a loop antenna, however, increases approximately with W so that the voltage required to drive a current J, through the coil 251 (U,=J,-2vrf-L,) becomes very high for large W It is therefore, desirable to keep the turns W, of the antenna 251, W low. This can be also understood from the basic transformer equation:
( u, I m/w The inductivity of a circular loop antenna of one winding (FIG. 9) is in a good approximation l' 'o l 1 "(n/ 0) For r =5O cm and r =l cm, we obtain L=1r 10*" 50 In 50= 2.46;/.H
From equation 4 it follows that for a voltage of 10V in the antenna or coil 271, a current of 10A is required in the antenna or coil 251 at a frequency of 1 MHz.
The voltage required to drive a current of 10A through the antenna 251 is then U =21rfL J, i V
which yields a required power to produce the field of:
P=l/2U-J 780 VA The following computation of the voltage induced in the antenna 31 on the label 25 is made with reference to FIG. 10 in which the antenna 31 is shown as a coil 281 in cross section with turns 283. These are W turns.
The inductivity of the receiver coil is approximately (See FIG. 10) With a d=O.4 cm and l=b=0.4 cm we obtain The relative change in the transmitter current is and While embodiments of this invention have been disclosed herein, many modifications of the embodiments and of their uses are feasible. This invention then is not to be restricted except insofar as is necessitated by the spirit of the prior art.
What is claimed is:
1. Apparatus for identifying objects in a region including means for producing an electromagnetic field in said region, object-identifying means carried by each said object, electromagnetically coupled to said field, to absorb energy of variable magnitude from said field while said object is in said region, said objectidentifying means including circuit means powered only by said field, for converting said absorbed energy into sequential pulses defining a code for identifying said last-named object, the said object-identifying means also including means for selecting different sequences of pulses to define different codes for different objects, said object-identifying means while in said region being randomly positioned in said field but the flux of said field permeating said region so that the energy absorbed from said field by electromagnetic linkage of said circuit means with said field defines reliably distinguishable pulses regardless of the random positioning of said object-identifying means, and means responsive to said pulses for producing an identification of said last-named object.
2. The apparatus of claim 1 wherein the identification-producing means includes differentiating means to convert the pulses derived from the energy absorbed from the field into impulses constituting the identifying code.
3. The apparatus of claim 1 wherein the objectidentifying means for each object includes a plurality of ring counters connected in an electrical circuit to convert the energy absorbed from the field into a predetermined number of sets of digital counts defining the code corresponding to said object.
4. The apparatus of claim 1 wherein the objectidentifying means while in said field defines, for different objects, a plurality of corresponding codes substantially greater than two and the circuit means is an electrical circuit printed on a flexible substrate attached to the object.
5. Apparatus for selectively advancing objects such as mail sacks, baggage or the like along a plurality of predetermined paths, certain selected of said objects to be advanced along certain ones of said paths and others of said objects to be advanced respectively along certain others of said paths; the said apparatus including conveyor means by which said objects are carried in succession to said paths, said conveyor means passing through a region of extended volume in which the said path through which each said object in its turn is to pass is to be selected, means producing, in said region, an electromagnetic field, path-defining means connected to, and carried by, each said object, coupled to said field for absorbing energy of variable magnitude from said field, while said last-named object is carried through said region, said path defining means including circuit means, powered only by said field, for converting said absorbed energy into sequential pulses defining a code in accordance with the path to be followed by said last-named object, the said object-identifying means including means for selecting different sequences of pulses to define different codes for different objects, said path-defining means being randomly positioned in said field, but said circuit means being electromagnetically linked with said field so that the energy absorbed from said field by said path-defining means in said region produces readily distinguishable pulses regardless of the random positioning of said path-defining means, and means responsive to said pulses derived from absorption of energy by each path-defining means in said field for selecting and presettingin accordance with the define code, the path to be followed by said last-named object.
6. The apparatus of claim 5 including field-producing means having means for maintaining the field in effective energy transfer relationship with the path defining means, such as to produce reliably distinguishable code-defining pulses derived from absorption of energy in said field regardless of the random orientation in said field of the path-defming means which random orientation might in the absence of said maintaining means produce low absorption of energy from said resultant field.
7. Apparatus for identifying objects in a region including means for producing an electromagnetic field in said region, said field-producing means including a plurality of pairs of Helmholtz coils bounding said region and also including means for energizing said Helmholtz coils to produce said field, objectidentifying means carried by each said object, electromagnetically coupled to said field, to absorb energy of variable magnitude from said field while said object is in said region, said object-identifying means including circuit means for converting said absorbed energy into variations defining a code for identifying said lastnamed object, said object-identifying means while in said region being randomly positioned in said field but being electromagnetically linked to said field so that the variations derived from the energy absorbed from said field by said object-identifying means defines a reliably distinguishable code regardless of the random positioning of said object-identifying means, and means responsive to said energy absorbed from said field for producing an identification of said last-named object.
8. Apparatus for identifying objects in a region including means for producing an electromagnetic field in said region, object-identifying means carried by each said object, electromagnetically coupled to said field, to absorb energy of variable magnitude from said field while said object is in said region, said objectidentifying means including circuit means for converting said absorbed energy into pulses distinguishing a code for identifying said last-named object, said objectidentifying means while in said region being randomly positioned in said field but said field permeating said region so that the energy absorbed therefrom by said object-identifying means in said field defines reliably distinguishable pulses regardless of the random positioning of said object-identifying means, and means responsive to the pulses derived from said energy absorbed from said field for producing an identification of said last-named object, said responsive means including a balanced network unbalanced by each said pulse as it is absorbed and said network including means, responsive to the movement of the object through the region, for maintaining the network in balance in the absence of pulses.
9. Apparatus for identifying objects in a region including means for producing an electromagnetic field in said region, object-identifying means carried by each said object, electromagnetically coupled to said field, to absorb energy of variable magnitude from said field while said object is in said region, said objectidentifying means having circuit means for converting said absorbed energy into variations defining a code for identifying said last-named object, said objectidentifying means while in said region being randomly positioned in said field but said field permeating said region so that the energy absorbed therefrom by said object-identifying means in said field defines reliably distinguishable variations regardless of the random positioning of said object-identifying means, means re sponsive to said object, for changing the orientation of said field relative to said object-identifying means while said object is in said region, and means, responsive to said variations, for producing an identification of said last-named object.
10. The apparatus of claim 1 wherein the objectidentifying means includes a plurality of digital counters and also includes means powered only by the energy absorbed from the field for selectively actuating said counters to count in a predetermined succession, said counters being interconnected so that on actuation of said actuating means each succeeding counter is actuated to count responsive to the actuation of a preceding counter.
11. The apparatus of claim 7 wherein the region is bounded by mutually orthogonal pairs of Helmholtz coils.
12. The apparatus of claim 9 wherein the changing means includes means responsive to the object for setting the field in a first orientation when the object enters the region and means responsive to the object for thereafter setting the field in at least one second orientation after said object has passed a predetermined distance through the region.

Claims (12)

1. Apparatus for identifying objects in a region including means for producing an electromagnetic field in said region, objectidentifying means carried by each said object, electromagnetically coupled to said field, to absorb energy of variable magnitude from said field while said object is in said region, said object-identifying means including circuit means powered only by said field, for converting said absorbed energy into sequential pulses defining a code for identifying said lastnamed object, the said object-identifying means also including means for selecting different sequences of pulses to define different codes for different objects, said object-identifying means while in said region being randomly positioned in said field but the flux of said field permeating said region so that the energy absorbed from said field by electromagnetic linkage of said circuit means with said field defines reliably distinguishable pulses regardless of the random positioning of said object-identifying means, and means responsive to said pulses for producing an identification of said last-named object.
2. The apparatus of claim 1 wherein the identification-producing means includes differentiating means to convert the pulses derived from the energy absorbed from the field into impulses constituting the identifying code.
3. The apparatus of claim 1 wherein the object-identifying means for each object includes a plurality of ring counters connected in an electrical circuit to convert the energy absorbed from the field into a predetermined number of sets of digital counts defining the code corresponding to said object.
4. The apparatus of claim 1 wherein the object-identifying means while in said field defines, for different objects, a plurality of corresponding codes substantially greater than two and the circuit means is an electrical circuit printed on a flexible substrate attached to the object.
5. Apparatus for selectively advancing objects such as mail sacks, baggage or the like along a plurality of predetermined paths, certain selected of said objects to be advanced along certain ones of said paths and others of said objects to be advanced respectively along certain others of said paths; the said apparatus including conveyor means by which said objects are carried in succession to said paths, said conveyor means passing through a region of extended volume in which the said path through which each said object in its turn is to pass is to be selected, means producing, in said region, an electromagnetic field, path-defining means connected to, and carried by, each said object, coupled to said field for absorbing energy of variable magnitude from said field, while said last-named object is carried through said region, said path defining means including circuit means, powered only by said field, for converting said absorbed energy into sequential pulses defining a code in accordance with the path to be followed by said last-named object, the said object-identifying means including means for selecting different sequences of pulses to define different codes for different objects, said path-defining means being randomly positioned in said field, but said circuit means being electromagnetically linked with said field so that the energy absorbed from said field by said path-defining means in said region prOduces readily distinguishable pulses regardless of the random positioning of said path-defining means, and means responsive to said pulses derived from absorption of energy by each path-defining means in said field for selecting and presetting in accordance with the define code, the path to be followed by said last-named object.
6. The apparatus of claim 5 including field-producing means having means for maintaining the field in effective energy transfer relationship with the path defining means, such as to produce reliably distinguishable code-defining pulses derived from absorption of energy in said field regardless of the random orientation in said field of the path-defining means which random orientation might in the absence of said maintaining means produce low absorption of energy from said resultant field.
7. Apparatus for identifying objects in a region including means for producing an electromagnetic field in said region, said field-producing means including a plurality of pairs of Helmholtz coils bounding said region and also including means for energizing said Helmholtz coils to produce said field, object-identifying means carried by each said object, electromagnetically coupled to said field, to absorb energy of variable magnitude from said field while said object is in said region, said object-identifying means including circuit means for converting said absorbed energy into variations defining a code for identifying said last-named object, said object-identifying means while in said region being randomly positioned in said field but being electromagnetically linked to said field so that the variations derived from the energy absorbed from said field by said object-identifying means defines a reliably distinguishable code regardless of the random positioning of said object-identifying means, and means responsive to said energy absorbed from said field for producing an identification of said last-named object.
8. Apparatus for identifying objects in a region including means for producing an electromagnetic field in said region, object-identifying means carried by each said object, electromagnetically coupled to said field, to absorb energy of variable magnitude from said field while said object is in said region, said object-identifying means including circuit means for converting said absorbed energy into pulses distinguishing a code for identifying said last-named object, said object-identifying means while in said region being randomly positioned in said field but said field permeating said region so that the energy absorbed therefrom by said object-identifying means in said field defines reliably distinguishable pulses regardless of the random positioning of said object-identifying means, and means responsive to the pulses derived from said energy absorbed from said field for producing an identification of said last-named object, said responsive means including a balanced network unbalanced by each said pulse as it is absorbed and said network including means, responsive to the movement of the object through the region, for maintaining the network in balance in the absence of pulses.
9. Apparatus for identifying objects in a region including means for producing an electromagnetic field in said region, object-identifying means carried by each said object, electromagnetically coupled to said field, to absorb energy of variable magnitude from said field while said object is in said region, said object-identifying means having circuit means for converting said absorbed energy into variations defining a code for identifying said last-named object, said object-identifying means while in said region being randomly positioned in said field but said field permeating said region so that the energy absorbed therefrom by said object-identifying means in said field defines reliably distinguishable variations regardless of the random positioning of said object-identifying means, means responsive to said object, for changing the orientation of said field reLative to said object-identifying means while said object is in said region, and means, responsive to said variations, for producing an identification of said last-named object.
10. The apparatus of claim 1 wherein the object-identifying means includes a plurality of digital counters and also includes means powered only by the energy absorbed from the field for selectively actuating said counters to count in a predetermined succession, said counters being interconnected so that on actuation of said actuating means each succeeding counter is actuated to count responsive to the actuation of a preceding counter.
11. The apparatus of claim 7 wherein the region is bounded by mutually orthogonal pairs of Helmholtz coils.
12. The apparatus of claim 9 wherein the changing means includes means responsive to the object for setting the field in a first orientation when the object enters the region and means responsive to the object for thereafter setting the field in at least one second orientation after said object has passed a predetermined distance through the region.
US00380928A 1972-01-04 1973-07-19 Object identifying apparatus Expired - Lifetime US3832530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00380928A US3832530A (en) 1972-01-04 1973-07-19 Object identifying apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21533372A 1972-01-04 1972-01-04
US00380928A US3832530A (en) 1972-01-04 1973-07-19 Object identifying apparatus

Publications (1)

Publication Number Publication Date
US3832530A true US3832530A (en) 1974-08-27

Family

ID=26909934

Family Applications (1)

Application Number Title Priority Date Filing Date
US00380928A Expired - Lifetime US3832530A (en) 1972-01-04 1973-07-19 Object identifying apparatus

Country Status (1)

Country Link
US (1) US3832530A (en)

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004133A (en) * 1974-12-30 1977-01-18 Rca Corporation Credit card containing electronic circuit
US4023167A (en) * 1975-06-16 1977-05-10 Wahlstrom Sven E Radio frequency detection system and method for passive resonance circuits
US4134538A (en) * 1976-03-18 1979-01-16 La Societe Metalimphy Process and apparatus for identification of objects
US4135184A (en) * 1977-08-31 1979-01-16 Knogo Corporation Electronic theft detection system for monitoring wide passageways
US4223830A (en) * 1978-08-18 1980-09-23 Walton Charles A Identification system
US4236068A (en) * 1979-03-29 1980-11-25 Walton Charles A Personal identification and signaling system
US4600829A (en) * 1984-04-02 1986-07-15 Walton Charles A Electronic proximity identification and recognition system with isolated two-way coupling
US4647917A (en) * 1984-03-26 1987-03-03 Allied Corporation Article control system having coded magnetomechanical marker
US4663625A (en) * 1983-11-30 1987-05-05 Motion Magnetics Inc. Passive tag identification system and method
US4792018A (en) * 1984-07-09 1988-12-20 Checkrobot Inc. System for security processing of retailed articles
US4798175A (en) * 1986-10-09 1989-01-17 Alfa-Laval Agri, Inc. Electronic identification system
WO1989005530A1 (en) * 1987-12-10 1989-06-15 Uniscan Ltd. Antenna structure for providing a uniform field
US5001458A (en) * 1986-08-14 1991-03-19 Tyren Carl Method of remote sensing of objects
US5099226A (en) * 1991-01-18 1992-03-24 Interamerican Industrial Company Intelligent security system
US5175419A (en) * 1989-08-17 1992-12-29 Fuji Electric Co., Ltd. Identification method for markers having a plurality of magnetic thin lines or bands with various coercivities
WO1993011504A1 (en) * 1991-11-29 1993-06-10 Indala Corporation Transponder system
US5258766A (en) * 1987-12-10 1993-11-02 Uniscan Ltd. Antenna structure for providing a uniform field
US5379042A (en) * 1990-05-14 1995-01-03 Henoch; Bengt Method of storing data relating to the life of a complicated product
US5448110A (en) * 1992-06-17 1995-09-05 Micron Communications, Inc. Enclosed transceiver
US5497140A (en) * 1992-08-12 1996-03-05 Micron Technology, Inc. Electrically powered postage stamp or mailing or shipping label operative with radio frequency (RF) communication
WO1996013045A1 (en) * 1994-10-25 1996-05-02 Sandia Corporation Generating highly uniform electromagnetic field characteristics
US5650768A (en) * 1996-03-04 1997-07-22 Eswaran; Kapali P. Baggage claiming method and apparatus
WO1998013803A1 (en) * 1996-09-26 1998-04-02 Sensormatic Electronics Corporation Apparatus for deactivation of electronic article surveillance tags
US5776278A (en) * 1992-06-17 1998-07-07 Micron Communications, Inc. Method of manufacturing an enclosed transceiver
US5779839A (en) * 1992-06-17 1998-07-14 Micron Communications, Inc. Method of manufacturing an enclosed transceiver
WO1998038605A2 (en) * 1997-02-26 1998-09-03 Aharon Shapira Anti-theft system and method
US5866024A (en) * 1995-12-29 1999-02-02 Sgs-Thomson Microelectronics S.A. Probe card identification for computer aided manufacturing
WO1999021144A1 (en) * 1997-10-20 1999-04-29 Escort Memory Systems Rfid conveyor antenna
US5973606A (en) * 1997-12-08 1999-10-26 Sensormatic Electronics Corporation Activation/deactivation system and method for electronic article surveillance markers for use on a conveyor
US5988510A (en) * 1997-02-13 1999-11-23 Micron Communications, Inc. Tamper resistant smart card and method of protecting data in a smart card
US6045652A (en) * 1992-06-17 2000-04-04 Micron Communications, Inc. Method of manufacturing an enclosed transceiver
WO2000041148A1 (en) * 1999-01-05 2000-07-13 Motorola Inc. Transport device with openings for capacitive coupled readers
US6222452B1 (en) * 1996-12-16 2001-04-24 Confidence International Ab Electronic identification tag
US6273339B1 (en) 1999-08-30 2001-08-14 Micron Technology, Inc. Tamper resistant smart card and method of protecting data in a smart card
US6488212B1 (en) * 1996-08-09 2002-12-03 Ferag Ag System for identifying and locating relative positions of objects
US6538562B1 (en) * 1998-10-23 2003-03-25 Burton A. Rosenberg Pulse number identification
US6556139B2 (en) * 2000-11-14 2003-04-29 Advanced Coding Systems Ltd. System for authentication of products and a magnetic tag utilized therein
EP1376446A2 (en) * 2002-06-24 2004-01-02 Datamars SA A method and apparatus for identifying a set of multiple items on a conveyor system with multiread transponders
US6696954B2 (en) * 2000-10-16 2004-02-24 Amerasia International Technology, Inc. Antenna array for smart RFID tags
US6703935B1 (en) 2001-05-14 2004-03-09 Amerasia International Technology, Inc. Antenna arrangement for RFID smart tags
US20040246099A1 (en) * 1992-08-12 2004-12-09 Micron Technology, Inc. Miniature radio frequency transceiver
US6842121B1 (en) 1996-04-04 2005-01-11 Micron Technology, Inc. RF identification system for determining whether object has reached destination
US20050040961A1 (en) * 1995-04-11 2005-02-24 Tuttle John R. RF identification system with restricted range
US20060092014A1 (en) * 2004-10-29 2006-05-04 Kimberly-Clark Worldwide, Inc. Self-adjusting portals with movable data tag readers for improved reading of data tags
US20060152213A1 (en) * 2003-03-11 2006-07-13 Thompson Michael F Apparatus for detecting the presence of electrically-conductive debris
US20060170556A1 (en) * 2005-01-18 2006-08-03 Lexin Technology Inc. System for detecting an RFID tag
US20060286938A1 (en) * 1998-01-29 2006-12-21 Murdoch Graham A M Methods and devices for the suppression of harmonics
US20060290472A1 (en) * 2004-10-29 2006-12-28 Kimberly Clark Worldwide, Inc. Adjusting data tag readers with feed-forward data
US20070007345A1 (en) * 1997-08-20 2007-01-11 Tuttle Mark E Electronic communication devices, methods of forming electrical communication devices, and communications methods
USRE40137E1 (en) 1997-05-01 2008-03-04 Micron Technology, Inc. Methods for forming integrated circuits within substrates
CN100410960C (en) * 2005-04-06 2008-08-13 雷新科技股份有限公司 System for detecting RF identification label
US20080212303A1 (en) * 2007-03-02 2008-09-04 Warren Farnworth Device for reducing or preventing exchange of information
US20080232008A1 (en) * 2007-03-22 2008-09-25 Goidas Peter J Electrostatic discharge safe under conveyor antenna
US7808367B2 (en) 1999-08-09 2010-10-05 Round Rock Research, Llc RFID material tracking method and apparatus
USRE42773E1 (en) 1992-06-17 2011-10-04 Round Rock Research, Llc Method of manufacturing an enclosed transceiver
JP2012521592A (en) * 2009-03-23 2012-09-13 サティアテック エスエー System and process for reading one or more RFID tags in a metal cassette having an anti-collision protocol
US20130342321A1 (en) * 2012-06-26 2013-12-26 Edward Zogg Rfid reading system using rf grating
EP3044848A1 (en) * 2013-08-26 2016-07-20 The University of Hong Kong Wireless power transfer system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2774060A (en) * 1953-06-15 1956-12-11 Richard B Thompson Detecting means for stolen goods
US3299424A (en) * 1965-05-07 1967-01-17 Jorgen P Vinding Interrogator-responder identification system
US3752960A (en) * 1971-12-27 1973-08-14 C Walton Electronic identification & recognition system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2774060A (en) * 1953-06-15 1956-12-11 Richard B Thompson Detecting means for stolen goods
US3299424A (en) * 1965-05-07 1967-01-17 Jorgen P Vinding Interrogator-responder identification system
US3752960A (en) * 1971-12-27 1973-08-14 C Walton Electronic identification & recognition system

Cited By (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004133A (en) * 1974-12-30 1977-01-18 Rca Corporation Credit card containing electronic circuit
US4023167A (en) * 1975-06-16 1977-05-10 Wahlstrom Sven E Radio frequency detection system and method for passive resonance circuits
US4134538A (en) * 1976-03-18 1979-01-16 La Societe Metalimphy Process and apparatus for identification of objects
US4135184A (en) * 1977-08-31 1979-01-16 Knogo Corporation Electronic theft detection system for monitoring wide passageways
US4223830A (en) * 1978-08-18 1980-09-23 Walton Charles A Identification system
US4236068A (en) * 1979-03-29 1980-11-25 Walton Charles A Personal identification and signaling system
US4663625A (en) * 1983-11-30 1987-05-05 Motion Magnetics Inc. Passive tag identification system and method
US4647917A (en) * 1984-03-26 1987-03-03 Allied Corporation Article control system having coded magnetomechanical marker
US4600829A (en) * 1984-04-02 1986-07-15 Walton Charles A Electronic proximity identification and recognition system with isolated two-way coupling
US4792018A (en) * 1984-07-09 1988-12-20 Checkrobot Inc. System for security processing of retailed articles
US5001458A (en) * 1986-08-14 1991-03-19 Tyren Carl Method of remote sensing of objects
US4798175A (en) * 1986-10-09 1989-01-17 Alfa-Laval Agri, Inc. Electronic identification system
WO1989005530A1 (en) * 1987-12-10 1989-06-15 Uniscan Ltd. Antenna structure for providing a uniform field
AU635198B2 (en) * 1987-12-10 1993-03-18 Magellan Technology Pty Limited Antenna structure for providing a uniform field
US5258766A (en) * 1987-12-10 1993-11-02 Uniscan Ltd. Antenna structure for providing a uniform field
US5175419A (en) * 1989-08-17 1992-12-29 Fuji Electric Co., Ltd. Identification method for markers having a plurality of magnetic thin lines or bands with various coercivities
US5379042A (en) * 1990-05-14 1995-01-03 Henoch; Bengt Method of storing data relating to the life of a complicated product
US5099226A (en) * 1991-01-18 1992-03-24 Interamerican Industrial Company Intelligent security system
WO1992013326A1 (en) * 1991-01-18 1992-08-06 Ramatec Corporation Intelligent security system
WO1993011504A1 (en) * 1991-11-29 1993-06-10 Indala Corporation Transponder system
US5779839A (en) * 1992-06-17 1998-07-14 Micron Communications, Inc. Method of manufacturing an enclosed transceiver
US6220516B1 (en) 1992-06-17 2001-04-24 Micron Technology, Inc. Method of manufacturing an enclosed transceiver
US6045652A (en) * 1992-06-17 2000-04-04 Micron Communications, Inc. Method of manufacturing an enclosed transceiver
USRE42773E1 (en) 1992-06-17 2011-10-04 Round Rock Research, Llc Method of manufacturing an enclosed transceiver
US6078791A (en) * 1992-06-17 2000-06-20 Micron Communications, Inc. Radio frequency identification transceiver and antenna
US6325294B2 (en) 1992-06-17 2001-12-04 Micron Technology, Inc. Method of manufacturing an enclosed transceiver
US5448110A (en) * 1992-06-17 1995-09-05 Micron Communications, Inc. Enclosed transceiver
US5776278A (en) * 1992-06-17 1998-07-07 Micron Communications, Inc. Method of manufacturing an enclosed transceiver
US7158031B2 (en) 1992-08-12 2007-01-02 Micron Technology, Inc. Thin, flexible, RFID label and system for use
US20070290863A1 (en) * 1992-08-12 2007-12-20 Tuttle John R Radio Frequency Identification Device And Method
US20040246099A1 (en) * 1992-08-12 2004-12-09 Micron Technology, Inc. Miniature radio frequency transceiver
US7583192B2 (en) 1992-08-12 2009-09-01 Keystone Technology Solutions, Llc Radio frequency identification device and method
US7649463B2 (en) 1992-08-12 2010-01-19 Keystone Technology Solutions, Llc Radio frequency identification device and method
US7265674B2 (en) 1992-08-12 2007-09-04 Micron Technology, Inc. Thin flexible, RFID labels, and method and apparatus for use
US8018340B2 (en) 1992-08-12 2011-09-13 Round Rock Research, Llc System and method to track articles at a point of origin and at a point of destination using RFID
US7746230B2 (en) 1992-08-12 2010-06-29 Round Rock Research, Llc Radio frequency identification device and method
US20050285744A1 (en) * 1992-08-12 2005-12-29 Tuttle John R Radio frequency identification device and system including automatic sorting machine
US6013949A (en) * 1992-08-12 2000-01-11 Micron Technology, Inc. Miniature Radio Frequency Transceiver
US20070040685A1 (en) * 1992-08-12 2007-02-22 Tuttle John R Miniature radio frequency transceiver
US5497140A (en) * 1992-08-12 1996-03-05 Micron Technology, Inc. Electrically powered postage stamp or mailing or shipping label operative with radio frequency (RF) communication
US20080117025A1 (en) * 1992-12-15 2008-05-22 Tuttle John R RFID System and Method for Wirelessly Interfacing With an Interrogator
WO1996013045A1 (en) * 1994-10-25 1996-05-02 Sandia Corporation Generating highly uniform electromagnetic field characteristics
US5748063A (en) * 1994-10-25 1998-05-05 Sandia Corporation Generating highly uniform electromagnetic field characteristics
US5717371A (en) * 1994-10-25 1998-02-10 Sandia Corporation Generating highly uniform electromagnetic field characteristics
US20070290811A1 (en) * 1995-04-11 2007-12-20 Tuttle John R RF Identification System with Restricted Range
US20050040961A1 (en) * 1995-04-11 2005-02-24 Tuttle John R. RF identification system with restricted range
US20070290854A1 (en) * 1995-04-11 2007-12-20 Tuttle John R RF Identification System with Restricted Range
US5866024A (en) * 1995-12-29 1999-02-02 Sgs-Thomson Microelectronics S.A. Probe card identification for computer aided manufacturing
US5650768A (en) * 1996-03-04 1997-07-22 Eswaran; Kapali P. Baggage claiming method and apparatus
US6842121B1 (en) 1996-04-04 2005-01-11 Micron Technology, Inc. RF identification system for determining whether object has reached destination
US6488212B1 (en) * 1996-08-09 2002-12-03 Ferag Ag System for identifying and locating relative positions of objects
WO1998013803A1 (en) * 1996-09-26 1998-04-02 Sensormatic Electronics Corporation Apparatus for deactivation of electronic article surveillance tags
US5781111A (en) * 1996-09-26 1998-07-14 Sensormatic Electronics Corporation Apparatus for deactivation of electronic article surveillance tags
US6222452B1 (en) * 1996-12-16 2001-04-24 Confidence International Ab Electronic identification tag
US6068192A (en) * 1997-02-13 2000-05-30 Micron Technology, Inc. Tamper resistant smart card and method of protecting data in a smart card
US5988510A (en) * 1997-02-13 1999-11-23 Micron Communications, Inc. Tamper resistant smart card and method of protecting data in a smart card
WO1998038605A3 (en) * 1997-02-26 1998-12-03 Aharon Shapira Anti-theft system and method
WO1998038605A2 (en) * 1997-02-26 1998-09-03 Aharon Shapira Anti-theft system and method
USRE40137E1 (en) 1997-05-01 2008-03-04 Micron Technology, Inc. Methods for forming integrated circuits within substrates
US20070007345A1 (en) * 1997-08-20 2007-01-11 Tuttle Mark E Electronic communication devices, methods of forming electrical communication devices, and communications methods
US20070290862A1 (en) * 1997-08-20 2007-12-20 Tuttle Mark E Electronic Communication Devices, Methods Of Forming Electrical Communication Devices, And Communications Methods
US7948382B2 (en) 1997-08-20 2011-05-24 Round Rock Research, Llc Electronic communication devices, methods of forming electrical communication devices, and communications methods
US7839285B2 (en) 1997-08-20 2010-11-23 Round Rock Resarch, LLC Electronic communication devices, methods of forming electrical communication devices, and communications methods
WO1999021144A1 (en) * 1997-10-20 1999-04-29 Escort Memory Systems Rfid conveyor antenna
US5929760A (en) * 1997-10-20 1999-07-27 Escort Memory Systems RFID conveyor antenna
US5973606A (en) * 1997-12-08 1999-10-26 Sensormatic Electronics Corporation Activation/deactivation system and method for electronic article surveillance markers for use on a conveyor
US20060286938A1 (en) * 1998-01-29 2006-12-21 Murdoch Graham A M Methods and devices for the suppression of harmonics
EP1753149A2 (en) 1998-01-29 2007-02-14 Magellan Technology Pty. Limited Methods and devices for the suppression of harmonics
US7711332B2 (en) 1998-01-29 2010-05-04 Magellan Technology Pty Limited Methods and devices for the suppression of harmonics
US6107921A (en) * 1998-04-16 2000-08-22 Motorola, Inc. Conveyor bed with openings for capacitive coupled readers
US6538562B1 (en) * 1998-10-23 2003-03-25 Burton A. Rosenberg Pulse number identification
WO2000041148A1 (en) * 1999-01-05 2000-07-13 Motorola Inc. Transport device with openings for capacitive coupled readers
US6236316B1 (en) 1999-01-05 2001-05-22 Motorola, Inc. Transport device with openings for capacitive coupled readers
US7808367B2 (en) 1999-08-09 2010-10-05 Round Rock Research, Llc RFID material tracking method and apparatus
US8125316B2 (en) 1999-08-09 2012-02-28 Round Rock Research, Llc RFID material tracking method and apparatus
US6273339B1 (en) 1999-08-30 2001-08-14 Micron Technology, Inc. Tamper resistant smart card and method of protecting data in a smart card
US6696954B2 (en) * 2000-10-16 2004-02-24 Amerasia International Technology, Inc. Antenna array for smart RFID tags
US6556139B2 (en) * 2000-11-14 2003-04-29 Advanced Coding Systems Ltd. System for authentication of products and a magnetic tag utilized therein
US6703935B1 (en) 2001-05-14 2004-03-09 Amerasia International Technology, Inc. Antenna arrangement for RFID smart tags
US20040164864A1 (en) * 2001-05-14 2004-08-26 Chung Kevin Kwong-Tai Antenna arrangement for RFID smart tags
US6943688B2 (en) 2001-05-14 2005-09-13 Amerasia International Technology, Inc. Antenna arrangement for RFID smart tags
US20070182561A1 (en) * 2002-06-24 2007-08-09 Datamars S.A. Method and apparatus for identifying a set of multiple items on a conveyor system with multiread transponders
EP1376446A3 (en) * 2002-06-24 2004-04-14 Datamars SA A method and apparatus for identifying a set of multiple items on a conveyor system with multiread transponders
EP1376446A2 (en) * 2002-06-24 2004-01-02 Datamars SA A method and apparatus for identifying a set of multiple items on a conveyor system with multiread transponders
US20040046022A1 (en) * 2002-06-24 2004-03-11 Datamars Sa Method and apparatus for identifying a set of multiple items on conveyor system with multiread transponders
US7648069B2 (en) 2002-06-24 2010-01-19 Datamars S.A. Method and apparatus for identifying a set of multiple items on a conveyor system with multiread transponders
US7198193B2 (en) 2002-06-24 2007-04-03 Datamars S.A. Method and apparatus for identifying a set of multiple items on conveyor system with multiread transponders
US20060152213A1 (en) * 2003-03-11 2006-07-13 Thompson Michael F Apparatus for detecting the presence of electrically-conductive debris
US20060290472A1 (en) * 2004-10-29 2006-12-28 Kimberly Clark Worldwide, Inc. Adjusting data tag readers with feed-forward data
US7623036B2 (en) 2004-10-29 2009-11-24 Kimberly-Clark Worldwide, Inc. Adjusting data tag readers with feed-forward data
US7221269B2 (en) 2004-10-29 2007-05-22 Kimberly-Clark Worldwide, Inc. Self-adjusting portals with movable data tag readers for improved reading of data tags
US20060092014A1 (en) * 2004-10-29 2006-05-04 Kimberly-Clark Worldwide, Inc. Self-adjusting portals with movable data tag readers for improved reading of data tags
US20060170556A1 (en) * 2005-01-18 2006-08-03 Lexin Technology Inc. System for detecting an RFID tag
CN100410960C (en) * 2005-04-06 2008-08-13 雷新科技股份有限公司 System for detecting RF identification label
US20080212303A1 (en) * 2007-03-02 2008-09-04 Warren Farnworth Device for reducing or preventing exchange of information
US7777997B2 (en) 2007-03-22 2010-08-17 Accu-Sort Systems, Inc. Electrostatic discharge safe under conveyor antenna
US20080232008A1 (en) * 2007-03-22 2008-09-25 Goidas Peter J Electrostatic discharge safe under conveyor antenna
JP2012521592A (en) * 2009-03-23 2012-09-13 サティアテック エスエー System and process for reading one or more RFID tags in a metal cassette having an anti-collision protocol
US20130342321A1 (en) * 2012-06-26 2013-12-26 Edward Zogg Rfid reading system using rf grating
US9189662B2 (en) * 2012-06-26 2015-11-17 Eastman Kodak Company RFID reading system using RF grating
EP3044848A1 (en) * 2013-08-26 2016-07-20 The University of Hong Kong Wireless power transfer system
CN106170906A (en) * 2013-08-26 2016-11-30 香港大学 Wireless power transmission system
EP3044848A4 (en) * 2013-08-26 2017-10-11 The University of Hong Kong Wireless power transfer system
US10250072B2 (en) 2013-08-26 2019-04-02 The University Of Hong Kong Wireless power transfer system
CN106170906B (en) * 2013-08-26 2020-08-25 香港大学 Wireless power transmission system

Similar Documents

Publication Publication Date Title
US3832530A (en) Object identifying apparatus
US3849633A (en) Object identifying apparatus
US3689885A (en) Inductively coupled passive responder and interrogator unit having multidimension electromagnetic field capabilities
US5095309A (en) Method and apparatus for modulating and detecting a subcarrier signal for an inductively coupled transponder
US4654658A (en) Identification system with vector phase angle detection
US3713102A (en) Pulse interrogation article-sorting system
US5198807A (en) Method and apparatus for producing a subcarrier signal for transmission by an inductively coupled transponder
US3720940A (en) Method and apparatus for sorting packages and the like
US2652501A (en) Binary magnetic system
US4413254A (en) Combined radio and magnetic energy responsive surveillance marker and system
US3740742A (en) Method and apparatus for actuating an electric circuit
CA1060954A (en) Transponder system for the transfer of signalling information for rail-bounded vehicles
US4242661A (en) Device for registration of objects
HU182543B (en) Sensing board of passive circuit for identification devices
US3169242A (en) Identification interrogating system
US3772669A (en) Magnetic pulse generator
US3508031A (en) Control system employing card having conductive inserts
WO1990014736A1 (en) Electromagnetic energy transmission and detection system
US5159332A (en) Proximity identification system with flux concentration in operating region
US3855592A (en) Transponder having high character capacity
US3182314A (en) Direction sensing for interrogator responder signalling systems
US3270338A (en) Identification system
US3182315A (en) Interrogator-responder signalling system
US3783249A (en) Coded magnetic card and reader
US3668697A (en) Noncontacting keyboard