US3857194A - Model auto-giro - Google Patents

Model auto-giro Download PDF

Info

Publication number
US3857194A
US3857194A US00420054A US42005473A US3857194A US 3857194 A US3857194 A US 3857194A US 00420054 A US00420054 A US 00420054A US 42005473 A US42005473 A US 42005473A US 3857194 A US3857194 A US 3857194A
Authority
US
United States
Prior art keywords
fuselage
aircraft
rotor
giro
auto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00420054A
Inventor
M Guttman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00420054A priority Critical patent/US3857194A/en
Application granted granted Critical
Publication of US3857194A publication Critical patent/US3857194A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H27/00Toy aircraft; Other flying toys
    • A63H27/04Captive toy aircraft

Definitions

  • Two configurations utilize a V pivoting stabilator and a fixed rotor shaft and permit the auto-giro to take off, ascend, loop, descend and [52] U.S. C1.
  • This invention relates to models of rotary wing aircraft and more particularly to models of aircraft capable of both vertical and horizontal flight, commonly known as auto-giros, and methods for controlling said models by means of captive control lines and radio controls to simulate the flight characteristics of an actual auto-giro aircraft.
  • An auto-giro is a rotary wing aircraft with a freeturning rotor, which is caused to auto-rotate from the flow of air past the rotor when the craft is drawn forward by an engine-driven propeller, as in the case of a conventional airplane.
  • the principal design problem for a successful model auto-giro is maintenance of aerodynamic stability in flight, especially at low flight speeds and during hovering. This problem is especially critical for auto-giro models utilizing captive control lines.
  • the use of captive control lines is substantially less expensive than the use of radio controls, but poses significantly greater control problems for the model auto-giro. With captive control lines it is essential that tension be maintained on control lines at all times, especially during slow flight and hovering.
  • the first two configurations disclosed in this specification utilize a number of novel techniques which in combination are able to maintain the required tension.
  • the second two configurations disclosed utilize variations on these techniques adapted to the requirements of radio-controlled operations.
  • This invention relates to gasoline-powered model auto-giros and methods for the control of said models in flight.
  • Each model utilizes a gasoline-powered engine mounted on the fuselage driving a propeller to power the model auto-giro.
  • pitch control means are provided to affect changes in altitude and means for controlling the direction of flight are included.
  • the first two methods of control utilize captive control lines, while the second two utilize remote radio-controls.
  • the auto-giro is controlled by a two line flexible cord held by the operator, confining the auto-giro to a circular flight path.
  • These control lines in turn operate a bellcranklever connected to a pivoting stabilator. By pivoting his hand, either to the left or right or up or down, the operator can control the attitude of this stabilator and enable the auto-giro to take-off, ascend, descend, loop and land.
  • the second alternate is similar to the first, except that it utilizes a fixed horizontal stabilizer and a tiltable rotor shaft.
  • the third and forth configurations are similar to the first and second respectively except that these configurations of the model auto-giro are adapted to radio controls, and the control methods permit relatively free flight of the model auto-giro unconfined to a circular flight path, that is, the model auto-giro may fly to the left or right or in any direction within the range of the transmitter signal.
  • All alternate configurations may be equipped with a throttle control consisting of either an additional control line or an additional radio channel and servo motor. All alternate configurations may also be equipped with additional auxilliary fuel tanks for extended operation.
  • FIG. 1 is a schematic side elevational view of a model auto-giro having captive control lines according to the invention
  • FIG. 2 is a schematic bottom view of the auto-giro in FIG. 1;
  • FIG. 3 is an enlarged sectional view of a portion of the rotor shaft with rotor blades cut away showing the relative position of the blade mountings;
  • FIG. 4 is a schematic front view of the auto-giro of FIG. 1;
  • FIG. 5 is a schematic front view of an alternate version of the auto-giro of this invention having a tiltable rotor shaft;
  • FIG. 6 is a schematic bottom view of the auto-giro of .FIG. 5;
  • FIG. is a schematic side elevational view of the auto-giro of FIG. 5 modified to show adaptations for radio controls.
  • FIG. 11 is a schematic view of an operator radio unit.
  • the auto-giro 20 comprises a fuselage 21 and integrally formed therewith a rudder 22, and a rotor mast 23 adapted at its top to receive a rotor 24 and two front wheel extenders 25, 26 or spring wire wheel extenders.
  • Rudder 22 is permanently set at a fixed angle 27 to the fuselage 21, as illustrated in FIG. 2.
  • a model gasoline powered internal combustion engine 28 having a puller propeller 29 is mounted on the front of the fuselage 21.
  • Wheels 30, 31 are mounted on the front wheel extenders 25, 26.
  • a single small wheel or skid 32 is mounted at the rear of the fuselage.
  • a stabilator 33 is pivotally mounted to the rear of the fuselage, its trailing end pivoting through an are 34.
  • a thin-walled tubular bearing 39 is placed within hub 37 to reduce wear on the hub.
  • a thrust bearing 41 may be inserted between the hub 37 of the rotor 24 and the screw head 40 to reduce friction and permit rotor 24 to spin at its maximum speed.
  • a washer 42 is inserted between the hub 37 of the rotor 24 and the mast 23 to reduce wear.
  • Rotor blades 35, 36 are pitched at a slightly different angle from one another and have an airfoil section as illustrated in the end view of FIG. 3.
  • Foil angle 43 is designed to allow a counterclockwise direction of rotation from the airflow the rotor catches when viewed from above from the center of the circle of flight. Thus the rotor 24 gets more lift from blade 35 than from blade 36.
  • the angular relationship between blades may vary to suit various air foil designs, some of which may eliminate foil angle 43.
  • Rotor blades 35, 36 are positioned such that the leading edge of blade 35, which provides greater lift than blade 36, is inward toward the operator.
  • Lift side 35 is used to benefit control line 48, 49 tension during normal flight by tilting auto-giro slightly outward from the operator.
  • Propeller 29 is a left-handed propeller in the configuration illustrated in FIG. 4, rotating in a clockwise direction, to increase still further the tension on control lines 48, 49.
  • the combined effects of the position of rudder 22, lift blade 35, left-handed propeller 29, position of looped eye 50 (later to be described), the position of stabilator 33 and the size and location of bellcrank lever 44 cause the model auto-giro 20 to lean slightly toward the outside of the circular flight path at all speeds and in all flight manoeuvres, thus maintaining tension on the control lines 48, 49 at all times.
  • the control line system comprises a bellcrank lever 44 pivotally mounted at its center to the bottom of fuselage 21 immediately below rotor mast 23 as close to the center of gravity as possiblee and held in position by a mounting screw 45 whose shank serves as its shaft.
  • a mounting screw 45 whose shank serves as its shaft.
  • Connected to the two in-lines 46, 47 of the bellcrank lever 44 are two flexible lines 48, 49.
  • a looped eye 50 on a short wire shaft 51 is fixably mounted to fuselage 21 extending from one side thereof from the approximate center of gravity. Lines 48, 49 pass through looped eye 50 to prevent them from becoming entangled in the propeller 29 and rotor 24.
  • Eye 50 is positioned so that when lines 48, 49 pass through it, their normal angle 52 to the longitudinal axis of the fuselage is slightly obtuse, ans shown in FIG. 2, to create more tension in lines 48, 49.
  • Lines 48, 49 terminate at two ends of bar 53 which is held in the hand 54 of the operator.
  • a rigid wire line 55 connects the bellcrank lever 44 at branch 56 to a downward projecting tab 57 on stabilator 33, which is pivotally connected to fuselage 21 at point 58, the raising or lowering of the stabilator being controlled by the pivoting of bellcrank lever 44.
  • stabilator 33 is located at the approximate center line of the air slip stream created by drive propeller 29.
  • Rudder 22 is rigidly placed at fixed angle 27 to insure outward force away from the operator to maintain tension on control lines 48 and 49 when speed of auto-giro 20 is minimal.
  • the length of lines 48, 49 becomes the radius of the circular flight path of auto-giro 20, and varying the length of said lines will vary that radius.
  • a pivoting action of a bar 53 when lines 48, 49 are taut the operator is able to cause a bellcrank lever 44 to pivot, thereby pivoting the trailing edge of the stabilator edge 33 through arc 24 to control the pitch of the auto-giro 20.
  • the first configuration described above operates on captive control lines 48, 49 which are manipulated by an operator holding bar 53.
  • This model is confined to a circular path whose radius is the length of lines 48, 49.
  • the model is operated by placing it on the ground and, with the assistance of an operators helper, starting the engine 28, which drives the propeller 29. With the engine operating, the helper releases the model autogiro 20 which will start to roll along the ground.
  • the flow of air now rushing past rotor blades 35, 36 causes rotor 24 to autogirate freely.
  • the auto-giro 20 commences to lift off the ground, the lift provided primarily by airfoils 35 and 36.
  • the auto-giro 60 has a rudder 62 similar to rudder 22 of FIG. 1, but increased in size, and horizontal stabilizer 61 is rigidly attached thereto so that the slip stream of drive propeller 29 is approximately parallel to stabilizer 61.
  • Rotor mast 63 contains pivoting linkage 64 connecting it to a rotor shaft 65 which is adapted to receive rotor 66 similar to rotor 24 of FIG. 1. Rotor 66 is held in position by a thrust bearing 67 and nut 68.
  • An L-shaped rigid wire link 69 is inserted and secured in the lower portion of rotor shaft 65 and extends vertically downward to and through a hole 70 in branch 71 of bellcrank lever 72 where it is allowed to float freely.
  • the pivoting action of control bar 53 causes bellcrank lever 72 to pivot branch 71 through an are 73 forcing rigid link 69 to cause rotor shaft 65 to pivot through are 74, thereby tilting rotor 66.
  • This tilting action enables auto-giro 60 to hover as well as perform all other flight manoeuvres of the first configuration, though still confined to a circular flight path as defined by the length of control lines 48, 49.
  • the third configuration illustrated in FIG. 9, is essentially similar to the first configuration, illustrated in FIG. 1, except for the modifications necessary for radio control.
  • the general construction of the third configuration including the pivoting stabilator and nontiltable rotor shaft as illustrated in FIGS. 1, 2 and 3 with the modifications shown in FIG. 9. All components related to captive line control, such as bellcrank lever 44, loop eye 50, loop eye shaft 51, control lines 48, 49, operator bar 53, as shown in'the configuration of FIG. 1 are eliminated from the configuration of FIG. 9.
  • All components related to captive line control such as bellcrank lever 44, loop eye 50, loop eye shaft 51, control lines 48, 49, operator bar 53, as shown in'the configuration of FIG. 1 are eliminated from the configuration of FIG. 9.
  • FIG. 9 As shown in FIG.
  • auto-giro 75 has a fuselage 76 which is modified to accept radio control components comprising a battery 77, a multi-channel receiver 78, a servo-motor 79 to operate the throttle (not shown) of engine 80, a servo-motor 81 to operate a pivoting rudder 82, and a servo-motor 83 to operate pivoting stabilator 84. All these control units are located in the fuselage 76 near or under rotor mast 85 to counter-balance the weight of engine 80.
  • the auto-giro 75 is controlled by a multichannel transmitter 86, shown in FIG. 11.
  • auto-giro 75 has a pivoting rudder 82 constructed as a separate part and hinged at the upper rear of fuselage 76 by means of two inwardly projecting tips 87.
  • the upper rear of fuselage 76 contains two recesses 88 to receive tips 87.
  • Servo-motor 81 drives a shaft 89 which extends outward through the bottom of the fuselage and on which is mounted a rotating disk 90.
  • Disk 90 is connected by a rigid wire link 91 to rudder 82 and inserted in slot 92 on rudder 82. Pivoting disk 90 over an arc of approximately 120 causes a rudder 82 to pivot over a corresponding arc.
  • Servo motor 83 drives a shaft 93 which extends outward through the fuselage and on which is mounted a rotating disk 94.
  • Disk 94 is connected by rigid wire link 95 to tab 96 which projects downward from the leading edge of stabilator 84 to pivot the stabilator 84 up or down through are 97.
  • An antenna 98 is attached to fuselage 76 for reception of radio signals from transmitter 86.
  • This third configuration illustrated in FIG. 9 and described in the preceding paragraph can perform all flight manoeuvres except hovering, but is not constrained to a circular flight path as was the first configuration.
  • the fourth configuration, illustrated in FIG. 10, is essentially similar to the second configuration, illustrated in FIG. 5 except for the modifications necessary for radio control in which respect it is similar to the third configuration illustrated in FIG. 9.
  • the general construction of the fourth configuration, including the fixed horizontal stabilizer and the tiltable rotor shaft is illustrated in FIGS. 5, 6 and 7 with the modifications shown in FIG. 10. All components related to captive line control such as bellcrank lever 72, loop eye 50, loop eye shaft 51, lines 48, 49 and operator bar 53, as shown in the configuration of FIG. 5 are eliminated form the configuration of FIG. 10.
  • auto-giro 99 has a fuselage 100 which is modified to accept radio control components similar to the third configuration.
  • the fourth configuration has a fixed horizontal stabilizer 101 and does not require the stabilator controls shown in FIG. 9.
  • This configuration has a tiltable rotor shaft 102 similar to that of the second configuration as illustrated in FIG. 5.
  • a servo motor 102 drives a shaft 104 extending through the side of rotor mast 105 to which a rotating disk 106 is attached.
  • Disk 106 is connected by a rigid wire link 107 to a tab 108 projecting rearwardly from rotor shaft 102 and attached thereto. Rotation of disk 106 causes link 107 to tilt shaft 102 through are 109.
  • This design has a rudder actuator similar to that of the third configuration illustrated in FIGS. 9 and 10. This configuration is able to perform all the flight manoeuvres of the third configuration and is also capable of hovering.
  • the gasoline powered engine could be mounted behind the rotor shaft and equipped with a pusher propeller. Additional auxiliary fuel tanks could be provided for extended flight. Throttle controls may be installed on the first two configurations. A model pilot and pilot seat may be installed with its location dependent on the location of the engine.
  • a model rotary wing aircraft comprising:
  • a propeller mounted on said engine means, said engine and propeller enabling the forward driving of said aircraft as an autogiro for take-off, landing or normal translational flight;
  • a general upwardly extending vertical rotor mast mounted on said fuselage and adapted to receive a rotor
  • a free spinning rotor mounted on said mast having a plurality of rotor blades extending outwardly and generally horizontally from said mast; the rotor being disposed in the path of the air flow from the propeller;
  • landing gear mounted on said fuselage
  • radio control means for providing aerodynamic control in various flight attitudes of said model rotary wing aircraft
  • model rotary wing aircraft comprising:
  • a propeller mounted on said engine means, said engine and propeller enabling the forward driving of 7 8 said aircraft as an auto-giro for take-off, landing or ling the pivoting movement of said rudder; normal translational flight; a stabilator pivotally attached to the rear of said fusea generally upwardly extending vertical rotor mast lage;
  • a second servo motor responsive to said receiver ing action, at least in a plane fore and aft of said airmounted in the fuselage of said aircraft for controlcraft, and adapted to receive a rotor on its upper, ling the pivoting movement of said stabilator; and tiltable end; a battery mounted in said fuselage for supplying eleca free spinning rotor mounted on said mast having a trical power to said receiver and said servo motors.
  • the rotor 10 trol means further comprises: being disposed in the path of the air flow from the a radio receiver mounted in the fuselage of said propeller; model aircraft for receiving said control signals landing gear mounted on said fuselage; from said transmitter; radio control means of providing operator control of a rudder pivotally attached to said fuselage;
  • a radio transmitter for sending operator control siga throttle for controlling the speed of said engine
  • a second servo motor responsive to said receiver a radio receiver mounted in the fuselage of said mounted in the fuselage of said aircraft for controlmodel aircraft for receiving said control signals ling the adjustment of said throttle; and from said transmitter; a third servo motot responsive to said receiver a rudder pivotally attached to said fuselage; mounted in the fuselage of said aircraft for controla first servo motor responsive to said receiver ling the tilting movement of said rotor mast.

Abstract

Four configurations of a model auto-gyro are disclosed with appropriate methods and means of control for each configuration. Two configurations utilize a pivoting stabilator and a fixed rotor shaft and permit the auto-giro to take off, ascend, loop, descend and land, but do not permit it to hover. Two further configurations utilize a fixed horizontal stabilizer and a tiltable rotor shaft, the combination of which permit the model auto-giro to perform all the flight manoeuvres of the first two configurations and permit it to hover also. Methods and means for controlling each type of configuration by captive control lines and confining them to circular flight paths are disclosed. Methods and means for remotely controlling each type of configuration by radio controls permitting free flight are also disclosed.

Description

United States Patent Guttman Dec. 31, 1974 MODEL AUTO-GIRO Primary Examiner-Louis G. Mancene [76] Inventor: Murray Guttman, 250 Johnochs Amman Examme' Bbert Cumng Dr. Saddle Brook 07662 Attorney, Agent, or Flrm.lames J. Cannon, Jr., James J. Cannon [22] Filed: Nov. 29, 1973 [21] Appl. No.: 420,054 [57] ABSTRACT Related s Application Data Four corifigurations of a model auto-gyro are dis- [62] Division Of Ser. N0. 264,269, June 20, 1972, Pat. NO. Flosed approprlate methods and 99 3 791067 or each configuration. Two configurations utilize a V pivoting stabilator and a fixed rotor shaft and permit the auto-giro to take off, ascend, loop, descend and [52] U.S. C1. 46/244 B, 46/75 a but do not p rm t t t h er. Tw further con- [51] Int. Cl A63h 27/12 fig ationut ize a fixed horizontal stabilizer and a [58] Field of Search 46/75, 244 B ta l r or sh f the combination of which permit the model auto-giro to perform all the flight manoeuvres of the first two configurations and permit it to References Cited hover also. Methods and means for controlling each UNITED STATES PATENTS type of configuration by captive control lines and con- 2,638,707 4/1953 Baker 46/75 fining them to Circular flight PathS are disclosed- 3,108,641 10/1963 Taylor 46/75 Methods and means for remotely Controlling each 3,375,605 4/1968 Gallagher..... 46/75 ype of onfiguration by radio controls permitting free 3,699,708 10/1972 Mabuchi 46/244 B flight are also disclosed.
4 Claims, 11 Drawing Figures IOI SERVO RECEIVER SERVO SERVO BATTERY PATENTED DEBS] I974 sum 2 or 5 1 MODEL AUTO-GIRO This is a division of application Ser. No. 264,269 filed June 20, 1972, now US. Pat. No. 3,791,067.
BACKGROUND OF THE INVENTION This invention relates to models of rotary wing aircraft and more particularly to models of aircraft capable of both vertical and horizontal flight, commonly known as auto-giros, and methods for controlling said models by means of captive control lines and radio controls to simulate the flight characteristics of an actual auto-giro aircraft.
An auto-giro is a rotary wing aircraft with a freeturning rotor, which is caused to auto-rotate from the flow of air past the rotor when the craft is drawn forward by an engine-driven propeller, as in the case of a conventional airplane.
The prior art discloses numerous patents covering model airplanes and helicopters, and methods of controlling said models. It also discloses several patents, namely US. Pat. Nos. 2,110,563; 3,149,802; and 3,588,082; disclosing various types of passenger carrying auto-giros. However, no model auto-giro has been found in the prior art.
The principal design problem for a successful model auto-giro is maintenance of aerodynamic stability in flight, especially at low flight speeds and during hovering. This problem is especially critical for auto-giro models utilizing captive control lines. The use of captive control lines is substantially less expensive than the use of radio controls, but poses significantly greater control problems for the model auto-giro. With captive control lines it is essential that tension be maintained on control lines at all times, especially during slow flight and hovering. The first two configurations disclosed in this specification utilize a number of novel techniques which in combination are able to maintain the required tension. The second two configurations disclosed utilize variations on these techniques adapted to the requirements of radio-controlled operations.
SUMMARY OF THE INVENTION This invention relates to gasoline-powered model auto-giros and methods for the control of said models in flight. Each model utilizes a gasoline-powered engine mounted on the fuselage driving a propeller to power the model auto-giro. pitch control means are provided to affect changes in altitude and means for controlling the direction of flight are included.
Four alternate configurations of a model auto-giro and four alternate control methods for the configurations are disclosed. The first two methods of control utilize captive control lines, while the second two utilize remote radio-controls. In the first alternate configuration, the auto-giro is controlled by a two line flexible cord held by the operator, confining the auto-giro to a circular flight path. These control lines in turn operate a bellcranklever connected to a pivoting stabilator. By pivoting his hand, either to the left or right or up or down, the operator can control the attitude of this stabilator and enable the auto-giro to take-off, ascend, descend, loop and land. The second alternate is similar to the first, except that it utilizes a fixed horizontal stabilizer and a tiltable rotor shaft. In this configuration the pivoting of the operators hand causes the bellcrank lever to engage the tiltable rotor linkage, tilting the rotor shaft forward or rearward. This tilting of the rotor shaft enables the auto-giro to take-off, ascend, loop, descend, land and also hover. This second configuration permits the auto-giro to hover as well as perform all the flight manoeuvres of the first alternate.
The third and forth configurations are similar to the first and second respectively except that these configurations of the model auto-giro are adapted to radio controls, and the control methods permit relatively free flight of the model auto-giro unconfined to a circular flight path, that is, the model auto-giro may fly to the left or right or in any direction within the range of the transmitter signal.
All alternate configurations may be equipped with a throttle control consisting of either an additional control line or an additional radio channel and servo motor. All alternate configurations may also be equipped with additional auxilliary fuel tanks for extended operation.
It is the principal object of this invention to provide a gasoline-powered model auto-giro capable of simulating the flight of full size auto-giros.
It is a further object of this invention to provide a method for the control of a model auto-giro by captive control lines.
It is another object of this invention to provide a method for remotely controlling the operation of a model auto-giro.
It is another object of this invention to provide a model auto-giro of extremely simple construction and very inexpensive to manufacture or build.
It is still a further object of this invention to provide a model auto-giro capable of hovering flight, whether captive or under remote radio control.
BRIEF DESCRIPTION OF THE DRAWINGS The novel features which are believed to be characteristic of this invention are set forth with particularity in the appended claims. The invention itself, however, both as to its organization and method of operation, together with further objects and advantages thereof, may best be understood by reference to the following description taken in connection with the accompanying drawings, in which:
FIG. 1 is a schematic side elevational view of a model auto-giro having captive control lines according to the invention;
FIG. 2 is a schematic bottom view of the auto-giro in FIG. 1;
FIG. 3 is an enlarged sectional view of a portion of the rotor shaft with rotor blades cut away showing the relative position of the blade mountings;
FIG. 4 is a schematic front view of the auto-giro of FIG. 1;
FIG. 5 is a schematic front view of an alternate version of the auto-giro of this invention having a tiltable rotor shaft;
FIG. 6 is a schematic bottom view of the auto-giro of .FIG. 5;
FIG. is a schematic side elevational view of the auto-giro of FIG. 5 modified to show adaptations for radio controls.
FIG. 11 is a schematic view of an operator radio unit.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now more particularly to the drawings, the first configuration of the model auto-giro of this invention is designated in FIG. 1. The auto-giro 20 comprises a fuselage 21 and integrally formed therewith a rudder 22, and a rotor mast 23 adapted at its top to receive a rotor 24 and two front wheel extenders 25, 26 or spring wire wheel extenders. Rudder 22 is permanently set at a fixed angle 27 to the fuselage 21, as illustrated in FIG. 2. A model gasoline powered internal combustion engine 28 having a puller propeller 29 is mounted on the front of the fuselage 21. Wheels 30, 31 are mounted on the front wheel extenders 25, 26. A single small wheel or skid 32 is mounted at the rear of the fuselage. All wheels are driven only by friction created by the forward movement of the auto-giro on the ground. A stabilator 33 is pivotally mounted to the rear of the fuselage, its trailing end pivoting through an are 34. The rotor 24, which may be of one-piece construction, comprising the blades 35, 36, connected to a circular hub 37, is rotably mounted on top of rotor mast 23, and held in position by a retaining screw 38 whose elongated shank serves as a rotor shaft 38a and whose head serves as a retainer. A thin-walled tubular bearing 39 is placed within hub 37 to reduce wear on the hub. Utilizing the screws head 40 a thrust bearing 41 may be inserted between the hub 37 of the rotor 24 and the screw head 40 to reduce friction and permit rotor 24 to spin at its maximum speed. A washer 42 is inserted between the hub 37 of the rotor 24 and the mast 23 to reduce wear. Rotor blades 35, 36 are pitched at a slightly different angle from one another and have an airfoil section as illustrated in the end view of FIG. 3. Foil angle 43 is designed to allow a counterclockwise direction of rotation from the airflow the rotor catches when viewed from above from the center of the circle of flight. Thus the rotor 24 gets more lift from blade 35 than from blade 36. The angular relationship between blades may vary to suit various air foil designs, some of which may eliminate foil angle 43. Rotor blades 35, 36 are positioned such that the leading edge of blade 35, which provides greater lift than blade 36, is inward toward the operator. Lift side 35 is used to benefit control line 48, 49 tension during normal flight by tilting auto-giro slightly outward from the operator.
Propeller 29 is a left-handed propeller in the configuration illustrated in FIG. 4, rotating in a clockwise direction, to increase still further the tension on control lines 48, 49. The combined effects of the position of rudder 22, lift blade 35, left-handed propeller 29, position of looped eye 50 (later to be described), the position of stabilator 33 and the size and location of bellcrank lever 44 cause the model auto-giro 20 to lean slightly toward the outside of the circular flight path at all speeds and in all flight manoeuvres, thus maintaining tension on the control lines 48, 49 at all times.
The control line system comprises a bellcrank lever 44 pivotally mounted at its center to the bottom of fuselage 21 immediately below rotor mast 23 as close to the center of gravity as possiblee and held in position by a mounting screw 45 whose shank serves as its shaft. Connected to the two in- lines 46, 47 of the bellcrank lever 44 are two flexible lines 48, 49. A looped eye 50 on a short wire shaft 51 is fixably mounted to fuselage 21 extending from one side thereof from the approximate center of gravity. Lines 48, 49 pass through looped eye 50 to prevent them from becoming entangled in the propeller 29 and rotor 24. Eye 50 is positioned so that when lines 48, 49 pass through it, their normal angle 52 to the longitudinal axis of the fuselage is slightly obtuse, ans shown in FIG. 2, to create more tension in lines 48, 49. Lines 48, 49 terminate at two ends of bar 53 which is held in the hand 54 of the operator. A rigid wire line 55 connects the bellcrank lever 44 at branch 56 to a downward projecting tab 57 on stabilator 33, which is pivotally connected to fuselage 21 at point 58, the raising or lowering of the stabilator being controlled by the pivoting of bellcrank lever 44. As illustrated in FIG. 1, stabilator 33 is located at the approximate center line of the air slip stream created by drive propeller 29. Rudder 22 is rigidly placed at fixed angle 27 to insure outward force away from the operator to maintain tension on control lines 48 and 49 when speed of auto-giro 20 is minimal. The length of lines 48, 49 becomes the radius of the circular flight path of auto-giro 20, and varying the length of said lines will vary that radius. By a pivoting action of a bar 53 when lines 48, 49 are taut, the operator is able to cause a bellcrank lever 44 to pivot, thereby pivoting the trailing edge of the stabilator edge 33 through arc 24 to control the pitch of the auto-giro 20.
The first configuration described above operates on captive control lines 48, 49 which are manipulated by an operator holding bar 53. This model is confined to a circular path whose radius is the length of lines 48, 49. The model is operated by placing it on the ground and, with the assistance of an operators helper, starting the engine 28, which drives the propeller 29. With the engine operating, the helper releases the model autogiro 20 which will start to roll along the ground. The flow of air now rushing past rotor blades 35, 36 causes rotor 24 to autogirate freely. As the flow of air past airfoils 35, 36 increases in velocity, the auto-giro 20 commences to lift off the ground, the lift provided primarily by airfoils 35 and 36. By pivoting bar 53 the operator can pull line 46 while releasing tension on line 48. This action rotates bellcrank lever 44 such that rigid link 55 connected to tab 57 on stabilizer 33 is pushed backwards causing the trailing edge of stabilator 33 to be raised to a take-off position. After take-off the tension is equilized on the lines to permit the stabilator to return to a roughly horizontal position for level flight. In this configuration, the auto-giro can ascend, descend, loop, land and take off again. The auto-giro will glide and land safely if the fuel supply is exhausted or the engine fails. A third control line can be added to control the engine throttle for increase or decrease of speed. While this configuration is able to move up and down by utilization of a pivoting stabilator, it cannot hover.
An altenate configuration described in this paragraph will enable auto-giro 60 to hover. The modification required for hovering embraces a fixed horizontal stabilizer and a tiltable rotor as described hereafter. With reference to FIG. 5, the auto-giro 60 has a rudder 62 similar to rudder 22 of FIG. 1, but increased in size, and horizontal stabilizer 61 is rigidly attached thereto so that the slip stream of drive propeller 29 is approximately parallel to stabilizer 61. Rotor mast 63 contains pivoting linkage 64 connecting it to a rotor shaft 65 which is adapted to receive rotor 66 similar to rotor 24 of FIG. 1. Rotor 66 is held in position by a thrust bearing 67 and nut 68. An L-shaped rigid wire link 69 is inserted and secured in the lower portion of rotor shaft 65 and extends vertically downward to and through a hole 70 in branch 71 of bellcrank lever 72 where it is allowed to float freely. The pivoting action of control bar 53 causes bellcrank lever 72 to pivot branch 71 through an are 73 forcing rigid link 69 to cause rotor shaft 65 to pivot through are 74, thereby tilting rotor 66. This tilting action enables auto-giro 60 to hover as well as perform all other flight manoeuvres of the first configuration, though still confined to a circular flight path as defined by the length of control lines 48, 49.
Both configurations of the model auto-giro disclosed above may be modified to utilize remote radio controls. The third configuration, illustrated in FIG. 9, is essentially similar to the first configuration, illustrated in FIG. 1, except for the modifications necessary for radio control. The general construction of the third configuration including the pivoting stabilator and nontiltable rotor shaft as illustrated in FIGS. 1, 2 and 3 with the modifications shown in FIG. 9. All components related to captive line control, such as bellcrank lever 44, loop eye 50, loop eye shaft 51, control lines 48, 49, operator bar 53, as shown in'the configuration of FIG. 1 are eliminated from the configuration of FIG. 9. As shown in FIG. 9, auto-giro 75 has a fuselage 76 which is modified to accept radio control components comprising a battery 77, a multi-channel receiver 78, a servo-motor 79 to operate the throttle (not shown) of engine 80, a servo-motor 81 to operate a pivoting rudder 82, and a servo-motor 83 to operate pivoting stabilator 84. All these control units are located in the fuselage 76 near or under rotor mast 85 to counter-balance the weight of engine 80. The auto-giro 75 is controlled by a multichannel transmitter 86, shown in FIG. 11.
In this third configuration, auto-giro 75 has a pivoting rudder 82 constructed as a separate part and hinged at the upper rear of fuselage 76 by means of two inwardly projecting tips 87. The upper rear of fuselage 76 contains two recesses 88 to receive tips 87. Servo-motor 81 drives a shaft 89 which extends outward through the bottom of the fuselage and on which is mounted a rotating disk 90. Disk 90 is connected by a rigid wire link 91 to rudder 82 and inserted in slot 92 on rudder 82. Pivoting disk 90 over an arc of approximately 120 causes a rudder 82 to pivot over a corresponding arc. Servo motor 83 drives a shaft 93 which extends outward through the fuselage and on which is mounted a rotating disk 94. Disk 94 is connected by rigid wire link 95 to tab 96 which projects downward from the leading edge of stabilator 84 to pivot the stabilator 84 up or down through are 97. An antenna 98 is attached to fuselage 76 for reception of radio signals from transmitter 86.
This third configuration illustrated in FIG. 9 and described in the preceding paragraph can perform all flight manoeuvres except hovering, but is not constrained to a circular flight path as was the first configuration.
The fourth configuration, illustrated in FIG. 10, is essentially similar to the second configuration, illustrated in FIG. 5 except for the modifications necessary for radio control in which respect it is similar to the third configuration illustrated in FIG. 9. The general construction of the fourth configuration, including the fixed horizontal stabilizer and the tiltable rotor shaft is illustrated in FIGS. 5, 6 and 7 with the modifications shown in FIG. 10. All components related to captive line control such as bellcrank lever 72, loop eye 50, loop eye shaft 51, lines 48, 49 and operator bar 53, as shown in the configuration of FIG. 5 are eliminated form the configuration of FIG. 10. As shown in FIG. 10, auto-giro 99 has a fuselage 100 which is modified to accept radio control components similar to the third configuration. The fourth configuration, however, has a fixed horizontal stabilizer 101 and does not require the stabilator controls shown in FIG. 9. This configuration has a tiltable rotor shaft 102 similar to that of the second configuration as illustrated in FIG. 5. A servo motor 102 drives a shaft 104 extending through the side of rotor mast 105 to which a rotating disk 106 is attached. Disk 106 is connected by a rigid wire link 107 to a tab 108 projecting rearwardly from rotor shaft 102 and attached thereto. Rotation of disk 106 causes link 107 to tilt shaft 102 through are 109. This design has a rudder actuator similar to that of the third configuration illustrated in FIGS. 9 and 10. This configuration is able to perform all the flight manoeuvres of the third configuration and is also capable of hovering.
Further variations in the configurations described above and in their methods of control are possible. The gasoline powered engine could be mounted behind the rotor shaft and equipped with a pusher propeller. Additional auxiliary fuel tanks could be provided for extended flight. Throttle controls may be installed on the first two configurations. A model pilot and pilot seat may be installed with its location dependent on the location of the engine.
While only certain embodiments of this invention have been shown and described by way of illustration, many modifications within the true spirit and scope of this invention and within the following claims will occur to those skilled in the art.
I claim:
1. In a model rotary wing aircraft comprising:
a fuselage;
an operable engine means mounted on said fuselage along the longitudinal axis of the fuselage;
a propeller mounted on said engine means, said engine and propeller enabling the forward driving of said aircraft as an autogiro for take-off, landing or normal translational flight;
a general upwardly extending vertical rotor mast mounted on said fuselage and adapted to receive a rotor;
a free spinning rotor mounted on said mast having a plurality of rotor blades extending outwardly and generally horizontally from said mast; the rotor being disposed in the path of the air flow from the propeller;
landing gear mounted on said fuselage;
radio control means for providing aerodynamic control in various flight attitudes of said model rotary wing aircraft;
2. In a model rotary wing aircraft comprising:
a fuslage;
an operable engine means mounted on said fuselage along the longitudinal axis of the fuselage;
a propeller mounted on said engine means, said engine and propeller enabling the forward driving of 7 8 said aircraft as an auto-giro for take-off, landing or ling the pivoting movement of said rudder; normal translational flight; a stabilator pivotally attached to the rear of said fusea generally upwardly extending vertical rotor mast lage;
mounted on said fuselage, adapted for limited, tilta second servo motor responsive to said receiver ing action, at least in a plane fore and aft of said airmounted in the fuselage of said aircraft for controlcraft, and adapted to receive a rotor on its upper, ling the pivoting movement of said stabilator; and tiltable end; a battery mounted in said fuselage for supplying eleca free spinning rotor mounted on said mast having a trical power to said receiver and said servo motors.
plurality of rotor blades extending outwardly and 4. The apparatus of claim 2 wherein said radio congenerally horizontally from said mast; the rotor 10 trol means further comprises: being disposed in the path of the air flow from the a radio receiver mounted in the fuselage of said propeller; model aircraft for receiving said control signals landing gear mounted on said fuselage; from said transmitter; radio control means of providing operator control of a rudder pivotally attached to said fuselage;
the flight of said model rotary wing aircraft. a first servo motor responsive to said receiver 3. The apparatus of claim 1 wherein said radio conmounted in the fuselage of said aircraft for controltrol means further comprises: ling the pivoting movement of said rudder;
a radio transmitter for sending operator control siga throttle for controlling the speed of said engine;
nals to said model aircraft; a second servo motor responsive to said receiver a radio receiver mounted in the fuselage of said mounted in the fuselage of said aircraft for controlmodel aircraft for receiving said control signals ling the adjustment of said throttle; and from said transmitter; a third servo motot responsive to said receiver a rudder pivotally attached to said fuselage; mounted in the fuselage of said aircraft for controla first servo motor responsive to said receiver ling the tilting movement of said rotor mast.
mounted in the fuselage of said aircraft for control-

Claims (4)

1. In a model rotary wing aircraft comprising: a fuselage; an operable engine means mounted on said fuselage along the longitudinal axis of the fuselage; a propeller mounted on said engine means, said engine and propeller enabling the forward driving of said aircraft as an autogiro for take-off, landing or normal translational flight; a general upwardly extending vertical rotor mast mounted on said fuselage and adapted to receive a rotor; a free spinning rotor mounted on said mast having a plurality of rotor blades extending outwardly and generally horizontally from said mast; the rotor being disposed in the path of the air flow from the propeller; landing gear mounted on said fuselage; radio control means for providing aerodynamic control in various flight attitudes of said model rotary wing aircraft;
2. In a model rotary wing aircraft comprising: a fuslage; an operable engine means mounted on said fuselage along the longitudinal axis of the fuselage; a propeller mounted on said engine means, said engine and propeller enabling the forward driving of said aircraft as an auto-giro for take-off, landing or normal translational flight; a generally upwardly extending vertical rotor mast mounted on said fuselage, adapted for limited, tilting action, at least in a plane fore and aft of said aircraft, and adapted to receive a rotor on its upper, tiltable end; a free spinning rotor mounted on said mast having a plurality of rotor blades extending outwardly and generally horizontally from said mast; the rotor being disposed in the path of the air flow from the propeller; landing gear mounted on said fuselage; radio control means of providing operator control of the flight of said model rotary wing aircraft.
3. The apparatus of claim 1 wherein said radio control means further comprises: a radio transmitter for sending operator control signals to said model aircraft; a radio receiver mounted in the fuselage of said model aircraft for receiving said control signals from said transmitter; a rudder pivotally attached to said fuselage; a first servo motor responsive to said receiver mounted in the fuselage of said aircraft for controlling the pivoting movement of said rudder; a stabilator pivotally attached to the rear of said fuselage; a second servo motor responsive to said receiver mounted in the fuselage of said aircraft for controlling the pivoting movement of said stabilator; and a battery mounted in said fuselage for supplying electrical power to said receiver and said servo motors.
4. The apparatus of claim 2 wherein said radio control means further comprises: a radio receiver mounted in the fuselage of said model aircraft for receiving said control signals from said transmitter; a rudder pivotally attached to said fuselage; a first servo motor responsive to said receiver mounted in the fuselage of said aircraft for controlling the pivoting movement of said rudder; a throttle for controlling the speed of said engine; a second servo motor responsive to said receiver mounted in the fuselage of said aircraft for controlling the adjustment of said throttle; and a third servo motot responsive to said receiver mounted in the fuselage of said aircraft for controlling the tilting movement of said rotor mast.
US00420054A 1972-06-20 1973-11-29 Model auto-giro Expired - Lifetime US3857194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00420054A US3857194A (en) 1972-06-20 1973-11-29 Model auto-giro

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26462972A 1972-06-20 1972-06-20
US00420054A US3857194A (en) 1972-06-20 1973-11-29 Model auto-giro

Publications (1)

Publication Number Publication Date
US3857194A true US3857194A (en) 1974-12-31

Family

ID=26950667

Family Applications (1)

Application Number Title Priority Date Filing Date
US00420054A Expired - Lifetime US3857194A (en) 1972-06-20 1973-11-29 Model auto-giro

Country Status (1)

Country Link
US (1) US3857194A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765567A (en) * 1987-03-10 1988-08-23 Tech Serv, Inc. Helicopter target
US4981456A (en) * 1988-06-20 1991-01-01 Yamaha Hatsudoki Kabushiki Kaisha Remote controlled helicopter
US5110314A (en) * 1989-11-14 1992-05-05 Keyence Corporation Device for inclining the tip path plane of a propeller of toy helicopter
US5996934A (en) * 1997-11-24 1999-12-07 Murph; Ellis G. Tethered autogyro
US6520823B2 (en) * 2000-07-14 2003-02-18 Shanghai Helang Electronics Co., Ltd. Remote electro-aeroplane
US20030096553A1 (en) * 2001-11-16 2003-05-22 Seung-Woo Kim Power-driven ornithopter
US6659395B2 (en) * 2001-11-07 2003-12-09 Rehco, Llc Propellers and propeller related vehicles
US20070095973A1 (en) * 2005-10-27 2007-05-03 Douglas Challis Aircraft having a helicopter rotor and an inclined front mounted propeller
US20090008497A1 (en) * 2007-07-05 2009-01-08 Spin Master Ltd. Rotary-wing miniature gyro helicopter
US20090047861A1 (en) * 2006-01-19 2009-02-19 Silverlit Toys Manufactory Ltd. Remote controlled toy helicopter
US20090140095A1 (en) * 2007-11-30 2009-06-04 Jayant Sirohi Electric powered rotary-wing aircraft
US20110139928A1 (en) * 2009-12-12 2011-06-16 John William Morris Autogyro air vehicle
US8002604B2 (en) * 2006-01-19 2011-08-23 Silverlit Limited Remote controlled toy helicopter
US20120091259A1 (en) * 2010-08-23 2012-04-19 John William Morris Towable air vehicle
CN101869769B (en) * 2008-04-21 2012-05-23 上海九鹰电子科技有限公司 Mechanical maneuvering system of single-rotor wing model helicopter
US8336808B2 (en) 2005-10-27 2012-12-25 Douglas Challis Aircraft having helicopter rotor and front mounted propeller
US8864545B2 (en) 2011-09-30 2014-10-21 Orestes R. Perdomo Radio frequency controlled aircraft
US9038941B2 (en) 2009-05-22 2015-05-26 Heliplane, Llc Towable autogyro system having repositionable mast responsive to center of gratvity calculations
USRE47176E1 (en) * 2001-11-07 2018-12-25 Rehco, Llc Propellers and propeller related vehicles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2638707A (en) * 1951-07-07 1953-05-19 Robert L Baker Remote-controlled model helicopter
US3108641A (en) * 1961-03-16 1963-10-29 Taylor Dana Lee Helicopter control system
US3375605A (en) * 1965-05-24 1968-04-02 Francis J. Gallagher Model plane flight control device
US3699708A (en) * 1970-12-02 1972-10-24 Mabuchi Motor Co Electric-powered model airplane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2638707A (en) * 1951-07-07 1953-05-19 Robert L Baker Remote-controlled model helicopter
US3108641A (en) * 1961-03-16 1963-10-29 Taylor Dana Lee Helicopter control system
US3375605A (en) * 1965-05-24 1968-04-02 Francis J. Gallagher Model plane flight control device
US3699708A (en) * 1970-12-02 1972-10-24 Mabuchi Motor Co Electric-powered model airplane

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765567A (en) * 1987-03-10 1988-08-23 Tech Serv, Inc. Helicopter target
US4981456A (en) * 1988-06-20 1991-01-01 Yamaha Hatsudoki Kabushiki Kaisha Remote controlled helicopter
US5110314A (en) * 1989-11-14 1992-05-05 Keyence Corporation Device for inclining the tip path plane of a propeller of toy helicopter
US5996934A (en) * 1997-11-24 1999-12-07 Murph; Ellis G. Tethered autogyro
US6520823B2 (en) * 2000-07-14 2003-02-18 Shanghai Helang Electronics Co., Ltd. Remote electro-aeroplane
USRE47176E1 (en) * 2001-11-07 2018-12-25 Rehco, Llc Propellers and propeller related vehicles
US6659395B2 (en) * 2001-11-07 2003-12-09 Rehco, Llc Propellers and propeller related vehicles
US6769949B2 (en) * 2001-11-16 2004-08-03 Neuros Co., Ltd Power-driven ornithopter
US20030096553A1 (en) * 2001-11-16 2003-05-22 Seung-Woo Kim Power-driven ornithopter
US20070095973A1 (en) * 2005-10-27 2007-05-03 Douglas Challis Aircraft having a helicopter rotor and an inclined front mounted propeller
US8336808B2 (en) 2005-10-27 2012-12-25 Douglas Challis Aircraft having helicopter rotor and front mounted propeller
US20090047861A1 (en) * 2006-01-19 2009-02-19 Silverlit Toys Manufactory Ltd. Remote controlled toy helicopter
US8002604B2 (en) * 2006-01-19 2011-08-23 Silverlit Limited Remote controlled toy helicopter
US20090008497A1 (en) * 2007-07-05 2009-01-08 Spin Master Ltd. Rotary-wing miniature gyro helicopter
US20090140095A1 (en) * 2007-11-30 2009-06-04 Jayant Sirohi Electric powered rotary-wing aircraft
US8931732B2 (en) * 2007-11-30 2015-01-13 Sikorsky Aircraft Corporation Electric powered rotary-wing aircraft
CN101869769B (en) * 2008-04-21 2012-05-23 上海九鹰电子科技有限公司 Mechanical maneuvering system of single-rotor wing model helicopter
US9038941B2 (en) 2009-05-22 2015-05-26 Heliplane, Llc Towable autogyro system having repositionable mast responsive to center of gratvity calculations
US20110139928A1 (en) * 2009-12-12 2011-06-16 John William Morris Autogyro air vehicle
US8540183B2 (en) 2009-12-12 2013-09-24 Heliplane, Llc Aerovehicle system including plurality of autogyro assemblies
US20140246538A1 (en) * 2010-08-23 2014-09-04 Heliplane, Llc Towable air vehicle
US8646719B2 (en) * 2010-08-23 2014-02-11 Heliplane, Llc Marine vessel-towable aerovehicle system with automated tow line release
US9187173B2 (en) * 2010-08-23 2015-11-17 Heliplane, Llc Towable autogyro having a re-positionable mast
US20120091259A1 (en) * 2010-08-23 2012-04-19 John William Morris Towable air vehicle
US8864545B2 (en) 2011-09-30 2014-10-21 Orestes R. Perdomo Radio frequency controlled aircraft

Similar Documents

Publication Publication Date Title
US3857194A (en) Model auto-giro
US7448571B1 (en) Rotor collective pitch VS Mu to control flapping and mast/rotor tilt to control rotor RPM
US6435453B1 (en) High speed rotor aircraft
US6513752B2 (en) Hovering gyro aircraft
US3558082A (en) Rotary wing aircraft
US3241791A (en) Compound helicopter with shrouded tail propeller
US6086016A (en) Gyro stabilized triple mode aircraft
US8998127B2 (en) Pre-landing, rotor-spin-up apparatus and method
US4116405A (en) Airplane
US6089501A (en) Tandem-rotor gyroplane
US9022313B2 (en) Rotor unloading apparatus and method
US7980510B2 (en) Small unmanned aircraft
US20130134264A1 (en) Electric Motor Powered Rotor Drive for Slowed Rotor Winged Aircraft
US2623712A (en) Airplane with pivotally mounted sustaining wing
US4114843A (en) Control stick assembly
US3149802A (en) Autogiro
US20210403161A1 (en) Aeronautical Apparatus
US7971824B2 (en) Flying object
US5067668A (en) Compound helicopter with no tail rotor
US2828929A (en) Wingless aircraft
US2537393A (en) Toy helicopter
US6824093B1 (en) Method of controlling pitch on a gyroplane and a gyroplane
US6405980B1 (en) Control system for rotor aircraft
US3791067A (en) Model auto-giro
US3330501A (en) Airplane construction