US3867041A - Method for detecting bruises in fruit - Google Patents

Method for detecting bruises in fruit Download PDF

Info

Publication number
US3867041A
US3867041A US421379A US42137973A US3867041A US 3867041 A US3867041 A US 3867041A US 421379 A US421379 A US 421379A US 42137973 A US42137973 A US 42137973A US 3867041 A US3867041 A US 3867041A
Authority
US
United States
Prior art keywords
fruit
amount
reflectance
light
bruises
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US421379A
Inventor
Galen K Brown
Larry J Segerlind
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Agriculture USDA
Original Assignee
US Department of Agriculture USDA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Agriculture USDA filed Critical US Department of Agriculture USDA
Priority to US421379A priority Critical patent/US3867041A/en
Application granted granted Critical
Publication of US3867041A publication Critical patent/US3867041A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/025Fruits or vegetables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Definitions

  • ABSTRACT Detection of bruises in several genera of fruit including apples, peaches, and pears has been accomplished by measuring the reflectance of near infrared light from the fruit surface.
  • the method is particularly 6 Claims, 17 Drawing Figures [75] Inventors: Galen K. Brown, Ashley, Ohio;
  • Bruises on fruits such as applies, peaches, pears, and cherries result in grade defects, higher grading cost, and the necessity for hand trimming or alternate uses of the fruit.
  • Studies of hand fruit harvests have shown that bruises occur in as high as 16 percent of the applies, 24 percent of the peaches, and 6 percent of the pears.
  • Increased use of mechanical pickers will increase the number of bruises and other surface defects.
  • Most of the grading of fruit is a visual-hand operation despite the fact that much research has been done in an effort to find an automatic method of grading.
  • Rehkugler, et al. (Transactions of the ASAE l4: 1 189-1 194, 1971) describe a method of bruise detection in apples which relies on the fact that most bruises leave a dent such that a discontinuity is formed on the surface (i.e., skin) of the fruit. A ray of visible light reflecting from the surface is sufficiently deflected by the discontinuity to be detected.
  • the drawings consist of 17 figures which depict graphs comparing wavelength versus reflectance measurements of bruised and unbruised portions of peaches, pears, and several varieties of apples.
  • the invention relies on the discovery that the dry surfaces over bruised portions of certain fleshy fruits (e.g., apples, peaches, pears, and cherries) reflect less infrared light than the surfaces of unbruised portions.
  • the object of the invention is the provision of a quick, reliable method of detecting bruises so that bruised fruit can be sorted from unbruised fruit, preferably by automated mechanical means.
  • Sorting methods of the type in which the invention is used begin by positioning the fruit in front of the infrared light source and detector. This can be done by hand or by a suitable mechanical means.
  • the light source is such that the portion of the fruit surface to be measured is evenly illuminated with diffuse light having wavelengths of at least from 700 to 2,200 nm.
  • the photoemissive detector is positioned so that it measures light reflected from the specified portions of the fruit surface. It is first necessary to measure the light reflected from a portion of fruit surface which is known to be free of any sort of bruise or other impairment. This is used as the control.
  • the control measurement need only be taken once for each batch of fruit to be tested. However, it is preferred that the control measurement be rechecked at frequent intervals. After the control measurement has been established, reflectance measurements are taken over the entire surface of each fruit to be inspected in the same manner as the control. Changes in position of the fruit in relation to the detector port can be accomplished by hand or by some suitable mechanical means. All reflectance measurements subsequent to the control measurement are then compared to the control. A reflectance measurement which is significantly lower than the control indicates a bruise or other similar damage. Bruises inflicted on the fruit in the examples consistently had reflectance measurements which were from 0.02 to 0.32 reflectance units lower than the controls.
  • Reflectance units are expressed as percent of the total amount of light reflected from a white standard. Measurements taken a few seconds after bruising showed that reflectance is lowered at the instant the bruise was made. At most wavelengths, more than half of the decrease in bruise reflectance for apples occurred within the first day of the 28- to 42-day test period.
  • Output of photoemissive detectors is an electric current so that reflectance can be read directly from an ammeter calibrated to read bruised and unbruised or the like. An operator is then able to reject the bruised fruit either by hand or by some suitable mechanical means.
  • the electric output of the detector is also useful for activating mechanical rejection devices in completely automated systems.
  • the diffuse infrared light evenly illuminate that portion of the fruit surface from which the measurement is being taken and that the detection area be the same for all measurements including those taken for controls. It is preferred that the detection area be equal to or less than the bruises to be measured. It is also preferred that the range of wavelengths being detected at any one time be relatively narrow. This range of wavelength or band width can be controlled by use of a narl0 eters of slit width, band width, detection area, methods orchards at East Lansing, the peaches, grown in Pennsylvania, were purchased in East Lansing supermarket, and the pears were picked from a commercial orchard near Fennville, Mich. All fruit were 2 /2-inch diameter minimum.
  • Flesh firmness values were determined using a Chatillon motorized universal test stand (model HCTM) at a rate of IS cm. per minute, with appropriate Magness- Taylor probe. Six readings were taken on unbruised portions of each of six fruit for apples and pears, see Table l. v
  • GENERAL PROCEDURE integrating sphere reflectance accessory with a 20-mm.
  • the first reflectance measurements were taken within 2 hours after bruising, then the fruit were placed in cold storage at recommended conditions of temperature and relative humidity (Wright, US. Dept. Agr., Agriculture Handbook No. 66, 77 pp., 1954).
  • EXAMPLE 1 A single variety of peach was selected and treated as described above. Reflectance measurements were taken at 2 hours after bruising and 4 days after bruising; R was calculated and plotted against wavelength, FIGS. 1 and 2. Standard deviation of reflectance was 0.02 and 0.09 for the bruise compared with 0.03 and 0.03 for the control at 800 and 1,200 nm., respectively.
  • EXAMPLE 2 A single variety of pear was selected and treated as described above. Reflectance measurements were taken at 2 hours after bruising, 14 days after bruising (before the fruit was ripened), and 18 days after bruising (after the fruit was ripened). Reflectance, R, was calculated and plotted against wavelength. The reflectance curves were similar at 2 hours after bruising, 14 days after bruising, or 18 days after bruising. In FIG. 3 are shown reflectance at 14 days.
  • a method of detecting bruises in apples, peaches, pears, and the like comprising the steps of:

Abstract

Detection of bruises in several genera of fruit including apples, peaches, and pears has been accomplished by measuring the reflectance of near infrared light from the fruit surface. The method is particularly adaptable to automation.

Description

United States Patent [1 1 [111 3,867,041 Brown et a1. Feb. 18, 1975 METHOD FOR DETECTING BRUISES IN 3,765,775 10/1973 Ganssele FRUIT OTHER PUBLICATIONS M. Ingle and J. F. Hyde The Effect Of Bruising On Discoloration And Concentration Of Phenolic Compounds In Apple Tissue-Proc. Amer. Soc. Hort. Sci.-
Attorney, Agent, or FirmM. Howard Silverstein; Max
ABSTRACT Detection of bruises in several genera of fruit including apples, peaches, and pears has been accomplished by measuring the reflectance of near infrared light from the fruit surface. The method is particularly 6 Claims, 17 Drawing Figures [75] Inventors: Galen K. Brown, Ashley, Ohio;
Larry J. Segerlind, East Lansing, Mich.
[73] Assignee: The United States of America as pp. 3
represented by the Secretary of Ag g n, DC Primary Examiner-Michael J. Lynch [22] Filed: 3, 1973 Assistant Examiner-1. N. Anagnos [21] Appl. No.: 421,379 D. Hensley; David G. McConnell [52] US. Cl 356/209, 356/212, 250/341 [57] [51] Int. Cl. G0lj 3/48 [58] Field of Search 356/51, 209, 212, 237; 250/341; 209/111.7, 111.6
[56] References Cited adaptable to automation.
UNITED STATES PATENTS 3,393,800 7/1968 Durand 209/1l1.7
1.0 P U RED GLOBE PEACH U 08 ZHPSAFTER BRUISING 30,000 g.-cm. IMPACT 0.6 L) 5 0.4 CON TROL & BRUISE O: 0.2
WAVELENGTH, NANOMETERS PATENTEU 3.867. 041
sum 1 {If 5 RED GLOBE PEACH 2HFS. AFTERBRU|S|NGV 30,000 g.cm. IMPACT FLEC TANCE b ow CONTROL WAVELENGTH, N'ANOMETERS RED GLOBE PEACH 4 DAYS AFTER BRUISE I 30,000 g.cm. IMPACT g 0 G O CONTROL LLI E 02 I I 0.0 I
WAVE LENGTH, NANOMETERS 1,0 BARTLETT PEAR m MDAYS AFTER BRUISE g) 0.8
30,000 g.Cm.H |PACT 0.6 CONTROL REFLECTAN' WAVELENGTH, NA NOMETERS PATENTED v 3.867.041
SHEET 20F e 1 MCINTOSH APPLE 'IDAYAFTER BRUISING m 0.8 10,000 g.-cm.|M FACT 2 0.6 CONTROL E BRUISE WAVELENG TH, NANOMETERS 1.0 MCINTOSH APPLE LN 42 DAYS AFTER BRUISING 0.8 10,000 g.cm.|MFACT 3 0.6 5 1 0.4
WAVELENGTH,NANOMETERS JONATHAN APPLE 1DAY AFTER BRUISING 8 Q8 10,000 g.-cm. IMPACT z E 0.6 CONTROL B 0.4
1 LB 02- Tr I I l W VELENGTH, NANOMETERS FIGS PATENIEBFEB! 81975 REFLEC TANCE REFLECTANCE -REFLEX: TANCE SHEET 38F 6 JONATHAN APPLE 28 DAYS AFTER BRUISING 10,000 g.cm. IMPACT 0.6
WAVELENGTH, NANOMETERS 1.0 GOLDEN DELICIOUS APPLE 08 10M AFTER BRUISING 10,000 g.-cm. IMPACT 0.6 CONTROL v WAVELENGTH, NANOMETERS 1.0 GOLDEN DELICIOUS APPLE O 8 28 DAYS AFTER BRUISING 10,000 g.-cm.1MPACT Q6 CONTROL BRUISE O l I l WAVELENGTH, NANOMETERS PATENTEB EB 8191s 3 as T. 041
SHEET U 0F 6 JONATHAN APPLE 1 DAY AFTER BRUISING 5,000 g .-m IMPACT CON TROL REFLEC TANCE 800 1200 1600 2000 WAVELENGTH NA NOM E TERS JONATHAN APPLE 28 DAYS AFTER BRUISING 5,000 g.cm.|MPACT CON TROL WAVE LENGTH, NANOMETERS F I G .I l
1.0 JONATHAN APPLE L 1 DAY AFTER BRUISING 0.8 2,500 g.cm.|MPACT g CONTROL 8 1 0.4 b BRUISE 0: 0.2
WAVELENGTH, NANOMETERS FIG-J2 PATENTED FEB! 8 I975 REFLEC TANCE REFLECTANCE SHEET 50! 6 JON A THAN APPLE 0.8 STORED 4 MONTHS 7 DAYS AFTER BRUISING O;6 10,000 g.Cm. IMPACT O 4 CONTROL WAVELENGTH, NANOMETERS Fl G16 OOLDEN DELICIOUS APPLE 1 O STORED 4 MONTHS 7 DAYS AFTER BRUISING 0,8 10,000 g.cm. IMPACT 00 CONTROL Fl G/I 7 METHOD FOR DETECTING BRUISES IN FRUIT BACKGROUND OF THE INVENTION This invention relates to a method of detecting bruises in fruit which will lend itself to automation.
Bruises on fruits such as applies, peaches, pears, and cherries result in grade defects, higher grading cost, and the necessity for hand trimming or alternate uses of the fruit. Studies of hand fruit harvests have shown that bruises occur in as high as 16 percent of the applies, 24 percent of the peaches, and 6 percent of the pears. Increased use of mechanical pickers will increase the number of bruises and other surface defects. Most of the grading of fruit is a visual-hand operation despite the fact that much research has been done in an effort to find an automatic method of grading.
T. L. Stiefvater (M. S. Thesis, Cornell Univ. Agr. Eng. Dept., 1970) reviewed the literature for suitable methods of detecting bruises in apples and set forth three primary criteria. A suitable method must be:
1. based on reliably identifiable bruise effects;
2. nondestructive; and
3. adaptable to high-speed sorting.
For bruise detection to be nondestructive, an apparatus used for this purpose must necessarily perform its task from outside the fruit without undue manipulation. X-ray techniques reportedly have been quite successful in detecting flaws in fruits (Diener, et al., ASAE Paper No. 69-380, 1969; and Ziegler et al., ASAE Paper No. 70-553, 1970), but X-rays have the inherent problems of expense and safety.
Rehkugler, et al., (Transactions of the ASAE l4: 1 189-1 194, 1971) describe a method of bruise detection in apples which relies on the fact that most bruises leave a dent such that a discontinuity is formed on the surface (i.e., skin) of the fruit. A ray of visible light reflecting from the surface is sufficiently deflected by the discontinuity to be detected.
lngle and Hyde (Proc. Amer. Soc. Hort. Sci. 93: 738-745, 1968) determined differences in light reflectance at 600 nanometers (nm.) between bruised and unbruised apple pulp. However, this required slicing the apple to obtain samples to be tested. There have been several publications describing surface reflectance of light in the region of 400 to 2,100 nm. R. V. Lott (Proc. Amer. Soc. Hort. Sci. 43: 59-62, 1943; and ibid., 44: 157-171. 1944) and Bittner and Norris (Transactions of the ASAE 11: 534-536, 1968) recorded spectral data from reflectance measurements of several varieties of apples, peaches, and pears and related the data to maturation. However, all of these studies were silent as to the reflectance measurements of bruises. We were surprised, therefore, when we discovered a significant difference between the reflectance measurements from the unbroken surfaces of bruised and unbruised portions of fruit.
Bruises on apples, peaches, pears, and the like can be easily detected by the following steps: I
a. illuminating a fruit surface with diffuse light at wavelengths of from 700 to 2,200 nm.;
b. detecting the light reflected from the surface with a photoemissive detector;
c. determining the amount of light reflected from the surface of an unbruised portion of the fruit;
d. determining the amount of light reflected from each portion of the entire fruit surface having an area equal to the area of the portion disclosed in (c);
e. comparing the amount of light determined in (c) to the amount of light determined in'(d); and
f. detecting a bruise in the fruit when the amount of light determined in (d) is significantly lower than the amount of light determined in (c).
The drawings consist of 17 figures which depict graphs comparing wavelength versus reflectance measurements of bruised and unbruised portions of peaches, pears, and several varieties of apples.
DETAILED DESCRIPTION OF THE INVENTION In order to accomplish its object, the invention relies on the discovery that the dry surfaces over bruised portions of certain fleshy fruits (e.g., apples, peaches, pears, and cherries) reflect less infrared light than the surfaces of unbruised portions. The object of the invention is the provision of a quick, reliable method of detecting bruises so that bruised fruit can be sorted from unbruised fruit, preferably by automated mechanical means.
Sorting methods of the type in which the invention is used begin by positioning the fruit in front of the infrared light source and detector. This can be done by hand or by a suitable mechanical means. The light source is such that the portion of the fruit surface to be measured is evenly illuminated with diffuse light having wavelengths of at least from 700 to 2,200 nm., and the photoemissive detector is positioned so that it measures light reflected from the specified portions of the fruit surface. It is first necessary to measure the light reflected from a portion of fruit surface which is known to be free of any sort of bruise or other impairment. This is used as the control. Since at any given wavelength the unbruised surface of each member of a speciflc fruit variety at the same level of maturity reflects essentially the same amount of light, the control measurement need only be taken once for each batch of fruit to be tested. However, it is preferred that the control measurement be rechecked at frequent intervals. After the control measurement has been established, reflectance measurements are taken over the entire surface of each fruit to be inspected in the same manner as the control. Changes in position of the fruit in relation to the detector port can be accomplished by hand or by some suitable mechanical means. All reflectance measurements subsequent to the control measurement are then compared to the control. A reflectance measurement which is significantly lower than the control indicates a bruise or other similar damage. Bruises inflicted on the fruit in the examples consistently had reflectance measurements which were from 0.02 to 0.32 reflectance units lower than the controls.
' Reflectance units are expressed as percent of the total amount of light reflected from a white standard. Measurements taken a few seconds after bruising showed that reflectance is lowered at the instant the bruise was made. At most wavelengths, more than half of the decrease in bruise reflectance for apples occurred within the first day of the 28- to 42-day test period.
Output of photoemissive detectors is an electric current so that reflectance can be read directly from an ammeter calibrated to read bruised and unbruised or the like. An operator is then able to reject the bruised fruit either by hand or by some suitable mechanical means. The electric output of the detector is also useful for activating mechanical rejection devices in completely automated systems.
For optimum measurement accuracy it is preferred that the diffuse infrared light evenly illuminate that portion of the fruit surface from which the measurement is being taken and that the detection area be the same for all measurements including those taken for controls. It is preferred that the detection area be equal to or less than the bruises to be measured. It is also preferred that the range of wavelengths being detected at any one time be relatively narrow. This range of wavelength or band width can be controlled by use of a narl0 eters of slit width, band width, detection area, methods orchards at East Lansing, the peaches, grown in Pennsylvania, were purchased in East Lansing supermarket, and the pears were picked from a commercial orchard near Fennville, Mich. All fruit were 2 /2-inch diameter minimum.
Flesh firmness values were determined using a Chatillon motorized universal test stand (model HCTM) at a rate of IS cm. per minute, with appropriate Magness- Taylor probe. Six readings were taken on unbruised portions of each of six fruit for apples and pears, see Table l. v
Three fruit of each type were selected randomly for the reflectance measurements which were averaged and R'calculated as above and plotted against wavelength (see FIG. l-l7). A uniform bruise was produced on each fruit by dropping a 263-g. flat steel plate on the fruit as it rested on a flat steel Table l Num- Number Impact Avg. energy. Test her of Force. of energy. diameter. period. Fruit fruit lb. fruit g.-cm. mm. days Red (llobe peach 3 30000 32 4 Bartlett pear 6 18.4 i l.5 3 30000 IX McIntosh apple 6 13.9 10.6 3 10000 26 42 Jonathan apple (a 14.4 :t 1.0 3 H1000 2o 28 3 5000 22 2X 3 2500 l8 2X (iolden Delicious (a 16.8 l.4 3 |0000 24 2K apple 3 2500 16 2X Stored 4 months McIntosh apple l l0000 25 7 Jonathan apple I 10000 27 7 Golden Delicious I 10000 28 7 apple Mean force l standard deviation for all measurements. Pears: S/Ih diameter probe. lruit skin removed. Apples: 7/lh diameter prohe. l'ruit skin removed.
of illumination, etc., may vary with each different manufacturer. Therefore, it will be further understood that 0 the instant invention should not be limited to the exact parameters described above or in the following examples.
GENERAL PROCEDURE integrating sphere reflectance accessory with a 20-mm.
sample port in front of which each fruit was positioned by hand. A constant 0.2-mm. slit width was used resulting in a spectral band width of 20 to 40 nm. depending on wavelength. Because this is a single-beam instrument with a constant long-term drift, it was necessary to record calibration spectra of black and white standards both before and after fruit spectra in order to obtain corrected fruit spectra. Reflectance was calculated with the aid of a computer using the relation R b)/( w b) where R is the fruit reflectance, R, the recorded fruit reflectance, and R and R are the corrected reflectances of the white and black standards, respectively. Fruit and Test Conditions ntree varieties of apple, one variety of peach, and one variety of pear were included in the tests. The apples were picked from the Michigan State Universitytable. The drop height was varied to give different impact energies,see Table 1. These energies generally produced a bruise larger than the sample port ofthe integrating sphere.
The first reflectance measurements were taken within 2 hours after bruising, then the fruit were placed in cold storage at recommended conditions of temperature and relative humidity (Wright, US. Dept. Agr., Agriculture Handbook No. 66, 77 pp., 1954).
EXAMPLE 1 A single variety of peach was selected and treated as described above. Reflectance measurements were taken at 2 hours after bruising and 4 days after bruising; R was calculated and plotted against wavelength, FIGS. 1 and 2. Standard deviation of reflectance was 0.02 and 0.09 for the bruise compared with 0.03 and 0.03 for the control at 800 and 1,200 nm., respectively.
After the reflectance measurements were taken on the 4th day, fruit firmness was determined (Table l) and each fruit was cut open to observe the nature of the bruise. A shatter cone (V shape) bruise and Va-inch layer of unbruised flesh just beneath the skin, previously reported by Fridley and Adrian (Transactions of the ASAE 9: -138, 142, 1966), were observed.
EXAMPLE 2 A single variety of pear was selected and treated as described above. Reflectance measurements were taken at 2 hours after bruising, 14 days after bruising (before the fruit was ripened), and 18 days after bruising (after the fruit was ripened). Reflectance, R, was calculated and plotted against wavelength. The reflectance curves were similar at 2 hours after bruising, 14 days after bruising, or 18 days after bruising. In FIG. 3 are shown reflectance at 14 days.
After the reflectance readings were taken on the 18th day, fruit firmness was determined (Table 1), and each fruit was cut open to observe the nature of the bruise. Bruises were of similar size, and a shatter cone bruise and /a-inch layer of unbruised flesh just beneath the skin were observed.
EXAMPLE 3 Three varieties of apple were selected and treated as described above. Reflectance measurements were taken and R calculated and plotted against wavelength for McIntosh, Jonathan, and Golden Delicious apples having 10,000 g.-cm. impact bruises 1 day after bruising (FIGS. 4, 6, and 8), 28 or 42 days after bruising (FIGS. 5, 7, and 9), and 7 days after bruising of apples held 4 months in storage (FIGS. 15, 16, and 17).Jonathan apples were also bruised with 5,000 and 2,500 g.- cm. impacts and the reflectance of the bruises measured at 1 and 28 days after bruising (FIGS. 10, ll, 12, and 13). Reflectance measurements of 2,500 g.-cm. impact bruises were taken from Golden Delicious variety apples at 1 day after bruising, FIG. 14. In the wavelength regions of 800, 1,200, and 1,700 nm. the standard deviation of reflectance for the controls were 0.01, 0.02, and 0.02 nm., respectively; and for the bruises were 0.02, 0.03, and 0.02, respectively. After reflectance measurements were taken, each fruit was cut open to observe the nature of the bruise. The
bruises for a given variety and impact energy were of similar size, no shatter cone was evident, and the bruises began just under the skin.
We claim:
1. A method of detecting bruises in apples, peaches, pears, and the like comprising the steps of:
a. illuminating the outer surface of a fruit, said surface being unbroken, with diffuse light at wavelengths of from 700 to 2,200 nm.;
b. detecting the light reflected from the fruit surface with a photoemissive detector;
c. determining the amount of light reflected from the surface of an unbruised portion of said fruit;
d. determining the amount of light reflected from each portion of the entire fruit surface having an area equal to the area of the portion disclosed in e. comparing the amount of light determined in (c) to the amount of light determined in (d); and
f. detecting a bruise in the fruit when the amount of light determined in (d) is significantly lower than the amount of light determined in (c).
2. The method described in claim 1 wherein the area of the portions of fruit surface disclosed in (c) and (d) is equal to or less than the area of each bruise to be detected.
3. The method described in claim 1 wherein the amount of light determined in (d) is from 0.02 to 0.32 reflectance units lower than the amount of light determined in (c).
4. The method described in claim 1 wherein the fruit are apples.
5. The method described in claim 1 wherein the fruit are peaches.
6. The method described in claim 1 wherein the fruit

Claims (6)

1. A method of detecting bruises in apples, peaches, pears, and the like comprising the steps of: a. illuminating the outer surface of a fruit, said surface being unbroken, with diffuse light at wavelengths of from 700 to 2,200 nm.; b. detecting the light reflected from the fruit surface with a photoemissive detector; c. determining the amount of light reflected from the surface of an unbruised portion of said fruit; d. determining the amount of light reflected from each portion of the entire fruit surface having an area equal to the area of the portion disclosed in (c); e. comparing the amount of light determined in (c) to the amount of light determined in (d); and f. detecting a bruise in the fruit when the amount of light determined in (d) is significantly lower than the amount of light determined in (c).
2. The method described in claim 1 wherein the area of the portions of fruit surface disclosed in (c) and (d) is equal to or less than the area of each bruise to be detected.
3. The method described in claim 1 wherein the amount of light determined in (d) is from 0.02 to 0.32 reflectance units lower than the amount of light determined in (c).
4. The method described in claim 1 wherein the fruit are apples.
5. The method described in claim 1 wherein the fruit are peaches.
6. The method described in claim 1 wherein the fruit are pears.
US421379A 1973-12-03 1973-12-03 Method for detecting bruises in fruit Expired - Lifetime US3867041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US421379A US3867041A (en) 1973-12-03 1973-12-03 Method for detecting bruises in fruit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US421379A US3867041A (en) 1973-12-03 1973-12-03 Method for detecting bruises in fruit

Publications (1)

Publication Number Publication Date
US3867041A true US3867041A (en) 1975-02-18

Family

ID=23670277

Family Applications (1)

Application Number Title Priority Date Filing Date
US421379A Expired - Lifetime US3867041A (en) 1973-12-03 1973-12-03 Method for detecting bruises in fruit

Country Status (1)

Country Link
US (1) US3867041A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2480437A1 (en) * 1980-04-09 1981-10-16 Inst Obstforschung Spoilt fruit inspection appts. esp. for apples - subjects fruit to pressure conditions to modify geometrical structure and uses mechanical feelers to sense surface condition
US4741042A (en) * 1986-12-16 1988-04-26 Cornell Research Foundation, Inc. Image processing system for detecting bruises on fruit
USRE32718E (en) * 1976-12-03 1988-07-26 Sinus Medical Equipment Ab Transillumination diagnostic method and apparatus
US5526119A (en) * 1992-04-16 1996-06-11 Elop Electro-Optics Industries, Ltd. Apparatus & method for inspecting articles such as agricultural produce
US5732147A (en) * 1995-06-07 1998-03-24 Agri-Tech, Inc. Defective object inspection and separation system using image analysis and curvature transformation
US5757001A (en) * 1996-05-01 1998-05-26 The Regents Of The University Of Calif. Detection of counterfeit currency
US5825498A (en) * 1996-02-05 1998-10-20 Micron Technology, Inc. Ultraviolet light reflectance method for evaluating the surface characteristics of opaque materials
US6195163B1 (en) 1996-02-05 2001-02-27 Micron Technology, Inc. Reflectance method for evaluating the surface characteristics of opaque materials
US6363366B1 (en) * 1998-08-31 2002-03-26 David L. Henty Produce identification and pricing system for checkouts
US20080277479A1 (en) * 2003-11-13 2008-11-13 Metrologic Instruments, Inc. Countertop-based digital image capture and processing system having an illumination subsystem employing a single array of LEDS disposed behind an illumination focusing lens structure integrated within the imaging window, for generating a field of visible illumination highly confined below the field of view of the system operator and customers who are present during object illumination and imaging operations
US7806335B2 (en) 2000-11-24 2010-10-05 Metrologic Instruments, Inc. Digital image capturing and processing system for automatically recognizing objects in a POS environment
DE202008018010U1 (en) 2008-01-14 2011-05-05 Henty, David L., Irvine Fruits and vegetables Identification and pricing system for cash registers
WO2012005660A1 (en) 2010-07-08 2012-01-12 Itab Scanflow Ab A checkout counter
CN103616346A (en) * 2013-11-22 2014-03-05 江苏科技大学 Method for rapidly detecting quality of ample flow pears

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3393800A (en) * 1965-10-21 1968-07-23 Fred A. Durand Jr. Method and apparatus for measuring light
US3765775A (en) * 1972-03-15 1973-10-16 Neotec Corp Optical internal quality analyzer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3393800A (en) * 1965-10-21 1968-07-23 Fred A. Durand Jr. Method and apparatus for measuring light
US3765775A (en) * 1972-03-15 1973-10-16 Neotec Corp Optical internal quality analyzer

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE32718E (en) * 1976-12-03 1988-07-26 Sinus Medical Equipment Ab Transillumination diagnostic method and apparatus
FR2480437A1 (en) * 1980-04-09 1981-10-16 Inst Obstforschung Spoilt fruit inspection appts. esp. for apples - subjects fruit to pressure conditions to modify geometrical structure and uses mechanical feelers to sense surface condition
US4741042A (en) * 1986-12-16 1988-04-26 Cornell Research Foundation, Inc. Image processing system for detecting bruises on fruit
US5751833A (en) * 1992-04-16 1998-05-12 Elop Electro-Optics Industries, Ltd. Apparatus and method for inspecting articles such as agricultural produce
US5526119A (en) * 1992-04-16 1996-06-11 Elop Electro-Optics Industries, Ltd. Apparatus & method for inspecting articles such as agricultural produce
US5960098A (en) * 1995-06-07 1999-09-28 Agri-Tech, Inc. Defective object inspection and removal systems and methods for identifying and removing defective objects
US5732147A (en) * 1995-06-07 1998-03-24 Agri-Tech, Inc. Defective object inspection and separation system using image analysis and curvature transformation
US5825498A (en) * 1996-02-05 1998-10-20 Micron Technology, Inc. Ultraviolet light reflectance method for evaluating the surface characteristics of opaque materials
US6195163B1 (en) 1996-02-05 2001-02-27 Micron Technology, Inc. Reflectance method for evaluating the surface characteristics of opaque materials
US6275292B1 (en) 1996-02-05 2001-08-14 Micron Technology, Inc. Reflectance method for evaluating the surface characteristics of opaque materials
US6327040B2 (en) * 1996-02-05 2001-12-04 Micron Technology, Inc. Reflectance method for evaluating the surface characteristics of opaque materials
US6417928B2 (en) 1996-02-05 2002-07-09 Micron Technology, Inc. Reflectance method for evaluating the surface characteristics of opaque materials
US6452678B2 (en) 1996-02-05 2002-09-17 Micron Technology, Inc. Reflectance method for evaluating the surface characteristics of opaque materials
US6594013B2 (en) 1996-02-05 2003-07-15 Micron Technology, Inc. Reflectance method for evaluating the surface characteristics of opaque materials
US5757001A (en) * 1996-05-01 1998-05-26 The Regents Of The University Of Calif. Detection of counterfeit currency
US6363366B1 (en) * 1998-08-31 2002-03-26 David L. Henty Produce identification and pricing system for checkouts
US7806335B2 (en) 2000-11-24 2010-10-05 Metrologic Instruments, Inc. Digital image capturing and processing system for automatically recognizing objects in a POS environment
US20090020610A1 (en) * 2003-11-13 2009-01-22 Metrologic Instruments, Inc. Digital image capture and processing system employing an image formation and detection subsystem having an area-type image detection array supporting periodic occurrance of snap-shot type image acquisition cycles at a high-repetition rate during object illumination and imaging operations
US7980471B2 (en) 2003-11-13 2011-07-19 Metrologic Instruments, Inc. Method of unlocking restricted extended classes of features and functionalities embodied within a digital image capture and processing system by reading feature/functionality-unlocking type code symbols
US20080277476A1 (en) * 2003-11-13 2008-11-13 Anatoly Kotlarsky Method of blocking a portion of illumination rays generated by a countertop-supported digital imaging system, and preventing illumination rays from striking the eyes of the system operator or nearby consumer during operation of said countertop-supported digital image capture and processing system installed at a retail point of sale (POS) station
US20080283606A1 (en) * 2003-11-13 2008-11-20 Anatoly Kotlarsky Digital image capture and processing system supporting a periodic snapshot mode of operation wherein during each image acquistion cycle, the rows of image detection elements in the image detection array are exposed simultaneously to illumination
US20080283607A1 (en) * 2003-11-13 2008-11-20 Metrologic Instruments, Inc. Hand-supportable digital image capture and processing system employing visible targeting illumination beam projected from an array of visible light sources on the rear surface of a printed circuit (PC) board having a light transmission aperture, and reflected off multiple folding mirrors and projected through the light transmission aperture into a central portion of the field of view of said system
US20080290172A1 (en) * 2003-11-13 2008-11-27 Metrologic Instruments, Inc. Hand-supportable digital image capture and processing system employing manual trigger switching to control generation of a linear targeting illumination beam within the field of view (FOV), and to initiate illumination of the detected object and the capturing and processing of digital images thereof
US20080290173A1 (en) * 2003-11-13 2008-11-27 Metrologic Instruments, Inc. Hand-supportable digital image capture and processing system employing automatic object presence detection to control automatic generation of a linear targeting illumination beam within the field of view (FOV), and manual trigger switching to initiate illumination of the detected object and capturing and processing of digital images thereof
US20080296384A1 (en) * 2003-11-13 2008-12-04 Anatoly Kotlarsky Hand-supportable digital image capture and processing system having a printed circuit board with a light transmission aperture, through which the field of view (FOV) of the image detection array and visible targeting illumination beam are projected using a FOV-folding mirror
US20080314985A1 (en) * 2003-11-13 2008-12-25 Metrologic Instruments, Inc. Digital image capture and processing system supporting advanced modes of automatic illumination and imaging control
US20080277475A1 (en) * 2003-11-13 2008-11-13 Metrologic Instruments, Inc. Digital image capture and processing system supporting a presentation mode of system operation which employs a combination of video and snapshot modes of image detection array operation during a single cycle of system operation
US20090057410A1 (en) * 2003-11-13 2009-03-05 Metrologic Instruments, Inc. Digital image capture and processing system having a single printed circuit (PC) board with a light transmission aperture, wherein a first linear array of visible light emitting diodes (LEDS) are mounted on the rear side of the PC board for producing a linear targeting illumination beam, and wherein a second linear array of visible LEDS are mounted on the front side of said PC board for producing a field of visible illumination within the field of view (FOV) of the system
US20080277479A1 (en) * 2003-11-13 2008-11-13 Metrologic Instruments, Inc. Countertop-based digital image capture and processing system having an illumination subsystem employing a single array of LEDS disposed behind an illumination focusing lens structure integrated within the imaging window, for generating a field of visible illumination highly confined below the field of view of the system operator and customers who are present during object illumination and imaging operations
US7841533B2 (en) 2003-11-13 2010-11-30 Metrologic Instruments, Inc. Method of capturing and processing digital images of an object within the field of view (FOV) of a hand-supportable digitial image capture and processing system
US7845561B2 (en) 2003-11-13 2010-12-07 Metrologic Instruments, Inc. Digital image capture and processing system supporting a periodic snapshot mode of operation wherein during each image acquisition cycle, the rows of image detection elements in the image detection array are exposed simultaneously to illumination
US7845559B2 (en) 2003-11-13 2010-12-07 Metrologic Instruments, Inc. Hand-supportable digital image capture and processing system employing visible targeting illumination beam projected from an array of visible light sources on the rear surface of a printed circuit (PC) board having a light transmission aperture, and reflected off multiple folding mirrors and projected through the light transmission aperture into a central portion of the field of view of said system
US7900839B2 (en) 2003-11-13 2011-03-08 Metrologic Instruments, Inc. Hand-supportable digital image capture and processing system having a printed circuit board with a light transmission aperture, through which the field of view (FOV) of the image detection array and visible targeting illumination beam are projected using a FOV-folding mirror
US7922089B2 (en) 2003-11-13 2011-04-12 Metrologic Instruments, Inc. Hand-supportable digital image capture and processing system employing automatic object presence detection to control automatic generation of a linear targeting illumination beam within the field of view (FOV), and manual trigger switching to initiate illumination
US9104930B2 (en) 2003-11-13 2015-08-11 Metrologic Instruments, Inc. Code symbol reading system
US7967209B2 (en) 2003-11-13 2011-06-28 Metrologic Instruments, Inc. Method of blocking a portion of illumination rays generated by a countertop-supported digital imaging system, and preventing illumination rays from striking the eyes of the system operator or nearby consumers during operation of said countertop-supported digital image capture and processing system installed at a retail point of sale (POS) station
US20080277473A1 (en) * 2003-11-13 2008-11-13 Metrologic Intruments, Inc. Digital image capture and processing system employing an image formation and detection system having an area-type image detection array supporting single snap-shot and periodic snap-shot modes of image acquisition during object illumination and imaging operations
US7988053B2 (en) 2003-11-13 2011-08-02 Metrologic Instruments, Inc. Digital image capture and processing system employing an image formation and detection subsystem having image formation optics providing a field of view (FOV) on an area-type image detection array, and a multi-mode illumination subsystem having near and far field LED-based illumination arrays for illuminating near and far field portions of said FOV
US7997489B2 (en) 2003-11-13 2011-08-16 Metrologic Instruments, Inc. Countertop-based digital image capture and processing system having an illumination subsystem employing a single array of LEDs disposed behind an illumination focusing lens structure integrated within the imaging window, for generating a field of visible illumination highly confined below the field
US8011585B2 (en) 2003-11-13 2011-09-06 Metrologic Instruments, Inc. Digital image capture and processing system employing a linear LED-based illumination array mounted behind an illumination-focusing lens component integrated within the imaging window of the system
US8047438B2 (en) 2003-11-13 2011-11-01 Metrologic Instruments, Inc. Digital image capture and processing system employing an image formation and detection subsystem having an area-type image detection array supporting periodic occurrance of snap-shot type image acquisition cycles at a high-repetition rate during object illumination
US8052057B2 (en) 2003-11-13 2011-11-08 Metrologic Instruments, Inc. Method of programming the system configuration parameters of a digital image capture and processing system during the implementation of its communication interface with a host system without reading programming-type bar code symbols
US8087588B2 (en) 2003-11-13 2012-01-03 Metrologic Instruments, Inc. Digital image capture and processing system having a single printed circuit (PC) board with a light transmission aperture, wherein a first linear array of visible light emitting diodes (LEDs) are mounted on the rear side of the PC board for producing a linear targeting illumination beam, and wherein a second linear array of visible LEDs are mounted on the front side of said PC board for producing a field of visible illumination within the field of view (FOV) of the system
US8317105B2 (en) 2003-11-13 2012-11-27 Metrologic Instruments, Inc. Optical scanning system having an extended programming mode and method of unlocking restricted extended classes of features and functionalities embodied therewithin
US8157175B2 (en) 2003-11-13 2012-04-17 Metrologic Instruments, Inc. Digital image capture and processing system supporting a presentation mode of system operation which employs a combination of video and snapshot modes of image detection array operation during a single cycle of system operation
US8100331B2 (en) 2003-11-13 2012-01-24 Metrologic Instruments, Inc. Digital image capture and processing system having a printed circuit (PC) board with light transmission aperture, wherein first and second field of view (FOV) folding mirrors project the FOV of a digital image detection array on the rear surface of said PC board, through said light transmission aperture
US8132731B2 (en) 2003-11-13 2012-03-13 Metrologic Instruments, Inc. Digital image capture and processing system having a printed circuit (PC) board with a light transmission aperture, wherein an image detection array is mounted on the rear side of said PC board, and a linear array of light emitting diodes (LEDS) is mounted on the front surface of said PC board, and aligned with an illumination-focusing lens structure integrated within said imaging window
US8157174B2 (en) 2003-11-13 2012-04-17 Metrologic Instruments, Inc. Digital image capture and processing system employing an image formation and detection system having an area-type image detection array supporting single snap-shot and periodic snap-shot modes of image acquisition during object illumination and imaging operations
DE202008018010U1 (en) 2008-01-14 2011-05-05 Henty, David L., Irvine Fruits and vegetables Identification and pricing system for cash registers
WO2012005659A1 (en) 2010-07-08 2012-01-12 Itab Scanflow Ab A checkout counter
WO2012005660A1 (en) 2010-07-08 2012-01-12 Itab Scanflow Ab A checkout counter
US20150062560A1 (en) * 2010-07-08 2015-03-05 Itab Scanflow Ab Checkout counter
US9173508B2 (en) 2010-07-08 2015-11-03 Itab Scanflow Ab Checkout counter
US9301626B2 (en) * 2010-07-08 2016-04-05 Itab Scanflow Ab Checkout counter
CN103616346A (en) * 2013-11-22 2014-03-05 江苏科技大学 Method for rapidly detecting quality of ample flow pears

Similar Documents

Publication Publication Date Title
US3867041A (en) Method for detecting bruises in fruit
Abbott Quality measurement of fruits and vegetables
Cubeddu et al. Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples
Schmilovitch et al. Determination of mango physiological indices by near-infrared spectrometry
Kawano et al. Nondestructive determination of sugar content in satsuma mandarin using near infrared (NIR) transmittance
US6847447B2 (en) Apparatus and method and techniques for measuring and correlating characteristics of fruit with visible/near infra-red spectrum
NZ521919A (en) Apparatus and method for measuring and correlating characteristics of fruit with visible/near infra-red spectrum
Upchurch et al. Detecting internal breakdown in apples using interactance measurements
NZ566175A (en) Method and apparatus for determining quality of fruit and vegetable products
Upchurch et al. SPECTROPHOTOMETRIC STUDY OF BRUISES ON WHOLE,'RED DELICIOUS'APPLES
Blanke Non-invasive assessment of firmness and NIR sugar (TSS) measurement in apple, pear and kiwi fruit.
US5089701A (en) Nondestructive measurement of soluble solids in fruits having a rind or skin
JPH01301147A (en) Method and device for measuring quality of vegitable and fruit
JP2002122540A (en) Fresh product evaluating device and method
Delwiche et al. Color and optical properties of clingstone peaches related to maturity
Watada Methods for determining quality of fruits and vegetables
Gunasekaran et al. Optical methods—Visible, NIR and FTIR spectroscopy
Slaughter et al. Comparison of instrumental and manual inspection of clingstone peaches
Iqbal et al. Development of partial least square (PLS) prediction model to measure the ripeness of oil palm fresh fruit bunch (FFB) by using NIR Spectroscopy
Slaughter et al. Analysis of fruits and vegetables
Kawano New application of nondestructive methods for quality evaluation of fruits and vegetables in Japan (quality and its evaluation of horticultural products, for further development of horticulture in East Asia)
JPH1054794A (en) Method and device for inspecting quality inside vegitables and fruits
Choi et al. Nondestructive quality evaluation technology for fruits and vegetables using near-infrared spectroscopy
Cubeddu et al. Measuring fresh fruit and vegetable quality: advanced optical methods
Howaith et al. Reflectance characteristics of fresh-market carrots