US3877424A - Methods and apparatus for external fixation of bone fractures - Google Patents

Methods and apparatus for external fixation of bone fractures Download PDF

Info

Publication number
US3877424A
US3877424A US306214A US30621472A US3877424A US 3877424 A US3877424 A US 3877424A US 306214 A US306214 A US 306214A US 30621472 A US30621472 A US 30621472A US 3877424 A US3877424 A US 3877424A
Authority
US
United States
Prior art keywords
pins
bone
bridge
fracture
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US306214A
Inventor
William M Murray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US306214A priority Critical patent/US3877424A/en
Priority to JP14058674A priority patent/JPS538148B2/ja
Priority to CA216,499A priority patent/CA1035225A/en
Priority to FR7442473A priority patent/FR2295725A1/en
Priority to GB114/75A priority patent/GB1492681A/en
Application granted granted Critical
Publication of US3877424A publication Critical patent/US3877424A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • A61B17/64Devices extending alongside the bones to be positioned
    • A61B17/6441Bilateral fixators, i.e. with both ends of pins or wires clamped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • A61B17/66Alignment, compression or distraction mechanisms

Definitions

  • a method and apparatus are provided for external fixation of bone fractures.
  • the method comprises inserting at least one pin in each major fragment of bone with a portion of the pins extending above the skin surface, drawing the pins toward one another and applying a bridge to the pins to hold them in place under compression parallel to the bone being repaired.
  • the apparatus is at least two elongated pins adapted to be inserted at one end into the bone on opposite sides of a fracture, bridge means engaging the other ends and compression means acting on the pins generally parallel to the bone.
  • the method of my invention involves the use of metal pins driven into fracture fragments either percutaneously or under direct vision.
  • the pins are held in appropriate position externally of the skin by the use of a bridge which spaces and holds the pins and the bone fragments into which they are driven in fixed position for healing.
  • the bridge is made of a cement material which can be positioned while soft and will quickly harden in position holding the pins in the desired arrangement with respect to the fracture fragments.
  • 1 form the bridge by using a flexible bladder of oblong shape filled with a cement in the plastic condition which is capable of hardening in the bladder.
  • a particularly suitable material for this is epoxy resin.
  • I provide flexible oblong bladders filled with a resin base into which the hardener or catalyst may be added by injection at the time of use and thoroughly mixed by hand manipulation prior to application.
  • the bladder could be furnished with a reenforcing material such as chopped fiberglass. metal filings or any of a variety of other strengthening fillers and any reenforcing material.
  • wires or similar reenforcing members could be contained within the bladder to add strength to the completed bridge.
  • the pins are held in proper place during hardening of the cement by a temporary bridge which is removed after the final bridge has hardened.
  • a temporary bridge which is removed after the final bridge has hardened.
  • this is done by attaching the temporary bridge to the pins at a point between their site of exit from the skin of the limb being treated and the point of entry into the bladder.
  • such temporary bridge has mechanism for adjusting the position of the pins relative to the bridge and thus to allow manipulation for improvement of positioning of the bone and bone fragments at the fracture, prior to final hardening of the'cement.
  • FIG. 1 is an isometric view of an arm showing the arrangement of the apparatus of this invention for the purpose of holding a fractured radius.
  • FIG. 2 is a vertical section through the forearm and radius as well as the bridge holding the fractured bone in place according to FIG. 1.
  • FIG. 3 shows a second embodiment of the pin for use in this invention.
  • FIG. 4 shows a third embodiment of the pin for use in this invention.
  • FIG. 5 shows a fourth embodiment of the pin for use in this invention.
  • FIG. 6 shows a second embodiment of a bladder and pin arrangement according to this invention.
  • FIG. 7 shows a third embodiment of pin and bridge structure according to this invention.
  • FIG. 8 shows a fourth embodiment of the pin and bridge structure according to this invention.
  • FIG. 9 shows one form of temporary bridge which may be used during the installation of the bridge and pin structure of this invention.
  • FIG. 1 the fixation of a fracture of theradius in the forearm of a human being.
  • FIG. 2 two portions of the radius on opposite sides of the fracture l0, identified by the numerals 11 and 12.
  • Pins l3, l4, l5 and 16 are driven percutaneously into'the two portions of the radius 11 and 12, spaced in line from the fracture 10.
  • a bridge 17 is fixed to the ends of the pins 13, 14, 15 and 16.
  • the bridge is made up of an external pliable bladder 18 of polyethylene filled with fortified epoxy resin and formed to hold the pins and the key portions of the radius in fixed relation. The bridge is applied by pushing the pins 13, 14, 15 and 16 through the bladder and the resin while the resin is in the soft and unhardened condition and held in place until the cement hardens in the bladder.
  • the bladder can be removed or left in place as desired.
  • a temporary bridge made up of two portions connected by a ball and socket universal joint 20 is connected to the pins above the skin line.
  • the two portions 21, 22 which are connected to universal joint 20 are preferably formed of spaced plates 21a, 21b, 22a, and 22b held together by clamp screws or bolts 23. The pins are clamped between these clamp plates and held in position by them during the time the bladder filled with the unhardened cement is placed over the exposed ends of the pins and hardened.
  • the function of the bladder 18 is simply to contain the cement while it hardens about the pin along with any desirable reenforcement material or accessory devices which might be desi'rjed to be incorporated in the system.
  • the bladder must hold the cement in shape and contain a sufficient volume t'o'provide a mechanically adequate and convenient bridge for the pins used in the fracture.
  • the pins may take a variety of shapes. They may be in the form of a straight pin with sharpened ends, one end designed to cut through soft tissue and bone so that it may be readily implanted. The other end is simply sharpened sufficiently to permit skewering of the pin on the bladder.
  • the pin end may be threaded for more secure engagement of the pin in the bone and it may be provided with some mechanism for appliedtension between two or more pins on opposite sides of the fracture. Typical of such pins are those shown in FIGS. 3, 4 and In FIG. 31 have shown a pin 30 having a side flange 31 with an opening 32 to which a spring or other device for imparting tension may be applied.
  • FIG. 31 have shown a pin 30 having a side flange 31 with an opening 32 to which a spring or other device for imparting tension may be applied.
  • FIG. 4 I have shown a pin 35 with an eyelet 35a intermediate its ends to receive a spring or other tensioning device.
  • a pin 50 having a crimp 51 or bend intermediate its ends to form a placement device for a spring or other tensioning device.
  • FIG. 6 I have shown a form of truss structure where extreme strength is required.
  • the structure shown in FIG. 6 I have illustrated straight pins 45 and bent pins 46 entering the soft tissue and the bone ends 47, 48 to provide the extra strength necessary in some bone fractures. Trussing could be provided in a transverse plane or other planes as desired. It will be obvious from the drawings that extreme rigidity in the longitudinal axis as shown would interfer with the application of compression forces at the fracture site. However, this can be overcome by using the structure shown in FIG. 7.
  • FIG. 7 I have illustrated truss arrangements in which a hinge 60 is provided in the bridge 61 and 62.
  • FIG. 7 I have shown two bridge segments 61 62 connected by a hinge 60. Each bridge segment is provided with a straight pin 64 and two bent .pins 65, 66. Each of the bent pins 65 adjacent to the break 67 a re connected by a spring 68 to exert compression on the bone.
  • the arrangement which is shown in FIG. '7 is particularly desirable in order to create compression perpendicularly to a plane closer to that of a fracture so as to avoid any tendency toward telescoping, such as might occur in an oblique break, e.g., certain spiral fractures.
  • FIG. 8 l have shown a structure in which two bridges on opposite sides of the fracture are used.
  • the twobone sections 71 and 72 to be connected are implanted with pins 73, 74, 75 and 76 which pass through the bone section 71 and 72 and through the soft tissue 77 on eachside of the bone.
  • a bladder 78 is fixed on the ends projecting from one side and a bladder 79 from the ends projecting on the other side.
  • the fluid cement in the bladders is solidified to hold the pins in place.
  • the pins may be threaded intermediate their ends at the portion engaging the bone. They may also be threaded at the extreme ends to engage the solidified resin.
  • A-sterile dressing would be desirable over the pin entry sites and a rubber band could be applied to the pin above the dressing to help keep them in place, Alternatively, specialized dressings for the pin sites might be found useful. These might take the form of waterproof sterile bushings of soft material which could be impregnated with anti-bacterial ointment. For example, such bushings might be of soft rubber or plastic or they may be'of some sponge-like material impregnated with ointment or any other variety of other'de- VICS.
  • fixation of the bones is completely unaffected by soft tissue swelling.
  • Soft tissue swelling cannot cause circulatory deficit through pressure exerted by the fixation device as it can in the case where the fixation device is a plaster cast.
  • topical therapy indicated on the injured extremity can be carried out with little impediment from the fixation device. This can be very helpful in cases where significant soft tissue injury has occured along with the bone fracture.
  • a method of external fixation of of bone fractures comprising the steps of inserting at least one threaded pin into each major fragment of bone with a portion of the threaded pin extending beyond the soft tissue surrounding the fracture, reducing the fracture by drawing the threaded pins into proper position under compression generally transverse to the fracture line, applying a compliant bridge to the threaded pins at the portions exposed from the soft tissue while under compression, said compliant bridge permitting relative adjustment of the pins in one bone fragment with respect to those in another bone fragment and fixing the compliant bridge in rigid position on the pins to hold the threaded pins in place under compression during healing of the bone fractures said compliant bridge having rigidifying means permitting deformation of the bridge while the pins are placed therein and causing said bridge to become rigid while said compression acts on said pins.
  • a method of external fixation of bone fractures comprising the steps of inserting at least one pin into each major fragment of bone with a portion of the pin extending beyond the soft tissue surrounding the fracture, reducing the fracture by drawing the pins into proper position under compression generally transverse to the fracture line, applying a bridge to the pins at the portions exposed from the soft tissue to hold the pins in place under compression during healing of the bone fractures, said bridge comprising a bladder filled with soft cement which is applied to the pin ends and hardened.
  • a method as claimed in claim 2 wherein the cement is epoxy resin.
  • Anapparatus for fixation of fractured bones comprising at least two elongated high strength threaded metal pins adapted to be inserted at one end into a fractured bone on opposite sides of the fracture, compliant bridge means adapted to engage said pins at the other end outside the patients body and spaced from the bone, compression means acting on the pins generally parallel to the bridge and bone to urge the bone ends together within the compliant bridge means and means causing the compliant bridge to become rigid while said compression means acts on said pins.
  • An apparatus for fixation of fractured bones comprising at least two elongated high strength metal pins adapted to be inserted at one end into a fractured bone on opposite sides of the fracture, bridge means adapted to engage said pins at the other end outside the pacompression means is an elastomer band.

Abstract

A method and apparatus are provided for external fixation of bone fractures. The method comprises inserting at least one pin in each major fragment of bone with a portion of the pins extending above the skin surface, drawing the pins toward one another and applying a bridge to the pins to hold them in place under compression parallel to the bone being repaired. The apparatus is at least two elongated pins adapted to be inserted at one end into the bone on opposite sides of a fracture, bridge means engaging the other ends and compression means acting on the pins generally parallel to the bone.

Description

United States Patent [1 1 Murray [5 METHODS AND'APPARATUS FOR EXTERNAL FIXATION OF BONE FRACTURES [76] Inventor: William M. Murray, 105 Wynwood Rd., Pittsburgh, Pa. 15215 [22] Filed: Nov. 14, 1972 [21] Appl. No.: 306,214
[52] US. Cl 128/92 A [51] Int. Cl. A61f 5/04 [58] Field of Search... 128/92 A, 92 R, 92 B, 92 D, 128/83 [56] References Cited UNITED STATES PATENTS 1,869,726 8/1932 Youngren 128/92 2,391,693 12/1945 Ettinger 128/92 2,406,987 9/1946 Anderson 128/92 2,443,106 6/1948 Grosso 128/92 2,812,761 11/1957 Palkovitz 128/92 FORElGN PATENTS OR APPLICATIONS 7/1960 France 128/92 1 Apr. 15, 1975 Primary ExaminerRichar.d A. Gaudet Assistant Examiner-J. Yaslgo Attorney, Agent, or Firm-Buell, Blenki and Ziesenheim 1 5 7 1 ABSTRACT A method and apparatus are provided for external fixation of bone fractures. The method comprises inserting at least one pin in each major fragment of bone with a portion of the pins extending above the skin surface, drawing the pins toward one another and applying a bridge to the pins to hold them in place under compression parallel to the bone being repaired. The apparatus is at least two elongated pins adapted to be inserted at one end into the bone on opposite sides of a fracture, bridge means engaging the other ends and compression means acting on the pins generally parallel to the bone.
8 Claims, 9 Drawing Figures PATENTEUAPR 1 5191s SHEET 1 BF 2 METHODS AND APPARATUS FOR EXTERNAL FIXATlON OF BONE FRACTURES This invention relates to methods and apparatus for the external fixation of bone fractures and particularly to a method and apparatus for using an external bridge together with metal pins which are driven into the fracture fragments either percutaneously or under direct vision.
The treatment of fractures particularly fractures of the limbs such as the arm and the leg has historically been based upon the encapsulation of the limb within a cast of plaster after the bonefragments have been moved into place by some mechanical manipulation of the broken member. This practice has many draw backs. For example, the area around the fracture is usually contused and swells drastically out of its normal proportions. This places great pressure on the area beneath the plaster cast and consequently great pressure on the muscle and portion of the bone at the fracture. As the healing progresses the area beneath the plaster cast slowly shrinks so that some time after application of the cast the cast no longer fits or significantly supports the fracture area. Moreover, the period of time that the cast is in place is so long the wearer finds the cast to be cumbersome and uncomfortable as well as less than sanitary. I have developed a new method and apparatus for external fixation of bone fractures which eliminates the need for a plaster cast surrounding the fracture area. The method of my invention involves the use of metal pins driven into fracture fragments either percutaneously or under direct vision. The pins are held in appropriate position externally of the skin by the use of a bridge which spaces and holds the pins and the bone fragments into which they are driven in fixed position for healing. Preferably the bridge is made of a cement material which can be positioned while soft and will quickly harden in position holding the pins in the desired arrangement with respect to the fracture fragments. In a preferred practice of my invention, 1 form the bridge by using a flexible bladder of oblong shape filled with a cement in the plastic condition which is capable of hardening in the bladder. A particularly suitable material for this is epoxy resin. Preferably I provide flexible oblong bladders filled with a resin base into which the hardener or catalyst may be added by injection at the time of use and thoroughly mixed by hand manipulation prior to application. The bladder could be furnished with a reenforcing material such as chopped fiberglass. metal filings or any of a variety of other strengthening fillers and any reenforcing material. In addition, wires or similar reenforcing members could be contained within the bladder to add strength to the completed bridge. Preferably the pins are held in proper place during hardening of the cement by a temporary bridge which is removed after the final bridge has hardened. Preferably this is done by attaching the temporary bridge to the pins at a point between their site of exit from the skin of the limb being treated and the point of entry into the bladder. Preferably such temporary bridge has mechanism for adjusting the position of the pins relative to the bridge and thus to allow manipulation for improvement of positioning of the bone and bone fragments at the fracture, prior to final hardening of the'cement.
In the foregoing general description I have set out certain objects, purposes and advantages of my invention. Other purposes, objects and advantages of this invention will be apparent from a consideration of the following description and the accompanying drawings in which:
FIG. 1 is an isometric view of an arm showing the arrangement of the apparatus of this invention for the purpose of holding a fractured radius.
FIG. 2 is a vertical section through the forearm and radius as well as the bridge holding the fractured bone in place according to FIG. 1.
FIG. 3 shows a second embodiment of the pin for use in this invention.
FIG. 4 shows a third embodiment of the pin for use in this invention.
FIG. 5 shows a fourth embodiment of the pin for use in this invention.
FIG. 6 shows a second embodiment of a bladder and pin arrangement according to this invention.
FIG. 7 shows a third embodiment of pin and bridge structure according to this invention.
FIG. 8 shows a fourth embodiment of the pin and bridge structure according to this invention.
FIG. 9 shows one form of temporary bridge which may be used during the installation of the bridge and pin structure of this invention.
Referring to the drawings I have illustrated in FIG. 1 the fixation of a fracture of theradius in the forearm of a human being. In FIG. 2 are seen two portions of the radius on opposite sides of the fracture l0, identified by the numerals 11 and 12. Pins l3, l4, l5 and 16 are driven percutaneously into'the two portions of the radius 11 and 12, spaced in line from the fracture 10. A bridge 17 is fixed to the ends of the pins 13, 14, 15 and 16. The bridge is made up of an external pliable bladder 18 of polyethylene filled with fortified epoxy resin and formed to hold the pins and the key portions of the radius in fixed relation. The bridge is applied by pushing the pins 13, 14, 15 and 16 through the bladder and the resin while the resin is in the soft and unhardened condition and held in place until the cement hardens in the bladder. The bladder can be removed or left in place as desired.
In the installation of the pins and bladder I preferably provide a temporary bridge such as is shown in FIG. 9. In using this temporary bridge the pins 13, 14, 15 and 16 are driven into the bone portions. A temporary bridge made up of two portions connected by a ball and socket universal joint 20 is connected to the pins above the skin line. The two portions 21, 22 which are connected to universal joint 20 are preferably formed of spaced plates 21a, 21b, 22a, and 22b held together by clamp screws or bolts 23. The pins are clamped between these clamp plates and held in position by them during the time the bladder filled with the unhardened cement is placed over the exposed ends of the pins and hardened.
The function of the bladder 18 is simply to contain the cement while it hardens about the pin along with any desirable reenforcement material or accessory devices which might be desi'rjed to be incorporated in the system. The bladder must hold the cement in shape and contain a sufficient volume t'o'provide a mechanically adequate and convenient bridge for the pins used in the fracture.
The pins may take a variety of shapes. They may be in the form of a straight pin with sharpened ends, one end designed to cut through soft tissue and bone so that it may be readily implanted. The other end is simply sharpened sufficiently to permit skewering of the pin on the bladder. The pin end may be threaded for more secure engagement of the pin in the bone and it may be provided with some mechanism for appliedtension between two or more pins on opposite sides of the fracture. Typical of such pins are those shown in FIGS. 3, 4 and In FIG. 31 have shown a pin 30 having a side flange 31 with an opening 32 to which a spring or other device for imparting tension may be applied. In FIG. 4 I have shown a pin 35 with an eyelet 35a intermediate its ends to receive a spring or other tensioning device. In FIG. I have shown a pin 50 having a crimp 51 or bend intermediate its ends to form a placement device for a spring or other tensioning device.
In FIG. 6 I have shown a form of truss structure where extreme strength is required. In the structure shown in FIG. 6 I have illustrated straight pins 45 and bent pins 46 entering the soft tissue and the bone ends 47, 48 to provide the extra strength necessary in some bone fractures. Trussing could be provided in a transverse plane or other planes as desired. It will be obvious from the drawings that extreme rigidity in the longitudinal axis as shown would interfer with the application of compression forces at the fracture site. However, this can be overcome by using the structure shown in FIG. 7. In FIG. 7 I have illustrated truss arrangements in which a hinge 60 is provided in the bridge 61 and 62. This may be done by applying two end to end bladders 61 and 62 with a hinge connection 60 to harden into place or the hinge 60 may be inserted in the bridge after the bridgeis in place and hardened. In the structure shown in FIG. 7 I have shown two bridge segments 61 62 connected by a hinge 60. Each bridge segment is provided with a straight pin 64 and two bent .pins 65, 66. Each of the bent pins 65 adjacent to the break 67 a re connected by a spring 68 to exert compression on the bone. The arrangement which is shown in FIG. '7 is particularly desirable in order to create compression perpendicularly to a plane closer to that of a fracture so as to avoid any tendency toward telescoping, such as might occur in an oblique break, e.g., certain spiral fractures.
In FIG. 8 l have shown a structure in which two bridges on opposite sides of the fracture are used. Here the twobone sections 71 and 72 to be connected are implanted with pins 73, 74, 75 and 76 which pass through the bone section 71 and 72 and through the soft tissue 77 on eachside of the bone. A bladder 78 is fixed on the ends projecting from one side and a bladder 79 from the ends projecting on the other side. The fluid cement in the bladders is solidified to hold the pins in place. As shown in the drawings the pins may be threaded intermediate their ends at the portion engaging the bone. They may also be threaded at the extreme ends to engage the solidified resin.
A-sterile dressing, not illustrated, would be desirable over the pin entry sites and a rubber band could be applied to the pin above the dressing to help keep them in place, Alternatively, specialized dressings for the pin sites might be found useful. These might take the form of waterproof sterile bushings of soft material which could be impregnated with anti-bacterial ointment. For example, such bushings might be of soft rubber or plastic or they may be'of some sponge-like material impregnated with ointment or any other variety of other'de- VICS.
It is obvious from the foregoing description of my invention that the practice as set out therein has a variety of advantages over the prior art practices. For example, fixation of the bones is completely unaffected by soft tissue swelling. Soft tissue swelling cannot cause circulatory deficit through pressure exerted by the fixation device as it can in the case where the fixation device is a plaster cast. There is no joint immobilization whatever required after the cement is fully hardened and compression is applied. Bending, torsional and tensile stress to the fractured bone should, however, be minimized as one would expect. Deformity resulting from loss of reduction would not be obscured by the fixation device as it is in the case of a plaster cast and such deformities could be promptly corrected before they become a part of the healed bone structure. Finally topical therapy indicated on the injured extremity can be carried out with little impediment from the fixation device. This can be very helpful in cases where significant soft tissue injury has occured along with the bone fracture.
While I have illustrated and described certain preferred embodiments of my invention in the foregoing specification, it will be understood that this invention may be otherwise practiced within the scope of the following claims.
I claim:
1. A method of external fixation of of bone fractures comprising the steps of inserting at least one threaded pin into each major fragment of bone with a portion of the threaded pin extending beyond the soft tissue surrounding the fracture, reducing the fracture by drawing the threaded pins into proper position under compression generally transverse to the fracture line, applying a compliant bridge to the threaded pins at the portions exposed from the soft tissue while under compression, said compliant bridge permitting relative adjustment of the pins in one bone fragment with respect to those in another bone fragment and fixing the compliant bridge in rigid position on the pins to hold the threaded pins in place under compression during healing of the bone fractures said compliant bridge having rigidifying means permitting deformation of the bridge while the pins are placed therein and causing said bridge to become rigid while said compression acts on said pins.
2. A method of external fixation of bone fractures comprising the steps of inserting at least one pin into each major fragment of bone with a portion of the pin extending beyond the soft tissue surrounding the fracture, reducing the fracture by drawing the pins into proper position under compression generally transverse to the fracture line, applying a bridge to the pins at the portions exposed from the soft tissue to hold the pins in place under compression during healing of the bone fractures, said bridge comprising a bladder filled with soft cement which is applied to the pin ends and hardened.
3. A method as claimed in claim 2 wherein the cement is epoxy resin.
4. A method as claimed in claim 1 wherein pressure isapplied to the pins transverse to their length between the bridge and the bone to urge the pins together.
5. Anapparatus for fixation of fractured bones comprising at least two elongated high strength threaded metal pins adapted to be inserted at one end into a fractured bone on opposite sides of the fracture, compliant bridge means adapted to engage said pins at the other end outside the patients body and spaced from the bone, compression means acting on the pins generally parallel to the bridge and bone to urge the bone ends together within the compliant bridge means and means causing the compliant bridge to become rigid while said compression means acts on said pins.
6. An apparatus for fixation of fractured bones comprising at least two elongated high strength metal pins adapted to be inserted at one end into a fractured bone on opposite sides of the fracture, bridge means adapted to engage said pins at the other end outside the pacompression means is an elastomer band.

Claims (8)

1. A method of external fixation of of bone fractures comprising the steps of inserting at least one threaded pin into each major fragment of bone with a portion of the threaded pin extending beyond the soft tissue surrounding the fracture, reducing the fracture by drawing the threaded pins into proper position under compression generally transverse to the fracture line, applying a compliant bridge to the threaded pins at the portions exposed from the soft tissue while under compression, said compliant bridge permitting relative adjustment of the pins in one bone fragment with respect to those in another bone fragment and fixing the compliant bridge in rigid position on the pins to hold the threaded pins in place under compression during healing of the bone fractures said compliant bridge having rigidifying means permitting deformation of the bridge while the pins are placed therein and causing said bridge to become rigid while said compression acts on said pins.
2. A method of external fixation of bone fractures comprising the steps of inserting at least one pin into each major fragment of bone with a portion of the pin extending beyond the soft tissue surrounding the fracture, reducing the fracture by drawing the pins into proper position under compression generally transverse to the fracture line, applying a bridge to the pins at the portions exposed from the soft tissue to hold the pins in place under compression during healing of the bone fractures, said bridge comprising a bladder filled with soft cement which is applied to the pin ends and hardened.
3. A method as claimed in claim 2 wherein the cement is epoxy resin.
4. A method as claimed in claim 1 wherein pressure is applied to the pins transverse to their length between the bridge and the bone to urge the pins together.
5. An apparatus for fixation of fractured bones comprising at least two elongated high strength threaded metal pins adapted to be inserted at one end into a fractured bone on opposite sides of the fracture, compliant bridge means adapted to engage said pins at the other end outside the patient''s body and spaced from the bone, compression means acting on the pins generally parallel to the bridge and bone to urge the bone ends together within the compliant bridge means and means causing the compliant bridge to become rigid while said compression means acts on said pins.
6. An apparatus for fixation of fractured bones comprising at least two elongated high strength metal pins adapted to be inserted at one end into a fractured bone on opposite sides of the fracture, bridge means adapted to engage said pins at the other end outside the patient''s body and spaced from the bone and compression means acting on the pins generally parallel to the bridge and bone to urge the bone ends together, said bridge comprising a bladder filled with a hardenable cement adapted to be placed over the said other ends of the pin and hardened in situ.
7. An apparatus as claimed in claim 5 wherein the bridge is hinged intermediate its ends.
8. An apparatus as claimed in claim 5 wherein the compression means is an elastomer band.
US306214A 1972-11-14 1972-11-14 Methods and apparatus for external fixation of bone fractures Expired - Lifetime US3877424A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US306214A US3877424A (en) 1972-11-14 1972-11-14 Methods and apparatus for external fixation of bone fractures
JP14058674A JPS538148B2 (en) 1972-11-14 1974-12-09
CA216,499A CA1035225A (en) 1972-11-14 1974-12-19 Methods and apparatus for external fixation of bone fractures
FR7442473A FR2295725A1 (en) 1972-11-14 1974-12-23 FRACTURED BONE FIXATION DEVICE
GB114/75A GB1492681A (en) 1972-11-14 1975-01-02 Apparatus for external fixation of bone fractures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US306214A US3877424A (en) 1972-11-14 1972-11-14 Methods and apparatus for external fixation of bone fractures
JP14058674A JPS538148B2 (en) 1972-11-14 1974-12-09

Publications (1)

Publication Number Publication Date
US3877424A true US3877424A (en) 1975-04-15

Family

ID=26473056

Family Applications (1)

Application Number Title Priority Date Filing Date
US306214A Expired - Lifetime US3877424A (en) 1972-11-14 1972-11-14 Methods and apparatus for external fixation of bone fractures

Country Status (5)

Country Link
US (1) US3877424A (en)
JP (1) JPS538148B2 (en)
CA (1) CA1035225A (en)
FR (1) FR2295725A1 (en)
GB (1) GB1492681A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4564007A (en) * 1982-10-20 1986-01-14 National Research Development Corp. Orthopaedic external fixation devices
US4570618A (en) * 1983-11-23 1986-02-18 Henry Ford Hospital Intervertebral body wire stabilization
US4584995A (en) * 1984-04-26 1986-04-29 Orthotic Limited Partnership External fixation device
US4604996A (en) * 1985-03-11 1986-08-12 Nunamaker David M External skeletal fixator
US4747400A (en) * 1984-04-26 1988-05-31 Harrington Arthritis Research Center External fixation device
US4757809A (en) * 1984-04-26 1988-07-19 Orthotic Limited Partnership Pin clamp
WO1989007421A1 (en) * 1988-02-17 1989-08-24 Nabil Riad Mohamed Fahmy Distraction apparatus for maintaining fractured joint orientation
US4893618A (en) * 1986-08-26 1990-01-16 Wolfgang Herzberg External fixation apparatus
US4895141A (en) * 1984-04-26 1990-01-23 Harrington Arthritis Research Center Unilateral external fixation device
US4961417A (en) * 1988-02-02 1990-10-09 Protectair Limited Surgical dressing
US4978348A (en) * 1988-05-26 1990-12-18 Ilizarov Gavriil A Compression-distraction apparatus for osteosynthesis
US5037425A (en) * 1985-05-16 1991-08-06 Brown Byron L Device and method for cementing a hip prosthesis in a femoral canal
US5257994A (en) * 1991-09-23 1993-11-02 Lin Chih I Vertebral locking and retrieving system
US5578041A (en) * 1994-10-14 1996-11-26 Trustees Of The University Of Pennsylvania External fixation device
US5752953A (en) * 1997-01-30 1998-05-19 Slocum; Barclay Method and device for adjusting a long-bone conformation
WO2000009019A1 (en) * 1998-08-12 2000-02-24 Poly-4 Medical, Inc. Bone fixation apparatus and method
WO2000040167A1 (en) * 1999-01-08 2000-07-13 Board Of Trustees Of The University Of Arkansas Bone anchored fixation for displacement of facial bones
US6159210A (en) * 1997-01-14 2000-12-12 Research Corporation Technologies, Inc. Bone fixation pin with rotary cutting tip
US20040082961A1 (en) * 2000-06-23 2004-04-29 Teitelbaum George P. Percutaneous vertebral fusion system
EP1437974A2 (en) * 2001-08-29 2004-07-21 Vertelink Corporation Formed in place fixation system with thermal acceleration
US20040210228A1 (en) * 2001-10-29 2004-10-21 Carl-Goran Hagert System for fixation of fractures comprising an elastic chassis
US20050015088A1 (en) * 2003-07-15 2005-01-20 Ringeisen Timothy A. Compliant osteosynthesis fixation plate
US20050149022A1 (en) * 2000-06-23 2005-07-07 Shaolian Samuel M. Curable media for implantable medical device
JP2006518643A (en) * 2003-02-21 2006-08-17 ハメル,ロス Skull and facial fracture reconstruction assembly
US20060229605A1 (en) * 2005-03-18 2006-10-12 Olsen Ron A Adjustable splint for osteosynthesis with incrementing assembly for adjustment in predetermined increments
US20060229602A1 (en) * 2005-03-18 2006-10-12 Olsen Ron A Adjustable splint for osteosynthesis
US7153302B1 (en) 2001-09-19 2006-12-26 Phoenix Orthopaedic Corporation Device for external fixation of bone fractures with clamping of multiple pins and with a fixture for applying extension to bone fragments
US7169149B1 (en) 2003-07-24 2007-01-30 Phoenix Orthopaedic Corporation Device for external fixation of a proximal fracture of the ulna with a clamped medullar pin and multiple clamped pins holding bone fragments
US20070162028A1 (en) * 2005-12-09 2007-07-12 Jesse Jackson Cannulated screw
US20080154368A1 (en) * 2006-12-21 2008-06-26 Warsaw Orthopedic, Inc. Curable orthopedic implant devices configured to harden after placement in vivo by application of a cure-initiating energy before insertion
US20080154266A1 (en) * 2006-12-21 2008-06-26 Warsaw Orthopedic, Inc. Methods for positioning a load-bearing orthopedic implant device in vivo
US20080154373A1 (en) * 2006-12-21 2008-06-26 Warsaw Orthopedic, Inc. Curable orthopedic implant devices configured to be hardened after placement in vivo
US20080154367A1 (en) * 2006-12-21 2008-06-26 Warsaw Orthopedic, Inc. Methods for positioning a load-bearing component of an orthopedic implant device by inserting a malleable device that hardens in vivo
US20090222006A1 (en) * 2005-11-10 2009-09-03 Allison David M External fixator
US7833249B2 (en) 2000-06-23 2010-11-16 Warsaw Orthopedic, Inc. Formable orthopedic fixation system
CN101940495A (en) * 2010-06-08 2011-01-12 孟翔鸣 Fracture reduction holding clamp
FR2952521A1 (en) * 2009-11-16 2011-05-20 Francois Jean Luc Duroux Transfixing and transverse static external fixer for e.g. open fractures of phalanx, has rods secured together between one centimeter and three centimeter above dorsal side of finger with cement balls and metal rods
US20110202059A1 (en) * 2006-11-17 2011-08-18 Webb Lawrence X External fixation assembly and method of use
US20140277202A1 (en) * 2013-03-18 2014-09-18 Chih-Hsuan Wei Connecting Structure of a Spinal Detector for a Minimally Invasive Surgery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900025A (en) * 1974-04-24 1975-08-19 Jr Walter P Barnes Apparatus for distracting or compressing longitudinal bone segments
JPS5318850U (en) * 1976-07-28 1978-02-17
JPS54127644U (en) * 1978-02-27 1979-09-05
US4502473A (en) * 1981-08-06 1985-03-05 National Research Development Corp. Apparatus for external fixation of bone fractures
GB8807026D0 (en) * 1988-03-24 1988-04-27 Sheffield City Council Bone fixation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1869726A (en) * 1930-02-10 1932-08-02 Earl E Youngren Surgical apparatus
US2391693A (en) * 1943-12-09 1945-12-25 Zimmer Mfg Company Surgical splint
US2406987A (en) * 1943-01-04 1946-09-03 Anderson Roger Fracture splint
US2443106A (en) * 1945-05-10 1948-06-08 Patrick P Grosso Apparatus for reducing and holding fractures in position
US2812761A (en) * 1955-07-27 1957-11-12 Myer Z Palkovitz Fixation apparatus for bone fractures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2398915A (en) * 1945-07-06 1946-04-23 William L Bell Surgical instrument
FR1240313A (en) * 1959-11-10 1960-09-02 Continuous compression external fixator for the treatment of fractures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1869726A (en) * 1930-02-10 1932-08-02 Earl E Youngren Surgical apparatus
US2406987A (en) * 1943-01-04 1946-09-03 Anderson Roger Fracture splint
US2391693A (en) * 1943-12-09 1945-12-25 Zimmer Mfg Company Surgical splint
US2443106A (en) * 1945-05-10 1948-06-08 Patrick P Grosso Apparatus for reducing and holding fractures in position
US2812761A (en) * 1955-07-27 1957-11-12 Myer Z Palkovitz Fixation apparatus for bone fractures

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4564007A (en) * 1982-10-20 1986-01-14 National Research Development Corp. Orthopaedic external fixation devices
US4570618A (en) * 1983-11-23 1986-02-18 Henry Ford Hospital Intervertebral body wire stabilization
US4895141A (en) * 1984-04-26 1990-01-23 Harrington Arthritis Research Center Unilateral external fixation device
US4747400A (en) * 1984-04-26 1988-05-31 Harrington Arthritis Research Center External fixation device
US4757809A (en) * 1984-04-26 1988-07-19 Orthotic Limited Partnership Pin clamp
US4584995A (en) * 1984-04-26 1986-04-29 Orthotic Limited Partnership External fixation device
US4604996A (en) * 1985-03-11 1986-08-12 Nunamaker David M External skeletal fixator
US5037425A (en) * 1985-05-16 1991-08-06 Brown Byron L Device and method for cementing a hip prosthesis in a femoral canal
US4893618A (en) * 1986-08-26 1990-01-16 Wolfgang Herzberg External fixation apparatus
US4961417A (en) * 1988-02-02 1990-10-09 Protectair Limited Surgical dressing
WO1989007421A1 (en) * 1988-02-17 1989-08-24 Nabil Riad Mohamed Fahmy Distraction apparatus for maintaining fractured joint orientation
US4978348A (en) * 1988-05-26 1990-12-18 Ilizarov Gavriil A Compression-distraction apparatus for osteosynthesis
US5257994A (en) * 1991-09-23 1993-11-02 Lin Chih I Vertebral locking and retrieving system
US5578041A (en) * 1994-10-14 1996-11-26 Trustees Of The University Of Pennsylvania External fixation device
US6159210A (en) * 1997-01-14 2000-12-12 Research Corporation Technologies, Inc. Bone fixation pin with rotary cutting tip
US5752953A (en) * 1997-01-30 1998-05-19 Slocum; Barclay Method and device for adjusting a long-bone conformation
WO2000009019A1 (en) * 1998-08-12 2000-02-24 Poly-4 Medical, Inc. Bone fixation apparatus and method
US6093190A (en) * 1998-08-12 2000-07-25 Poly-4 Medical Inc. Bone fixation apparatus and method
WO2000040167A1 (en) * 1999-01-08 2000-07-13 Board Of Trustees Of The University Of Arkansas Bone anchored fixation for displacement of facial bones
US6096079A (en) * 1999-01-08 2000-08-01 Board Of Trustees Of The University Of Arkansas Bone anchored fixation for displacement of facial bones
US7833249B2 (en) 2000-06-23 2010-11-16 Warsaw Orthopedic, Inc. Formable orthopedic fixation system
US20040082961A1 (en) * 2000-06-23 2004-04-29 Teitelbaum George P. Percutaneous vertebral fusion system
US8337556B2 (en) 2000-06-23 2012-12-25 Sdgi Holdings, Inc. Curable media for implantable medical device
US8083774B2 (en) 2000-06-23 2011-12-27 Warsaw Orthopedic, Inc. Percutaneous vertebral fusion system
US20050149022A1 (en) * 2000-06-23 2005-07-07 Shaolian Samuel M. Curable media for implantable medical device
US20050251140A1 (en) * 2000-06-23 2005-11-10 Shaolian Samuel M Formed in place fixation system with thermal acceleration
US7727262B2 (en) 2000-06-23 2010-06-01 Warsaw Orthopedic, Inc. Formed in place fixation system with thermal acceleration
EP1437974A2 (en) * 2001-08-29 2004-07-21 Vertelink Corporation Formed in place fixation system with thermal acceleration
EP1437974A4 (en) * 2001-08-29 2009-09-23 Warsaw Orthopedic Inc Formed in place fixation system with thermal acceleration
US7153302B1 (en) 2001-09-19 2006-12-26 Phoenix Orthopaedic Corporation Device for external fixation of bone fractures with clamping of multiple pins and with a fixture for applying extension to bone fragments
US20040210228A1 (en) * 2001-10-29 2004-10-21 Carl-Goran Hagert System for fixation of fractures comprising an elastic chassis
US7935115B2 (en) * 2001-10-29 2011-05-03 General Orthopedics Int. Ab System for fixation of fractures comprising an elastic chassis
JP2006518643A (en) * 2003-02-21 2006-08-17 ハメル,ロス Skull and facial fracture reconstruction assembly
US7931695B2 (en) 2003-07-15 2011-04-26 Kensey Nash Corporation Compliant osteosynthesis fixation plate
US20110218634A1 (en) * 2003-07-15 2011-09-08 Ringeisen Timothy A Compliant osteosynthesis fixation plate
US8679163B2 (en) 2003-07-15 2014-03-25 Kensey Nash Corporation Compliant osteosynthesis fixation plate
US8679164B2 (en) 2003-07-15 2014-03-25 Kensey Nash Corporation Compliant osteosynthesis fixation plate
US20050015088A1 (en) * 2003-07-15 2005-01-20 Ringeisen Timothy A. Compliant osteosynthesis fixation plate
US20050085817A1 (en) * 2003-07-15 2005-04-21 Ringeisen Timothy A. Compliant osteosynthesis fixation plate
US7169149B1 (en) 2003-07-24 2007-01-30 Phoenix Orthopaedic Corporation Device for external fixation of a proximal fracture of the ulna with a clamped medullar pin and multiple clamped pins holding bone fragments
US7575575B2 (en) 2005-03-18 2009-08-18 Ron Anthon Olsen Adjustable splint for osteosynthesis with modular components
US7507240B2 (en) 2005-03-18 2009-03-24 Ron Anthon Olsen Adjustable splint for osteosynthesis
US7588571B2 (en) 2005-03-18 2009-09-15 Ron Anthon Olsen Adjustable splint for osteosynthesis with modular joint
US20060229604A1 (en) * 2005-03-18 2006-10-12 Olsen Ron A Adjustable splint for osteosynthesis with modular components
US20060229603A1 (en) * 2005-03-18 2006-10-12 Olsen Ron A Adjustable splint for osteosynthesis with modular joint
US20060229605A1 (en) * 2005-03-18 2006-10-12 Olsen Ron A Adjustable splint for osteosynthesis with incrementing assembly for adjustment in predetermined increments
US20060229602A1 (en) * 2005-03-18 2006-10-12 Olsen Ron A Adjustable splint for osteosynthesis
US20090222006A1 (en) * 2005-11-10 2009-09-03 Allison David M External fixator
US7731738B2 (en) 2005-12-09 2010-06-08 Orthopro, Llc Cannulated screw
US20070162028A1 (en) * 2005-12-09 2007-07-12 Jesse Jackson Cannulated screw
US8454603B2 (en) * 2006-11-17 2013-06-04 Wake Forest University Health Sciences External fixation assembly and method of use
US9050136B2 (en) 2006-11-17 2015-06-09 Wake Forest University Health Sciences External fixation assembly and method of use
US20110202059A1 (en) * 2006-11-17 2011-08-18 Webb Lawrence X External fixation assembly and method of use
US8480718B2 (en) 2006-12-21 2013-07-09 Warsaw Orthopedic, Inc. Curable orthopedic implant devices configured to be hardened after placement in vivo
US20080154367A1 (en) * 2006-12-21 2008-06-26 Warsaw Orthopedic, Inc. Methods for positioning a load-bearing component of an orthopedic implant device by inserting a malleable device that hardens in vivo
US20080154373A1 (en) * 2006-12-21 2008-06-26 Warsaw Orthopedic, Inc. Curable orthopedic implant devices configured to be hardened after placement in vivo
US8663328B2 (en) 2006-12-21 2014-03-04 Warsaw Orthopedic, Inc. Methods for positioning a load-bearing component of an orthopedic implant device by inserting a malleable device that hardens in vivo
US20080154266A1 (en) * 2006-12-21 2008-06-26 Warsaw Orthopedic, Inc. Methods for positioning a load-bearing orthopedic implant device in vivo
US20080154368A1 (en) * 2006-12-21 2008-06-26 Warsaw Orthopedic, Inc. Curable orthopedic implant devices configured to harden after placement in vivo by application of a cure-initiating energy before insertion
US8758407B2 (en) 2006-12-21 2014-06-24 Warsaw Orthopedic, Inc. Methods for positioning a load-bearing orthopedic implant device in vivo
US7771476B2 (en) 2006-12-21 2010-08-10 Warsaw Orthopedic Inc. Curable orthopedic implant devices configured to harden after placement in vivo by application of a cure-initiating energy before insertion
FR2952521A1 (en) * 2009-11-16 2011-05-20 Francois Jean Luc Duroux Transfixing and transverse static external fixer for e.g. open fractures of phalanx, has rods secured together between one centimeter and three centimeter above dorsal side of finger with cement balls and metal rods
CN101940495A (en) * 2010-06-08 2011-01-12 孟翔鸣 Fracture reduction holding clamp
US20140277202A1 (en) * 2013-03-18 2014-09-18 Chih-Hsuan Wei Connecting Structure of a Spinal Detector for a Minimally Invasive Surgery

Also Published As

Publication number Publication date
FR2295725B1 (en) 1978-09-29
GB1492681A (en) 1977-11-23
JPS538148B2 (en) 1978-03-25
JPS5168993A (en) 1976-06-15
CA1035225A (en) 1978-07-25
FR2295725A1 (en) 1976-07-23

Similar Documents

Publication Publication Date Title
US3877424A (en) Methods and apparatus for external fixation of bone fractures
US7828801B2 (en) External fixation device for fractures
EP0255388A1 (en) Fracture brace
US3680553A (en) Fixing apparatus for osteosynthesis of fractures of long tubular bones
US6953441B2 (en) Preformed brace for treating metacarpal fractures and method of treating metacarpal fractures
JPH0558340B2 (en)
WO2011119815A2 (en) System and methods for in vivo adjustable bone plate
US8083740B2 (en) Device for facilitating the healing of bone including Olecranan
US5578041A (en) External fixation device
WO2003082161A1 (en) Fracture brace
RU2345728C2 (en) Method of functional fixation of fractures with bandages from polymeric materials
SU862926A1 (en) Method of reposition of fractured humerus
US20030093020A1 (en) Fracture brace
SU1616652A1 (en) Device for making compressoin in treating fractures in plaster bandage
RU2363406C1 (en) Method of carrying out controlled noninvasive closed frame reduction and fixing fractures-dislocations in plaster bandage
US4319565A (en) Device for inclusion in an immobilizing structure for a limb and limb immobilizing structures including such devices
JP2023130368A (en) Plaster cast for radio-ulna fracture treatment of animal and its fabrication method as well as treatment method of radio-ulna fracture of animal
RU2702873C1 (en) Method of treating fractures of base i metacarpal bone
RU2111729C1 (en) Conservative functional-fixation method to treat shin damages
RU2274428C1 (en) Structure for rigidly fixing nasal bones
RU1821166C (en) Method of treating fractured shin bones
SU1754085A1 (en) Plate for bony fragment compression
RU2671518C2 (en) Method of magnetic apposition and immobilization of bone fragments of the facial skull
RU2264187C2 (en) Apparatus for treatment of skew and comminuted shin fractures
CN117598848A (en) Bone joint fixing device for fracture