US3877427A - Oxygen compressive chamber - Google Patents

Oxygen compressive chamber Download PDF

Info

Publication number
US3877427A
US3877427A US256915A US25691572A US3877427A US 3877427 A US3877427 A US 3877427A US 256915 A US256915 A US 256915A US 25691572 A US25691572 A US 25691572A US 3877427 A US3877427 A US 3877427A
Authority
US
United States
Prior art keywords
chamber
oxygen
compressive
stretcher
end wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US256915A
Inventor
Semen Mikhailovich Alexeev
Mark Nikolaevich Arkhangelsky
Valentin Pavlovich Baldin
Boris Solomonovich Braverman
Jury Dmitrievich Vasiliev
Vladimir Petrovich Gorjushev
Alexandr Lvovich Zelvinsky
Jury Petrovich Rogachev
Gai Ilich Severin
Jury Andreevich Spassky
Boris Vasilievich Spolitak
Vladimir Vladimirovich Ushinin
Rustam Ismailovich Utyamushev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US256915A priority Critical patent/US3877427A/en
Application granted granted Critical
Publication of US3877427A publication Critical patent/US3877427A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G10/00Treatment rooms or enclosures for medical purposes
    • A61G10/02Treatment rooms or enclosures for medical purposes with artificial climate; with means to maintain a desired pressure, e.g. for germ-free rooms
    • A61G10/023Rooms for the treatment of patients at over- or under-pressure or at a variable pressure
    • A61G10/026Rooms for the treatment of patients at over- or under-pressure or at a variable pressure for hyperbaric oxygen therapy

Definitions

  • ABSTRACT An oxygen compressive chamber intended for treating patients by the method of oxygen therapy under hyperbaric conditions.
  • the chamber comprises an outer portion, which is made collapsible, and an inner portion, made as a detachable stretcher to bring the patient thereon into the chamber, and then to handcarry the chamber together with the patient placed therein.
  • the present invention relates to medical equipment used for treating patients by the method of oxygen therapy under the conditions of hyperbaric pressure.
  • the above method is applied particularly for treating patients afflicted with stenocardia and infarction of the myocardium, intoxication, general and tissue hypoxia, shock, cranio-cerebral trauma, gas gangrene, tetanus, reticular embolism, occlusion of mesenteric vessels, necrosis of skin flaps, etc.
  • stenocardia and infarction of the myocardium intoxication, general and tissue hypoxia, shock, cranio-cerebral trauma, gas gangrene, tetanus, reticular embolism, occlusion of mesenteric vessels, necrosis of skin flaps, etc.
  • cf. e.g., Clinical Application of Hyperbaric Oxygen, Proceedings of the International Congress, Amsterdam, September 1963, Edited by 1. Boerema, W. H. Brummelkamp and N. G. Meigne, and also Hyperbarooxygenotherapia (in Russian), edited by professor G. L. Rat
  • the above method of treatment is carried into effect by the application of various oxygen compressive chambers.
  • a pure oxygen medium is established in these chambers at a pressure close to 3 kg/cm with maintaining certain humidity and temperature levels, and extracting deleterious gas admixtures exhaled by the patient.
  • the treatment is effected in courses under clinical conditions.
  • the existing chambers incorporate air conditioning and regeneration systems, equipment for medical control over a patient, emergency protection systems including those of urgent pressure release, fire preventing systems, interphone systems, etc. (of, e.g., G.F.R. Pat. No. 948,736, C1.Cl. k 13/03 of July 8, 1949, USSR Author's certificate No. 228,879, Cl. 30k, 13/03, of October 17, 1968, US Pat. No. 3587574, Cl. 128-204 of June 28, 1971).
  • the efficiency of treating patients by hyperbaric oxygen depends to a great extent on what stage of the disease the treatment has been commenced; it may be often times required to effect hyberbaric oxygen treatment immediately at patients home, at a place of accident, or even during carrying the patient in an ambulance vehicle. Therefore, the medical institutions are of the necessity confronted with a problem of furnishing the first-aid service with oxygen compressive chambers which could be collapsed into transportation position so as not to occupy much space in the ambulance saloon in those cases when the chamber is not actually employed for the purpose.
  • the chamber should ensure expeditious converting into operating position, permit the patient to be conveniently placed in it. be easily hand-carried by stretcher-bearers to a place of accident or to a patients bed.
  • An oxygen chamber has been developed in Germany in 1960 (actual inventors Emery, Lucas, Williams) and installed in an ambulance vehicle which was primarily employed for treating patients intoxicated by carbonic oxide or afflicted with infarction of the myocardium,
  • This chamber is shaped as a cylinder mounted horizontally on a bogie.
  • the chamber incorporates an open-type oxygen system, wherein oxygen is delivered into the chamber in a continuous stream, while pressure is regulated through a release valve.
  • this chamber is but little differing from stationary-type chambers, being so much bulky and weighty.
  • a stress can be made on a stationary chamber constructed according to the GFR Pat. No. 847,474, Cl. 30k, 31/03 of Aug. 25, 1952.
  • the chamber is made as a series of cylindrical rings which are telescopically retracted into each other when the chamber is in inoperative position.
  • this chamber is superfluously heavy and bulky. Seals of telescopic compartments of the chamber make it difficult to expeditiously convert the chamber into operating state and are not able to ensure convenient putting of the patient in grave or unconscious condition.
  • an oxygen compressive chamber constructed according to the USSR Authors certificate No. 199,342, Cl. 30k, 13/03, of July 13, 1967.
  • This chamber is made as an elastic bag incorporating a stepped entrance extension and has a gas pressure reducer, a safety valve and a pressure gauge.
  • This chamber is intended for treating miners at a place of accident, intoxicated by mine gas during breakdowns in mines.
  • the chamber according to this con struction is not able to ensure the required hyperbaric oxygen pressure and is also inconvenient in operation.
  • an oxygen compressive chamber for rendering emergency medical aid to the patient placed inside said chamber which incorporates a ventilation system and a system of oxygen delivery to said chamber, said chamber according to the present invention comprising an outer portion which ismade collapsible, and an inner portion representing a detachable stretcher for bringing thereon a patient into said chamber and carrying said chamber together with said patient.
  • At least one embodiment of the present invention may incorporate a collapsible portion of the chamber, said portion having two rigid end walls provided with sockets for mounting a stretcher therein, and a side surface made of an elastic material, whereas to at least one of said end walls the side surface is secured by means of a releasable airtightening connection.
  • the split airtightening connection is made up of two profiled flanges one of which is dis posed on the end wall of the chamber, while the other is secured to the side surface of the chamber, whereas the first flange incorporates an inflatable rubber bead and a metal L-shaped split ring with a two-link lock installed in the joint of the split, while the second flange is fitted with an airtightening seat and a shoulder, through which the latter cooperates with the L-shaped split ring.
  • a stretcher is fitted with rods made of pipes when one of the pipes is connected to a circulation injector to ensure oxygen delivery and ventilation of the chamber,
  • the present invention provides for a solution of the technical problem set forth, namely, effecting hyperbaric oxygen treatment directly at a place of accident, during hand-carrying and transportation of the patient.
  • the chamber is attended by a single physician and hand-carried by two stretcher-bearers. For transportation, the empty chamber can be collapsed to reduce its overall length almost thrice.
  • the chamber is provided with a control desk, an interphone device, and a device for the remote introduction of medicinals to the patient, which substantially raises the efficiency of treatment.
  • the stock of oxygen in the chamber makes the latter self-contained in operation; with oxygen supply from a stationary source the chamber operating period can be increased.
  • the chamber is equipped with a common communication coupling to connect a conditioner to permit a wider temperature range of the chamber application.
  • FIG. I is a general view of an oxygen compressive chamber, according to the present invention.
  • FIG. 2 shows a portion of the oxygen compressive chamber with a stretcher, while the remaining portion of the chamber is disconnected to make it easier to carry the patient;
  • FIG. 3 shows the chamber while in idle (or transportation) position
  • FIG. 4 is a longitudinal section through the chamber while in operating position
  • FIG. 5 is a section taken along the line AA in FIG.
  • FIG. 6 shows the chamber in the initial position (prior to starting operation).
  • FIG. 7 is a general view of the releasable airtightening connection
  • FIG. 8 is a sectional view of the releasable airtightening connection (see FIG. 7, Ref. I);
  • FIG. 9 is a general view of an L-shaped split ring which is used in the releasable airtightening connection
  • FIG. 10 shows a two-link lock of the releasable airtightening connection (see FIG. 9, Ref. II);
  • FIG. 11 is a schematic layout of the oxygen system in the chamber
  • FIG. 12 is a schematic layout of an embodiment of the device for the remote introduction of medicinals to the patient
  • FIG. 13 is a structural layout of the sealing unit while in the initial position.
  • FIG. 14 is a structural layout of the sealing unit while in operating position.
  • the oxygen compressive chamber of the invention comprises two rigid end walls, viz., a head wall 1 and a rear wall 2 (see FIG. 1), and a side surface 3 made of an elastic airtight material.
  • Mounted on the wall 2 are an oxygen bottle and a control desk of the oxygen system of the chamber 4.
  • Attached externally to the end walls 1 and 2 are sockets to connect handles 5 (for carrying the chamber) and legs 6 with ground rollers. In no-use position (see FIG. 3), handles 5 can be disconnected from the chamber.
  • a stretcher 7 (see FIG. 2) intended for putting the patient thereon and bringing the latter into the chamber; the stretcher is provided with a tipping leg 8.
  • flanges 11 and 12 rigidly secured to the flange 12 are two symmetrically disposed brackets 13 with guide rollers 27 (FIGS. 4, 5 I).
  • the flange 12 and the flange 14 of the wall 1 form a releasable airtightening connection, whereas the end wall 2 has a flange 15 welded thereto, with which the latter is permanently connected to the flange ll.
  • a rigid protective shroud 16 carrying on its inner side one end of a telescopically retracting pipe 17; the opposite end of the pipe is connected to the flange l2.
  • Attached to the side surface 3 of the chamber are rings 18 through which the pipe 17 is passing.
  • a perforated tubular manifold 19 Disposed on the head wall 1 along an arc is a perforated tubular manifold 19 connected with its ends to sockets 9.
  • the head wall 1 is furnished with a cushion head-rest 20. Two-way communication with a patient is effected by means of a microphone 21 and an interphone device 22 located outside the chamber. To visually observe the patient, the head wall is given illuminators 23.
  • the stretcher 7 comprises a bed 24 with a mattress, and two rods made of pipes 25 rigidly connected to the bed 24. Secured underneath and to the bed 24 are two channelled guide members 26 whose recesses enclose rollers 27 which are securely affixed to the brackets 13 (see FIGS. 4,5).
  • a two-end hook 28 Mounted to the flange 12 of the side surface of the chamber (see FIG. 6) is a two-end hook 28, one end of which cooperating with a lock 29 found on the shroud 16, while the other end of the hook cooperating with a lock 30 found on the wall 1.
  • the releasable airtightening connection formed by the flanges l2 and 14 incorporates an inflatable rubber bead 31 of which the inner space is communicating via a hole 32 with the inner space of the chamber.
  • a metal L-shaped split ring 33 Located in a slot of the flange 12 is a metal L-shaped split ring 33 adjacent to a circular shoulder 34 of the flange 12 the latter having a seat blade 35 which thrusts against the bead 31.
  • a two-link lock 36 comprising a pivoted lever 37 located on one side of the split of the ring 33, and a lever 38 located on the other side thereof.
  • the lever 38 carries a springloaded latch gear 39.
  • the oxygen system of the chamber mounted principally in the wall 2,'comprises an oxygen bottle 40 (see FIG. 1 l a charging union 41 and a pressure gauge 42, of which both are disposed at the inlet of the bottle; a pressure reducer 44 and a circulation injector 45 located in the inner space of the socket 10 to which is connected the pipe 25 of the stretcher 7.
  • Parrallel to'the line of the circulation injector 45 is located an oxygen line for the purging the chamber, the latter line consisting of a two-way cock 46 and an injector 47 of increased oxygen delivery.
  • a common coupling case 48 Located on the suction line of the circulation injector 45 is a common coupling case 48 with non-return valves 49 which are pressed off their seats by the pushers of a stopper 50. (If necessary, the stopper 50 of the case 48 can be replaced with a mating coupling case to connect the chamber to a conditioner).
  • a signalizer 51 mounted in the wall 1 of the chamber is a signalizer 51 to check pressure in the inner space of the manifold 19.
  • the signalizer 51 includes a spring-loaded diaphragm carrying a permanent magnet 52 which is cooperating with an electric contact 53 through the housing wall.
  • the super-diaphragm space of the signalizer 51 communicates with the inner space of the manifold 19, while the sub-diaphragm space of the signalizer communicates with the inner space of the chamber.
  • the inner space of the chamber communicates with a pressure gauge 54, whereas the wall 2 carries a regulator 55 of oxygen pressure in the chamber, and a safety valve 56.
  • the oxygen compressive chambers known in the art are often furnished with special devices to effect remote introduction of various medicinals to the patient placed inside the chamber. Provisions ofinjections materially improve the efficiency of treatment by the hyperbaric oxygen method.
  • the oxygen compressive chamber is provided with special sealing sockets for inserting therethrough the pipelines of the injection device.
  • Described hereinafter is one of the embodiments (see FIG. 12) of the injection device according to the spirit of the present invention, comprising a stand 57, to which a holder 58 is secured and locked on the stand by a screw 59.
  • a container 60 for keeping various medicinals is held in a transparent protective hood 61 which is covered at top with a pressure cover 62.
  • the container 60 is closed by a thick-walled rubber plug 63 through which two needles are inserted, viz., a short needle 64, and a long needle 65, the top end of the latter needle emerging above the level of the liquid.
  • the stand 58 is adapted to fix thereon a number of containers 60.
  • the equal-length needles of each container are connected to a common pipeline 66 (for needles 65) and to a common pipeline 67 (for needles 64).
  • Mounted on the branch pipes of the pipeline 66 are clamps 68, while on the branch pipes of the pipeline 67 -clamps 69.
  • a filter 70 is installed at the inlet of the pipeline 67.
  • sealing sockets 71 and 72 for airtightened insertion of the pipelines 66 and 67 into the chamber.
  • an adapter 73 for an injection needle 78 is protected with a rubber cap 74.
  • the sealing socket 71 (or 72) comprises a thickwalled rubber washer 75, a retainer 76, and a pressure nut 77.
  • the chamber is functioning as follows.
  • the chamber Prior to placing a patient therein, the chamber is to be prepared in the following way (see FIG. 6).
  • the side surface 3 of the chamber is folded bellows-like in the protective shroud 16, while the flange 12 of said surface is pulled up towards the shroud 16 by means of the lock 29.
  • the stretcher 7 is fixed in sockets 9 of the wall 1 by means of a spring-loaded catch (not shown).
  • the leg 8 6 of the stretcher 7 is tipped down intooperating position to facilitate insertion of pipes 25 into sockets 10 when connecting the wall 2 of the chamber to the stretcher 7.
  • rollers 27 of brackets 13 come into the channels of the guide members 26 of the stretcher 7.
  • valve 43 is opened, and oxygen starts flowing from the pressure reducer 44 into the injector 45, thus initiating the delivery and circulation of oxygen in the chamber.
  • the injector 45 draws in oxygen from the chamber, forces it through the coupling 48-50 (with the stopper 50 mounted, the non-return valves 49 are open) and delivers it into the manifold 19 via the pipe 25. Further on, oxygen comes into the chamber through the holes in the manifold and enters then inlet union of the coupling case 48. A portion of oxygen bleeds out through the valve (see FIG. 11).
  • a pure oxygen medium when urgently needed in the inner space of the chamber, is obtained by purging the chamber with oxygen.
  • the cock 46 should be opened and an increased rate of oxygen delivery to the injector 47 should be ensured.
  • An oxygen stream from the injector 47 also comes into the manifold l9 and therefrom together with air bleeds out through the valve 55.
  • purging is usually performed at the very beginning of the operation, when the valve 55 is adjusted for zero hyperbaric pressure. In case the valve 55 went wrong, the safety valve 56 will anyway act.
  • Removing the patient from the chamber is carried out in the reverse order to that described above.
  • the handle of the valve 55 (see FIG. 11) is set to zero position for the purpose of releasing the excess oxygen pressure from the chamber.
  • the lock 36 should be opened by shifting the latch 39 to the right (see FIG. 10) and the lever 38 should be turned counter-clockwise around its axis. This makes the split ring 33 expanding and slipping off the shoulder 34 to disengage the connection (see FIGS. 7,8,9).
  • oxygen delivery is shut off by means of the valve 43 (see FIG. 11).
  • the flange 12 is shifted to the extreme right-hand position to be held by the lock 29 (see FIG. 6).
  • the leg 8 of the stretcher is tilted down, and now the portion of the chamber with the stretcher can be detached.
  • the stretcher 7 is disconnected from the walls 1 and 2 of the chamber and then the walls are coupled to each other (see FIG. 3).
  • the device for remote introduction of medicinals is being actuated, which functions as follows.
  • Containers 60 with the required medicinals are installed in the holder 58. Needles 64 and 65 which should be preliminarily sterilized together with pipelines 66 and 67, are inserted into the containers as it can be seen from FIG. 12. Then, the pipelines 66 and Y 67 are inserted through the sealing sockets 71 and 72 of the chamber, whereupon the protective cap is removed from the adapter 73 and an injection needle 78 is attached in place (see FIG. 14). The nut 27 after being screwed in, ensures airtightness of the pipelines with the help of washers 75 (see FIGS. 13 and 14).
  • the holder 58 is raised to a required height, clamps 68 and 69 are made open and the inner spaces of the pipeline 67 with the needle 78 are filled with the medicinal (air bubbles should be completely driven out from the inner space of the pipeline 67 and its branch lines).
  • the filter 70 traps and retains all mechanical impurities which can occur in piercing the plug 63 by the needles 64 and 65. Then, clamps 69 are closed, and before the compressive chamber is airtightened, an injection is made to a patient by the injection needle 78 (see FIGS. l2, l3, l4).
  • the physician may open the needed clamp 69 to introduce the required medicinal to the patient.
  • the device permits introduction of several medicinals to the patient.
  • clamps 68 are always kept open, which ensures constant equalizing of the pressure in the container 60 in relation to the pressure in the compressive chamber.
  • the injection rate can be regulated by varying the lifting height of the holder 58 on the stand 57.
  • the pipelines 67 and 66 are removed from the sockets 71 and 72 and stoppers are inserted instead.
  • the above described device for remote introduction of medicinals to the patient who is accommodated in the compressive chamber permits injections to be performed by the generally adapted practice, which requires no additional training of personnel attending the chamber.
  • the oxygen compressive chamber implemented according to the spirit of the present invention is capable of efficient treatment ofa patient at a place of accident and also during carrying the chamber by stretcherbearers, or in transit.
  • the stock of oxygen in the chamber is large enough for its self-contained functioning within a matter of 1.5 hour, while with oxygen delivery from a stationary source this period can be extended as needed.
  • the chamber is furnished with a common communication coupling permitting a conditioner to be connected to the chamber. which widens the temperature range of its application.
  • Maximum operating pressure of oxygen in the compressive chamber is 1.2 kg/cm the weight of the chamber is not over 55 kg, the stripped chamber (see FIG. 2) weighs no more than 20 kg.
  • the chamber can be collapsed into idle (or transportation) position (see FIG. 3) to make it thrice as shorter. Overall dimensions of the chamber in operating position 2,800 900XO mm, when collapsed 950X900 700 mm.
  • the interphone device of the chamber contains its own power source (dry cell).
  • the chamber is simple and reliable in operation and can be applied under urban or countryside conditions and also in remote areas (when delivered by a helicopter, for example), at breakdowns in mines and other accidents or emergencies.
  • An oxygen compressive chamber for rendering emergency medical aid to the patient placed inside said chamber, comprising first and second rigid end-face walls; a collapsible elastic side wall connected with the first of said end walls; a stretcher formed by a bed with tubular rods connected to the second of said end walls on one end; tubular sockets mounted in said first end wall and connected to the free ends of said rods of the bed so that when the said side wall is connected with said second end wall said side wall jointly with said end walls forms a closed volume wherein the bed is arranged; an airtightening connector releasably connecting said side wall to said second end wall; and means for supplying the chamber mounted on said first end wall with an oxygen supply means arranged in the leg portion, said system having circulation and purging injectors with outlets of each terminating within the corresponding one of said sockets in the first end wall, perfo-' rated manifold means disposed on said second end wall and communicating with said tubular stretcher rods, whereby said stretcher installed in said sockets conducts oxygen into

Abstract

An oxygen compressive chamber intended for treating patients by the method of oxygen therapy under hyperbaric conditions. The chamber comprises an outer portion, which is made collapsible, and an inner portion, made as a detachable stretcher to bring the patient thereon into the chamber, and then to hand-carry the chamber together with the patient placed therein.

Description

United States Patent 11 1 Alexeev et al.
1 OXYGEN COMPRESSIVE CHAMBER [76] Inventors: Semen Mikhailovich Alexeev,
Leningradsky prospekt, 56, kv. 65; Mark Nikolaevich Arkhangelsky, Gospitalny val, 3, korpus 6, kv, 70; Valentin Pavlovich Baldin, Raketny bulvar, 1, kv. 34; Boris Solomonovich Braverman, ulitsa Chertanovskaya, 31, korpus 2, kv. 22, all of Moscow; Jury Dmitrievich Vasiliev, ulitsa 2 Kommunisticheskaya, 8, kv. 88, Ljubertsy Moskovskoi oblasti; Vladimir Petrovich Gorjushev, ulitsa Birjulevskaya, 12, kv. 165, Moscow; Alexandr Lvovich Zelvinsky, ulitsa Novoslobodskaya, 49-2, kv. 117, Moscow; Jury Petrovich Rogachev, ulitsa Vereskovaya, 9a, kv. 6, Moscow; Gai Ilich Severin, ulitsa Lomonosova, l0, kv. 11, Zhudovsky; Jury Andreevich Spassky, p/o Kupavna, Schemilovskaya partia, 51, kv. 51, Moskovskaya oblast Noginsky raion; Boris Vasilievich Spolitak, stantsia Zagoryanskaya, ulitsa Matrosova, 2, Moskovskaya olbast Schelkovsky raion; Vladimir Vladimirovich Ushinin, poselok Tomilino, ulitsa Pionerskaya, 13, kv. 27, Moskovskaya oblast 'Ljuberetsky raion; Rustam Ismailovich Utyamushev, ulitsa Tsiolkovskogo, 4, kv. l2, Moskovskaya oblast Schelkovo, all of U.S.S.R.
[22] Filed: May 25, 1972 [21] Appl. No.: 256,915
1451 Apr. 15, 1975 52 us. c1. 128/204; 128/1 B; 128/191 A; 128/30 51 1111.01 ..A6lm 16/02 [56] References Cited UNITED STATES PATENTS 892,765 7/1908 Seebeck 285/97 1,834,580 12/1931 Drinker 128/204 2,385,683 9/1945 Burton 128/298 2,401,230 5/1946 Colley 128/298 2,508,846 5/1950 Wallin... 128/30 2,624,333 l/1953 Dixon 128/1 B 2,686,343 8/1954 Harpoothian. 49/477 2,731,220 l/l956 Power 49/477 3,547,118 12 1970 Kolm'an 128/204 3,587,574 6/1971 Mercer 98/].5 3,602,221 8/1971 Bleicken 128/204 3,632,303 l/l972 Aigner 49/477 3,694,962 10/1972 McDonald 49/477 FOREIGN PATENTS OR APPLICATIONS 289,323 12/1915 Germany 128/204 847,474 6/1952 Germany 128/1 B 14,501 7/1956 Germany 128/1 B Primary Examiner-Richard A, Gaudet Assistant Examiner-Henry J. Recla [57] ABSTRACT An oxygen compressive chamber intended for treating patients by the method of oxygen therapy under hyperbaric conditions. The chamber comprises an outer portion, which is made collapsible, and an inner portion, made as a detachable stretcher to bring the patient thereon into the chamber, and then to handcarry the chamber together with the patient placed therein.
3 Claims, 14 Drawing Figures PATENTEDAPRISISB 3.877.427
sum 1- M 6 PATENTEUAPR I 5I97 5 sum 2 or e w QE PATENTEDAPR1 SIBYS sum 3 or 6 OXYGEN COMPRESSIVE CHAMBER The present invention relates to medical equipment used for treating patients by the method of oxygen therapy under the conditions of hyperbaric pressure.
In recent years this method has acquired a certain practical importance.
The above method is applied particularly for treating patients afflicted with stenocardia and infarction of the myocardium, intoxication, general and tissue hypoxia, shock, cranio-cerebral trauma, gas gangrene, tetanus, reticular embolism, occlusion of mesenteric vessels, necrosis of skin flaps, etc. (cf., e.g., Clinical Application of Hyperbaric Oxygen, Proceedings of the International Congress, Amsterdam, September 1963, Edited by 1. Boerema, W. H. Brummelkamp and N. G. Meigne, and also Hyperbarooxygenotherapia (in Russian), edited by professor G. L. Ratner, Proceedings of Kuibyshev medical institute named after D. I. Ulyanov, 1970).
The above method of treatment is carried into effect by the application of various oxygen compressive chambers. A pure oxygen medium is established in these chambers at a pressure close to 3 kg/cm with maintaining certain humidity and temperature levels, and extracting deleterious gas admixtures exhaled by the patient.
The treatment is effected in courses under clinical conditions. The existing chambers incorporate air conditioning and regeneration systems, equipment for medical control over a patient, emergency protection systems including those of urgent pressure release, fire preventing systems, interphone systems, etc. (of, e.g., G.F.R. Pat. No. 948,736, C1.Cl. k 13/03 of July 8, 1949, USSR Author's certificate No. 228,879, Cl. 30k, 13/03, of October 17, 1968, US Pat. No. 3587574, Cl. 128-204 of June 28, 1971).
One of the most convenient and perfect versions of oxygen chambers in question is a chamber available from the British firm Vickers Limited (medical Group, Clinical Hyperbaric System) However, all the above-mentioned chambers known in the art are superfluously sophisticated, heavy in weight, large in size and used only in clinics for stationary treatment of patients.
At the same time, the efficiency of treating patients by hyperbaric oxygen depends to a great extent on what stage of the disease the treatment has been commenced; it may be often times required to effect hyberbaric oxygen treatment immediately at patients home, at a place of accident, or even during carrying the patient in an ambulance vehicle. Therefore, the medical institutions are of the necessity confronted with a problem of furnishing the first-aid service with oxygen compressive chambers which could be collapsed into transportation position so as not to occupy much space in the ambulance saloon in those cases when the chamber is not actually employed for the purpose. The chamber should ensure expeditious converting into operating position, permit the patient to be conveniently placed in it. be easily hand-carried by stretcher-bearers to a place of accident or to a patients bed.
An oxygen chamber has been developed in Britain in 1960 (actual inventors Emery, Lucas, Williams) and installed in an ambulance vehicle which was primarily employed for treating patients intoxicated by carbonic oxide or afflicted with infarction of the myocardium,
and the like. This chamber is shaped as a cylinder mounted horizontally on a bogie. The chamber incorporates an open-type oxygen system, wherein oxygen is delivered into the chamber in a continuous stream, while pressure is regulated through a release valve.
However, in principle, the design of this chamber is but little differing from stationary-type chambers, being so much bulky and weighty. Among collapsible comressive chambers known in the art, a stress can be made on a stationary chamber constructed according to the GFR Pat. No. 847,474, Cl. 30k, 31/03 of Aug. 25, 1952. According to this patent the chamber is made as a series of cylindrical rings which are telescopically retracted into each other when the chamber is in inoperative position. However, this chamber is superfluously heavy and bulky. Seals of telescopic compartments of the chamber make it difficult to expeditiously convert the chamber into operating state and are not able to ensure convenient putting of the patient in grave or unconscious condition.
Also known in the art is an oxygen compressive chamber constructed according to the USSR Authors certificate No. 199,342, Cl. 30k, 13/03, of July 13, 1967. This chamber is made as an elastic bag incorporating a stepped entrance extension and has a gas pressure reducer, a safety valve and a pressure gauge. This chamber is intended for treating miners at a place of accident, intoxicated by mine gas during breakdowns in mines. However, the chamber according to this con struction is not able to ensure the required hyperbaric oxygen pressure and is also inconvenient in operation.
It is therefore an object of the present invention to provide a light-weight portablecompressive chamber for treating patients by the method of oxygen therapy under hyperbaric conditions.
This and other objects are achieved by the provision of an oxygen compressive chamber for rendering emergency medical aid to the patient placed inside said chamber which incorporates a ventilation system and a system of oxygen delivery to said chamber, said chamber according to the present invention comprising an outer portion which ismade collapsible, and an inner portion representing a detachable stretcher for bringing thereon a patient into said chamber and carrying said chamber together with said patient.
At least one embodiment of the present invention may incorporate a collapsible portion of the chamber, said portion having two rigid end walls provided with sockets for mounting a stretcher therein, and a side surface made of an elastic material, whereas to at least one of said end walls the side surface is secured by means of a releasable airtightening connection.
It is expedient that the split airtightening connection is made up of two profiled flanges one of which is dis posed on the end wall of the chamber, while the other is secured to the side surface of the chamber, whereas the first flange incorporates an inflatable rubber bead and a metal L-shaped split ring with a two-link lock installed in the joint of the split, while the second flange is fitted with an airtightening seat and a shoulder, through which the latter cooperates with the L-shaped split ring.
In another embodiment of the present invention, a stretcher is fitted with rods made of pipes when one of the pipes is connected to a circulation injector to ensure oxygen delivery and ventilation of the chamber,
while the other is connected to an injector for purging the chamber with oxygen.
The present invention provides for a solution of the technical problem set forth, namely, effecting hyperbaric oxygen treatment directly at a place of accident, during hand-carrying and transportation of the patient.
The chamber is attended by a single physician and hand-carried by two stretcher-bearers. For transportation, the empty chamber can be collapsed to reduce its overall length almost thrice. The chamber is provided with a control desk, an interphone device, and a device for the remote introduction of medicinals to the patient, which substantially raises the efficiency of treatment.
The stock of oxygen in the chamber makes the latter self-contained in operation; with oxygen supply from a stationary source the chamber operating period can be increased.
The chamber is equipped with a common communication coupling to connect a conditioner to permit a wider temperature range of the chamber application.
Provision is made for disconnection of a portion of the chamber with the stretcher to make it easier to carry the chamber with the patient inside it.
Other objects and advantages of the present invention will be more apparent from the detailed description of certain embodiments with reference to the accompanying drawings, in which:
FIG. I is a general view of an oxygen compressive chamber, according to the present invention;
FIG. 2 shows a portion of the oxygen compressive chamber with a stretcher, while the remaining portion of the chamber is disconnected to make it easier to carry the patient;
FIG. 3 shows the chamber while in idle (or transportation) position;
FIG. 4 is a longitudinal section through the chamber while in operating position;
FIG. 5 is a section taken along the line AA in FIG.
FIG. 6 shows the chamber in the initial position (prior to starting operation);
FIG. 7 is a general view of the releasable airtightening connection;
FIG. 8 is a sectional view of the releasable airtightening connection (see FIG. 7, Ref. I);
FIG. 9 is a general view of an L-shaped split ring which is used in the releasable airtightening connection;
FIG. 10 shows a two-link lock of the releasable airtightening connection (see FIG. 9, Ref. II);
FIG. 11 is a schematic layout of the oxygen system in the chamber;
FIG. 12 is a schematic layout of an embodiment of the device for the remote introduction of medicinals to the patient;
FIG. 13 is a structural layout of the sealing unit while in the initial position; and
FIG. 14 is a structural layout of the sealing unit while in operating position.
The oxygen compressive chamber of the invention comprises two rigid end walls, viz., a head wall 1 and a rear wall 2 (see FIG. 1), and a side surface 3 made of an elastic airtight material. Mounted on the wall 2 are an oxygen bottle and a control desk of the oxygen system of the chamber 4. Attached externally to the end walls 1 and 2 are sockets to connect handles 5 (for carrying the chamber) and legs 6 with ground rollers. In no-use position (see FIG. 3), handles 5 can be disconnected from the chamber.
Constituting a portion of the chamber is a stretcher 7 (see FIG. 2) intended for putting the patient thereon and bringing the latter into the chamber; the stretcher is provided with a tipping leg 8.
Welded to the head wall 1 are tubular sockets 9, while welded to the rear wall 2 are sockets 10, serving to install the stretcher 7 (FIG. 4) therein.
Provided at the ends of the side surface 3 are flanges 11 and 12; rigidly secured to the flange 12 are two symmetrically disposed brackets 13 with guide rollers 27 (FIGS. 4, 5 I
The flange 12 and the flange 14 of the wall 1 form a releasable airtightening connection, whereas the end wall 2 has a flange 15 welded thereto, with which the latter is permanently connected to the flange ll. Mounted to the wall 2 is a rigid protective shroud 16 carrying on its inner side one end of a telescopically retracting pipe 17; the opposite end of the pipe is connected to the flange l2. Attached to the side surface 3 of the chamber are rings 18 through which the pipe 17 is passing. Disposed on the head wall 1 along an arc is a perforated tubular manifold 19 connected with its ends to sockets 9. The head wall 1 is furnished with a cushion head-rest 20. Two-way communication with a patient is effected by means of a microphone 21 and an interphone device 22 located outside the chamber. To visually observe the patient, the head wall is given illuminators 23.
The stretcher 7 comprises a bed 24 with a mattress, and two rods made of pipes 25 rigidly connected to the bed 24. Secured underneath and to the bed 24 are two channelled guide members 26 whose recesses enclose rollers 27 which are securely affixed to the brackets 13 (see FIGS. 4,5).
Mounted to the flange 12 of the side surface of the chamber (see FIG. 6) is a two-end hook 28, one end of which cooperating with a lock 29 found on the shroud 16, while the other end of the hook cooperating with a lock 30 found on the wall 1.
The releasable airtightening connection formed by the flanges l2 and 14 (see FIGS. 7,8,9,10) incorporates an inflatable rubber bead 31 of which the inner space is communicating via a hole 32 with the inner space of the chamber.
Located in a slot of the flange 12 is a metal L-shaped split ring 33 adjacent to a circular shoulder 34 of the flange 12 the latter having a seat blade 35 which thrusts against the bead 31.
Installed in the joint of the split ring 33 is a two-link lock 36, comprising a pivoted lever 37 located on one side of the split of the ring 33, and a lever 38 located on the other side thereof. The lever 38 carries a springloaded latch gear 39.
The oxygen system of the chamber, mounted principally in the wall 2,'comprises an oxygen bottle 40 (see FIG. 1 l a charging union 41 and a pressure gauge 42, of which both are disposed at the inlet of the bottle; a pressure reducer 44 and a circulation injector 45 located in the inner space of the socket 10 to which is connected the pipe 25 of the stretcher 7.
Parrallel to'the line of the circulation injector 45 is located an oxygen line for the purging the chamber, the latter line consisting of a two-way cock 46 and an injector 47 of increased oxygen delivery.
Located on the suction line of the circulation injector 45 is a common coupling case 48 with non-return valves 49 which are pressed off their seats by the pushers of a stopper 50. (If necessary, the stopper 50 of the case 48 can be replaced with a mating coupling case to connect the chamber to a conditioner).
Mounted in the wall 1 of the chamber is a signalizer 51 to check pressure in the inner space of the manifold 19.
The signalizer 51 includes a spring-loaded diaphragm carrying a permanent magnet 52 which is cooperating with an electric contact 53 through the housing wall.
The super-diaphragm space of the signalizer 51 communicates with the inner space of the manifold 19, while the sub-diaphragm space of the signalizer communicates with the inner space of the chamber.
The inner space of the chamber communicates with a pressure gauge 54, whereas the wall 2 carries a regulator 55 of oxygen pressure in the chamber, and a safety valve 56.
The oxygen compressive chambers known in the art are often furnished with special devices to effect remote introduction of various medicinals to the patient placed inside the chamber. Provisions ofinjections materially improve the efficiency of treatment by the hyperbaric oxygen method.
The oxygen compressive chamber, according to the present invention, is provided with special sealing sockets for inserting therethrough the pipelines of the injection device.
Described hereinafter is one of the embodiments (see FIG. 12) of the injection device according to the spirit of the present invention, comprising a stand 57, to which a holder 58 is secured and locked on the stand by a screw 59. A container 60 for keeping various medicinals is held in a transparent protective hood 61 which is covered at top with a pressure cover 62.
The container 60 is closed by a thick-walled rubber plug 63 through which two needles are inserted, viz., a short needle 64, and a long needle 65, the top end of the latter needle emerging above the level of the liquid. The stand 58 is adapted to fix thereon a number of containers 60. The equal-length needles of each container are connected to a common pipeline 66 (for needles 65) and to a common pipeline 67 (for needles 64). Mounted on the branch pipes of the pipeline 66 are clamps 68, while on the branch pipes of the pipeline 67 -clamps 69. In addition to that, a filter 70 is installed at the inlet of the pipeline 67.
Built in the wall of the oxygen compressive chamber are sealing sockets 71 and 72 for airtightened insertion of the pipelines 66 and 67 into the chamber. Complementary fitted to the end of the pipeline 67 is an adapter 73 for an injection needle 78 (see FIG. 13), the latter adapter being protected with a rubber cap 74.
The sealing socket 71 (or 72) comprises a thickwalled rubber washer 75, a retainer 76, and a pressure nut 77.
The chamber is functioning as follows.
Prior to placing a patient therein, the chamber is to be prepared in the following way (see FIG. 6). The side surface 3 of the chamber is folded bellows-like in the protective shroud 16, while the flange 12 of said surface is pulled up towards the shroud 16 by means of the lock 29.
The stretcher 7 is fixed in sockets 9 of the wall 1 by means ofa spring-loaded catch (not shown). The leg 8 6 of the stretcher 7 is tipped down intooperating position to facilitate insertion of pipes 25 into sockets 10 when connecting the wall 2 of the chamber to the stretcher 7. When this is being done, rollers 27 of brackets 13 come into the channels of the guide members 26 of the stretcher 7.
Then, the lock 29 is released and the flange 12 together with the side surface 3 of the chamber are moved to the extreme left-hand position. During this action, the flange 12 is moving along the guide mem bers 26 of the stretcher, while the pipe 17, through the medium of the rings 18, keeps the side surface 3 of the chamber in the horizontal position (see FIGS. 4,5,6).
Now, by means of the lock 30, the flange 12 is pulled up toward the flange 14 of the wall 1 of the chamber; this makes the split ring 33 expanding, coming over the shoulder 34 and then locking. The blade 35 thrusts in the rubber bead 31, whereas the lock 36 holds the releasable airtightening connection in the close position (see FIGS. 6,7,8,9,l0).
The above done, the valve 43 is opened, and oxygen starts flowing from the pressure reducer 44 into the injector 45, thus initiating the delivery and circulation of oxygen in the chamber. The injector 45 draws in oxygen from the chamber, forces it through the coupling 48-50 (with the stopper 50 mounted, the non-return valves 49 are open) and delivers it into the manifold 19 via the pipe 25. Further on, oxygen comes into the chamber through the holes in the manifold and enters then inlet union of the coupling case 48. A portion of oxygen bleeds out through the valve (see FIG. 11).
A pure oxygen medium, when urgently needed in the inner space of the chamber, is obtained by purging the chamber with oxygen. For this purpose, the cock 46 should be opened and an increased rate of oxygen delivery to the injector 47 should be ensured. An oxygen stream from the injector 47 also comes into the manifold l9 and therefrom together with air bleeds out through the valve 55. To save oxygen, purging is usually performed at the very beginning of the operation, when the valve 55 is adjusted for zero hyperbaric pressure. In case the valve 55 went wrong, the safety valve 56 will anyway act.
Pressure inside the chamber is checked against the pressure gauge 54, while normal functioning of the ventilation system can be checked through the signalizer 51. In case of uncontrolled reduction of oxygen delivery through the injector 45, as may be with clogging the injector nozzle, the pressure head is dropping in the inner space of the manifold 19; then, the spring presses off the diaphragm and also the magnet 52 into the extreme right-hand position to cause the electric contacts 53 to open (see FIG. 11). This results in actuation of the audible ALARM Signal'produced in the interphone device 22 (see FIG. 4).
Removing the patient from the chamber is carried out in the reverse order to that described above. The handle of the valve 55 (see FIG. 11) is set to zero position for the purpose of releasing the excess oxygen pressure from the chamber. When no excess pressure is observed, the lock 36 should be opened by shifting the latch 39 to the right (see FIG. 10) and the lever 38 should be turned counter-clockwise around its axis. This makes the split ring 33 expanding and slipping off the shoulder 34 to disengage the connection (see FIGS. 7,8,9).
Upon opening the chamber, oxygen delivery is shut off by means of the valve 43 (see FIG. 11).
The flange 12 is shifted to the extreme right-hand position to be held by the lock 29 (see FIG. 6). The leg 8 of the stretcher is tilted down, and now the portion of the chamber with the stretcher can be detached. For transporting the empty chamber, the stretcher 7 is disconnected from the walls 1 and 2 of the chamber and then the walls are coupled to each other (see FIG. 3).
To make injections of medicinals to the patient, the device for remote introduction of medicinals is being actuated, which functions as follows.
Containers 60 with the required medicinals are installed in the holder 58. Needles 64 and 65 which should be preliminarily sterilized together with pipelines 66 and 67, are inserted into the containers as it can be seen from FIG. 12. Then, the pipelines 66 and Y 67 are inserted through the sealing sockets 71 and 72 of the chamber, whereupon the protective cap is removed from the adapter 73 and an injection needle 78 is attached in place (see FIG. 14). The nut 27 after being screwed in, ensures airtightness of the pipelines with the help of washers 75 (see FIGS. 13 and 14).
The holder 58 is raised to a required height, clamps 68 and 69 are made open and the inner spaces of the pipeline 67 with the needle 78 are filled with the medicinal (air bubbles should be completely driven out from the inner space of the pipeline 67 and its branch lines). The filter 70 traps and retains all mechanical impurities which can occur in piercing the plug 63 by the needles 64 and 65. Then, clamps 69 are closed, and before the compressive chamber is airtightened, an injection is made to a patient by the injection needle 78 (see FIGS. l2, l3, l4).
In the course of treatment by the hyperbaric oxygen method, the physician may open the needed clamp 69 to introduce the required medicinal to the patient. The device permits introduction of several medicinals to the patient.
In operating the device, clamps 68 are always kept open, which ensures constant equalizing of the pressure in the container 60 in relation to the pressure in the compressive chamber.
The injection rate can be regulated by varying the lifting height of the holder 58 on the stand 57. When medicinal injections are not needed, the pipelines 67 and 66 are removed from the sockets 71 and 72 and stoppers are inserted instead.
The above described device for remote introduction of medicinals to the patient who is accommodated in the compressive chamber, permits injections to be performed by the generally adapted practice, which requires no additional training of personnel attending the chamber.
Thus, the oxygen compressive chamber implemented according to the spirit of the present invention, is capable of efficient treatment ofa patient at a place of accident and also during carrying the chamber by stretcherbearers, or in transit.
The stock of oxygen in the chamber is large enough for its self-contained functioning within a matter of 1.5 hour, while with oxygen delivery from a stationary source this period can be extended as needed. The chamber is furnished with a common communication coupling permitting a conditioner to be connected to the chamber. which widens the temperature range of its application. Maximum operating pressure of oxygen in the compressive chamber is 1.2 kg/cm the weight of the chamber is not over 55 kg, the stripped chamber (see FIG. 2) weighs no more than 20 kg. The chamber can be collapsed into idle (or transportation) position (see FIG. 3) to make it thrice as shorter. Overall dimensions of the chamber in operating position 2,800 900XO mm, when collapsed 950X900 700 mm. The interphone device of the chamber contains its own power source (dry cell).
The chamber is simple and reliable in operation and can be applied under urban or countryside conditions and also in remote areas (when delivered by a helicopter, for example), at breakdowns in mines and other accidents or emergencies.
What we claim is:
1. An oxygen compressive chamber for rendering emergency medical aid to the patient placed inside said chamber, comprising first and second rigid end-face walls; a collapsible elastic side wall connected with the first of said end walls; a stretcher formed by a bed with tubular rods connected to the second of said end walls on one end; tubular sockets mounted in said first end wall and connected to the free ends of said rods of the bed so that when the said side wall is connected with said second end wall said side wall jointly with said end walls forms a closed volume wherein the bed is arranged; an airtightening connector releasably connecting said side wall to said second end wall; and means for supplying the chamber mounted on said first end wall with an oxygen supply means arranged in the leg portion, said system having circulation and purging injectors with outlets of each terminating within the corresponding one of said sockets in the first end wall, perfo-' rated manifold means disposed on said second end wall and communicating with said tubular stretcher rods, whereby said stretcher installed in said sockets conducts oxygen into the head portion of the chamber through said perforated manifold.
2. An oxygen compressive chamber as defined in claim 1, including means for remotely injecting medicine into said patient; air conditioning means for conditioning the air to a desired temperature and humidity within said chamber; control panel means with intercom means, said chamber being collapsible for storage and transportation, said chamber being free of an external electrical source of power, said oxygen supplying means comprising compressed gas flasks for building up pressure inside said chamber, said chamber being substantially cylindrical for building up pressure within said chamber; a manually controlled safety valve communicating with said chamber for exhausting the oxygen supplied by said flasks from said chamber; and in jectors communicating with said chamber for supplying said oxygen to said chamber and intermixing the gas inside the chamber for preventing development of stagnation zones.
3 An oxygen compressive chamber as claimed in claim 2, wherein the said airtight connector comprises two profiled flanges, one of said flanges being disposed on the second end wall of the chamber, while the other is secured to the side wall of the chamber, the former of said flanges incorporating an inflatable rubber bead and a metal L-shaped split ring carrying on the joint thereof a two-link lever lock, while the latter of said flanges is fitted with an airtightening seat and a shoulder, the latter shoulder cooperating with said L-shaped split ring.

Claims (3)

1. An oxygen compressive chamber for rendering emergency medical aid to the patient placed inside said chamber, comprising first and second rigid end-face walls; a collapsible elastic side wall connected with the first of said end walls; a stretcher formed by a bed with tubular rods connected to the second of said end walls on one end; tubular sockets mounted in said first end wall and connected to the free ends of said rods of the bed so that when the said side wall is connected with said second end wall said side wall jointly with said end walls forms a closed volume wherein the bed is arranged; an airtightening connector releasably connecting said side wall to said second end wall; and means for supplying the chamber mounted on said first end wall with an oxygen supply means arranged in the leg portion, said system having circulation and purging injectors with outlets of each terminating within the corresponding one of said sockets in the first end wall, perforated manifold means disposed on said second end wall and communicating with said tubular stretcher rods, Whereby said stretcher installed in said sockets conducts oxygen into the head portion of the chamber through said perforated manifold.
2. An oxygen compressive chamber as defined in claim 1, including means for remotely injecting medicine into said patient; air conditioning means for conditioning the air to a desired temperature and humidity within said chamber; control panel means with intercom means, said chamber being collapsible for storage and transportation, said chamber being free of an external electrical source of power, said oxygen supplying means comprising compressed gas flasks for building up pressure inside said chamber, said chamber being substantially cylindrical for building up pressure within said chamber; a manually controlled safety valve communicating with said chamber for exhausting the oxygen supplied by said flasks from said chamber; and injectors communicating with said chamber for supplying said oxygen to said chamber and intermixing the gas inside the chamber for preventing development of stagnation zones.
3. An oxygen compressive chamber as claimed in claim 2, wherein the said airtight connector comprises two profiled flanges, one of said flanges being disposed on the second end wall of the chamber, while the other is secured to the side wall of the chamber, the former of said flanges incorporating an inflatable rubber bead and a metal L-shaped split ring carrying on the joint thereof a two-link lever lock, while the latter of said flanges is fitted with an airtightening seat and a shoulder, the latter shoulder cooperating with said L-shaped split ring.
US256915A 1972-05-25 1972-05-25 Oxygen compressive chamber Expired - Lifetime US3877427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US256915A US3877427A (en) 1972-05-25 1972-05-25 Oxygen compressive chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US256915A US3877427A (en) 1972-05-25 1972-05-25 Oxygen compressive chamber

Publications (1)

Publication Number Publication Date
US3877427A true US3877427A (en) 1975-04-15

Family

ID=22974128

Family Applications (1)

Application Number Title Priority Date Filing Date
US256915A Expired - Lifetime US3877427A (en) 1972-05-25 1972-05-25 Oxygen compressive chamber

Country Status (1)

Country Link
US (1) US3877427A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4106504A (en) * 1976-12-06 1978-08-15 The United States Of America As Represented By The Secretary Of The Navy Portable recompression chamber with air scrubber
US4161172A (en) * 1977-01-28 1979-07-17 Airborne Life Support Systems, Inc. Life support chamber for infants, method and system
US4165740A (en) * 1977-08-29 1979-08-28 Vsesojuzny Nauchno-Issledovalelsky Ispytatelny Institut Meditsinskoi Tekhniki Medical altitude chamber
US4227524A (en) * 1978-04-03 1980-10-14 Andre Galerne Hyperbaric transfer system
US4230107A (en) * 1978-04-03 1980-10-28 Iuc International, Inc. Rail system and gas metering system in a hyperbaric system
US4691695A (en) * 1984-10-12 1987-09-08 Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfart E.V. Apparatus for medical treatments
EP0277787A2 (en) * 1987-02-02 1988-08-10 Portable Hyperbarics, Inc. Hyperbaric chamber
US4869446A (en) * 1988-10-11 1989-09-26 The United States Of America As Represented By The Secretary Of The Air Force Cockpit atmosphere protection system
US4965955A (en) * 1989-07-31 1990-10-30 Campbell Robert M Capture apparatus for marine animals
WO1992018084A1 (en) * 1991-04-19 1992-10-29 Biotime, Inc Chamber
US5263476A (en) * 1991-07-08 1993-11-23 Henson-Thiery Corporation Enclosure system for burn victims
US5379778A (en) * 1993-06-29 1995-01-10 Century; Theodore J. Plethysmographic apparatus
US5513538A (en) * 1994-11-14 1996-05-07 Screening Systems, Inc. Test chamber with a pull out table that has a brake and stops that limit the movement of the table
US5618126A (en) * 1996-02-16 1997-04-08 Watt; Richard W. Control mounting for a hyperbaric chamber
US5685293A (en) * 1996-02-16 1997-11-11 Watt; Richard W. Hyperbaric flow control system
US5738093A (en) * 1995-03-16 1998-04-14 Gse Giunio Santi Engineering S.R.L. Flexible hyperbaric chamber
US5918331A (en) * 1994-08-05 1999-07-06 Buchanan Aircraft Corporation Limited Portable intensive care unit with medical equipment
US6050132A (en) * 1998-06-15 2000-04-18 Capria; Michael Method and apparatus for hyperbaric chamber gas discharge and pressure management
US6283123B1 (en) 1994-12-01 2001-09-04 Keith W. Van Meter Hyperbaric resuscitation system and method
US6321746B1 (en) * 2000-05-17 2001-11-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration Portable hyperbaric chamber
US6461290B1 (en) * 1998-12-21 2002-10-08 Iit Research Institute Collapsible isolation apparatus
US20040261796A1 (en) * 2003-06-30 2004-12-30 Life Support Technologies Hyperbaric chamber control and/or monitoring system and methods for using the same
US20050262639A1 (en) * 2004-05-28 2005-12-01 Life Support Technologies Apparatus and methods for preventing pressure ulcers in bedfast patients
US20070073365A1 (en) * 2002-07-03 2007-03-29 Life Support Technologies, Inc. Methods and apparatus for light therapy
WO2008014617A1 (en) 2006-08-04 2008-02-07 Hemato Max Hyperbaric/hypoxic chamber system
US20080116267A1 (en) * 2006-11-08 2008-05-22 Barber Jeffrey B Container screener
US20090093850A1 (en) * 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Expanding seal anchor for single incision surgery
US20090119834A1 (en) * 2007-11-09 2009-05-14 Todd Douglas Kneale Modular transportable life support device
US7818840B2 (en) 2007-11-09 2010-10-26 Integrated Medical Systems, Inc. Foldable, portable trauma treatment and monitoring patient platform
US20110048424A1 (en) * 2009-08-26 2011-03-03 Environmental Tectonics Corporation Hyperbaric Apparatus With Storage Compartment
CN102151349A (en) * 2011-04-28 2011-08-17 王立涛 Substitution method and device of oxygen inhalation
WO2012055003A1 (en) * 2010-10-27 2012-05-03 Groupe Medical Gaumond Inc. Portable chamber for hyperbaric and/or hypoxic treatment
US20130145688A1 (en) * 2010-06-04 2013-06-13 Osaka University Method for cultivating plant and plant cultivation device
US20140014100A1 (en) * 2003-09-11 2014-01-16 Cvac Systems, Inc. Method and apparatus for cyclic variations in altitude conditioning
WO2015189541A1 (en) * 2014-06-11 2015-12-17 James Michael Roberts A collapsible incubator
US20160120724A1 (en) * 2014-10-29 2016-05-05 Ibex Medical Systems Co., Ltd. Overlay portable hyperbaric oxygen chamber
US9737450B2 (en) 2013-09-04 2017-08-22 Microbaric Oxyygen Systems, Llc Hyperoxic therapy systems, methods and apparatus
US10420699B2 (en) * 2007-05-31 2019-09-24 Aoti, Inc. Controller for an extremity hyperbaric device
USD958371S1 (en) * 2020-11-25 2022-07-19 Frederick E Ryder Split hyperbaric chamber
US11497668B1 (en) * 2015-02-24 2022-11-15 Baromedical Research Institute, Ltd. Resuscitation chamber

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US892765A (en) * 1907-07-08 1908-07-07 Friedrich Seebeck Joint-making packing device.
US1834580A (en) * 1929-07-23 1931-12-01 Cons Gas Company Respiration apparatus
US2385683A (en) * 1943-03-10 1945-09-25 Burton Augustus Treatment apparatus
US2401230A (en) * 1943-12-11 1946-05-28 Goodrich Co B F Inflatable protective container
US2508846A (en) * 1947-04-30 1950-05-23 Franeis T Wallin Artificial respirator
US2624333A (en) * 1950-10-25 1953-01-06 Continental Hospital Service I Infant incubator
US2686343A (en) * 1951-01-08 1954-08-17 Douglas Aircraft Co Inc Tubular seal for pressure cabins
US2731220A (en) * 1951-09-20 1956-01-17 Lockheed Aircraft Corp Aircraft sealed cockpit movable canopy mounting
US3547118A (en) * 1967-06-02 1970-12-15 Air Reduction Hyperbaric chamber
US3587574A (en) * 1969-04-14 1971-06-28 James B Mercer Hyperbaric treatment chamber
US3602221A (en) * 1969-09-25 1971-08-31 Eric V Bleicken Portable recompression chamber
US3632303A (en) * 1967-09-11 1972-01-04 Franz Xaver Aigner Sterilizing apparatus
US3694962A (en) * 1970-04-27 1972-10-03 Sybron Corp Sliding door sterilizer with power actuated seal

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US892765A (en) * 1907-07-08 1908-07-07 Friedrich Seebeck Joint-making packing device.
US1834580A (en) * 1929-07-23 1931-12-01 Cons Gas Company Respiration apparatus
US2385683A (en) * 1943-03-10 1945-09-25 Burton Augustus Treatment apparatus
US2401230A (en) * 1943-12-11 1946-05-28 Goodrich Co B F Inflatable protective container
US2508846A (en) * 1947-04-30 1950-05-23 Franeis T Wallin Artificial respirator
US2624333A (en) * 1950-10-25 1953-01-06 Continental Hospital Service I Infant incubator
US2686343A (en) * 1951-01-08 1954-08-17 Douglas Aircraft Co Inc Tubular seal for pressure cabins
US2731220A (en) * 1951-09-20 1956-01-17 Lockheed Aircraft Corp Aircraft sealed cockpit movable canopy mounting
US3547118A (en) * 1967-06-02 1970-12-15 Air Reduction Hyperbaric chamber
US3632303A (en) * 1967-09-11 1972-01-04 Franz Xaver Aigner Sterilizing apparatus
US3587574A (en) * 1969-04-14 1971-06-28 James B Mercer Hyperbaric treatment chamber
US3602221A (en) * 1969-09-25 1971-08-31 Eric V Bleicken Portable recompression chamber
US3694962A (en) * 1970-04-27 1972-10-03 Sybron Corp Sliding door sterilizer with power actuated seal

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4106504A (en) * 1976-12-06 1978-08-15 The United States Of America As Represented By The Secretary Of The Navy Portable recompression chamber with air scrubber
US4161172A (en) * 1977-01-28 1979-07-17 Airborne Life Support Systems, Inc. Life support chamber for infants, method and system
US4165740A (en) * 1977-08-29 1979-08-28 Vsesojuzny Nauchno-Issledovalelsky Ispytatelny Institut Meditsinskoi Tekhniki Medical altitude chamber
US4227524A (en) * 1978-04-03 1980-10-14 Andre Galerne Hyperbaric transfer system
US4230107A (en) * 1978-04-03 1980-10-28 Iuc International, Inc. Rail system and gas metering system in a hyperbaric system
US4691695A (en) * 1984-10-12 1987-09-08 Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfart E.V. Apparatus for medical treatments
EP0277787A3 (en) * 1987-02-02 1990-06-13 E.I. Du Pont De Nemours And Company Hyperbaric chamber
EP0277787A2 (en) * 1987-02-02 1988-08-10 Portable Hyperbarics, Inc. Hyperbaric chamber
US4869446A (en) * 1988-10-11 1989-09-26 The United States Of America As Represented By The Secretary Of The Air Force Cockpit atmosphere protection system
US4965955A (en) * 1989-07-31 1990-10-30 Campbell Robert M Capture apparatus for marine animals
US5899846A (en) * 1991-04-19 1999-05-04 Biotime, Inc. Chamber
WO1992018084A1 (en) * 1991-04-19 1992-10-29 Biotime, Inc Chamber
US5263476A (en) * 1991-07-08 1993-11-23 Henson-Thiery Corporation Enclosure system for burn victims
US5379778A (en) * 1993-06-29 1995-01-10 Century; Theodore J. Plethysmographic apparatus
US5918331A (en) * 1994-08-05 1999-07-06 Buchanan Aircraft Corporation Limited Portable intensive care unit with medical equipment
US6195821B1 (en) 1994-08-05 2001-03-06 Buchanan Aircraft Corporation Ltd. Portable intensive care unit
WO1996015437A1 (en) * 1994-11-14 1996-05-23 Screening Systems, Inc. Variable volume test chamber
US5637812A (en) * 1994-11-14 1997-06-10 Screening Systems, Inc. Variable volume test chamber
US5513538A (en) * 1994-11-14 1996-05-07 Screening Systems, Inc. Test chamber with a pull out table that has a brake and stops that limit the movement of the table
US6283123B1 (en) 1994-12-01 2001-09-04 Keith W. Van Meter Hyperbaric resuscitation system and method
US5738093A (en) * 1995-03-16 1998-04-14 Gse Giunio Santi Engineering S.R.L. Flexible hyperbaric chamber
US5685293A (en) * 1996-02-16 1997-11-11 Watt; Richard W. Hyperbaric flow control system
US5618126A (en) * 1996-02-16 1997-04-08 Watt; Richard W. Control mounting for a hyperbaric chamber
US6050132A (en) * 1998-06-15 2000-04-18 Capria; Michael Method and apparatus for hyperbaric chamber gas discharge and pressure management
US6461290B1 (en) * 1998-12-21 2002-10-08 Iit Research Institute Collapsible isolation apparatus
US6321746B1 (en) * 2000-05-17 2001-11-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration Portable hyperbaric chamber
US7815668B2 (en) 2002-07-03 2010-10-19 Life Support Technologies, Inc. Methods and apparatus for light therapy
US20070073365A1 (en) * 2002-07-03 2007-03-29 Life Support Technologies, Inc. Methods and apparatus for light therapy
US8251057B2 (en) 2003-06-30 2012-08-28 Life Support Technologies, Inc. Hyperbaric chamber control and/or monitoring system and methods for using the same
US20040261796A1 (en) * 2003-06-30 2004-12-30 Life Support Technologies Hyperbaric chamber control and/or monitoring system and methods for using the same
US20140014100A1 (en) * 2003-09-11 2014-01-16 Cvac Systems, Inc. Method and apparatus for cyclic variations in altitude conditioning
US9351894B2 (en) * 2003-09-11 2016-05-31 Cvac Systems, Inc. Method and apparatus for cyclic variations in altitude conditioning
US7761945B2 (en) * 2004-05-28 2010-07-27 Life Support Technologies, Inc. Apparatus and methods for preventing pressure ulcers in bedfast patients
US20050262639A1 (en) * 2004-05-28 2005-12-01 Life Support Technologies Apparatus and methods for preventing pressure ulcers in bedfast patients
WO2008014617A1 (en) 2006-08-04 2008-02-07 Hemato Max Hyperbaric/hypoxic chamber system
US8375938B2 (en) 2006-08-04 2013-02-19 Groupe Medical Gaumond Inc. Hyperbaric/hypoxic chamber system
CN101541289B (en) * 2006-08-04 2011-10-05 戈蒙医药集团股份有限公司 Hyperbaric/hypoxic chamber system
US20080116267A1 (en) * 2006-11-08 2008-05-22 Barber Jeffrey B Container screener
US10420699B2 (en) * 2007-05-31 2019-09-24 Aoti, Inc. Controller for an extremity hyperbaric device
US9474518B2 (en) 2007-10-05 2016-10-25 Covidien Lp Expanding seal anchor for single incision surgery
US8795326B2 (en) 2007-10-05 2014-08-05 Covidien Lp Expanding seal anchor for single incision surgery
US20090093850A1 (en) * 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Expanding seal anchor for single incision surgery
US8033281B2 (en) 2007-11-09 2011-10-11 Todd Douglas Kneale Modular transportable life support device
US7818840B2 (en) 2007-11-09 2010-10-26 Integrated Medical Systems, Inc. Foldable, portable trauma treatment and monitoring patient platform
US20090119834A1 (en) * 2007-11-09 2009-05-14 Todd Douglas Kneale Modular transportable life support device
US20110048424A1 (en) * 2009-08-26 2011-03-03 Environmental Tectonics Corporation Hyperbaric Apparatus With Storage Compartment
US9138366B2 (en) * 2009-08-26 2015-09-22 Environmental Tectonics Corporation Hyperbaric apparatus with storage compartment
US20130145688A1 (en) * 2010-06-04 2013-06-13 Osaka University Method for cultivating plant and plant cultivation device
WO2012055003A1 (en) * 2010-10-27 2012-05-03 Groupe Medical Gaumond Inc. Portable chamber for hyperbaric and/or hypoxic treatment
CN102151349A (en) * 2011-04-28 2011-08-17 王立涛 Substitution method and device of oxygen inhalation
US10092471B2 (en) 2013-09-04 2018-10-09 Microbaric Oxygen Systems, Llc Hyperoxic therapy systems, methods and apparatus
US9737450B2 (en) 2013-09-04 2017-08-22 Microbaric Oxyygen Systems, Llc Hyperoxic therapy systems, methods and apparatus
EP3424480A1 (en) * 2014-06-11 2019-01-09 MOM Incubators LTD A collapsible incubator
WO2015189541A1 (en) * 2014-06-11 2015-12-17 James Michael Roberts A collapsible incubator
US10722412B2 (en) 2014-06-11 2020-07-28 Mom Incubators Ltd Collapsible incubator
US9987183B2 (en) * 2014-10-29 2018-06-05 Ibex Medical Systems Co., Ltd. Overlay portable hyperbaric oxygen chamber
US20160120724A1 (en) * 2014-10-29 2016-05-05 Ibex Medical Systems Co., Ltd. Overlay portable hyperbaric oxygen chamber
US11497668B1 (en) * 2015-02-24 2022-11-15 Baromedical Research Institute, Ltd. Resuscitation chamber
US11951046B1 (en) * 2015-02-24 2024-04-09 Baromedical Research Institute, Ltd. Resuscitation chamber
USD958371S1 (en) * 2020-11-25 2022-07-19 Frederick E Ryder Split hyperbaric chamber

Similar Documents

Publication Publication Date Title
US3877427A (en) Oxygen compressive chamber
ES2303531T3 (en) METHOD AND PROVISIONS IN AN ASEPTIC PREPARATION.
SU733505A3 (en) Narcosis apparatus
RU2658466C1 (en) Portable and transportable isolatable robotic evacuation medical module
CN103181847A (en) Multifunctional surgical square box
CN107080658B (en) Multifunctional vaccination emergency ambulance
CN214231871U (en) Patient transports isolation cabin
Jones et al. Hyperbaric oxygen and acute spinal cord injuries in humans
CN210228209U (en) Abdominal cavity placing and double-sleeve sealing device communicated with hard catheter object fetching bag
CN209966808U (en) Trailer is transported to field operations wounded
KR20080011307A (en) Hyperbaric criogenesis chambers
CN201760006U (en) Plateau type rescuing cabin
CN214805052U (en) Hemostatic anus plug for anorectal department
CN206880938U (en) A kind of Uterosalpingography under B-scan Ultrasonoscopy device
US6302854B1 (en) Method for collecting fluids
WO2022208349A1 (en) A hyperbaric chamber
CN210447462U (en) Hydrogen-oxygen mixed gas oxygen supply and exhaust system of hyperbaric oxygen chamber
CN203954055U (en) Portable first-aid oxygen cabin
SU342389A1 (en) Compression oxygen chamber
CN214907878U (en) Artificial membrane rupture device for obstetrical department
CN210933268U (en) Clinical anesthesia intubate auxiliary device
NZ314400A (en) Device for recovering exhaled anaesthetic having a compressor and a membrane separation portion
CN209996889U (en) Enema device
CN215821532U (en) Multifunctional medical equipment belt structure for field operations
CN212295861U (en) Net frame tent capable of supplying oxygen and oxygen supply system of net frame tent