US3889811A - Flat-article sorting apparatus for an automatic mail handling system and the like - Google Patents

Flat-article sorting apparatus for an automatic mail handling system and the like Download PDF

Info

Publication number
US3889811A
US3889811A US371018A US37101873A US3889811A US 3889811 A US3889811 A US 3889811A US 371018 A US371018 A US 371018A US 37101873 A US37101873 A US 37101873A US 3889811 A US3889811 A US 3889811A
Authority
US
United States
Prior art keywords
flat
article
pockets
storing
articles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US371018A
Inventor
Syoichiro Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Application granted granted Critical
Publication of US3889811A publication Critical patent/US3889811A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C3/00Sorting according to destination
    • B07C3/003Destination control; Electro-mechanical or electro- magnetic delay memories
    • B07C3/006Electric or electronic control circuits, e.g. delay lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C3/00Sorting according to destination
    • B07C3/02Apparatus characterised by the means used for distribution
    • B07C3/06Linear sorting machines in which articles are removed from a stream at selected points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S209/00Classifying, separating, and assorting solids
    • Y10S209/90Sorting flat-type mail

Definitions

  • a flat-article sorting apparatus for automatic mail handling systems and the like is provided in which the mail sorting pockets are divided into a plurality of groups. Each flat-article or article of mail is provided with coded data which is detected by a character recognition circuit and converted to a binary code. The binary code is divided into two codes, one corresponding to the group into which the flat-article is to be sorted and the other corresponding to the pocket within the group.
  • the flatartic1es are conveyed along a branching transport path provided with photoelectric detectors which detect the leading edge of the articles.
  • the photoelectric detectors are connected to pulse circuits for generating shift pulses which cause the data detected by the character reader to be shifted in a plurality of parallel shift registers in synchronism with the movement of the articles in the transport path.
  • Code detectors are connected to the shift registers and responsive to particular binary codes to actuate deflecting mechanisms to divert the articles first, into the appropriate group according to the first code, and then into the appropriate pocket according to the second code.
  • Monitoring and alarm circuitry are provided to detect erroneous operation of the apparatus.
  • This invention relates to a flat-article sorting apparatus for use in an automatic mail-handling system and the like.
  • the data identifying the flat articles such as cards, envelopes and postcards are transferred in synchronism with the movement of the flat articles, so that they are diverted to the individual sorting pockets in response to the data.
  • a great number of photoelectric devices are provided for detecting the movement of the flat articles, so as to shift the data stored in the register in response thereto, and thereby to synchronize the data transfer with the movement of the flat articles.
  • the sorting pockets often number more than I00, requiring an equal number oflamp'photodetector pairs (light bars) and shift registers to be provided on the one-to-one correspondence basis. This makes the system as a whole more expensive and its maintenance difficult and more costly.
  • a flatarticle sorting apparatus in which the sorting pockets are divided into a plurality of groups, so that the corresponding pockets belonging to mutually different groups are represented by a common pocket selection code and given one register provided in common thereto, and so that the pocket selection data are shifted in response to the pulses obtained at light bars.
  • FIG. I is a schematic view of an embodiment of this invention.
  • FIG. 2 is a perspective view of the reader section of the embodiment
  • FIGS. 3a and 3b are plan and side views of the divider of the embodiment
  • FIGS. 4 and 5 are a plan view and a side view of the sorting pocket of the embodiment, respectively.
  • FIGS. 6a, 6b and 6(- are block diagram of the embodiment.
  • FIG. 7 is a table showing the relationship between the pocket number and the pocket selection code.
  • the preferred embodiment of this invention comprises a feeder section I, a reader section 2, a transport-direction converter section 3 and a sorter section 4.
  • the feeder section I comprises a hopper 5, an endless conveyor belt 6, and a suction chamber 7.
  • the conveyor belt 6 has several pairs of suction apertures at regular intervals longitudinally.
  • the suction chamber 7 is connected through a pipe to a suction pump.
  • the surface 8 of the suction chamber 7 kept in contact with the conveyor belt 6 is provided with suction apertures longitudinally aligned and similar to those of the conveyor belt 6.
  • the articles of mail 9 contained in the hopper 5 are fed by the belt 6 through a transport path 10 to the reader sec tion 2 one by one.
  • a postal code number on each article of mail 9 is read out while it is passing through the reader section 2.
  • each article of mail is turned by at the transport-direction converter section 3 and fed to the sorter section 4.
  • the reader section 2 comprises, as shown in FIG. 2, two pairs of dual belts 19-19 and 2020' and pulleys 35, 36, 37 and 38 for supporting the belts 19-19 and 20-20.
  • a flying spot scanner l7 and a photoelectric device I8 are disposed on the side of the transport path, i.e., on the side of the article of mail where postal code number 21 is written.
  • a housing 16 is disposed to cover the flying spot scanner I7 and the photoelectric device 18 for the purpose of precluding the influence of external light.
  • the flying spot scanner scans the area of postal code number on the article of mail 9 by a small spot of light while the article of mail is being transported. As a result, the code number 2] is detected by photoelectric device 18. The detected signal is transmitted to a chracter recoginition circuit 76 (FIG. 6a) in which the three-digit postal code is recognized. Thus, after the scanning, the code number is recognized with respect to three-digit character. As a result, one of 1,000 kinds of numerals, 000 to 999 is read out for each article of mail.
  • the sorter section 4 com prises 128 pockets, numbered 0 to 127, which correspond not to the individual postal code numbers, but to groups of specific postal code numbers, depending on the amount of actual postal traffic and delivery system of each postal service block. This makes it possible to reduce the number of pockets and the cost of the apparatus as a whole.
  • the detected decimal three-digit postal number is converted to one of the pocket numbers 0 to 127 in accordance with the predetermined order.
  • the articles of mail for which the pocket number has been determined in the character recoginition circuit 76 are further transported to the sorter section 4 in which the articles of mail are diverted into one of the branch paths and thence into a specific pocket.
  • the transport path 10 is branched into a plurality of transport paths A, B, C and D, as shown in FIG. I.
  • the selection of the individual pockets is achieved by dividers Da, Db, Dc, D D installed respectively at the branch points in response to the respective pocket number.
  • Each of the deviders Da, Db and Dc comprises, as schematically shown in FIG. 3, a V-shaped movable member 23 disposed in the center of the branch point of the transport path, pulleys 30, 31, 32, 33 and 34, and four pairs of dual conveyor belts 26, 26', 27, 27, 28, 28', 29 and 29'.
  • the movable member 23 is connected through a shaft 24 to a rotary solenoid 25 installed on the back side of the base plate, and moved from position J to K in response to a voltage applied to the rotary solenoid 25.
  • the articles of mail supplied in the direction Z are divided into two groups, one heading toward a straight path 22 and the other toward a branch path 22'.
  • a roller 39 comprises a pinch roller 40 of an elastic rubber, which is to suitably press the conveyor belts 26 and 26 against the articles of mail at the branch point, thereby enabling the conveyor belts to securely hold each article of mail in turn.
  • the sorting pockets are serially numbered in the order as shown in PK]. 1. Numbers H to H;, are assigned to the pockets in sequence from right to left for the lowest transport path A, While, numbers H32 to H, are assigned for the path B, and H to H for the path C. Similarly, H to H are assigned to pockets in the uppermost path D.
  • each sorting pocket consists essentially of the divider D and a receiving pocket H.
  • the divider D comprises a movable member 41, a drive shaft 42, a rotary solenoid 43 for driving the movable member 41, a pinch roller 44, dual conveyor belts 47-47 and 4848', and pulleys 45 and 46 and is identi cal to the divider shown in HQ. 3 in operation.
  • the re DCving pocket H comprises a guide plate 49, a receiv ing plate 50, and partitions S1 and 52. An article of mail is transported in a straight path when no voltage is supplied to the rotary solenoid. but it is diverted to the corresponding pocket when the rotary solenoid is energized.
  • the dividers D0 through D126 correspond to the pockets Ho through H126, and the solenoids S0 through S126 to dividers D0 through D126.
  • the last pockets H31, H63, H95 and H127 in the individual stages need not correspond to the dividers and the rotary solenoids.
  • the pocket numbers H0 to H127 are converted to 7-bit data as shown in FIG. 7, and electrically stored in 7-bit shift registers.
  • the pocket selection data stored in the register is transferred in accordance with the transportation of the mail matter.
  • the binary codes No. 1, No. 2, No. 4, No. 8 and No. 16 correspond to pocket numbers in the individual transport path stages A,B,C and D, and the binary codes No. 32 and No. 64 are used to discriminate the stages A.B,C and D from each other.
  • a binary number (0l l00l0) designates the (l00l0)th pocket, i.e., the l9th pocket in the (0] )th stage (the stage B).
  • the solenoid Sb of the divider Db corresponding to the first two digits (0]) is activiated, and then the solenoid S49 of the divider D49 corresponding to the remainder digits (10010) is activiated. whereby a transport path for the article of mail to be guided to the pocket H49 is established.
  • the functions of the storage registers and their re' lated circuits will be described below with reference to FIGS. 1, 6-a, 6-)) and 6-0.
  • the signal detected by photocell device 18 is supplied to the character recognition circuit 76 in which a decimal 3-digit postal code number is decoded.
  • the decoded data is translated into a binary 7-digit pocket selection code, i.e., a pocket number, in a translator 77.
  • the translator 77 is a code converter matrix such as, for example, a diode matrix.
  • the storage register is constituted of parallel 7-bit multistage shift registers, each consisting of 7 flipflops disposed in parallel with each other.
  • the input is coupled through 7 gates to the register of the previous stage.
  • a gate pulse tie a shift pulse
  • the registers disposed in multistage are indicated by R R R R 111 O1! OH
  • the 7-line output data from translator 77 is supplied to the first stage register R...
  • the gate in the register R is always opened and hence register R accepts the data when the pocket selection data is obtained by the translator 77.
  • an article of mail intercepts the light rays from the light source disposed to face a photoelectric device L;,.,,.
  • the interception is detected by the photoelectric device L which is located so that the instant at which the leading edge of the article of mail is detected is concident with the instant at which the read-out of the postal code number is completed.
  • a photoelectric device L for detecting the leading edge of an article of mail to be passed through the reader section.
  • a short pulse is generated by a differcntiator circuit 78 coupled thereto and supplied to a shift pulse input terminal of the register R1 as a shift pulse P1.
  • the data stored in the register R0 is shifted to the register R] by the shift pulse Pl. immediately after this shifting, a clear pulse CL is supplied to the register R0 in order to reset the register R0.
  • the register R0 is ready to accept the data on the next succeeding article of mail.
  • the shift pulse P1 is also supplied to a delay circuit 88, which is constituted of 96-stage shift register.
  • a clock pulse having a repetition period of tc is supplied from a clock pulse generator 86 to the delay circuit 88.
  • the outputs of the 16th, 32nd, 48th, 64th, th and 96th stages in the delay circuit 88 are supplied to shift pulse input terminals of the registers R2, R3, R4, R5, R6 and R7, respectively. Therefore, after the lapse of a period of l6tc, a pulse P2 is obtained from the first intermediate output terminal of the delay circuit 88.
  • the pulse P2 is supplied to the register R2 as the shift pulse. whereby the data stored in the register R1 is shifted to the register R2.
  • a pulse P3 is obtained and supplied to the register R3 to shift the data from the register R2 to R3.
  • the pulses P2, P3, P4, P5, P6 and P7 are successively obtained from intermediate output terminals of the delay circuit 88, and supplied to the registers R2, R3, R4, R5, R6 and R7, respectively, whereby the data stored in the register R1 is shifted in sequence to the registers R2, R3, R7.
  • the time interval of tm should be determined in consideration of a pitch of the article of mail or the interval between the leading edges of every two adjacent articles of mail.
  • the time interval tm is determined slightly shorter than the minimum pitch of the article of mail.
  • the pocket selection data of each article of mail is shifted from the register R1 to R6 for the time period of 6tm. In each register, the data is stored for the period of tm. Therefore, even if the pitch of two adjacent article of mail is a minimum, the interference between different data representing two adjacent article of mail never occur.
  • the pocket selection data of the mail matter is shifted from the register Rl to R7 and stored in the register R7 with a given time delay corresponding to the time period in which an article of mail is transported from the point of L,, to the point of L,, In other words, when the article of mail approaches the divider Da, the pocket selection data of the article of mail is in the register R7.
  • the article of mail is detected by a photoelectric device L,, The output of the device L,, is supplied to the differentiator circuit 79 to obtain the shift pulse P8.
  • the shift pulse P8 is supplied to the register R8 so as to shift the data stored in the register R7 to the register R8.
  • 64 bit position of the register R8 are connected to a decoder 80 which generates an output when the two output lines are simultaneously binary 0.
  • the output of the decoder 80 is supplied through an amplifier 81 to the solenoid Sa of the divider Da so as to transfer the mail matter to the lowest stage A.
  • both of the No. 32 bit position and No. 64 bit position of the data thereof are binary O, as shown in FIG. 7. Therefore, the solenoid Sa is energized by the output of the decoder 80, whereby the transport path of the mail matter is directed to the lowest stage A by the divider Da.
  • 64 bit position of the data stored in the register R8 are both binary 0. If the next succeeding article of mail is not to be directed to one of the pockets in the stage A. the data stored in the register R8 is renewed, and the data of the next succeeding article of mail stored in the register R7 is shifted to the register R8, when this article of mail is detected by the photoelectric device L, As a result, the divider Da is reset to transport the article of mail to the straightline path, because at least one of the No. 32 or No. 64 bit positions of the data is a binary digit l.
  • the pulse P is also supplied to a delay circuit 89 identical to the circuit 88, and shifted by the clock pulse supplied from the clock pulse generator 87 to provide the shift pulses P P and P for the registers R,., R and R respectively.
  • the data stored in the register R are shifted to the register R R to R and R to R in response to the shift pulse P P and P respectively.
  • the No. 64 and the No. 32 bit positions of registers R and R are connected to the decoders 82 and 84 which identify the binary code 01 and 10 respectively.
  • the outputs of the decoders 82 and 84 are supplied to the solenoids Sb and Se of the dividers Db and Dc through the amplifiers 83 and 85, respectively. As shown in FIG. 7, the binary code of the No.
  • the distance between the dividers Da and Db or Db and De is determined so that it corresponds to the time interval between the shift pulses P and P or P and P
  • the photoelectric devices L L L and L are installed at the front portions of the pockets H H H and H respectively.
  • the respective distances of the photoelectric device L, from the respective pockets H H11. H and H are equal to each other.
  • the output of the register O0 is connected to the de coder Mo for detecting the data of the mail matter to be directed to the pockets H H H and H and for generating and supplying an output signal to the respective amplifiers N 32, N and N
  • the outputs from the amplifiers N N N and N are supplied to the solenoids 5 S S and of the dividers D D D and D
  • the decoder M when the data for the pocket H is stored in the register 0 it is detected by the decoder M and the output of the decoder M is supplied through the amplifier N to the solenoid S of the divider D whereby an article of mail is diverted to the pocket H
  • the distances of the photoelectric device L, from L L L and L are equal to each other, an article of mail is detected by only one of the photoelectric devices L L L and L
  • the shift pulse l obtained from one of the photoelectric devices L L and L is also supplied to the delay circuit 91 identical to the delay circuit 88, and shifted by the clock pulse from the clock pulse gencr
  • the data stored in the register O is shifted to the register Q Q to Q Q to Q 0,,- to During the shifting the data from the register 0. to 0 the data are examined one after another by the decoder M M M connected to the registers 0,, Q Q respectively.
  • the detected sig nal is supplied to the corresponding one of the sole noids S to S S to S to S and to S through the corresponding amplifiers n to N N to N N 64 to N and N to N
  • the article of mail bound for the first pocket groups in the stages A, B, C and D are diverted to the respective pockets in response to the detected data.
  • the shifting of the data stored in the register 07 to O8 is achieved when the leading edge of an article of mail is detected by one of the photoelectric devices L,, L L and installed at the front position of the dividers D D D and D
  • the outputs of the photoelectric devices are supplied to the differentiator circuit 95 through the OR circuit 94 to provide the shift pulse 1 which is supplied to the register 0,, to shift the data thereto, whereby re-synchronization is achieved.
  • the shift pulse [3 is also supplied to the delay circuit 96 and shifted by the clock pulse from the clock pulse generator 97.
  • the data in the register is automatically shifted to 0 .0 Q in turn in a similar manner.
  • the articles of mail to be directed to the second pocket group in each stage are diverted to the respective pockets in a similar manner to the articles of mail of first pocket group.
  • the shifting of the data from the register Q15 to Q and Q to 0 is achieved when the leading edge of an article of mail is detected by one of the photoelectric devices L L L and L and L,, L L and L At the same time re-synchronization for the second and third pocket groups is achieved.
  • the shifting of the data from the register 016 to 023 and Q14 to O is automatically achieved in a similar manner,
  • the photoelectric devices L L L and L are installed at the front positions of the last pockets H H H H in the stages A, B, C and D, respectively.
  • the outputs of the photoelectric devices are supplied through the OR circuit 101 to the differentiator circuit 102 to obtain the shift pulse 1 by which the data in the register 0 is shifted to the register Q31.
  • re-synchronization is again achieved.
  • a monitor circuit is connected to the output of the register 0,.
  • the No. 16 and No. 8 bit position lines of the register 0 is connected to a code identifying circuit 99 which generates the output when at least one of the No. 16 and No. 8 bit positions is a binary l.
  • the output of the circuit 99 is supplied to a timing monitor 100 comprising a mono-stable multivibrator.
  • the shift pulse 1,, obtained from one of the photoelectric devices L L L and L is also supplied to the monitor 100.
  • the monitor 100 generates an alarm signal when the shift pulse P is not supplied within a predetermined time period after the output of the circuit 99 is supplied thereto. Because the articles of mail bound not for the first pocket group has a pocket selection code in which at least one of the No. 16 and No.
  • the shift pulse 1 is obtained within a predetermined time period after the output of the circuit 99 is obtained. Therefore, when the pulse I is not supplied within the predetermined time period from the recep tion of the output of the circuit 99, an alarm signal is generated from the monitor 100.
  • Similar monitor circuits are connected to the registers O O and O and the alarm signals are generated when a misoperation is detected at the end of each pocket group timing period.
  • the code identifying circuit 103 for generating an output when the No. 16, No. 8, No. 4, No. 2 and No. 1 bit posistion are all binary l.
  • the output of the circuit 103 is supplied to the timing monitor 104 which generates an alarm signal when the shift pulse 1; is not supplied within a predetermined time period measured from the reception of the output of the circuit 103.
  • the last register O is connected to the code identifying circuit 105 for generating the output when at least one of the No. 16, No. 8. No. 4, No.2 and No. 1 bit position is binary (J.
  • the circuit 105 detects the missorting in which articles of mail bound for pockets other than the last pockets H H H and H are transported to the last pocket.
  • a flatarticle sorting apparatus for an automatic mail handling system and the like comprising:
  • first means connected to said detecting means for temporarily storing said data
  • said second storing means having a plurality of storing stages, said first shift pulses being applied to storing stages of said second storing means which are not adjacently positioned. said second shift pulses being applied to storing stages of said second storing means adjacent to said storing stages to which said first shift pulses are applied;
  • said pockets being positioned so that the distances of the pockets having an identical second code from coded data detecting means are equal to each other;
  • said flat-article detecting means being installed at intervals equal to an integral multiple of the interval of said pockets.
  • a flat-article sorting apparatus as recited in claim wherein said second storing means comprises:
  • first alarm means connected to said first monitoring second means connected to the last storing stage of means and said detecting means for producing a said second storing means for monitoring said secfirst alarm whenever a specific coded data is deond coded data transferred to the last stage; and tected by said first monitoring means and no flatsecond alarm means for producing a second alarm article is detected for a predetermined time period. 5 when the coded data other than that representing 3.
  • a flat-article sorting apparatus as recited in claim the last pockets of said branching paths is detected. 2, further comprising:

Abstract

A flat-article sorting apparatus for automatic mail handling systems and the like is provided in which the mail sorting pockets are divided into a plurality of groups. Each flat-article or article of mail is provided with coded data which is detected by a character recognition circuit and converted to a binary code. The binary code is divided into two codes, one corresponding to the group into which the flat-article is to be sorted and the other corresponding to the pocket within the group. The flat-articles are conveyed along a branching transport path provided with photoelectric detectors which detect the leading edge of the articles. The photoelectric detectors are connected to pulse circuits for generating shift pulses which cause the data detected by the character reader to be shifted in a plurality of parallel shift registers in synchronism with the movement of the articles in the transport path. Code detectors are connected to the shift registers and responsive to particular binary codes to actuate deflecting mechanisms to divert the articles first, into the appropriate group according to the first code, and then into the appropriate pocket according to the second code. Monitoring and alarm circuitry are provided to detect erroneous operation of the apparatus.

Description

United States Patent [1 Yoshimura 1 1 June 17, 1975 [75] Inventor: Syoichiro Yoshimura, Tokyo, Japan [73] Assignee: Nippon Electric Company, Limited,
1 Tokyo, Japan [22] Filed: June 18, 1973 [21] Appl. No.: 371,018
[30] Foreign Application Priority Data June 19, 1972 Japan 47-61512 [52] US. Cl. 209/74 M; 209/111.7 [51] Int. Cl. B07c 5/344 [58] Field of Search 209/74, 74 M, 73, 111.7, 209/111.8; 250/555, 556, 567, 568, 569;
[56] References Cited UNITED STATES PATENTS 3,270,882 9/1966 Perotto Primary ExaminerAllen N. Knowles Attorney, Agent, or Firm-Sughrue, Rothwell, Mion, Zinn and Macpeak 1 1 ABSTRACT A flat-article sorting apparatus for automatic mail handling systems and the like is provided in which the mail sorting pockets are divided into a plurality of groups. Each flat-article or article of mail is provided with coded data which is detected by a character recognition circuit and converted to a binary code. The binary code is divided into two codes, one corresponding to the group into which the flat-article is to be sorted and the other corresponding to the pocket within the group. The flatartic1es are conveyed along a branching transport path provided with photoelectric detectors which detect the leading edge of the articles. The photoelectric detectors are connected to pulse circuits for generating shift pulses which cause the data detected by the character reader to be shifted in a plurality of parallel shift registers in synchronism with the movement of the articles in the transport path. Code detectors are connected to the shift registers and responsive to particular binary codes to actuate deflecting mechanisms to divert the articles first, into the appropriate group according to the first code, and then into the appropriate pocket according to the second code. Monitoring and alarm circuitry are provided to detect erroneous operation of the apparatus.
3 Claims, 10 Drawing Figures SHEET PATENTED 17 Q m x m E PSTL OIL. o. C r: f 00ml: co 5 we no 5 ma K E E 5 mm: s: 5 mm: 0 l\ m Z3; 5 E 5 0c E a: s: s: mm: a: a: a: O W f: as s 2: To a mm: a 8 5 3 5 5 705 E: 0 Q 5 a 51 Q E a5 2 2 p a a a PATENTEDJUN I 7 I975 SHEET PATENTEnJummzs 3689.811 sum 3 PATENTEUJUN 1 7 ms -13 mi: T5 0 5 c316 mo i i i i i i i ix 5 9% i Ni qsw xi m5 m2 N2 Curr unLl.
PATENTED JUN 1 7 1975 Q? Q 2% 2% i E? vi 2 @320 2 022222 willllli m N O :52
m was 3003 kHVNIS FLAT-ARTICLE SORTING APPARATUS FOR AN AUTOMATIC MAIL HANDLING SYSTEM AND THE LIKE BACKGROUND OF THE INVENTION l. Field of the Invention This invention relates to a flat-article sorting apparatus for use in an automatic mail-handling system and the like.
DESCRIPTION OF THE PRIOR ART In a conventional automatic mail sorting apparatus, the data identifying the flat articles such as cards, envelopes and postcards are transferred in synchronism with the movement of the flat articles, so that they are diverted to the individual sorting pockets in response to the data. For this purpose, a great number of photoelectric devices are provided for detecting the movement of the flat articles, so as to shift the data stored in the register in response thereto, and thereby to synchronize the data transfer with the movement of the flat articles.
In the practical sorting apparatus now in use, however, the sorting pockets often number more than I00, requiring an equal number oflamp'photodetector pairs (light bars) and shift registers to be provided on the one-to-one correspondence basis. This makes the system as a whole more expensive and its maintenance difficult and more costly.
SUMMARY OF THE INVENTION It is, therefore, an object of this invention to provide an improved flat-article sorting apparatus requiring a smaller number of light bars and registers.
According to this invention, there is provided a flatarticle sorting apparatus in which the sorting pockets are divided into a plurality of groups, so that the corresponding pockets belonging to mutually different groups are represented by a common pocket selection code and given one register provided in common thereto, and so that the pocket selection data are shifted in response to the pulses obtained at light bars.
BRIEF DESCRIPTION OF THE DRAWINGS The features and advantages of this invention will be understood from the following detailed description of a preferred embodiment of this invention taken in conjunction with the accompanying drawings, wherein:
FIG. I is a schematic view of an embodiment of this invention;
FIG. 2 is a perspective view of the reader section of the embodiment;
FIGS. 3a and 3b are plan and side views of the divider of the embodiment;
FIGS. 4 and 5 are a plan view and a side view of the sorting pocket of the embodiment, respectively.
FIGS. 6a, 6b and 6(- are block diagram of the embodiment; and
FIG. 7 is a table showing the relationship between the pocket number and the pocket selection code.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. 1, the preferred embodiment of this invention comprises a feeder section I, a reader section 2, a transport-direction converter section 3 and a sorter section 4. In the sorter section 4, one-hundred and twenty eight pockets are disposed in four stages, each of which comprises thirty two pockets. The feeder section I comprises a hopper 5, an endless conveyor belt 6, and a suction chamber 7. The conveyor belt 6 has several pairs of suction apertures at regular intervals longitudinally. The suction chamber 7 is connected through a pipe to a suction pump. The surface 8 of the suction chamber 7 kept in contact with the conveyor belt 6 is provided with suction apertures longitudinally aligned and similar to those of the conveyor belt 6. The articles of mail 9 contained in the hopper 5 are fed by the belt 6 through a transport path 10 to the reader sec tion 2 one by one. A postal code number on each article of mail 9 is read out while it is passing through the reader section 2. Then, each article of mail is turned by at the transport-direction converter section 3 and fed to the sorter section 4.
The reader section 2 comprises, as shown in FIG. 2, two pairs of dual belts 19-19 and 2020' and pulleys 35, 36, 37 and 38 for supporting the belts 19-19 and 20-20. A flying spot scanner l7 and a photoelectric device I8 are disposed on the side of the transport path, i.e., on the side of the article of mail where postal code number 21 is written. A housing 16 is disposed to cover the flying spot scanner I7 and the photoelectric device 18 for the purpose of precluding the influence of external light.
The flying spot scanner scans the area of postal code number on the article of mail 9 by a small spot of light while the article of mail is being transported. As a result, the code number 2] is detected by photoelectric device 18. The detected signal is transmitted to a chracter recoginition circuit 76 (FIG. 6a) in which the three-digit postal code is recognized. Thus, after the scanning, the code number is recognized with respect to three-digit character. As a result, one of 1,000 kinds of numerals, 000 to 999 is read out for each article of mail. In this embodiment, the sorter section 4 com prises 128 pockets, numbered 0 to 127, which correspond not to the individual postal code numbers, but to groups of specific postal code numbers, depending on the amount of actual postal traffic and delivery system of each postal service block. This makes it possible to reduce the number of pockets and the cost of the apparatus as a whole. For this purpose, the detected decimal three-digit postal number is converted to one of the pocket numbers 0 to 127 in accordance with the predetermined order. The articles of mail for which the pocket number has been determined in the character recoginition circuit 76 are further transported to the sorter section 4 in which the articles of mail are diverted into one of the branch paths and thence into a specific pocket.
In the sorter section 4, the transport path 10 is branched into a plurality of transport paths A, B, C and D, as shown in FIG. I. The selection of the individual pockets is achieved by dividers Da, Db, Dc, D D installed respectively at the branch points in response to the respective pocket number. Each of the deviders Da, Db and Dc comprises, as schematically shown in FIG. 3, a V-shaped movable member 23 disposed in the center of the branch point of the transport path, pulleys 30, 31, 32, 33 and 34, and four pairs of dual conveyor belts 26, 26', 27, 27, 28, 28', 29 and 29'. The movable member 23 is connected through a shaft 24 to a rotary solenoid 25 installed on the back side of the base plate, and moved from position J to K in response to a voltage applied to the rotary solenoid 25. Thus the articles of mail supplied in the direction Z are divided into two groups, one heading toward a straight path 22 and the other toward a branch path 22'. In this embodiment, it is so arranged that an article of mail is selected into a straight path 22 when no volt age is supplied to the solenoid and into a branch path 22' when it is. A roller 39 comprises a pinch roller 40 of an elastic rubber, which is to suitably press the conveyor belts 26 and 26 against the articles of mail at the branch point, thereby enabling the conveyor belts to securely hold each article of mail in turn.
The sorting pockets are serially numbered in the order as shown in PK]. 1. Numbers H to H;,, are assigned to the pockets in sequence from right to left for the lowest transport path A, While, numbers H32 to H, are assigned for the path B, and H to H for the path C. Similarly, H to H are assigned to pockets in the uppermost path D.
As shown in H68. 4 and 5, each sorting pocket consists essentially of the divider D and a receiving pocket H. The divider D comprises a movable member 41, a drive shaft 42, a rotary solenoid 43 for driving the movable member 41, a pinch roller 44, dual conveyor belts 47-47 and 4848', and pulleys 45 and 46 and is identi cal to the divider shown in HQ. 3 in operation. The re ceiving pocket H comprises a guide plate 49, a receiv ing plate 50, and partitions S1 and 52. An article of mail is transported in a straight path when no voltage is supplied to the rotary solenoid. but it is diverted to the corresponding pocket when the rotary solenoid is energized.
The dividers D0 through D126 correspond to the pockets Ho through H126, and the solenoids S0 through S126 to dividers D0 through D126. The last pockets H31, H63, H95 and H127 in the individual stages need not correspond to the dividers and the rotary solenoids.
in this embodiment, the pocket numbers H0 to H127 are converted to 7-bit data as shown in FIG. 7, and electrically stored in 7-bit shift registers. The pocket selection data stored in the register is transferred in accordance with the transportation of the mail matter. The binary codes No. 1, No. 2, No. 4, No. 8 and No. 16 correspond to pocket numbers in the individual transport path stages A,B,C and D, and the binary codes No. 32 and No. 64 are used to discriminate the stages A.B,C and D from each other. For example, a binary number (0l l00l0) designates the (l00l0)th pocket, i.e., the l9th pocket in the (0] )th stage (the stage B). Assuming that the pocket selection code (0i 10010] is given, the solenoid Sb of the divider Db corresponding to the first two digits (0]) is activiated, and then the solenoid S49 of the divider D49 corresponding to the remainder digits (10010) is activiated. whereby a transport path for the article of mail to be guided to the pocket H49 is established.
The functions of the storage registers and their re' lated circuits will be described below with reference to FIGS. 1, 6-a, 6-)) and 6-0. The signal detected by photocell device 18 is supplied to the character recognition circuit 76 in which a decimal 3-digit postal code number is decoded. The decoded data is translated into a binary 7-digit pocket selection code, i.e., a pocket number, in a translator 77.
The translator 77 is a code converter matrix such as, for example, a diode matrix. The storage register is constituted of parallel 7-bit multistage shift registers, each consisting of 7 flipflops disposed in parallel with each other. The input is coupled through 7 gates to the register of the previous stage. When a gate pulse tie, a shift pulse) is supplied to the 7 gate lines in common, the stored data of 7 lines are renewed according to the output data of the previous stage. The registers disposed in multistage are indicated by R R R R 111 O1! OH The 7-line output data from translator 77 is supplied to the first stage register R... The gate in the register R is always opened and hence register R accepts the data when the pocket selection data is obtained by the translator 77.
After the read-out of the postal code number, an article of mail intercepts the light rays from the light source disposed to face a photoelectric device L;,.,,. The interception is detected by the photoelectric device L which is located so that the instant at which the leading edge of the article of mail is detected is concident with the instant at which the read-out of the postal code number is completed. There is also provided a photoelectric device L,, for detecting the leading edge of an article of mail to be passed through the reader section.
When the leading edge of an article of mail is de teeted by the photoelectric device 1, a short pulse is generated by a differcntiator circuit 78 coupled thereto and supplied to a shift pulse input terminal of the register R1 as a shift pulse P1. The data stored in the register R0 is shifted to the register R] by the shift pulse Pl. immediately after this shifting, a clear pulse CL is supplied to the register R0 in order to reset the register R0. Thus, the register R0 is ready to accept the data on the next succeeding article of mail.
The shift pulse P1 is also supplied to a delay circuit 88, which is constituted of 96-stage shift register. A clock pulse having a repetition period of tc is supplied from a clock pulse generator 86 to the delay circuit 88. The outputs of the 16th, 32nd, 48th, 64th, th and 96th stages in the delay circuit 88 are supplied to shift pulse input terminals of the registers R2, R3, R4, R5, R6 and R7, respectively. Therefore, after the lapse of a period of l6tc, a pulse P2 is obtained from the first intermediate output terminal of the delay circuit 88. The pulse P2 is supplied to the register R2 as the shift pulse. whereby the data stored in the register R1 is shifted to the register R2.
Furthermore, after the lapse of another period of l6tc, a pulse P3 is obtained and supplied to the register R3 to shift the data from the register R2 to R3. Thus, the pulses P2, P3, P4, P5, P6 and P7 are successively obtained from intermediate output terminals of the delay circuit 88, and supplied to the registers R2, R3, R4, R5, R6 and R7, respectively, whereby the data stored in the register R1 is shifted in sequence to the registers R2, R3, R7. In this manner, the pocket selection data of the article of mail is shifted from one register to the following one as the article of mail is transported. A series of shift pulses P1 to P7 are generated at a time interval of tm (=l 6tc). To obviate operational error, the time interval of tm should be determined in consideration of a pitch of the article of mail or the interval between the leading edges of every two adjacent articles of mail. In practice, the time interval tm is determined slightly shorter than the minimum pitch of the article of mail. Thus, the pocket selection data of each article of mail is shifted from the register R1 to R6 for the time period of 6tm. In each register, the data is stored for the period of tm. Therefore, even if the pitch of two adjacent article of mail is a minimum, the interference between different data representing two adjacent article of mail never occur.
Thus, the pocket selection data of the mail matter is shifted from the register Rl to R7 and stored in the register R7 with a given time delay corresponding to the time period in which an article of mail is transported from the point of L,, to the point of L,, In other words, when the article of mail approaches the divider Da, the pocket selection data of the article of mail is in the register R7. Then, the article of mail is detected by a photoelectric device L,, The output of the device L,, is supplied to the differentiator circuit 79 to obtain the shift pulse P8. The shift pulse P8 is supplied to the register R8 so as to shift the data stored in the register R7 to the register R8. Two outputs of the No. 32 bit position and the No. 64 bit position of the register R8 are connected to a decoder 80 which generates an output when the two output lines are simultaneously binary 0. The output of the decoder 80 is supplied through an amplifier 81 to the solenoid Sa of the divider Da so as to transfer the mail matter to the lowest stage A. In the case where an article of mail is bound for one of the pockets H0 through H31 in the lowest stage A, both of the No. 32 bit position and No. 64 bit position of the data thereof are binary O, as shown in FIG. 7. Therefore, the solenoid Sa is energized by the output of the decoder 80, whereby the transport path of the mail matter is directed to the lowest stage A by the divider Da.
For the time interval in which the data stored in the register R1 is shifted to the register R7, an article of mail must be transported from the point L to the point close to L,, and before the article of mail is detected by the photoelectric device L the data thereof must have been shifted to the register R7. If the trans port speed is changed. the data can not be transferred in synchronism with the movement of articles of mail. However, the error in the synchronization is absorbed by detecting the leading edge of the articles of mail by the photoelectric device L and by shifting the data from the register R7 to R8 in response to the detected signal, that is, re-synchronization is effected The divider Da operates to transport an article of mail to the branch path only when the No. 32 bit position and No. 64 bit position of the data stored in the register R8 are both binary 0. If the next succeeding article of mail is not to be directed to one of the pockets in the stage A. the data stored in the register R8 is renewed, and the data of the next succeeding article of mail stored in the register R7 is shifted to the register R8, when this article of mail is detected by the photoelectric device L,, As a result, the divider Da is reset to transport the article of mail to the straightline path, because at least one of the No. 32 or No. 64 bit positions of the data is a binary digit l.
The pulse P, is also supplied to a delay circuit 89 identical to the circuit 88, and shifted by the clock pulse supplied from the clock pulse generator 87 to provide the shift pulses P P and P for the registers R,., R and R respectively. The data stored in the register R are shifted to the register R R to R and R to R in response to the shift pulse P P and P respectively. The No. 64 and the No. 32 bit positions of registers R and R are connected to the decoders 82 and 84 which identify the binary code 01 and 10 respectively. The outputs of the decoders 82 and 84 are supplied to the solenoids Sb and Se of the dividers Db and Dc through the amplifiers 83 and 85, respectively. As shown in FIG. 7, the binary code of the No. 64 and No. 32 bit positions in the data of the articles of mail bound for the second and the third stages B and C are 0] and 10, respectively. Therefore, the solenoids Sb and Se of the Dividers Db and De are energized when the data of the mail matters bound for the stages B and C are shifted to the registers R and R respectively. Thus, the articles of mail are transported to the stages B and C, respectively. The articles of mail bound for the uppermost stage D, the pocket selection data of which has the binary code 11 in the No, 64 and No. 32 bit, are transported to the stage D without branching by the dividers Da, Db and De. The distance between the dividers Da and Db or Db and De is determined so that it corresponds to the time interval between the shift pulses P and P or P and P The photoelectric devices L L L and L are installed at the front portions of the pockets H H H and H respectively. The respective distances of the photoelectric device L, from the respective pockets H H11. H and H are equal to each other. When the leading edge of an article of mail is detected by one of the photoelectric devices L,,..,, L,, L and L the detected signal is supplied to the differentiators circuit through the OR circuit 93 to provide the shift pulse 1,,by which the data stored in the register R is shifted to the register ()0. At this time, re-synchronization is achieved by detecting the leading edge of an article of mail by the photoelectric device L L L,, or L whereby the variation in synchronization can be compensated.
The output of the register O0 is connected to the de coder Mo for detecting the data of the mail matter to be directed to the pockets H H H and H and for generating and supplying an output signal to the respective amplifiers N 32, N and N The outputs from the amplifiers N N N and N are supplied to the solenoids 5 S S and of the dividers D D D and D For example, when the data for the pocket H is stored in the register 0 it is detected by the decoder M and the output of the decoder M is supplied through the amplifier N to the solenoid S of the divider D whereby an article of mail is diverted to the pocket H Because the distances of the photoelectric device L, from L L L and L are equal to each other, an article of mail is detected by only one of the photoelectric devices L L L and L The shift pulse l obtained from one of the photoelectric devices L L and L is also supplied to the delay circuit 91 identical to the delay circuit 88, and shifted by the clock pulse from the clock pulse gencrator 92 to obtain the shift pulses 1 I 1 for the registers Q Q 0,, respectively. The data stored in the register O is shifted to the register Q Q to Q Q to Q 0,,- to During the shifting the data from the register 0. to 0 the data are examined one after another by the decoder M M M connected to the registers 0,, Q Q respectively. The detected sig nal is supplied to the corresponding one of the sole noids S to S S to S to S and to S through the corresponding amplifiers n to N N to N N 64 to N and N to N Thus, the article of mail bound for the first pocket groups in the stages A, B, C and D are diverted to the respective pockets in response to the detected data.
The shifting of the data stored in the register 07 to O8 is achieved when the leading edge of an article of mail is detected by one of the photoelectric devices L,, L L and installed at the front position of the dividers D D D and D The outputs of the photoelectric devices are supplied to the differentiator circuit 95 through the OR circuit 94 to provide the shift pulse 1 which is supplied to the register 0,, to shift the data thereto, whereby re-synchronization is achieved. The shift pulse [3 is also supplied to the delay circuit 96 and shifted by the clock pulse from the clock pulse generator 97. The data in the register is automatically shifted to 0 .0 Q in turn in a similar manner. The articles of mail to be directed to the second pocket group in each stage are diverted to the respective pockets in a similar manner to the articles of mail of first pocket group.
The shifting of the data from the register Q15 to Q and Q to 0 is achieved when the leading edge of an article of mail is detected by one of the photoelectric devices L L L and L and L,, L L and L At the same time re-synchronization for the second and third pocket groups is achieved. The shifting of the data from the register 016 to 023 and Q14 to O is automatically achieved in a similar manner,
The photoelectric devices L L L and L are installed at the front positions of the last pockets H H H H in the stages A, B, C and D, respectively. The outputs of the photoelectric devices are supplied through the OR circuit 101 to the differentiator circuit 102 to obtain the shift pulse 1 by which the data in the register 0 is shifted to the register Q31. Thus, re-synchronization is again achieved.
A monitor circuit is connected to the output of the register 0,. The No. 16 and No. 8 bit position lines of the register 0 is connected to a code identifying circuit 99 which generates the output when at least one of the No. 16 and No. 8 bit positions is a binary l. The output of the circuit 99 is supplied to a timing monitor 100 comprising a mono-stable multivibrator. The shift pulse 1,, obtained from one of the photoelectric devices L L L and L is also supplied to the monitor 100. The monitor 100 generates an alarm signal when the shift pulse P is not supplied within a predetermined time period after the output of the circuit 99 is supplied thereto. Because the articles of mail bound not for the first pocket group has a pocket selection code in which at least one of the No. 16 and No. 8 bit positions is a binary l, the shift pulse 1 is obtained within a predetermined time period after the output of the circuit 99 is obtained. Therefore, when the pulse I is not supplied within the predetermined time period from the recep tion of the output of the circuit 99, an alarm signal is generated from the monitor 100.
Similar monitor circuits are connected to the registers O O and O and the alarm signals are generated when a misoperation is detected at the end of each pocket group timing period. For example, there is provided the code identifying circuit 103 for generating an output when the No. 16, No. 8, No. 4, No. 2 and No. 1 bit posistion are all binary l. The output of the circuit 103 is supplied to the timing monitor 104 which generates an alarm signal when the shift pulse 1; is not supplied within a predetermined time period measured from the reception of the output of the circuit 103.
The last register O is connected to the code identifying circuit 105 for generating the output when at least one of the No. 16, No. 8. No. 4, No.2 and No. 1 bit position is binary (J. The circuit 105 detects the missorting in which articles of mail bound for pockets other than the last pockets H H H and H are transported to the last pocket.
It will be apparent that the embodiment shown is only exemplary and that various modifications can be made in construction and arrangement within the scope of the invention as defined in the appended Claims.
What is claimed is:
l. A flatarticle sorting apparatus for an automatic mail handling system and the like, comprising:
a plurality of groups of flat-article receiving pockets;
means for detecting coded data on flat-articles to be sorted, said data identifying the pockets into which said fiat articles are to be diverted and comprising a first and a second coded data identifying one of said groups and one of said pockets in said group,
respectively;
first means connected to said detecting means for temporarily storing said data;
means for conveying said flat articles along a transport path, said transport path having a main path and branching paths, each branching path corresponding to one of said groups;
means installed on said transport path for detecting said flat articles and producing first shift pulses;
means for delaying said first shift pulses and producing second shift pulses;
second means for storing and transferring said data stored in said first storing means in response to said first and second shift pulses, said second storing means having a plurality of storing stages, said first shift pulses being applied to storing stages of said second storing means which are not adjacently positioned. said second shift pulses being applied to storing stages of said second storing means adjacent to said storing stages to which said first shift pulses are applied; and
means responsive to said data transferred in said second storing means for diverting flat-articles into branching paths and pockets within said branching paths;
said pockets being positioned so that the distances of the pockets having an identical second code from coded data detecting means are equal to each other;
said flat-article detecting means being installed at intervals equal to an integral multiple of the interval of said pockets.
2. A flat-article sorting apparatus as recited in claim wherein said second storing means comprises:
a plurality of parallel shift registers connected to two serial divisions. the first of said divisions transferring said first coded data for diversion into one of said branching paths. and the second of said divisions transferring said second coded data for diversion into one of said pockets; and further comprising:
first means for monitoring said second coded data transferred by the second of said divisions of said parallel shift registers; and
9 10 first alarm means connected to said first monitoring second means connected to the last storing stage of means and said detecting means for producing a said second storing means for monitoring said secfirst alarm whenever a specific coded data is deond coded data transferred to the last stage; and tected by said first monitoring means and no flatsecond alarm means for producing a second alarm article is detected for a predetermined time period. 5 when the coded data other than that representing 3. A flat-article sorting apparatus as recited in claim the last pockets of said branching paths is detected. 2, further comprising:
UMTED STATZFLS Pi'rm'r own; CEiFICATE OF CUR R ECTRUN PATEIM NO 3,889,811 150; June 17, 1975 INLE UHLS) Syoichiro Yoshimura It !3 certified that ermr appea's w E ia above- -identifieci patent and that 50rd Let-1 s Patent we hardly corrected as shown below IN THE SPECIFICATION:
Column 2, line 34 "Chracter" should be character line 62 deviders" should be dividers Column 3, line 36 "Ho should be HO line 56 "activiated" should be activated lines 5758 "activiated" should be activated Column 5, line 6 delete "article" and insert articles line 8 delete "article" and insert articles line 43 before "articles insert the Colurm 6, line 2 after "of insert the line 4 after "10" insert line 31 differentiators" should be differentiator line 33 delete "l by" and insert 1 by line 34 delete "Q0" and insert 0 line 39 delete "Q0" and insert Q line 40 delete "Mo and insert M line 55 delete '1 obtained" and insert 1 obtained 0 line 64 delete "decoder" and insert decoders Column 7, line 2 delete "article" and insert articles line 37 delete "l and insert l line 40 after "p0 ition" insert dutput 1 line 67 delete "position" and insert positions Column 8, lines 67 delete "position" and insert positions Signed and Sealed this twenty-third D a)! Of September I 9 75 [SEAL] A nest:
RUTH C. MASON C. MARSHALL DANN JIM- NIX ()ffuv ('umrmnmnvr n! Pun-nix um! 'I'rmlcmurkv

Claims (3)

1. A flat-article sorting apparatus for an automatic mail handling system and the like, comprising: a plurality of groups of flat-article receiving pockets; means for detecting coded data on flat-articles to be sorted, said data identifying the pockets into which said flat articles are to be diverted and comprising a first and a second coded data identifying one of said groups and one of said pockets in said group, respectively; first means connected to said detecting means for temporarily storing said data; means for conveying said flat articles along a transport path, said transport path having a main path and branching paths, each branching path corresponding to one of said groups; means installed on said transport path for detecting said flat articles and producing first shift pulses; means for delaying said first shift pulses and producing second shift pulses; second means for storing and transferring said data stored in said first storing means in response to said first and second shift pulses, said second storing means having a plurality of storing stages, said first shift pulses being applied to storing stages of said second storing means which are not adjacently positioned, said second shift pulses being applied to storing stages of said second storing means adjacent to said storing stages to which said first shift pulses are applied; and means responsive to said data transferred in said second storing means for diverting flat-articles into branching paths and pockets within said branching paths; said pockets being positioned so that the distances of the pockets having an identical second code from coded data detecting means are equal to each other; said flat-article detecting means being installed at intervals equal to an integral multiple of the interval of said pockets.
2. A flat-article sorting apparatus as recited in claim 1 wherein said second storing means comprises: a plurality of parallel shift registers connected to two serial divisions, the first of said divisions transferring said first coded data for diversion into one of said branching paths, and the second of said divisions transferring said second coded data for diversion into one of said pockets; and further comprising: first means for monitoring said second coded data transferred by the second of said divisions of said parallel shift registers; and first alarm means connected to said first monitoring means and said detectIng means for producing a first alarm whenever a specific coded data is detected by said first monitoring means and no flat-article is detected for a predetermined time period.
3. A flat-article sorting apparatus as recited in claim 2, further comprising: second means connected to the last storing stage of said second storing means for monitoring said second coded data transferred to the last stage; and second alarm means for producing a second alarm when the coded data other than that representing the last pockets of said branching paths is detected.
US371018A 1972-06-19 1973-06-18 Flat-article sorting apparatus for an automatic mail handling system and the like Expired - Lifetime US3889811A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6151272A JPS55110B2 (en) 1972-06-19 1972-06-19

Publications (1)

Publication Number Publication Date
US3889811A true US3889811A (en) 1975-06-17

Family

ID=13173197

Family Applications (1)

Application Number Title Priority Date Filing Date
US371018A Expired - Lifetime US3889811A (en) 1972-06-19 1973-06-18 Flat-article sorting apparatus for an automatic mail handling system and the like

Country Status (3)

Country Link
US (1) US3889811A (en)
JP (1) JPS55110B2 (en)
CA (1) CA1003076A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124121A (en) * 1977-03-07 1978-11-07 Burroughs Corporation Document sorter system having interchangeable pocket modules
US4181948A (en) * 1977-06-06 1980-01-01 Electronic Data Systems Corporation Computer directed manual sorting aid
US4247008A (en) * 1978-12-28 1981-01-27 Stephens Industries, Inc. Method and system for sorting envelopes
US4373185A (en) * 1980-11-13 1983-02-08 E-Systems, Inc. Tracking in a distribution system
US4388994A (en) * 1979-11-14 1983-06-21 Nippon Electric Co., Ltd. Flat-article sorting apparatus
US4432458A (en) * 1980-11-06 1984-02-21 Bell & Howell Company Electronic control system for monitoring and controlling the movement of an envelope through a mail sorting machine
EP0115916A1 (en) * 1983-01-25 1984-08-15 The Post Office Improved sorting machine
US4493484A (en) * 1981-10-09 1985-01-15 Hotchkiss-Brandt-Sogeme-H.B.S. Device for guiding and receiving letters at the exit of a mail-sorting machine and a machine equipped with said device
US4503976A (en) * 1982-09-30 1985-03-12 Bell & Howell Company Envelope tracking system for mail sorting machines
US4518161A (en) * 1982-01-22 1985-05-21 Tokyo Shibaura Denki Kabushiki Kaisha Sheet sorting apparatus
US4524453A (en) * 1981-02-18 1985-06-18 Nippon Electric Co., Ltd. Postal code distinguishing apparatus
US4620634A (en) * 1982-05-25 1986-11-04 Computer Services Corporation Sorting device
US4711357A (en) * 1984-08-27 1987-12-08 Keith A. Langenbeck Automated system and method for transporting and sorting articles
US4984692A (en) * 1988-07-19 1991-01-15 Kabushiki Kaisha Toshiba Optical character reading apparatus with sorter
WO1991008844A1 (en) * 1989-12-18 1991-06-27 Hybrid Systems, Inc. Document sorting apparatus
US5109987A (en) * 1989-12-04 1992-05-05 National Presort, Inc. Multi-level sort machine
US5158183A (en) * 1989-11-17 1992-10-27 Koninklijke Ptt Nederland N.V. Buffer system for the temporary storage of flat objects such as letters, and buffer for use in said buffer system
US5293983A (en) * 1991-08-09 1994-03-15 Westinghouse Electric Corp. Transport/stacker module for mail processing system
US5363967A (en) * 1991-08-09 1994-11-15 Westinghouse Electric Corporation Modular mail processing method and control system
WO1995032138A2 (en) * 1994-05-24 1995-11-30 United Parcel Services Of America, Inc. Apparatus and method of feeding and sorting objects
US5518122A (en) * 1991-08-09 1996-05-21 Westinghouse Electric Corp. Modular mail processing method and control system
US5794789A (en) * 1995-12-13 1998-08-18 Payson; William H. Semi-automated integrated sort system
US6023034A (en) * 1997-11-13 2000-02-08 Hitachi, Ltd. Inter-article gap adjustor for controlled delivery to a sorting device using a plurality of gap sensors
US6073060A (en) * 1998-04-01 2000-06-06 Robinson; Forest Computerized manual mail distribution method and apparatus
US6107588A (en) * 1997-11-14 2000-08-22 Elsag Spa Method of sorting postal objects
US6274836B1 (en) * 1998-10-08 2001-08-14 International Business Machines Corp. Method and system for multi-stream object sorting
US6340804B1 (en) * 1997-03-12 2002-01-22 Hitachi, Ltd. Paper sheet sorting apparatus and sorting method
GB2370823A (en) * 2001-01-09 2002-07-10 Post Office Mail sorting method and apparatus
US20040007510A1 (en) * 2002-07-12 2004-01-15 Kechel Ottmar K. Method of sorting mail for carriers using separators
US6741908B2 (en) 2000-08-23 2004-05-25 Lockheed Martin Corporation Mail bin sort sequence binary file generator
US6994220B2 (en) * 2000-10-02 2006-02-07 Siemens Aktiengesellschaft Mixed mail sorting machine
US20060124514A1 (en) * 2002-06-18 2006-06-15 Bowe Bell & Howell Company Progressive modularity assortment system with high and low capacity bins
EP1792664A1 (en) * 2005-12-05 2007-06-06 Deutsche Post AG Process for sorting mail items and data structure for a sorting plan
US20080015735A1 (en) * 2006-07-13 2008-01-17 Pitney Bowes Incorporated Apparatus and method for positioning objects/mailpieces
US20080093274A1 (en) * 2004-07-21 2008-04-24 Stemmle Denis J One-Pass Carrier Delivery Sequence Sorter
US20080164185A1 (en) * 2004-12-07 2008-07-10 Stemmle Denis J Clamp for Mixed Mail Sorter
US20090000996A1 (en) * 2005-04-07 2009-01-01 Pitney Bowes Inc. Macro Sorting System and Method
US7527261B2 (en) 2006-07-13 2009-05-05 Lockheed Martin Corporation Mailpiece container for stacking mixed mail and method for stacking mail therein
US20100170831A1 (en) * 2007-08-02 2010-07-08 Solystic A mailpiece conveyor device with servocontrol on reject rate
US7769765B2 (en) 2006-07-25 2010-08-03 Lockheed Martin Corporation Method and system for sorting mail
US7820932B2 (en) 2006-07-13 2010-10-26 Lockheed Martin Corporation Mail sorter, method, and software product for a two-step and one-pass sorting algorithm
US7937184B2 (en) 2006-10-06 2011-05-03 Lockheed Martin Corporation Mail sorter system and method for productivity optimization through precision scheduling
US7947916B2 (en) 2006-10-06 2011-05-24 Lockheed Martin Corporation Mail sorter system and method for moving trays of mail to dispatch in delivery order
US8556260B2 (en) 2006-05-26 2013-10-15 Lockheed Martin Corporation Method for optimally loading objects into storage/transport containers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913528U (en) * 1982-07-19 1984-01-27 田村 作市 Trowel for finishing tile joints
JPS59182560U (en) * 1983-05-24 1984-12-05 赤崎 吉雄 joint finishing tool

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3270882A (en) * 1964-10-02 1966-09-06 Olivetti & Co Spa Document sorter
US3343672A (en) * 1964-06-26 1967-09-26 Nederlanden Staat System for sorting documents
US3352417A (en) * 1963-09-04 1967-11-14 Ibm Document sorting apparatus
US3460673A (en) * 1967-06-19 1969-08-12 Recognition Equipment Inc Document sorting apparatus
US3574328A (en) * 1969-04-17 1971-04-13 Burroughs Corp Document transport system
US3587856A (en) * 1967-09-05 1971-06-28 Jerome H Lemelson Coding and routing apparatus and method
US3645392A (en) * 1970-08-26 1972-02-29 Ibm Document sorting system
US3743090A (en) * 1971-04-28 1973-07-03 M Brown Method and apparatus for selectively removing pre-identified articles from a conveyor system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3352417A (en) * 1963-09-04 1967-11-14 Ibm Document sorting apparatus
US3343672A (en) * 1964-06-26 1967-09-26 Nederlanden Staat System for sorting documents
US3270882A (en) * 1964-10-02 1966-09-06 Olivetti & Co Spa Document sorter
US3460673A (en) * 1967-06-19 1969-08-12 Recognition Equipment Inc Document sorting apparatus
US3587856A (en) * 1967-09-05 1971-06-28 Jerome H Lemelson Coding and routing apparatus and method
US3574328A (en) * 1969-04-17 1971-04-13 Burroughs Corp Document transport system
US3645392A (en) * 1970-08-26 1972-02-29 Ibm Document sorting system
US3743090A (en) * 1971-04-28 1973-07-03 M Brown Method and apparatus for selectively removing pre-identified articles from a conveyor system

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124121A (en) * 1977-03-07 1978-11-07 Burroughs Corporation Document sorter system having interchangeable pocket modules
US4181948A (en) * 1977-06-06 1980-01-01 Electronic Data Systems Corporation Computer directed manual sorting aid
US4247008A (en) * 1978-12-28 1981-01-27 Stephens Industries, Inc. Method and system for sorting envelopes
US4388994A (en) * 1979-11-14 1983-06-21 Nippon Electric Co., Ltd. Flat-article sorting apparatus
US4432458A (en) * 1980-11-06 1984-02-21 Bell & Howell Company Electronic control system for monitoring and controlling the movement of an envelope through a mail sorting machine
US4373185A (en) * 1980-11-13 1983-02-08 E-Systems, Inc. Tracking in a distribution system
US4524453A (en) * 1981-02-18 1985-06-18 Nippon Electric Co., Ltd. Postal code distinguishing apparatus
US4493484A (en) * 1981-10-09 1985-01-15 Hotchkiss-Brandt-Sogeme-H.B.S. Device for guiding and receiving letters at the exit of a mail-sorting machine and a machine equipped with said device
US4518161A (en) * 1982-01-22 1985-05-21 Tokyo Shibaura Denki Kabushiki Kaisha Sheet sorting apparatus
US4620634A (en) * 1982-05-25 1986-11-04 Computer Services Corporation Sorting device
US4503976A (en) * 1982-09-30 1985-03-12 Bell & Howell Company Envelope tracking system for mail sorting machines
EP0115916A1 (en) * 1983-01-25 1984-08-15 The Post Office Improved sorting machine
US4635787A (en) * 1983-01-25 1987-01-13 The Post Office Sorting machine
US4711357A (en) * 1984-08-27 1987-12-08 Keith A. Langenbeck Automated system and method for transporting and sorting articles
US4984692A (en) * 1988-07-19 1991-01-15 Kabushiki Kaisha Toshiba Optical character reading apparatus with sorter
US5158183A (en) * 1989-11-17 1992-10-27 Koninklijke Ptt Nederland N.V. Buffer system for the temporary storage of flat objects such as letters, and buffer for use in said buffer system
US5109987A (en) * 1989-12-04 1992-05-05 National Presort, Inc. Multi-level sort machine
WO1991008844A1 (en) * 1989-12-18 1991-06-27 Hybrid Systems, Inc. Document sorting apparatus
US5054621A (en) * 1989-12-18 1991-10-08 Hybrid Systems, Inc. Document sorting apparatus
US5518122A (en) * 1991-08-09 1996-05-21 Westinghouse Electric Corp. Modular mail processing method and control system
US5293983A (en) * 1991-08-09 1994-03-15 Westinghouse Electric Corp. Transport/stacker module for mail processing system
US5363967A (en) * 1991-08-09 1994-11-15 Westinghouse Electric Corporation Modular mail processing method and control system
EP0876980A3 (en) * 1994-05-24 1998-12-09 United Parcel Service Of America, Inc. Apparatus and method of feeding and sorting objects
WO1995032138A3 (en) * 1994-05-24 1996-04-25 United Parcel Services Of Amer Apparatus and method of feeding and sorting objects
EP0876980A2 (en) * 1994-05-24 1998-11-11 United Parcel Service Of America, Inc. Apparatus and method of feeding and sorting objects
WO1995032138A2 (en) * 1994-05-24 1995-11-30 United Parcel Services Of America, Inc. Apparatus and method of feeding and sorting objects
US5794789A (en) * 1995-12-13 1998-08-18 Payson; William H. Semi-automated integrated sort system
US6340804B1 (en) * 1997-03-12 2002-01-22 Hitachi, Ltd. Paper sheet sorting apparatus and sorting method
US6023034A (en) * 1997-11-13 2000-02-08 Hitachi, Ltd. Inter-article gap adjustor for controlled delivery to a sorting device using a plurality of gap sensors
US6107588A (en) * 1997-11-14 2000-08-22 Elsag Spa Method of sorting postal objects
US6246925B1 (en) 1998-04-01 2001-06-12 Forest Robinson Computerized manual mail distribution method and apparatus
US6243620B1 (en) 1998-04-01 2001-06-05 Forest Robinson Computerized manual mail distribution method and apparatus with feeder belt system
US6259964B1 (en) 1998-04-01 2001-07-10 Forest Robinson Computerized manual mail distribution method and apparatus
US6073060A (en) * 1998-04-01 2000-06-06 Robinson; Forest Computerized manual mail distribution method and apparatus
US6274836B1 (en) * 1998-10-08 2001-08-14 International Business Machines Corp. Method and system for multi-stream object sorting
US6741908B2 (en) 2000-08-23 2004-05-25 Lockheed Martin Corporation Mail bin sort sequence binary file generator
US6994220B2 (en) * 2000-10-02 2006-02-07 Siemens Aktiengesellschaft Mixed mail sorting machine
GB2370823A (en) * 2001-01-09 2002-07-10 Post Office Mail sorting method and apparatus
GB2370823B (en) * 2001-01-09 2004-09-22 Post Office An improved sorting system
US20070119757A1 (en) * 2002-06-18 2007-05-31 Bowe Bell & Howell Company Progressive modularity assortment system with high and low capacity bins
US7259346B2 (en) * 2002-06-18 2007-08-21 Bowe Bell & Howell Company Progressive modularity assortment system with high and low capacity bins
US20060124514A1 (en) * 2002-06-18 2006-06-15 Bowe Bell & Howell Company Progressive modularity assortment system with high and low capacity bins
US7396011B2 (en) 2002-06-18 2008-07-08 Bowe Bell + Howell Company Progressive modularity assortment system with high and low capacity bins
US6822182B2 (en) * 2002-07-12 2004-11-23 Siemens Dematic Postal Autoamtion, L.P. Method of sorting mail for carriers using separators
WO2004007099A2 (en) * 2002-07-12 2004-01-22 Siemens Dematic Postal Automation, L.P. Method of sorting mail for carriers using separators
US20040007510A1 (en) * 2002-07-12 2004-01-15 Kechel Ottmar K. Method of sorting mail for carriers using separators
WO2004007099A3 (en) * 2002-07-12 2004-11-04 Siemens Dematic Postal Automat Method of sorting mail for carriers using separators
US7868264B2 (en) 2004-07-21 2011-01-11 Lockheed Martin Corporation System and process for reducing number of stops on delivery route by identification of standard class mail
US7858894B2 (en) 2004-07-21 2010-12-28 Lockheed Martin Corporation One-pass carrier delivery sequence sorter
US20080093274A1 (en) * 2004-07-21 2008-04-24 Stemmle Denis J One-Pass Carrier Delivery Sequence Sorter
US20080093273A1 (en) * 2004-07-21 2008-04-24 Stemmle Denis J Carrier Delivery Sequence System And Process Adapted For Upstream Insertion Of Exceptional Mail Pieces
US8138438B2 (en) 2004-07-21 2012-03-20 Lockheed Martin Corporation Carrier delivery sequence system and process adapted for upstream insertion of exceptional mail pieces
US20090078618A1 (en) * 2004-07-21 2009-03-26 Pitney Bowes Inc. System and process for reducing number of stops on delivery route by identification of standard class mail
US7928336B2 (en) 2004-12-07 2011-04-19 Lockheed Martin Corporation Clamp for mixed mail sorter
US8022329B2 (en) 2004-12-07 2011-09-20 Lockheed Martin Corporation System and method for full escort mixed mail sorter using mail clamps
US20090005900A1 (en) * 2004-12-07 2009-01-01 Stemmle Denis J Method and System for Gps Augmentation of Mail Carrier Efficiency
US20080164185A1 (en) * 2004-12-07 2008-07-10 Stemmle Denis J Clamp for Mixed Mail Sorter
US20080230449A1 (en) * 2004-12-07 2008-09-25 Stemmle Denis J System and Method for Full Escort Mixed Mail Sorter Using Mail Clamps
US20110095154A1 (en) * 2004-12-07 2011-04-28 Lockheed Martin Corporation Clamp for mixed mail sorter
US8326450B2 (en) 2004-12-07 2012-12-04 Lockheed Martin Corporation Method and system for GPS augmentation of mail carrier efficiency
US8143548B2 (en) 2004-12-07 2012-03-27 Lockheed Martin Corporation Clamp for mixed mail sorter
US8731707B2 (en) 2005-04-07 2014-05-20 Lockheed Martin Corporation System for responding to fulfillment orders
US9044786B2 (en) 2005-04-07 2015-06-02 Lockheed Martin Corporation System for responding to fulfillment orders
US8369985B2 (en) 2005-04-07 2013-02-05 Lockheed Martin Corporation Mail sorter for simultaneous sorting using multiple algorithms
US20090000996A1 (en) * 2005-04-07 2009-01-01 Pitney Bowes Inc. Macro Sorting System and Method
US8013267B2 (en) 2005-04-07 2011-09-06 Lockheed Martin Corporation Macro sorting system and method
US20100070070A1 (en) * 2005-04-07 2010-03-18 Stemmle Denis J System for responding to fulfillment orders
US20080264836A1 (en) * 2005-12-05 2008-10-30 Deutsche Post Ag Method for Sorting Postal Items and Data Structure for a Sorting Plan
US8110768B2 (en) 2005-12-05 2012-02-07 Deutsche Post Ag Method for sorting postal items and data structure for a sorting plan
WO2007065615A1 (en) * 2005-12-05 2007-06-14 Deutsche Post Ag Method for sorting postal items and data structure for a sorting plan
EP1792664A1 (en) * 2005-12-05 2007-06-06 Deutsche Post AG Process for sorting mail items and data structure for a sorting plan
US8556260B2 (en) 2006-05-26 2013-10-15 Lockheed Martin Corporation Method for optimally loading objects into storage/transport containers
US8231002B2 (en) 2006-07-13 2012-07-31 Lockheed Martin Corporation Mailpiece container for stacking mixed mail and method for stacking mail therein
US8261515B2 (en) 2006-07-13 2012-09-11 Lockheed Martin Corporation Mailpiece container for stacking mixed mail and method for stacking mail therein
US20080015735A1 (en) * 2006-07-13 2008-01-17 Pitney Bowes Incorporated Apparatus and method for positioning objects/mailpieces
US7820932B2 (en) 2006-07-13 2010-10-26 Lockheed Martin Corporation Mail sorter, method, and software product for a two-step and one-pass sorting algorithm
US9359164B2 (en) 2006-07-13 2016-06-07 Lockheed Martin Corporation Mailpiece container for stacking mixed mail and method for stacking mail therein
US8079588B2 (en) 2006-07-13 2011-12-20 Lockheed Martin Corporation Mailpiece container for stacking mixed mail and method for stacking mail therein
US7778728B2 (en) 2006-07-13 2010-08-17 Lockheed Martin Corporation Apparatus and method for positioning objects/mailpieces
US20090159481A1 (en) * 2006-07-13 2009-06-25 Lockheed Martin Corporation Mailpiece container for stacking mixed mail and method for stacking mail therein
US20090152811A1 (en) * 2006-07-13 2009-06-18 Lockheed Martin Corporation Mailpiece container for stacking mixed mail and method for stacking mail therein
US20090162185A1 (en) * 2006-07-13 2009-06-25 Lockheed Martin Corporation Mailpiece container for stacking mixed mail and method for stacking mail therein
US7527261B2 (en) 2006-07-13 2009-05-05 Lockheed Martin Corporation Mailpiece container for stacking mixed mail and method for stacking mail therein
US20090152804A1 (en) * 2006-07-13 2009-06-18 Lockheed Martin Corporation Mailpiece container for stacking mixed mail and method for stacking mail therein
US7769765B2 (en) 2006-07-25 2010-08-03 Lockheed Martin Corporation Method and system for sorting mail
US7947916B2 (en) 2006-10-06 2011-05-24 Lockheed Martin Corporation Mail sorter system and method for moving trays of mail to dispatch in delivery order
US7937184B2 (en) 2006-10-06 2011-05-03 Lockheed Martin Corporation Mail sorter system and method for productivity optimization through precision scheduling
US20100170831A1 (en) * 2007-08-02 2010-07-08 Solystic A mailpiece conveyor device with servocontrol on reject rate
US8042692B2 (en) * 2007-08-02 2011-10-25 Solystic Mailpiece conveyor device with servocontrol on reject rate

Also Published As

Publication number Publication date
CA1003076A (en) 1977-01-04
JPS4923000A (en) 1974-02-28
JPS55110B2 (en) 1980-01-05

Similar Documents

Publication Publication Date Title
US3889811A (en) Flat-article sorting apparatus for an automatic mail handling system and the like
US2795328A (en) Sorting device for information bearing elements
US3452509A (en) Automatic sorting system for discrete flat articles
US4615446A (en) Sorting machine
US3343672A (en) System for sorting documents
US7259345B2 (en) Method and apparatus for sorting and bundling mail
US4432458A (en) Electronic control system for monitoring and controlling the movement of an envelope through a mail sorting machine
US3562494A (en) Code detecting and control circuit for sorting articles
US4307293A (en) Optical reader kit for letter sorting machines
US2990965A (en) Conveyor control system
US3938435A (en) Automatic mail processing apparatus
US4520932A (en) Stamp detection in a mail processing apparatus
US3141540A (en) Shift register control for article handling device
US3652828A (en) Selective insertion machine having selective document marking
GB1251912A (en)
GB1527779A (en) Malfunction detector system for item conveyor
US3122237A (en) Electrical apparatus for reading and sorting code bearing elements
US2993596A (en) Sorting arrangement
GB912224A (en) Improvements in or relating to sorting devices
GB1232792A (en)
US4503976A (en) Envelope tracking system for mail sorting machines
GB792109A (en) Improvements in record card sorting machines
US3894217A (en) Device for discriminating color coded articles
US4124121A (en) Document sorter system having interchangeable pocket modules
US4172525A (en) Document sorter