US3905777A - Composite and porous metallic members which can be used for bone prosthesis - Google Patents

Composite and porous metallic members which can be used for bone prosthesis Download PDF

Info

Publication number
US3905777A
US3905777A US436850A US43685074A US3905777A US 3905777 A US3905777 A US 3905777A US 436850 A US436850 A US 436850A US 43685074 A US43685074 A US 43685074A US 3905777 A US3905777 A US 3905777A
Authority
US
United States
Prior art keywords
covering
core
foil
member according
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US436850A
Inventor
Roger Lacroix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COMPTOIR LYON-ALEMAND-LOUYOT
LOUYOT COMPTOIR LYON ALEMAND
Original Assignee
LOUYOT COMPTOIR LYON ALEMAND
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LOUYOT COMPTOIR LYON ALEMAND filed Critical LOUYOT COMPTOIR LYON ALEMAND
Application granted granted Critical
Publication of US3905777A publication Critical patent/US3905777A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30907Nets or sleeves applied to surface of prostheses or in cement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/12Hydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3662Femoral shafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30156Convex polygonal shapes triangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30158Convex polygonal shapes trapezoidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30451Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30907Nets or sleeves applied to surface of prostheses or in cement
    • A61F2002/30909Nets
    • A61F2002/30912Nets made of expanded metal, e.g. diamond mesh or metal nets having lozenge-shaped apertures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30929Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having at least two superposed coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • A61F2002/3429Acetabular cups with an integral peripheral collar or flange, e.g. oriented away from the shell centre line
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3625Necks
    • A61F2002/3631Necks with an integral complete or partial peripheral collar or bearing shoulder at its base
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0058Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0023Angular shapes triangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0026Angular shapes trapezoidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00131Tantalum or Ta-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00407Coating made of titanium or of Ti-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00419Other metals
    • A61F2310/00544Coating made of tantalum or Ta-based alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • Y10S428/926Thickness of individual layer specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12042Porous component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12069Plural nonparticulate metal components
    • Y10T428/12076Next to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12361All metal or with adjacent metals having aperture or cut
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils
    • Y10T428/12438Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12444Embodying fibers interengaged or between layers [e.g., paper, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12812Diverse refractory group metal-base components: alternative to or next to each other

Definitions

  • a method is also described which involves dipping the member into a suspension of the hydride of the member of the core and subsequently heating the core at high temperature.
  • the porous body or the porous layer is formed by small discrete particles of metal welded together and for a proportion of them to the substrate or core. These welded connections only occupy limited space so that between the particles free spaces are left which provide the desired porosity. These particles may be cylindrical or spherical.
  • the contact between the spherical or cy lindrical particles before the welding operation is reduced to a point or to a line. It is thus necessary that the operation of welding should itself give rise to the growth of a contact surface of larger size when filaments or atomized powders are sued.
  • This welding can only be effected by roasting, that is to say, by thermal treatment at elevated temperature, about 1200C in the case of Vitallium, 1100C in the case of titanium. At these temperatures diffusion phenomena in the solid phase give rise to the joining of the elements in contact by the growth of joining surfaces from the contact points. These phenomenon are slow and growth of the contact areas slows up when the connecting or joining surfaces increase.
  • the invention relates also to another type of 'improved implant characterized inthat the external surface of the-porous coveringof an implant carriesfine particles of the same.metal as the implant, of a diameter less than microns and welded to this surface.
  • an implant l is illustrated formed from a core 2 and a porous covering 3 constituted by metallic foils 4 of a light gauge and which are superposed on one another.
  • the bone 5 grows into the pores of this porous covering 3.
  • the implant is subjected to shear forces F and to tension forces F,.
  • the prosthesis After drying the prosthesis is treated in a vacuum of l5 l0 mm at l.lC.

Abstract

A prosthesis comprises a metal member of for example titanium or tantalum and includes a solid core or substrate and a covering of perforated metal of a porous nature. The perforations are preferably arranged in the foil so that when laminated the complete covering has pores of irregular shape. This irregularity assists in the keying of bone substance to the prosthesis. The minimum pore transverse dimension is 50 microns. A method is also described which involves dipping the member into a suspension of the hydride of the member of the core and subsequently heating the core at high temperature.

Description

Unite States Patent [191 Lacroix [4 1 Sept. 16, 1975 [75] Inventor:
[73] Assignee: Comptoir Lyon-Alemand-Louyot,
Paris, France 22 Filed: 1311.28, 1974 21 Appl. No.: 436,850
Roger Lacroix, Suresnes, France [58] Field of Search.... 29/191, l91.2,191.4,183.5; 3/1,17, 19; 128/92 C, 92 CA 3,808,606 5/1974 Tronzo 128/92 C X Primary Examiner-L. Dewayne Rutledge Assistant ExaminerO. F. Crutchfield Attorney, Agent, or FirmMillen, Raptes & White 1 ABSTRACT A prosthesis comprises a metal member of for example titanium or tantalum and includes a solid core or substrate and a covering of perforated metal of a porous nature. The perforations are preferably arranged in the foil so that when laminated the complete covering has pores of irregular shape. This irregularity assists in the keying of bone substance to the prosthesis. The minimum pore transverse dimension is 50 microns.
A method is also described which involves dipping the member into a suspension of the hydride of the member of the core and subsequently heating the core at high temperature.
10 Claims, 11 Drawing Figures [56] References Cited UNITED STATES PATENTS 3,605,123 9/1971 Hahn 128/92 C X PATENTEU SEP 1 5197s saw 2 [1F 3 COMPOSITE AND POROUS METALLIC MEMBERS WHICH CAN BE USED FOR BONE PROSTHESIS BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to composite and porous metallic members which can be used for bone prosthesis and also relates to methods of their manufacture. Such metallic members are termed implants.
2. Summary of the Prior Art It has been proposed to use for certain types of implants, titanium, tantalum, and alloys with a cobalt base and in particular the alloy chrome-cobaltmolybdenum, known under the trade name Vitallium (According to Weisman, Am als of the New York Academy of Science, Vol.'l46, article 1, pages 8095, Jan. 8, 1968, Vitallium is an alloy, on a percent by weight basis, of: 25.530 Cr, 5-7 Mo, up to 0.35 C, up to 1.0 Mn,-up to 1.0 Si, up to 2.0 Fe, up to 3.75 Ni, with the balance being Co.) One of the main problems to resolve was the bonding of the implants to the bone substance.
The following four solutions to this problem have al ready been proposed:
1. Force fit into the medullary canal of the bone an anchoring device or the prosthesis device itself.
Thissolution has several disadvantages which have caused it to be abandoned:
a. the effective contact surface between the bone and the implant is small. The joint is thus insecure;
b. the radial constraints exerted on the bone are dangerous or damaging to the integrity of the latter. They are concentrated at a small number of contact points because of the difficulty which arises in adjusting exactly the metallic part to the canal in which it must be implanted;
c. the bone, when submitted to a permanent stress, reacts in such a manner that it tends to reduce this stress. This reaction is the result of the rheological properties of the bone material which undergoes an extrusion and an actual biological change. The result is, in the more or less long term, the loosening of the implant.
2. Securing of the implant in the bone with the aid of screws or pins. Clinical experience has shown that in the long term this mode of fixing loses its rigidity probably as a result of similar changes to those which have been referred to above.
3. Bonding of the implant by a plastic methacrylic resin which hardens by polymerization. The metallic part is provided with extensions or keying means which are introduced into the natural or into artificial cavities of the bone. These cavities are filled with the plastic resin. After the hardening it ensures the required fixing by bonding.
This technique is used to a large extent. It has en abled substantial progress in the repair of necks of femurs which have been broken and hip joints which have been damaged by arthritis. The methacrylic resin is not however always tolerated completely by the organism and may give rise to detachment which cannot be repaired.
4. A recent method consists in using porous metallic implants or composite metallic implants including a nucleus. core, or substrate of solid metal and a porous coating or layer which adheres to the surface of the core or substrate and which covers it at least partially.
The pores of the coating are for the most part open pores, that is to say communicating with the exterior. The implant being placed in contact with the bone substance, the bone substance itself grows into the pores. There is thus produced in a few weeks a true biological anchorage of the implant.
The porous body or the porous layer is formed by small discrete particles of metal welded together and for a proportion of them to the substrate or core. These welded connections only occupy limited space so that between the particles free spaces are left which provide the desired porosity. These particles may be cylindrical or spherical.
The cylindrical particles are formed by fragments of extruded wire of small diameter. The spherical particles may be made by the procedure known in the industry by the term atomization. Now, titanium like tantalum is an extremely reactive metal at high temperature, so much so that its atomization presents problems which can only be resolved by the use of exceptional means in costly installations with handling and maintenance which requires great care. The extrusion of Vitallium into fine wire gives rise to problems which are almost insurmountable.
Moreover, the contact between the spherical or cy lindrical particles before the welding operation is reduced to a point or to a line. It is thus necessary that the operation of welding should itself give rise to the growth of a contact surface of larger size when filaments or atomized powders are sued. This welding can only be effected by roasting, that is to say, by thermal treatment at elevated temperature, about 1200C in the case of Vitallium, 1100C in the case of titanium. At these temperatures diffusion phenomena in the solid phase give rise to the joining of the elements in contact by the growth of joining surfaces from the contact points. These phenomenon are slow and growth of the contact areas slows up when the connecting or joining surfaces increase. It is necessary therefore to rely on excessive thermal treatment times in practice if it is desired that the connecting surfaces of the spheres to the core should be equal for example to a large circle or proportion of these spheres. As micro-photographs reveal, sections of the porous body or of the composite body connecting surfaces between particles or between particles and the core are very small and these impair the integrity of the bonds between the bone and the metal.
SUMMARY OF THE INVENTION According to the present invention there is provided a composite metallic member comprising a core, and a porous covering welded to the core, said covering having a thickness between 5 and 50% of the maximum transverse dimension of the core and said covering comprising a plurality of layers of foil, the foil having a thickness between 0.05 and 0.5 mm. and having perforations, the covering being formed by welding the foil layers so that the perforations together form passages of which the minimum transverse dimension is at least 50 microns.
In order properly to explain the basis of the invention as well as the advantages which it provides in relation to known methods, it is desirable first of all to list the qualities which should be possessed by a metallic porous prosthesis or a prosthesis having a porous outer layer.
It is essential first of all that the metal of the particles should be the same as that of the core in the case of composite implants. Without this, corrosion of electrolytic origin may be produced. With biological liquids which contain in solution ionized elements, the two different metals form an electrical cell.
The pores must be open and form passages of microscopic size into which the bone substance can grow up to the compact core. Closed pores, that is to say pores which do not open to an accessible surface at the bone reduce the integrity of the bond between the bone and the metal and are thus to be avoided as far as possible.
So that the bone cells can invade the pores, it is necessary that the latter should have an Opening of at least 50 microns across. Only considerations of mechanical rigidity can impose an upper limit to the size of the opening of the pores. Depending on conditions it may reach or even exceed 400 microns.
From what has been stated above, the length of the passages perpendicular to the surface of the core is equal to the thickness of the porous layer. It is larger in general if the passages are tortuous or otherwise irregular.
The bond must be integral and it is this requirement for integrity to be maintained over very long periods that it has been necessary to define the optimum values for the thickness of the porous layer, of the shape, the dimensions, the number and the distribution of the pores.
During their use a prostheses, the implants according to the invention are subjected to two kinds of forces of which the line of action are perpendicular; shearing forces and tension forces.
The shearing forces acting parallel to the direction of the longitudinal axis of the core create complementary compressive stresses. It is necessary that these stresses, exerted on the material of the bone, should not give rise in the interior of this material to a deleterious change comparable to that which has limited the fixing methods for the implant by force fit in the medullary canal or by the intermediary of pins and screws. It is thus necessary that the surfaces on which the compressive forces are exerted under the action of a given imposed force should be sufficiently large so that the complementary stresses should remain low. As a result, it is necessary that the connecting surface between the metal and bone should be adequate and that the thickness of the porous layer should also be adequate. Each implant constitutes a specific case. The dimensions of the bone and as a result of the prosthesis being adapted to the forces to be resisted and, in practice, the thickness of the porous layer should be between 5 and 50% of the diameter of the core or substrate, and preferably between 10.and
The bond of the bone and metal may be subjected to tension forces in a direction perpendicular to the longitudinal axis of the core. In this case, the porous covering in accordance with the invention will not generate any resistance to the separation of the two elements, bone and metal, where the passages present in the interior of the porous covering are straight and perpendicu lar to the longitudinal axis of the core. It follows that if the passages are tortuous, the porous covering ensures an improved connection between the bone and the implant.
The porous covering is constituted by several layers of metallic foil, preferably of very light gauge, pierced by numerous apertures and welded to one another as well as to the core or substrate. The metallic foils are pierced by perforation method with raising of the material and/or stamping, or by expanding to form a mesh. It is also possible to use mesh formed by weaving wire. The perforations occupy a sufficient fraction of the surface of each foil so that by superposing said foils the whole portions of one will not block the apertures of the other. On the contrary, the perforations by their superimposition constitute capillary passages or ducts of tortuous or labyrinth nature which reach to the surface of the core as well as to the free surface of the composite body. The perforated metallic foils must be sufficiently supple and malleable so that they can take-up the shape of the surface of the core or substrate.
In order to achieve the required flexibility, the laminated sheets used as starting material must have a thickness less than about 0.5 millimetres. In the case of titanium, it is difficult, by laminating, to go below 0.05 millimeters. Metallic foils of 0.1 to 0.25 millimeter thickness are therefore preferably selected.
Similarly in order to achieve the desired flexibility and moreover so that the metal should be readily deformable, metal in the annealed state is preferably used.
The perforations are defined by their shape, their di mensions and their distribution. In general, manufacturers provide these data in the form of drawings. They add to this the fraction of the space cut away by the apertures which they denote by the term transparence."
The resistance to fracture should be mainly considered at the level of the junction between the core and the perforated covering. This resistance is proportional to the surface welded. The highest forces which can be applied to a human bone are those which may be applied to the neck of a femur. These forces are estimated to be six times the weight of the individual up to a maximum value of 600 kg; these forces cause in the narrowest zone of the neck of the femur a maximum stress of the order of 3 kg/mm The fracture load of the metals or the alloys used is substantially in excess of this value (in the case of titanium it is of the order of 30 kg/mm*) and it will be apparent that the fracture will not arise in this part of the prosthesis.
It is moreover, necessary to avoid all permanent deformation of the metal, in other words, it is necessary to avoid applying to the metal a stress which reaches its elastic limit. In the case of titanium, the elastic limit is 20 kg/mm The surface of welding should thus be in excess of 600/20 30mm If the metal employed initially has a transparence of 50% and if, the welding having been poorly carried out, the welded proportion represents only 20% of the metallic surface, it will be apparent that it is sufficient to cover with welded expanded metal, a surface of the compact core of 30 u 0.5 X 0.2 300mm" ln example 2, given below, it will be apparent that this value is in fact very substantially exceeded.
Other advantages of implants according to the invention in comparison with prosthesis previously known are, in particular, as follows:
The perforated or expanded sheets are current industrial products fabricatcd in a large variety of shapes and dimensions and sizes of perforations, of length, spaces which separate two successive perforations, of thicknesses of the initial sheet which it is possible to change after perforation, if it is required..by operations such as laminating.
The techniques of powder metallurgy do not enable the use of particles all of the same size and to orientate them with perfect regularity. The dimensions of the pores which can be obtained are always distributed at random; at best one can determine only certain limits. The perforations in the sheets used in accordance with the invention are all substantially identical and are distributed with exact regularity..The perforated or expanded sheets thus enable the complete avoidance of closed pores and enable the productionof pores of relatively high uniformity.
The techniquesof powder metallurgy necessitate the employment of compression molds, of presses, of vacuum ovens or ovens operating at atmospheric pressure controlled for treatments of long duration. In contrast, the operation of welding sheets may be carried out with equipment which is little different from that used with dental prosthesis. The perforated sheets may, moreover, be readily shaped by conventional brazing operations, by stamping or swaging likewise similarly to the prostheses used in dental work. I I
The surfaces of the weld joint may have'sizes as large as is required. a
The invention relates also to another type of 'improved implant characterized inthat the external surface of the-porous coveringof an implant carriesfine particles of the same.metal as the implant, of a diameter less than microns and welded to this surface.
These particles provide anchorages and supplementary contact points along the external surface of the porous covering and thus reduce the shear stresses exerted on the said surface.
The invention also relates to a method of manufac turing the improved implants characterized in that an implant in accordance with the invention is plunged into a suspension constituted by a mixture of ethyl cellulose, ethyl glycol and particles of metallic hydride of a diameter of less than 10 microns, the implant is withdrawn from the suspension and the excess of particles removed and the implant is treated for about 2 hours at high temperature under a pressure of approximately mn (millimicrons), viz, ISXIO mm of mercury.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a diagrammatic section of an implant in accordance with the invention;
FIGS. 2a, 2b, 2c", 2d, 2e and 2f illustrate Example 1 which relates to an implant in accordance with the in vention for use in an animal experiment;
FIGS. 3a and 3b illustrate a second example as used in the repair of the neck of a human femur by an implant in accordance with the invention; and
FIGS. 4a and 4b illustrate the third example relating to the repair of the acetabulum of a human hip.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1 an implant l is illustrated formed from a core 2 and a porous covering 3 constituted by metallic foils 4 of a light gauge and which are superposed on one another. The bone 5 grows into the pores of this porous covering 3. The implant is subjected to shear forces F and to tension forces F,.
EXAMPLE I This example relates to'the manufacture of an implant of titanium for use in an experiment on an animal.
FIG. 2a is a sketch of the implant to be manufactured. and the implant includes a drawn rod 7 partially covered with a porous covering 8; FIG. 2b is a view to a much enlarged scale of expanded metal forming the porous covering 8. FIG. 20 isa section on the line x-y of expanded metal used to build up the covering.
The method is commenced by taking a drawn rod of titanium of 3.17mm diameter and a sheet of expanded titanium. Before being expanded this sheet has a thickness of 0.1mm. After expansion the mesh has the form of lozenges of which the larger diagonal measurement is 1.45mm. The width of the remaining strips is 0.12mm. The optical transparency is 52%. The thickness overall of the sheet, after the expansion which causes a certain distortion of the strips, is 0.2mm.
To construct the member, the drawn rod and the expanded metal are first of all carefully degreased. The expanded titanium is cut into a strip of 12.7mm width. The drawn rod 7 is clamped in the chuck 6 of a lathe as shownin FIG. 2d, then welding is initiated at one end of the strip of expanded titanium 10 following a generating lineof the cylindrical envelope of the screw. The latheris then turned slowly by hand, while exerting a substantial tension on the strip 9 of expanded metal which is rolled around the drawn rod 7. Welds 11 are effected on lines as designated in FIG. 2e. When the thickness required is obtained and the last line of welds is effected (FIG. 2f), the member is withdrawn from the lathe and the part formed by the rolled on mesh which has been secured to the rod, is plunged into a suspension of titanium hydride powder having the following composition:
Titanium hydride Ethyl cellulose in a solution of 47: in torpinol Ethyl glycol 30 pans by weight 30 parts by weight 10 parts by weightv EXAMPLE 2 This example relates to the repair of the neck of a human femur.
FIG. 3b is a section on a line AA of FIG. 3a.
In these two figures, it is seen that the core 12 of forged titanium is covered with a porous part 13. The porous part is produced by cutting up elements of expanded titanium to give the following dimensions:
large diagonal of the pattern of the base 0.75mm.
width of the joining threads 0.12mm.
initial thickness of the sheet 0.10mm.
overall thickness of the expanded metal 020mm.
transparence 40%.
Strips of this titanium are out which are welded to the core or substrate. Eight layers are used which give rise to a thickness of about 1.5mm. and the surface of the substrate of the porous layer is about 40 cm EXAMPLE 3 This example relates to the repair of the acctabulum of a human hip. V
FIG. 4a is a perspective view of the prosthesis and FIG. 4b is a section on the line A-A of FIG. 4a.
In these two figures a hemispherical core 14 is cov ered with a porous covering 15. Broken lines in FIG. 41: indicate a prosthesis for the neck of the femur. The same expanded titanium is used as in the preceding EX- ample. Discs are cut and made hemispherical by pressing. These part-spheres are laid on the convex part of the core to which they are spot welded. The covering is then impregnated with a suspension of titanium hydride of the same composition as that of Example 2, but has been crushed or pulverized until all the particles of titanium hydride have a diameter at the most equal to 10 microns.
After drying the prosthesis is treated in a vacuum of l5 l0 mm at l.lC.
It is possible to provide the concavity with a porous layer in order to key a plastics material having lubricant properties.
I claim:
1. A composite metallic member comprising a core, and
a porous covering welded to the core, said covering having a thickness between and 50% of the maximum transverse dimension of the core and said covering comprising a plurality of layers of foil. the foil having a thickness between 0.05 and 0.5mm. and having perforations,
the covering being formed by welding the foil layers so that the perforations together form passages of which the minimum transverse dimension is at least 50 microns.
2. A member according to claim 1, wherein the metal of the core and covering is selected from the group titanium, tantalum, alloys of titanium, alloys of tantalum and Vitallium, the latter being an alloy, on a percent by weight basis, of: 25.5-30 Cr, 5-7 Mo, up to 0.35 C, up to 1.0 Mn, up to 1.0 Si, up to 2.0 Fe, up to 3.75 Ni, with the balance being Co.
3. A member according to claim 1 wherein the said passages are irregular.
4. A member according to claim I wherein the foil takes the form of expanded metal.
5. A member according to claim 1, wherein the covering is in the form of a sheet of annealed foil formed into a laminate.
6. A member according to claim 1, comprising fine particles of the same metal as the core and covering welded to the surface of the covering and having a diameter less than 10 microns.
7. A member according to claim 1 wherein the thickness of said covering is between 10 and 25% of the maximum transverse distance of the core.
7 8. A member according to claim 1 wherein the foil is wire mesh.
9. A member according to claim 1 wherein each layer of foil has a thickness of 0.1 to 0.25 millimeters.
10. A member according to claim 1 wherein the metal of the core and covering is titanium.

Claims (10)

1. A COMPOSITE METALLIC MEMBER COMPRISING A CORE, AND A POROUS COVERING WELDED TO THE CORE, SAID COVERING HAVING A THICKNESS BETWEEN 5 AND 50% OF THE MAXIMUM TRANSVERSE DIMINSION OF THE CORE AND SAID COVERING COMPRISING A PLURALITY OF LAYERS OF FOIL, THE FOIL HAVING A THICKNESS BETWEEN 0.05 AND 0.5 MM. AND HAVING PERFORATIONS, THE COVERING BEING FORMED BY WELDING THE FOIL LAYERS SO THAT THE PERFORATIONS TOGETHER FORM PASSAGES OF WHICH THE MINIMUM TRANSVERSE DIMENSION IS AT LEAST 50 MICRONS.
2. A member according to claim 1, wherein the metal of the core and covering is selected from the group titanium, tantalum, alloys of titanium, alloys of tantalum and Vitallium, the latter being an alloy, on a percent by weight basis, of: 25.5-30 Cr, 5-7 Mo, up to 0.35 C, up to 1.0 Mn, up to 1.0 Si, up to 2.0 Fe, up to 3.75 Ni, with the balance being Co.
3. A member according to claim 1 wherein the said passages are irregular.
4. A member according to claim 1 wherein the foil takes the form of expanded metal.
5. A member according to claim 1, wherein the covering is in the form of a sheet of annealed foil formed into a laminate.
6. A member according to claim 1, comprising fine particles of the same metal as the core and covering welded to the surface of the covering and having a diameter less than 10 microns.
7. A membeR according to claim 1 wherein the thickness of said covering is between 10 and 25% of the maximum transverse distance of the core.
8. A member according to claim 1 wherein the foil is wire mesh.
9. A member according to claim 1 wherein each layer of foil has a thickness of 0.1 to 0.25 millimeters.
10. A member according to claim 1 wherein the metal of the core and covering is titanium.
US436850A 1973-01-31 1974-01-28 Composite and porous metallic members which can be used for bone prosthesis Expired - Lifetime US3905777A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7303415A FR2215927B1 (en) 1973-01-31 1973-01-31

Publications (1)

Publication Number Publication Date
US3905777A true US3905777A (en) 1975-09-16

Family

ID=9114127

Family Applications (1)

Application Number Title Priority Date Filing Date
US436850A Expired - Lifetime US3905777A (en) 1973-01-31 1974-01-28 Composite and porous metallic members which can be used for bone prosthesis

Country Status (5)

Country Link
US (1) US3905777A (en)
CH (1) CH575753A5 (en)
DE (1) DE2404214C3 (en)
FR (1) FR2215927B1 (en)
GB (1) GB1465501A (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984000185A1 (en) * 1982-06-28 1984-01-19 Dow Chemical Co Expanded mesh of grade 2 titanium
US4553272A (en) * 1981-02-26 1985-11-19 University Of Pittsburgh Regeneration of living tissues by growth of isolated cells in porous implant and product thereof
US4612160A (en) * 1984-04-02 1986-09-16 Dynamet, Inc. Porous metal coating process and mold therefor
US4644942A (en) * 1981-07-27 1987-02-24 Battelle Development Corporation Production of porous coating on a prosthesis
US4650489A (en) * 1986-01-30 1987-03-17 Massachusetts Institute Of Technology Prosthetic device for implantation in bone
US4660755A (en) * 1985-09-09 1987-04-28 Zimmer, Inc. Method for constructing a surgical implant
US4829152A (en) * 1987-11-16 1989-05-09 Rostoker, Inc. Method of resistance welding a porous body to a substrate
US4957819A (en) * 1988-06-10 1990-09-18 Haruyuki Kawahara Frameless and coreless porous endosseous implant
US5080671A (en) * 1987-11-25 1992-01-14 Uri Oron Method of treating a metal prosthetic device prior to surgical implantation to enhance bone growth relative thereto following implantation
US5108435A (en) * 1989-09-28 1992-04-28 Pfizer Hospital Products Group, Inc. Cast bone ingrowth surface
US5108432A (en) * 1990-06-24 1992-04-28 Pfizer Hospital Products Group, Inc. Porous fixation surface
US5196016A (en) * 1991-03-11 1993-03-23 Institut Straumann Ag Auxiliary means and method for fastening a capping on bone tissue or the like
US5219363A (en) * 1988-03-22 1993-06-15 Zimmer, Inc. Bone implant
US5330700A (en) * 1990-04-10 1994-07-19 Siemens Pacesetter, Inc. Porous electrode for a pacemaker and method of making same
US5360448A (en) * 1991-10-07 1994-11-01 Thramann Jeffrey J Porous-coated bone screw for securing prosthesis
US5387243A (en) * 1992-11-23 1995-02-07 Zimmer, Inc. Method for converting a cementable implant to a press fit implant
US5443512A (en) * 1990-10-30 1995-08-22 Zimmer, Inc. Orthopaedic implant device
US5672284A (en) * 1994-04-18 1997-09-30 Zimmer, Inc. Method of making orthopaedic implant by welding
US5713901A (en) * 1993-07-30 1998-02-03 Tock; Gideon Raphael Reticulated orthopaedic element to exploit the medullary canal of the long bones
US5733284A (en) * 1993-08-27 1998-03-31 Paulette Fairant Device for anchoring spinal instrumentation on a vertebra
US5755811A (en) * 1995-08-25 1998-05-26 Zimmer, Inc. Prosthetic implant with fins
US5843289A (en) * 1996-01-22 1998-12-01 Etex Corporation Surface modification of medical implants
US5973222A (en) * 1994-04-18 1999-10-26 Bristol-Myers Squibb Co. Orthopedic implant having a porous metal pad
US6033582A (en) * 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US6077076A (en) * 1997-12-18 2000-06-20 Comfort Biomedical, Inc. Bone augmentation for prosthetic implants and the like
US6214049B1 (en) 1999-01-14 2001-04-10 Comfort Biomedical, Inc. Method and apparatus for augmentating osteointegration of prosthetic implant devices
EP1527757A1 (en) * 2003-11-03 2005-05-04 Finsbury (Development) Limited Prosthetic implant
WO2005094731A1 (en) 2004-03-31 2005-10-13 Scyon Orthopaedics Ag Double shell implant for cementless anchorage of joint prostheses
JP2005296450A (en) * 2004-04-14 2005-10-27 Masahiko Chiba Manufacturing method of porous member for living body
US7208222B2 (en) 2003-07-24 2007-04-24 Viasys Healthcare Inc. Assembled non-random foams
WO2009032475A2 (en) 2007-09-06 2009-03-12 Boston Scientific Limited Endoprostheses having porous claddings prepared using metal hydrides
US7597715B2 (en) 2005-04-21 2009-10-06 Biomet Manufacturing Corp. Method and apparatus for use of porous implants
US7635447B2 (en) 2006-02-17 2009-12-22 Biomet Manufacturing Corp. Method and apparatus for forming porous metal implants
US20100211109A1 (en) * 2008-08-14 2010-08-19 Doerr Timothy E Tack for spine fixation
US20110106170A1 (en) * 2008-08-14 2011-05-05 Doerr Timothy E Tack for spine fixation
US8021432B2 (en) 2005-12-05 2011-09-20 Biomet Manufacturing Corp. Apparatus for use of porous implants
US8066778B2 (en) 2005-04-21 2011-11-29 Biomet Manufacturing Corp. Porous metal cup with cobalt bearing surface
US8123814B2 (en) 2001-02-23 2012-02-28 Biomet Manufacturing Corp. Method and appartus for acetabular reconstruction
US20120064290A1 (en) * 2008-12-01 2012-03-15 The Furlong Research Charitable Foundation Article and method of surface treatment of an article
US8266780B2 (en) 2005-04-21 2012-09-18 Biomet Manufacturing Corp. Method and apparatus for use of porous implants
US8292967B2 (en) 2005-04-21 2012-10-23 Biomet Manufacturing Corp. Method and apparatus for use of porous implants
US20130180970A1 (en) * 2010-11-18 2013-07-18 Zimmer, Inc. Resistance welding a porous metal layer to a metal substrate
US20140151342A1 (en) * 2010-11-18 2014-06-05 Zimmer, Inc. Resistance welding a porous metal layer to a metal substrate
US20150289911A1 (en) * 2012-11-11 2015-10-15 Carbofix Orthopedics Ltd. Composite implant coating
US20160331539A1 (en) * 2015-05-12 2016-11-17 Elwha Llc Modifiable implants
US20180228616A1 (en) * 2017-02-10 2018-08-16 Zimmer, Inc. Additive manufactured femoral components
CN111481738A (en) * 2020-03-25 2020-08-04 天衍医疗器材有限公司 Preparation method of bioactive porous tantalum implant

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE403884B (en) * 1975-04-22 1978-09-11 Branemark Per Ingvar FOR PARTY AT NAMES INTENDED PROTEST SPECIALLY INTENDED NOT TO BE IN AN ARTIFICIAL JOINT
JPS52130183A (en) * 1975-04-22 1977-11-01 Ingubuaru Buranemaruku Peru Method of forming bone setting
FR2310120A2 (en) * 1975-05-05 1976-12-03 Ceraver Joint prosthesis with ball and socket - having aluminium oxide ball with titanium shaft coupled over metal insert
FR2315902A1 (en) * 1975-07-01 1977-01-28 Ceraver Metal rod as prosthetic insert into a bone shank - has longitudinal depressions filled with material promoting growth of bone cells
US4038703A (en) * 1975-11-14 1977-08-02 General Atomic Company Prosthetic devices having a region of controlled porosity
FR2356465A1 (en) * 1976-07-02 1978-01-27 Benoist Girard & Cie PROCESS FOR MANUFACTURING PARTS WITH A GRENUE SURFACE AND PART OBTAINED, IN PARTICULAR SURGICAL PROSTHESES
US4064567A (en) * 1976-09-15 1977-12-27 The Sampson Corporation Prosthesis-to-bone interface system
FR2383656A1 (en) * 1977-03-16 1978-10-13 Ceraver Implantable titanium (alloy) peg used as bone joint prosthesis - has titania layer to prevent corrosion and a glass which is biologically compatible with tissue and promotes bone growth
FR2429589A1 (en) * 1978-06-29 1980-01-25 Ceraver TITANIUM ROD OR TITANIUM ALLOY FOR CEMENT-FREE FIXING IN A LONG BONE FOR PROSTHESIS
DE2842847C2 (en) * 1978-10-02 1983-12-01 Adolf Dr.Med. 6250 Limburg Voorhoeve Prosthesis anchoring element
NL7907231A (en) * 1979-09-28 1981-03-31 Leuven Res & Dev Vzw COMPOSITE MATERIAL FOR PROSTHESIS.
CH645265A5 (en) * 1980-04-29 1984-09-28 Sulzer Ag ANCHORING ELEMENT OF A BONE IMPLANT.
US4408604A (en) * 1981-04-06 1983-10-11 Teletronics Pty, Limited Porous pacemaker electrode tip
DE3130732A1 (en) * 1981-08-03 1983-05-26 Rotthäuser, Roswitha, 5609 Hückeswagen Endoprosthesis part, e.g. hip socket or anchoring stem of an articular head
IT1154510B (en) * 1981-08-14 1987-01-21 Bentley Lab CONNECTOR DEVICE IMPLANTABLE IN THE BODY AND DEVICE OF VASCULAR IMPLANTATION ASSOCIATED WITH IT
GB8318483D0 (en) * 1983-07-08 1983-08-10 Zimmer Deloro Surgical Ltd Skeletal implants
CS238282B1 (en) * 1983-11-30 1985-11-13 Rudolf Pavlansky Hip endoprosthesis
CH665349A5 (en) * 1985-01-08 1988-05-13 Sulzer Ag METALLIC BONE IMPLANT.
CH665348A5 (en) * 1985-01-09 1988-05-13 Sulzer Ag IMPLANTS.
JPS62120403A (en) * 1985-11-20 1987-06-01 Permelec Electrode Ltd Titanium composite body having porous surface and its manufacture
CH668902A5 (en) * 1986-02-18 1989-02-15 Sulzer Ag ARTICULATE SPHERE TO BE ANCHORED IN A BONE CEMENT BED.
EP0241846B1 (en) * 1986-04-15 1991-10-16 New York Society For The Relief Of The Ruptured And Crippled Maintaining The Hospital For Special Surgery Femoral prosthesis for total hip replacement
DE3629813A1 (en) * 1986-09-02 1988-03-10 Friedrichsfeld Gmbh TITANIUM IMPLANT WITH WIRE-SHAPED SURFACE STRUCTURES
DE3637314A1 (en) * 1986-11-03 1988-05-11 Lutz Biedermann SPACE HOLDER IMPLANT
US5013324A (en) * 1987-08-24 1991-05-07 Zimmer, Inc. Prosthetic implant with wrapped porous surface
US5018285A (en) * 1987-08-24 1991-05-28 Zimmer, Inc. Method of constructing prosthetic implant with wrapped porous surface
DE3728686A1 (en) * 1987-08-27 1989-03-09 Draenert Klaus PREDICTABLE SURGICAL NETWORK
DE8717800U1 (en) * 1987-11-28 1990-03-29 Metalpraecis Berchem + Schaberg Gesellschaft Fuer Metallformgebung Mbh, 4650 Gelsenkirchen, De
DE8808701U1 (en) * 1988-07-04 1989-08-03 Mecron Medizinische Produkte Gmbh, 1000 Berlin, De
US5496372A (en) * 1992-04-17 1996-03-05 Kyocera Corporation Hard tissue prosthesis including porous thin metal sheets
EP0566427B1 (en) * 1992-04-17 2000-03-15 Kyocera Corporation A prothesis and a method of making the same
ES2080648B1 (en) * 1993-06-04 1996-10-16 Levante Ind Quirurgicas PERFECTED ANATOMIC HIP PROSTHESIS.
DE4413037C2 (en) * 1994-04-15 1998-05-14 Alphanorm Medizintechnik Gmbh Bone prosthesis
KR100358192B1 (en) * 2000-02-16 2002-10-25 한국과학기술원 Jacket for cementless artificial joint and the artificial joint with it
BRPI0409487A (en) 2003-04-16 2006-05-02 Porex Surgical Inc surgical implant, process for its preparation and method of reconstruction of a bone defect
US8298292B2 (en) 2003-04-16 2012-10-30 Howmedica Osteonics Corp. Craniofacial implant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3605123A (en) * 1969-04-29 1971-09-20 Melpar Inc Bone implant
US3808606A (en) * 1972-02-22 1974-05-07 R Tronzo Bone implant with porous exterior surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3605123A (en) * 1969-04-29 1971-09-20 Melpar Inc Bone implant
US3808606A (en) * 1972-02-22 1974-05-07 R Tronzo Bone implant with porous exterior surface

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553272A (en) * 1981-02-26 1985-11-19 University Of Pittsburgh Regeneration of living tissues by growth of isolated cells in porous implant and product thereof
US4644942A (en) * 1981-07-27 1987-02-24 Battelle Development Corporation Production of porous coating on a prosthesis
WO1984000185A1 (en) * 1982-06-28 1984-01-19 Dow Chemical Co Expanded mesh of grade 2 titanium
US4612160A (en) * 1984-04-02 1986-09-16 Dynamet, Inc. Porous metal coating process and mold therefor
US4660755A (en) * 1985-09-09 1987-04-28 Zimmer, Inc. Method for constructing a surgical implant
US4650489A (en) * 1986-01-30 1987-03-17 Massachusetts Institute Of Technology Prosthetic device for implantation in bone
US4829152A (en) * 1987-11-16 1989-05-09 Rostoker, Inc. Method of resistance welding a porous body to a substrate
US5080671A (en) * 1987-11-25 1992-01-14 Uri Oron Method of treating a metal prosthetic device prior to surgical implantation to enhance bone growth relative thereto following implantation
US5219363A (en) * 1988-03-22 1993-06-15 Zimmer, Inc. Bone implant
US4957819A (en) * 1988-06-10 1990-09-18 Haruyuki Kawahara Frameless and coreless porous endosseous implant
US5108435A (en) * 1989-09-28 1992-04-28 Pfizer Hospital Products Group, Inc. Cast bone ingrowth surface
US5330700A (en) * 1990-04-10 1994-07-19 Siemens Pacesetter, Inc. Porous electrode for a pacemaker and method of making same
US5108432A (en) * 1990-06-24 1992-04-28 Pfizer Hospital Products Group, Inc. Porous fixation surface
US5443512A (en) * 1990-10-30 1995-08-22 Zimmer, Inc. Orthopaedic implant device
US5196016A (en) * 1991-03-11 1993-03-23 Institut Straumann Ag Auxiliary means and method for fastening a capping on bone tissue or the like
US5360448A (en) * 1991-10-07 1994-11-01 Thramann Jeffrey J Porous-coated bone screw for securing prosthesis
US5387243A (en) * 1992-11-23 1995-02-07 Zimmer, Inc. Method for converting a cementable implant to a press fit implant
US5713901A (en) * 1993-07-30 1998-02-03 Tock; Gideon Raphael Reticulated orthopaedic element to exploit the medullary canal of the long bones
US5733284A (en) * 1993-08-27 1998-03-31 Paulette Fairant Device for anchoring spinal instrumentation on a vertebra
US5973222A (en) * 1994-04-18 1999-10-26 Bristol-Myers Squibb Co. Orthopedic implant having a porous metal pad
US5672284A (en) * 1994-04-18 1997-09-30 Zimmer, Inc. Method of making orthopaedic implant by welding
US5755811A (en) * 1995-08-25 1998-05-26 Zimmer, Inc. Prosthetic implant with fins
US6582470B1 (en) 1996-01-22 2003-06-24 Etex Corporation Surface modification of medical implants
US5843289A (en) * 1996-01-22 1998-12-01 Etex Corporation Surface modification of medical implants
US6033582A (en) * 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US6464889B1 (en) 1996-01-22 2002-10-15 Etex Corporation Surface modification of medical implants
US6077076A (en) * 1997-12-18 2000-06-20 Comfort Biomedical, Inc. Bone augmentation for prosthetic implants and the like
US6143036A (en) * 1997-12-18 2000-11-07 Comfort Biomedical, Inc. Bone augmentation for prosthetic implants and the like
US6461385B1 (en) 1997-12-18 2002-10-08 Comfort Biomedical Inc. Method and apparatus for augmenting osteointegration of prosthetic implant devices
US6214049B1 (en) 1999-01-14 2001-04-10 Comfort Biomedical, Inc. Method and apparatus for augmentating osteointegration of prosthetic implant devices
US9375316B2 (en) 2001-02-23 2016-06-28 Biomet Manufacturing, Llc. Method and apparatus for acetabular reconstruction
US8551181B2 (en) 2001-02-23 2013-10-08 Biomet Manufacturing, Llc Method and apparatus for acetabular reconstruction
US8123814B2 (en) 2001-02-23 2012-02-28 Biomet Manufacturing Corp. Method and appartus for acetabular reconstruction
US7208222B2 (en) 2003-07-24 2007-04-24 Viasys Healthcare Inc. Assembled non-random foams
EP1527757A1 (en) * 2003-11-03 2005-05-04 Finsbury (Development) Limited Prosthetic implant
US20050119759A1 (en) * 2003-11-03 2005-06-02 Finsbury (Development) Limited Prosthetic implant
US7497876B2 (en) 2003-11-03 2009-03-03 Finsbury (Development) Limited Prosthetic implant
US20070208428A1 (en) * 2004-03-31 2007-09-06 Scyon Orthopaedics Ag Double Shell Implant for Cementless Anchorage of Joint Prostheses
US7776097B2 (en) 2004-03-31 2010-08-17 Scyon Orthopaedics Ag Double shell implant for cementless anchorage of joint prostheses
WO2005094731A1 (en) 2004-03-31 2005-10-13 Scyon Orthopaedics Ag Double shell implant for cementless anchorage of joint prostheses
JP4524776B2 (en) * 2004-04-14 2010-08-18 晶彦 千葉 Method for producing porous body for living body
JP2005296450A (en) * 2004-04-14 2005-10-27 Masahiko Chiba Manufacturing method of porous member for living body
US8292967B2 (en) 2005-04-21 2012-10-23 Biomet Manufacturing Corp. Method and apparatus for use of porous implants
US8266780B2 (en) 2005-04-21 2012-09-18 Biomet Manufacturing Corp. Method and apparatus for use of porous implants
US7597715B2 (en) 2005-04-21 2009-10-06 Biomet Manufacturing Corp. Method and apparatus for use of porous implants
US8197550B2 (en) 2005-04-21 2012-06-12 Biomet Manufacturing Corp. Method and apparatus for use of porous implants
US8066778B2 (en) 2005-04-21 2011-11-29 Biomet Manufacturing Corp. Porous metal cup with cobalt bearing surface
US8021432B2 (en) 2005-12-05 2011-09-20 Biomet Manufacturing Corp. Apparatus for use of porous implants
US7635447B2 (en) 2006-02-17 2009-12-22 Biomet Manufacturing Corp. Method and apparatus for forming porous metal implants
US7883736B2 (en) 2007-09-06 2011-02-08 Boston Scientific Scimed, Inc. Endoprostheses having porous claddings prepared using metal hydrides
WO2009032475A2 (en) 2007-09-06 2009-03-12 Boston Scientific Limited Endoprostheses having porous claddings prepared using metal hydrides
US20090068339A1 (en) * 2007-09-06 2009-03-12 Boston Scientific Scimed, Inc. Endoprostheses having porous claddings prepared using metal hydrides
WO2009032475A3 (en) * 2007-09-06 2009-08-13 Boston Scient Ltd Endoprostheses having porous claddings prepared using metal hydrides
US20110106170A1 (en) * 2008-08-14 2011-05-05 Doerr Timothy E Tack for spine fixation
US20100211109A1 (en) * 2008-08-14 2010-08-19 Doerr Timothy E Tack for spine fixation
US20120064290A1 (en) * 2008-12-01 2012-03-15 The Furlong Research Charitable Foundation Article and method of surface treatment of an article
US9044528B2 (en) * 2008-12-01 2015-06-02 Ucl Business Plc Article and method of surface treatment of an article
US20130180970A1 (en) * 2010-11-18 2013-07-18 Zimmer, Inc. Resistance welding a porous metal layer to a metal substrate
US9174297B2 (en) 2010-11-18 2015-11-03 Zimmer, Inc. Resistance welding a porous metal layer to a metal substrate
US20140151342A1 (en) * 2010-11-18 2014-06-05 Zimmer, Inc. Resistance welding a porous metal layer to a metal substrate
US10427235B2 (en) * 2010-11-18 2019-10-01 Zimmer, Inc. Resistance welding a porous metal layer to a metal substrate
US10537961B2 (en) * 2010-11-18 2020-01-21 Zimmer, Inc. Resistance welding a porous metal layer to a metal substrate
US11440118B2 (en) 2010-11-18 2022-09-13 Zimmer, Inc. Resistance welding a porous metal layer to a metal substrate
US20150289911A1 (en) * 2012-11-11 2015-10-15 Carbofix Orthopedics Ltd. Composite implant coating
US10045798B2 (en) * 2012-11-11 2018-08-14 Carbofix Orthopedics Ltd. Composite implant coating
US10687864B2 (en) * 2012-11-11 2020-06-23 Carbofix In Orthopedics Llc Composite implant coating
US20160331539A1 (en) * 2015-05-12 2016-11-17 Elwha Llc Modifiable implants
US20180228616A1 (en) * 2017-02-10 2018-08-16 Zimmer, Inc. Additive manufactured femoral components
US11259932B2 (en) * 2017-02-10 2022-03-01 Zimmer, Inc. Additive manufactured femoral components
CN111481738A (en) * 2020-03-25 2020-08-04 天衍医疗器材有限公司 Preparation method of bioactive porous tantalum implant

Also Published As

Publication number Publication date
GB1465501A (en) 1977-02-23
FR2215927B1 (en) 1976-05-14
DE2404214A1 (en) 1974-08-01
FR2215927A1 (en) 1974-08-30
DE2404214C3 (en) 1978-08-24
DE2404214B2 (en) 1977-11-24
CH575753A5 (en) 1976-05-31

Similar Documents

Publication Publication Date Title
US3905777A (en) Composite and porous metallic members which can be used for bone prosthesis
EP0225838B1 (en) Bone prosthesis device
US4570271A (en) Porous coatings from wire mesh for bone implants
US4854496A (en) Porous metal coated implant and method for producing same
US7918382B2 (en) Method for attaching a porous metal layer to a metal substrate
EP1398045B1 (en) A method for attaching a porous metal layer to a metal substrate
JP4385285B2 (en) Surgical implant manufacturing method and surgical implant
US4156943A (en) High-strength porous prosthetic device and process for making the same
EP2265215B1 (en) Method for use of porous implants
US4644942A (en) Production of porous coating on a prosthesis
EP2210623B1 (en) Implant with laser-produced porous surface
US4976738A (en) Porous metal overlay for an implant surface
US8727203B2 (en) Methods for manufacturing porous orthopaedic implants
US5027998A (en) Clamping mechanism for making porous metal coated implant
JP2010540077A (en) Cementless tibial tray
JPS63303003A (en) Method for mounting porous layer on substrate
DE4341281C1 (en) Method for the production of parts by superplastic forming
EP0083655A1 (en) Production of porous coating on a prosthesis
KR20000045606A (en) Method for making propellant tank for satellite
JPH01177303A (en) Manufacture of member having porous layer
AU2002321451A1 (en) Surgical implant