US3915694A - Process for desulphurization of molten pig iron - Google Patents

Process for desulphurization of molten pig iron Download PDF

Info

Publication number
US3915694A
US3915694A US389508A US38950873A US3915694A US 3915694 A US3915694 A US 3915694A US 389508 A US389508 A US 389508A US 38950873 A US38950873 A US 38950873A US 3915694 A US3915694 A US 3915694A
Authority
US
United States
Prior art keywords
impeller
pig iron
molten pig
guide plate
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US389508A
Inventor
Ryo Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Application granted granted Critical
Publication of US3915694A publication Critical patent/US3915694A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising

Definitions

  • the present invention has been worked out through a series of researches directed to overcoming the above-stated drawbacks of the prior art desulphurization processes.
  • a ladle containing molten pig iron poured thereinto is settled in place in a desulphurizing apparatus (FIG.
  • a predetermined quantity of a desulphurizing agent is added into the ladle, streams mostly flowing horizontally in one direction are created in the molten iron bath by rotating the impeller placed in the bath, one or more guide plates having a width equal to one-fourth to two-thirds of the radius of the ladle are immersed into the upper part of the bath to a depth of one-fourth to three-fourths of the distance between the surface of the static bath and the upper surface of the impeller in the bath, thereby to create downward streams in the bath into which the desulphurizing agent is drawn.
  • the possibility of wear and breakage of the impeller is lessened, the cost of power and equipment required for desulphurization is reduced and the amount of molten iron to be treated in a vessel can be made equal to the nominal capacity of the vessel.
  • FIG. 1 is a schematic view showing through a water model how the bath is agitated when no guide plate is employed;
  • FIG. 2 is a schematic view showing same when a guide plate is employed
  • FIGS. 3 and 4 are schematic views showing how the desulphurizing agent is drawn into molten pig iron
  • FIGS. 5 and 6 show different forms of apparatuses for carrying out the desulphurization process according to this invention.
  • FIG. 7 is a comparative graph showing desulphurization rates in the presence of a guide plate and in the absence of same.
  • the present invention presents a desulphurization process based on addition of a desulphurizing agent to molten pig iron contained in a ladle characterized in that streams mostly flowing horizontally in one direction are created in the molten pig iron bath by an impeller placed in the bath, downward streams are created in the bath by immersing one or more guide plates in the upper part of said bath and the desulphurizing agent is thereby drawn into said downward stream.
  • the abovecited stream mostly flowing horizontally in one direction means a circulating current of molten pig iron caused to flow in one direction along the inner periphery of the ladle as a result of the continuous and oneway rotation of the impeller.
  • the movements of the molten iron in the ladle include also other streams conditioned by the rotation speed of the impeller and the depth of immersion thereof such as those advancing straight toward the wall of the ladle from the central portion and those rising upward along the wall of the ladle and then moving toward the center of the ladle, the latter phenomenon being generally seen near the surface of the bath.
  • what matters most in the present invention is the above-stated horizontally flowing current.
  • the impeller placed in the bath is required only to cause the molten iron to flow mainly in a definite direction. Also, the contact and reaction between the molten iron and the desulphurizing agent are rapidly effected because the desulphurizing agent is drawn into the violent downward streams created in the molten iron by the insertion of the guide plate thereinto. Therefore, shallower immersion and lower rotation speed of the impeller than in the case of the prior art process (e) can produce satisfactory results.
  • the size, depth of immersion and relative position of the guide plate constituting a characteristic feature of the present invention are as follows:
  • Width of the guide plate between one-fourth and two-thirds of the radius of the ladle Depth of immersion of same between one-fourth and three-fourths of the distance between the surface of static bath and the upper surface of the impeller Relative position of same a portion of the guide plate should preferably be located directly above the locus described by the ends of the impeller
  • the size, shape, depth of immersion, etc. of the impeller need not be particularly defined, sine it is required only to cause the molten iron to flow in a defi nite direction as mentioned earlier.
  • the chief objects of the present invention are to reduce the possibilities of the impeller being worn and broken, to lessen the cost of power equipment for desulphurization and to make it possible to treat in-' creased amount of molten iron in a given vessel, the essential conditions required of the prior art process (e) are alien to the present invention.
  • FIG. 1 schematically shows various forms of water model tests conducted by using only a impeller 1. The tests were conducted by changing the speed of rotation and the depth of immersion of the impeller 1.
  • the dotted lines in FIG. 1 indicate the static liquid level. Chips of foamed styrene were used as a desulphurizing agent 2.
  • the condition shown in FIG. 1a-1 may be considered as representing the operating conditions of conventional processes. In this case, the desulphurizing agent 2 is circulated in the directions indicated by the arrows, showing the molten pig iron 3 and the desulphurizing agent 2 contacted in a very good condition.
  • FIG. 2 schematically shows various forms of water model tests conducted under conditions respectively corresponding to those shown in FIG. 1, utilization of the guide plate which features the present invention being the only difference.
  • the guide plate 5 its width should preferably be nearly equal to the diameter of the impeller l and its preferable depth of immersion is such that the lower end thereof does not reach the lower end of the impeller l. Desired effect can be obtained with a single guide plate when the impeller 1 is rotated in one definite direction but a plurality of guide plates may also be used.
  • the rotation of the impeller 2 causes the molten iron 3 to be delivered to the outside with a certain spread from the upper and lower delivering ends of the impeller.
  • the streams of the molten iron delivered from the upper discharging ends of the impeller 1 (FIG. 3)
  • the motion of the molten iron on the surface of the bath is equivalent to the resultant of the two streams.
  • the streams shown by the dotted lines are more intense so that the floating objects on the bath surface tend to gather on the wall side of the vessel.
  • the hatched portions at the ends of the impeller indicate where the liquid is delivered effectively.
  • the area of these effective portions is expanded by the downward streams thereby caused, in contrast to the case where no guide plate is employed. Consequently, the intensity of the liquid flowing from the wall side of the vessel toward the impeller is strengthened.
  • the treating vessel according to the present invention includes both a ladle in which a certain quantity of molten pig iron contained therein is treated by the batch system and a continuous desulphurization vessel which continuously receives molten pig iron being supplied at a substantially constant flow rate and continuously discharges same at a constant flow rate.
  • FIG. 5
  • FIG. 6 illustrates the latter case wherein a plurality of treating vessels are employed for continuous desulphurization.
  • FIG. 5 concretely illustrates an apparatus designed to carry out the process of this invention as shown in FIG. 2.
  • the ladle 4 filled with molten pig iron 3 is placed on a ladle car 6 and a stirrer is mounted on a supporting stand 8 comprising four posts provided on a frame 7.
  • the impeller 1 and an impeller shaft 9 are coupled to a rotating shaft 11 by a flange 10.
  • the rotating shaft 1 1 is supported by a journal box 12 and is connected at its farther end with a driving unit 13 consisting of a motor and a reduction gear.
  • the driving unit 13 is suspended by a wire 15 let out from a winder 14 disposed on the top of the supporting stand Sand the stirrer including the impeller 1 is vertically moved by the winder 14 through rollers 16 along the supporting stand 8.
  • the guide plate 5 and its attaching shaft 17 are connected to a movable shaft 19 via a coupling 18.
  • Said movable shaft 19 is provided with a lever 20 so that the guide plate can be turned as desired.
  • Disposed below the journal box 12 is a heat insulating plate 21 and the assembly comprising the impeller 1, the guide plate 5 and the heat insulating plate 21 is moved up and down by the vertical motion of the wire 15.
  • a ladle cover 22 is placed on the ladle 4 so that a certain degree of airtightness is maintained during the vertical motion of the centrally disposed heat insulating plate 21.
  • a desulphurizer charging chute 23 and a gas exhaust pipe 24 are provided in the ladle cover 22 and the ladle cover 22 is suspended and moved vertically by means of wires 25 extending from a winder 26 on the frame 7.
  • the desulphurizing agent 2 is stored in a hopper 28 provided with a measuring feeding unit 27 and the desulphurizing agent is fed onto the surface of the molten pig iron bath from the chute 23 through a flexible tube 29.
  • FIG. 6 illustrates an application of the present invention to an iron runner of a blast furnace designed as a continuous molten pig iron desulphurizing apparatus in which numeral 30 denotes a skimmer dam.
  • Slag 31 is led to a slag runner from an outlet 32 and the molten pig iron 3 flows through a dam 33.
  • Dams 35 and 36 are provided in a runner 34 and a stirrer 37 comprising a plurality of sets of impellers l and guide plates 5 is provided in each of the partitioned vessels.
  • the desulphurizing agent is charged onto the surface of the molten iron bath from a hopper 38 by a feeder 39 through a chute 40.
  • a skimmer 41 is provided in the rear of the dam 36 and post-reaction residues 42 of the desulphurizing agent are continuously scraped out by a scraper 43.
  • the number of said guide plate is not necessarily limited to one but a plurality of guide plates may be employed simultaneously.
  • EXAMPLE 1 An impeller 60 cm in diameter and cm in height having five blades was immersed in a 30 t ladle having a diameter of 1.8 m and containing molten pig iron of 2.0 m depth in such a manner that the distance between the molten iron bath surface and the upper surface of the impeller was 35 cm and the impeller was rotated at a speed of 75 rpm. A guide plate having a width of cm was immersed to a depth of 18 cm from the bath surface. As a desulphurizing agent, 3 kg/t of calcium carbide was used. The desulphurization rate obtained after 12 minutes of agitation in the presence of a guide plate was 85-95% in contrast to the desulphurization rate of 35-45% obtained in the absence of a guide plate. in this case, the temperature of the molten pig iron was 1350C flC and the sulphur content of the molten iron was between 0.03 and 0.06%. Sufficient removal of the slag was effected in this example.
  • EXAMPLE 2 An impeller 60 cm in diameter and 40 cm in height having five blades was immersed in a 30 t ladle having a diameter of 1.8 m and containing molten pig iron of 2.0 m depth in such a manner that the distance between the bath surface and the upper surface of the impeller was 35 cm and the impeller was rotated at a speed of 75 rpm. A guide plate of 50 cm in width was immersed to a depth of 5 cm from the bath surface. As a desulphurizing agent, 3 kg/t of calcium carbide was used. The desulphurization rate obtained after 12 minutes of agitation in the absence of a guide plate was 25-35%. The desulphurizing agent was found congesting on the inner periphery of the ladle.
  • the desulphurizing agent was satisfactorily drawn into the molten iron and the desulphurization rate obtained was 85-95%.
  • the temperature of the molten pig iron was 1350C fl0C and the sulphur content of the molten iron was between 0.03 and 0.06%.
  • EXAMPLE 3 This is an example of a 2 t/min continuous treatment apparatus.
  • the vessel used was 1.65 m in length and 0.75 m in width, and the depth of the molten iron bath was 0.60 m.
  • the amount of molten pig iron contained in the vessel was about 4 tons, that is to say, the average retention time of molten iron was 2 minutes.
  • Two impellers each having a diameter of 25 cm and a thickness of 15 cm and provided with three blades were immersed in the bath to a depth of cm from the bath surface and rotated at a speed of 80 rpm.
  • a guide plate of 20 cm in width was immersed in the bath to a depth of 14 cm from the bath surface in a manner to be located diagonally above each impeller.
  • the desulphurization rate obtained was about 40% in the absence of a guide plate and about 70% in the presence of guide plates.
  • the temperature of the molten pig iron was l4001450C and the sulphur content of the molten iron before desulphurization was between 0.03 and 0.06%.
  • FIG. 7 graphically shows a comparison of desulphurization rates in the presence and absence of a guide plate obtained from other examples.
  • the present invention provides an excellent method for desulphurizing molten pig iron in a short time through the steps of causing molten pig iron in a ladle to move horizontally in one direction by a rotating impeller, and creating downward streams in the molten pig iron bath by inserting a guide plate in the upper part of the bath, thereby causing the desulphurizing agent to be drawn into said downward streams and making it possible for the desulphurizing agent to get under the bath surface even when the impeller is rotated at a slow speed.
  • the fact that satisfactory results are obtained from low-speed rotation of the impeller means an economic advantage that a smallscale equipment for rotation suffices.
  • a method of desulphurizing molten pig iron in a vessel comprising the steps of mechanically stirring said molten pig iron with a rotating impeller disposed in said molten pig iron, the rotating impeller having a shaft which is substantially vertically disposed in the vessel, thereby creating a circulating upper layer of molten pig iron and a substantially static lower layer of molten pig iron, the upper layer having streams flowing substantially horizontally therein;
  • vessel is a ladle.

Abstract

This invention relates to an improved method for desulphurizing molten pig iron by adding a desulphurizing agent to molten pig iron bath contained in a ladle and agitating said bath with an impeller placed in said bath, wherein downward streams are caused in said bath by inserting one or more guide plates in the upper portion of the bath thereby to draw the desulphurizing agent into the downward streams and an improved rate of desulphurization is obtained even when the rotation speed of said impeller is lower than when no guide plate is employed.

Description

United States Patent Ando Oct. 28, 1975 PROCESS FOR DESULPHURIZATION OF 3,278,295 10/1966 Ostberg 75/93 R MOLTEN PIG IRON 3,438,820 4/1969 Goss 75/60 3,556,775 1/1971 Kuratomi 75/60 lnvemorl y Ando, Yokohama, Japan 3,572,671 3/1971 Worner 266/34 3,664,826 5/1972 Kraemer [73] Assgnee' Koka Kabusmk' 3,687,430 8/1972 Schulz 75/58 Tokyo, Japan I t [22] F'led: 1973 Primary Examiner-Peter D. Rosenberg [21 L 3 9 50 Attorney, Agent, or Firm-Flynn & Frishauf [30] Foreign Application Priority Data [57] ABSTRACT Sept. 5, 1972 Japan...'. 47-88364 This invention relates to an improved method f sulphurizing molten pig iron by adding a desulphuriz- [52] US. Cl.2 75/58; 75/61; 75/93 ing agent to molten g iron bath contained i a ladle [51] Int. Cl. CZIC 7/00; C2213 9/00 and agitating Said bath with an impeller placed in said [58] Field of Search 75/58, 61, 93; 266/34 bath, wherein downward streams are caused i said bath by inserting one or more guide plates in the [56] References and upper portion of the bath thereby to draw the desul- UNITED STATES PATENTS phurizing agent into the downward streams and an im- 2,129,445 9/1938 Rehns 75/93 R Proved rate of desulphllrilation is Obtained even when 2,290,961 7/1942 Heuer... 75/55 the rotation speed of said impeller is lower than when 2,397,737 4/1946 Heuer 75/55 no guide plate is employed. 3,052,936 9/1962 Hami1ton.. 75/53 3,258,328 6/ 1966 Goss 75/53 7 Claims, 7 Drawing Figures FIG.I
RPM
LOW
HIGH (CONVENTIONAL METHOD) US. Patent Oct. 28, 1975 I Sheet2of5 3,915,694
5 5 imp f2 4 A 0: LL] l J Lu 0. 2
I E U] Q 2 Q (1) CE 0 g g 5 RPM HIGH (CONVENTIONAL LOW METHOD US. Patent 0a. 28, 1975 Sheet4 of5 3,915,694
PROCESS FOR DESULPHURIZATION OF MOLTEN PIG IRON BACKGROUND OF THE INVENTION Various techniques have heretofore been developed by way of desulphurizing molten pig iron. However, all of these techniques are the same in the fundamental idea, that is to say, they all seek effective method for mixing desulphurizing agents with molten pig iron so as to obtain an improved rate of desulphurization per unit time. These conventional techniques are represented by the following: (a) The process in which a desulphurizing agent is introduced in a ladle and then molten pig iron is poured into the ladle; (b) the process in which a desulphurizing agent is introduced onto the surface of a molten iron bath in a ladle and then the ladle is rocked and shaken, (c) the process in which molten iron and desulphurizing agent are caused to flow in opposite directions to each other; (d) the process in which the interface between desulphurizing agent and molten iron is agitated; and (e) the process in which a vortex is created by the rotation of an impeller on the surface of the bath in order to have the desulphurizing agent drawn into said vortex.
However, these prior art processes have shortcomings respectively. The processes (a) and (c) are defective in the rate of desulphurization; the process (b) is disadvantageous in respect of equipment cost and operation cost; the process (d) is somewhat inferior to (e) in desulphurization rate per unit time, though it is considerably economical in operating cost and higher in desulfurization efficiency than (a) and (c); and the process (e), though excellent in desulphurization efficiency, is defective in that the refractories constituting the ladle and impeller are damaged severely owing to the high rate of rotation of the impeller, that the actual capacity of the treating ladle is reduced because of the partial swell of the bath surface and that expensive power equipment is required for rotating the impeller. As inventions disclosing methods corresponding to the process (e), there are Japanese Patent Publications No. 12343/67, No. 32336/70 and No. 31054/70, etc. As is clearly seen from the claims and detailed descriptions in the specifications of these applications, there is an inevitable condition that a vortex must be created and desulphurizing agents must be drawn into the vortex, regardless of a very wide range of numerical limitations disclosed in each of said inventions with respect to the size, the depth of immersion, the effective crosssectional area ratio and the rotation speed of the impeller, etc.
The present invention has been worked out through a series of researches directed to overcoming the above-stated drawbacks of the prior art desulphurization processes.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a process for removing sulphur from molten pig iron produced by blast furnaces, electric furnaces, cupolas, etc. To attain this object, a ladle containing molten pig iron poured thereinto is settled in place in a desulphurizing apparatus (FIG. a predetermined quantity of a desulphurizing agent is added into the ladle, streams mostly flowing horizontally in one direction are created in the molten iron bath by rotating the impeller placed in the bath, one or more guide plates having a width equal to one-fourth to two-thirds of the radius of the ladle are immersed into the upper part of the bath to a depth of one-fourth to three-fourths of the distance between the surface of the static bath and the upper surface of the impeller in the bath, thereby to create downward streams in the bath into which the desulphurizing agent is drawn.
It is the main object of the present invention to obtain an excellent rate of desulphurization by providing an impeller plus a guide plate in contrastv to the prior methods devoid of a guide plate even when the impeller is immersed shallowly and the speed of rotation thereof is low. As a result, the possibility of wear and breakage of the impeller is lessened, the cost of power and equipment required for desulphurization is reduced and the amount of molten iron to be treated in a vessel can be made equal to the nominal capacity of the vessel.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing through a water model how the bath is agitated when no guide plate is employed;
FIG. 2 is a schematic view showing same when a guide plate is employed;
FIGS. 3 and 4 are schematic views showing how the desulphurizing agent is drawn into molten pig iron;
FIGS. 5 and 6 show different forms of apparatuses for carrying out the desulphurization process according to this invention; and
FIG. 7 is a comparative graph showing desulphurization rates in the presence of a guide plate and in the absence of same.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention presents a desulphurization process based on addition of a desulphurizing agent to molten pig iron contained in a ladle characterized in that streams mostly flowing horizontally in one direction are created in the molten pig iron bath by an impeller placed in the bath, downward streams are created in the bath by immersing one or more guide plates in the upper part of said bath and the desulphurizing agent is thereby drawn into said downward stream.
Taking treatment in a ladle as an example, the abovecited stream mostly flowing horizontally in one direction means a circulating current of molten pig iron caused to flow in one direction along the inner periphery of the ladle as a result of the continuous and oneway rotation of the impeller. Strictly speaking, the movements of the molten iron in the ladle include also other streams conditioned by the rotation speed of the impeller and the depth of immersion thereof such as those advancing straight toward the wall of the ladle from the central portion and those rising upward along the wall of the ladle and then moving toward the center of the ladle, the latter phenomenon being generally seen near the surface of the bath. However, what matters most in the present invention is the above-stated horizontally flowing current.
In the case of the present invention, the impeller placed in the bath is required only to cause the molten iron to flow mainly in a definite direction. Also, the contact and reaction between the molten iron and the desulphurizing agent are rapidly effected because the desulphurizing agent is drawn into the violent downward streams created in the molten iron by the insertion of the guide plate thereinto. Therefore, shallower immersion and lower rotation speed of the impeller than in the case of the prior art process (e) can produce satisfactory results.
The size, depth of immersion and relative position of the guide plate constituting a characteristic feature of the present invention are as follows:
Width of the guide plate between one-fourth and two-thirds of the radius of the ladle Depth of immersion of same between one-fourth and three-fourths of the distance between the surface of static bath and the upper surface of the impeller Relative position of same a portion of the guide plate should preferably be located directly above the locus described by the ends of the impeller The size, shape, depth of immersion, etc. of the impeller need not be particularly defined, sine it is required only to cause the molten iron to flow in a defi nite direction as mentioned earlier.
Since the chief objects of the present invention are to reduce the possibilities of the impeller being worn and broken, to lessen the cost of power equipment for desulphurization and to make it possible to treat in-' creased amount of molten iron in a given vessel, the essential conditions required of the prior art process (e) are alien to the present invention.
In describing the present invention in greater detail, the conventional process employing an impeller only and the present invention employing both an impeller and a guide plate will be compared through water model tests. This will serve to give a better understanding of the contents of the present invention and differences thereof with the prior art.
FIG. 1 schematically shows various forms of water model tests conducted by using only a impeller 1. The tests were conducted by changing the speed of rotation and the depth of immersion of the impeller 1. The dotted lines in FIG. 1 indicate the static liquid level. Chips of foamed styrene were used as a desulphurizing agent 2. The condition shown in FIG. 1a-1 may be considered as representing the operating conditions of conventional processes. In this case, the desulphurizing agent 2 is circulated in the directions indicated by the arrows, showing the molten pig iron 3 and the desulphurizing agent 2 contacted in a very good condition. When the impeller l was set such that its depth of immersion was reduced while maintaining the speed of rotation unchanged, the tendency of the desulphurizing agent 2 being drawn into the circulating molten iron declined. When the impeller 2 was set at a shallower level, ring-shaped swelling waves were formed around the impeller 2 (FIG. -2), pushing the desulphurizing agent 2 entirely toward the wall of the ladle 4. When the impeller 2 was further lifted until its upper surface appeared above the surface of the water, ring-shaped waves swelled further causing part thereof to scatter in the form of water drops in the circumferential direction. When the impeller 2 was set such that a portion thereof completely appeared above the surface of static water, as shown in FIG. 111-3, almost all of the waves scattered in drops and a portion of the desulphurizing agent was exposed to the falling drops and driven into the mass of water.
When the position of the impeller 1 was returned to the level shown in FIG. 111-1 and similar tests were conducted with the speed of rotation of the impeller 1 dropped to -50%, the results obtained were as shown in b-l, b-2 and b-3. In the case of 17-1, the desulphurizing agent went into the vortex but gathered at the bot tom of the vortex. When the depth of immersion of the impeller 1 was reduced to the level shown in 11-2, the height of waves formed above the impeller was far lower than in the case of a-2 but the desulphurizing agent 2 was pushed toward and was floating near the wall of the vessel 4 as in the case of a-2. Even when the impeller was set such that a portion thereof appeared above the static bath level, the situation in this case was like that shown in b-3 with almost no scattering of the liquid being observed, though the desulphurizing agent 2 was found cornered near the wall of the vessel 4.
FIG. 2 schematically shows various forms of water model tests conducted under conditions respectively corresponding to those shown in FIG. 1, utilization of the guide plate which features the present invention being the only difference.
When the guide plate 5 was added to the case of FIG. la-l which corresponds to the operating conditions of the prior art processes, the form of the vortex was changed to some extent as shown in FIG. 2a '1 but no change was observed in the effect of drawing the desulphurizing agent 2 into the vortex. When the depth of immersion of the impeller 1 was gradually reduced with the speed of its rotation maintained unchanged, the phenomenon of the desulphurizing agent 2 being drawn into the vortex ceased to occur when the impeller reached a certain depth. In the condition of FIG. 2a 2 which corresponds to FIG. 1a-2, the height of the ringshaped waves was lower but the desulphurizing agent was found cornered near the wall of the vessel 4. In the case of FIG. 2a'3 where the position of the impeller 1 was similar to that of FIG. 1a3, the height of waves was lower to some extent but violent scattering of water drops was observed.
When the position of the impeller 1 was lowered again and the speed of its rotation was decreased to 8050%, a marked change in situation was observed as compared with the case of FIG. lb-l. While, in FIG. lb-l, the desulphurizing agent 2 gathered at the bottom of the vortex, said agent was this time distributed in suspension in the molten iron, instead of gathering, as shown in b-1. This condition remained unchanged even when the impeller 1 was placed shallower. In the case of FIG. 2b'2 which corresponds to FIG. lb-2, the phenomenon of the desulphurizing agent being drawn into the vortex still occurred. In this case, the ringshaped swelling waves which were seen above the impeller in FIG. 1b-2 completely disappeared because of the presence of the guide plate 5 and a small vortex was created around the shaft of the impeller. When the impeller 1 was placed shallower, ring-shaped waves were produced and the desulphurizing agent 2 was pushed toward the wall of the vessel 4, instead of being drawn into the bath. When the impeller 1 was placed such that its upper surface appeared above the water surface, there was little change from the case of FIG. 1b-3 exepting that the height of waves became lower, resulting in the situation as shown in FIG. 2b'-3.
As for the guide plate 5, its width should preferably be nearly equal to the diameter of the impeller l and its preferable depth of immersion is such that the lower end thereof does not reach the lower end of the impeller l. Desired effect can be obtained with a single guide plate when the impeller 1 is rotated in one definite direction but a plurality of guide plates may also be used.
It will thus be seen from the above comparison between FIG. 1 and FIG. 2 that the favorable condition of FIG. la-l obtained when using the impeller alone can be obtained when the guide plate is added, not only in the case of FIG. 2bl but also in the case of FIG. 2b-2 Since deeper immersion and greater speed of rotation of the impeller 1 require more horse power for the rotation of the impeller l and since increased horse power brings about increased wear of the impeller 1, it is evident that the processes of the present invention as shown in FIGS. 2b1 and b-2 wherein the impeller is rotated at a slower speed and the process featuring shallower immersion of the impeller as in the case of FIG. 2b2 are far more advantageous than the prior art processes.
The following is the reason why the provision of the guide plate 5 facilitates the introduction of the desulphurizing agent 2 into the molten pig iron 3 even at a low-speed rotation of the impeller 1.
If the molten iron is stirred at a relatively low speed in the absence of a guide plate as shown in FIG. 3, i.e. as in the case of FIG. 112-2, the rotation of the impeller 2 causes the molten iron 3 to be delivered to the outside with a certain spread from the upper and lower delivering ends of the impeller. Considering only the streams of the molten iron delivered from the upper discharging ends of the impeller 1 (FIG. 3), there are two streams, one flowing substantially horizontally as shown by the solid lines and the other flowing upwardly as shown by the dotted lines. Thus, the motion of the molten iron on the surface of the bath is equivalent to the resultant of the two streams. In the illustrated case, the streams shown by the dotted lines are more intense so that the floating objects on the bath surface tend to gather on the wall side of the vessel.
If, under the same condition, the guide plate 5 is inserted in the molten iron bath diagonally above the impeller 1 as shown in FIG. 4, the molten iron delivered from the upper delivering ends of the impeller l is forcibly made to flow downward. The result is that the streams of the molten iron flowing in the directions shown by the dotted lines in FIG. 3 disappear completely by joining with the streams shown by the solid lines in FIG. 3 and producing intense streams flowing in the directions shown by the solid lines in FIG. 4. Thus, the liquid in the surface portion tends to flow from the wall side of the vessel toward the center of the impeller in strong streams. Consequently, the floating objects are gathered toward the vortex at the center of the impeller and are drawn into the liquid on the strength of the strong streams.
In FIGS. 3 and 4, the hatched portions at the ends of the impeller indicate where the liquid is delivered effectively. When the guide plate is inserted, the area of these effective portions is expanded by the downward streams thereby caused, in contrast to the case where no guide plate is employed. Consequently, the intensity of the liquid flowing from the wall side of the vessel toward the impeller is strengthened.
The treating vessel according to the present invention includes both a ladle in which a certain quantity of molten pig iron contained therein is treated by the batch system and a continuous desulphurization vessel which continuously receives molten pig iron being supplied at a substantially constant flow rate and continuously discharges same at a constant flow rate. FIG. 5
illustrates the former case and FIG. 6 illustrates the latter case wherein a plurality of treating vessels are employed for continuous desulphurization.
FIG. 5 concretely illustrates an apparatus designed to carry out the process of this invention as shown in FIG. 2. In this apparatus, the ladle 4 filled with molten pig iron 3 is placed on a ladle car 6 and a stirrer is mounted on a supporting stand 8 comprising four posts provided on a frame 7. The impeller 1 and an impeller shaft 9 are coupled to a rotating shaft 11 by a flange 10. The rotating shaft 1 1 is supported by a journal box 12 and is connected at its farther end with a driving unit 13 consisting of a motor and a reduction gear. The driving unit 13 is suspended by a wire 15 let out from a winder 14 disposed on the top of the supporting stand Sand the stirrer including the impeller 1 is vertically moved by the winder 14 through rollers 16 along the supporting stand 8. The guide plate 5 and its attaching shaft 17 are connected to a movable shaft 19 via a coupling 18. Said movable shaft 19 is provided with a lever 20 so that the guide plate can be turned as desired. Disposed below the journal box 12 is a heat insulating plate 21 and the assembly comprising the impeller 1, the guide plate 5 and the heat insulating plate 21 is moved up and down by the vertical motion of the wire 15. A ladle cover 22 is placed on the ladle 4 so that a certain degree of airtightness is maintained during the vertical motion of the centrally disposed heat insulating plate 21. A desulphurizer charging chute 23 and a gas exhaust pipe 24 are provided in the ladle cover 22 and the ladle cover 22 is suspended and moved vertically by means of wires 25 extending from a winder 26 on the frame 7. The desulphurizing agent 2 is stored in a hopper 28 provided with a measuring feeding unit 27 and the desulphurizing agent is fed onto the surface of the molten pig iron bath from the chute 23 through a flexible tube 29.
FIG. 6 illustrates an application of the present invention to an iron runner of a blast furnace designed as a continuous molten pig iron desulphurizing apparatus in which numeral 30 denotes a skimmer dam. Slag 31 is led to a slag runner from an outlet 32 and the molten pig iron 3 flows through a dam 33. Dams 35 and 36 are provided in a runner 34 and a stirrer 37 comprising a plurality of sets of impellers l and guide plates 5 is provided in each of the partitioned vessels. The desulphurizing agent is charged onto the surface of the molten iron bath from a hopper 38 by a feeder 39 through a chute 40. A skimmer 41 is provided in the rear of the dam 36 and post-reaction residues 42 of the desulphurizing agent are continuously scraped out by a scraper 43.
Although only one guide plate is employed for each impeller in the above-described apparatus of the present invention, the number of said guide plate is not necessarily limited to one but a plurality of guide plates may be employed simultaneously.
Examples of processes according to the present invention will now be given hereunder.
EXAMPLE 1 An impeller 60 cm in diameter and cm in height having five blades was immersed in a 30 t ladle having a diameter of 1.8 m and containing molten pig iron of 2.0 m depth in such a manner that the distance between the molten iron bath surface and the upper surface of the impeller was 35 cm and the impeller was rotated at a speed of 75 rpm. A guide plate having a width of cm was immersed to a depth of 18 cm from the bath surface. As a desulphurizing agent, 3 kg/t of calcium carbide was used. The desulphurization rate obtained after 12 minutes of agitation in the presence of a guide plate was 85-95% in contrast to the desulphurization rate of 35-45% obtained in the absence of a guide plate. in this case, the temperature of the molten pig iron was 1350C flC and the sulphur content of the molten iron was between 0.03 and 0.06%. Sufficient removal of the slag was effected in this example.
When a guide plate was not used, the desulphurizing agent was found circulating together with the upper layer ofthe molten iron bath.
EXAMPLE 2 An impeller 60 cm in diameter and 40 cm in height having five blades was immersed in a 30 t ladle having a diameter of 1.8 m and containing molten pig iron of 2.0 m depth in such a manner that the distance between the bath surface and the upper surface of the impeller was 35 cm and the impeller was rotated at a speed of 75 rpm. A guide plate of 50 cm in width was immersed to a depth of 5 cm from the bath surface. As a desulphurizing agent, 3 kg/t of calcium carbide was used. The desulphurization rate obtained after 12 minutes of agitation in the absence of a guide plate was 25-35%. The desulphurizing agent was found congesting on the inner periphery of the ladle. On the contrary, when a guide plate was employed, the desulphurizing agent was satisfactorily drawn into the molten iron and the desulphurization rate obtained was 85-95%. In this example, the temperature of the molten pig iron was 1350C fl0C and the sulphur content of the molten iron was between 0.03 and 0.06%.
EXAMPLE 3 This is an example of a 2 t/min continuous treatment apparatus. The vessel used was 1.65 m in length and 0.75 m in width, and the depth of the molten iron bath was 0.60 m. The amount of molten pig iron contained in the vessel was about 4 tons, that is to say, the average retention time of molten iron was 2 minutes. Two impellers each having a diameter of 25 cm and a thickness of 15 cm and provided with three blades were immersed in the bath to a depth of cm from the bath surface and rotated at a speed of 80 rpm. A guide plate of 20 cm in width was immersed in the bath to a depth of 14 cm from the bath surface in a manner to be located diagonally above each impeller. Calcium carbide was fed to the molten iron per 6 kg/min. The desulphurization rate obtained was about 40% in the absence of a guide plate and about 70% in the presence of guide plates. In this example, the temperature of the molten pig iron was l4001450C and the sulphur content of the molten iron before desulphurization was between 0.03 and 0.06%.
FIG. 7 graphically shows a comparison of desulphurization rates in the presence and absence of a guide plate obtained from other examples.
It is evident from these comparative tests that the processes according to the present invention show excellent desulphurization rates at a low speed of rotation of the impeller.
The following table shows how the process of this invention is advantageous over the conventional process wherein agitation is conducted by an impeller alone.
Process of this Agitation by invention impeller alone Space factor of ladle 100 Power cost for impeller 30 50 Equipment cost for desulphurization 50 60 100 Life of impeller 300 100 Notes: The figures in the table are typical and estimated figures designed solely for comparison between the two cases.
As stated above, the present invention provides an excellent method for desulphurizing molten pig iron in a short time through the steps of causing molten pig iron in a ladle to move horizontally in one direction by a rotating impeller, and creating downward streams in the molten pig iron bath by inserting a guide plate in the upper part of the bath, thereby causing the desulphurizing agent to be drawn into said downward streams and making it possible for the desulphurizing agent to get under the bath surface even when the impeller is rotated at a slow speed. The fact that satisfactory results are obtained from low-speed rotation of the impeller means an economic advantage that a smallscale equipment for rotation suffices. There is also an advantage that an increased amount of molten pig iron can be treated at a time with respect to the capacity of the vessel since, even when the impeller is rotated at a relatively high speed, not to speak of the case of low speed rotation, little swelling of the bath is seen on the surface thereof, the speed of rotation of the impeller not being the only factor for drawing the desulphurizing agent into the molten pig iron. Furthermore, lowspeed rotation of the impeller serves to decrease the wear of the impeller and the inner wall of the ladle. Taken altogether, the desulphurization process of the present invention can safely be called a very economical one.
What is claimed is:
1. A method of desulphurizing molten pig iron in a vessel, comprising the steps of mechanically stirring said molten pig iron with a rotating impeller disposed in said molten pig iron, the rotating impeller having a shaft which is substantially vertically disposed in the vessel, thereby creating a circulating upper layer of molten pig iron and a substantially static lower layer of molten pig iron, the upper layer having streams flowing substantially horizontally therein;
immersing a guide plate into said molten pig iron to a depth of between one-fourth and three-fourths of the distance between the surface of said molten pig iron when the molten pig iron is static in said vessel and the upper surface of said impeller, thereby creating other streams of molten pig iron flowing substantially downwardly therein; and
charging a desulphurizing agent into said molten pig iron from the uppermost surface thereof, said desulphurizing agent being drawn into said substantially downwardly flowing streams and under the upper surface of said molten pig iron and under the circulating streams of said upper layer.
2. The method according to claim 1 comprising immersing a guide plate having a width of between onefourth and two-thirds of the radius of said vessel into said molten pig iron.
vessel is a ladle.
6. The method according to claim 1, wherein a plurality of vessels are arranged in series for continuous desulfurization of molten pig iron.
7. The method according to claim 1, wherein said guide plate is positioned in said vessel such that a portion of said guide plate is located directly above the locus described by said impeller.

Claims (7)

1. A METHOD OF DESULPHURIZING MOLTEN PIG IRON IN A VESSEL, COMPRISING THE STEPS OF MECHANICALLY STIRRING SAID MOLTEN PIG IRON WITH A ROTATING IMPELLER DISPOSED IN SAID MOLTEN PIG IRON, THE ROTATING IMPELLER HAVING A SHAF WHICH IS SUBSTANTIALLY VERTICALLY DISPOSED IN THE VESSEL, THEREBY CREATING A CIRCULATING UPPER LAYER OF MOLTEN PIG IRON AND A SUBSTANTIALLY STATIC LOWER LAYER OF MOFTON PEG IONS THE UPPER LAYER HAVIN STREAMS FLOWING SUBSTANTIALLY HORIZONTALLY THEREIN, IMMERSING A GUIDE PLATE INTO SAID MOLTEN PIG IRON TO A DEPTH OF BETWEEN ONE-FOURTH AND THREE-FOURTHS OF THE DISTANCE BETWEEN THE SURFACE OF SAID MOLTEN PIG IRON WHEN THE
2. The method according to claim 1 comprising immersing a guide plate having a width of between one-fourth and two-thirds of the radius of said vessel into said molten pig iron.
3. The method according to claim 1 comprising mechanically stirring said molten pig iron with a plurality of said rotating impellers, and immersing a plurality of guide plates into said molten pig iron, in at least one of said vessels.
4. The method according to claim 1 comprising rotating said impeller at a speed approximately 50-80% of the speed required to form a vortex pattern in said molten pig iron without a guide plate.
5. The method according to claim 1, wherein said vessel is a ladle.
6. The method according to claim 1, wherein a plurality of vessels are arranged in series for continuous desulfurization of molten pig iron.
7. The method according to claim 1, wherein said guide plate is positioned in said vessel such that a portion of said guide plate is located directly above the locus described by said impeller.
US389508A 1972-09-05 1973-08-20 Process for desulphurization of molten pig iron Expired - Lifetime US3915694A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP47088364A JPS5219525B2 (en) 1972-09-05 1972-09-05

Publications (1)

Publication Number Publication Date
US3915694A true US3915694A (en) 1975-10-28

Family

ID=13940736

Family Applications (1)

Application Number Title Priority Date Filing Date
US389508A Expired - Lifetime US3915694A (en) 1972-09-05 1973-08-20 Process for desulphurization of molten pig iron

Country Status (3)

Country Link
US (1) US3915694A (en)
JP (1) JPS5219525B2 (en)
FR (1) FR2197986B1 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018598A (en) * 1973-11-28 1977-04-19 The Steel Company Of Canada, Limited Method for liquid mixing
US4046559A (en) * 1976-02-23 1977-09-06 Kennecott Copper Corporation Pyrometallurgical system for liquid-liquid contacting
US4063932A (en) * 1974-07-17 1977-12-20 Union Carbide Corporation Method for admixing solids in molten metal
US4618427A (en) * 1984-01-25 1986-10-21 Ardal Og Sundal Verk A.S. Method of treating and breaking up a liquid with the help of centripetal force
US4898367A (en) * 1988-07-22 1990-02-06 The Stemcor Corporation Dispersing gas into molten metal
US4954167A (en) * 1988-07-22 1990-09-04 Cooper Paul V Dispersing gas into molten metal
US5143357A (en) * 1990-11-19 1992-09-01 The Carborundum Company Melting metal particles and dispersing gas with vaned impeller
US5944496A (en) * 1996-12-03 1999-08-31 Cooper; Paul V. Molten metal pump with a flexible coupling and cement-free metal-transfer conduit connection
US5951243A (en) * 1997-07-03 1999-09-14 Cooper; Paul V. Rotor bearing system for molten metal pumps
US6027685A (en) * 1997-10-15 2000-02-22 Cooper; Paul V. Flow-directing device for molten metal pump
US6303074B1 (en) 1999-05-14 2001-10-16 Paul V. Cooper Mixed flow rotor for molten metal pumping device
US6398525B1 (en) 1998-08-11 2002-06-04 Paul V. Cooper Monolithic rotor and rigid coupling
US6689310B1 (en) 2000-05-12 2004-02-10 Paul V. Cooper Molten metal degassing device and impellers therefor
US6723276B1 (en) 2000-08-28 2004-04-20 Paul V. Cooper Scrap melter and impeller
US7402276B2 (en) 2003-07-14 2008-07-22 Cooper Paul V Pump with rotating inlet
US7470392B2 (en) 2003-07-14 2008-12-30 Cooper Paul V Molten metal pump components
US7507367B2 (en) 2002-07-12 2009-03-24 Cooper Paul V Protective coatings for molten metal devices
US7731891B2 (en) 2002-07-12 2010-06-08 Cooper Paul V Couplings for molten metal devices
US7906068B2 (en) 2003-07-14 2011-03-15 Cooper Paul V Support post system for molten metal pump
US8178037B2 (en) 2002-07-12 2012-05-15 Cooper Paul V System for releasing gas into molten metal
US8337746B2 (en) 2007-06-21 2012-12-25 Cooper Paul V Transferring molten metal from one structure to another
US8361379B2 (en) 2002-07-12 2013-01-29 Cooper Paul V Gas transfer foot
US8366993B2 (en) 2007-06-21 2013-02-05 Cooper Paul V System and method for degassing molten metal
US8444911B2 (en) 2009-08-07 2013-05-21 Paul V. Cooper Shaft and post tensioning device
US8449814B2 (en) 2009-08-07 2013-05-28 Paul V. Cooper Systems and methods for melting scrap metal
US8524146B2 (en) 2009-08-07 2013-09-03 Paul V. Cooper Rotary degassers and components therefor
US8535603B2 (en) 2009-08-07 2013-09-17 Paul V. Cooper Rotary degasser and rotor therefor
US8613884B2 (en) 2007-06-21 2013-12-24 Paul V. Cooper Launder transfer insert and system
US8714914B2 (en) 2009-09-08 2014-05-06 Paul V. Cooper Molten metal pump filter
US9011761B2 (en) 2013-03-14 2015-04-21 Paul V. Cooper Ladle with transfer conduit
US9108244B2 (en) 2009-09-09 2015-08-18 Paul V. Cooper Immersion heater for molten metal
US9156087B2 (en) 2007-06-21 2015-10-13 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9205490B2 (en) 2007-06-21 2015-12-08 Molten Metal Equipment Innovations, Llc Transfer well system and method for making same
US9410744B2 (en) 2010-05-12 2016-08-09 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US9409232B2 (en) 2007-06-21 2016-08-09 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel and method of construction
US9643247B2 (en) 2007-06-21 2017-05-09 Molten Metal Equipment Innovations, Llc Molten metal transfer and degassing system
US9903383B2 (en) 2013-03-13 2018-02-27 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened top
US10052688B2 (en) 2013-03-15 2018-08-21 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US10138892B2 (en) 2014-07-02 2018-11-27 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US10267314B2 (en) 2016-01-13 2019-04-23 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
CN109988879A (en) * 2019-04-03 2019-07-09 山东钢铁股份有限公司 A method of the raising desulfurizing agent volume applied to KR desulfurizing iron process inhales effect
US10428821B2 (en) 2009-08-07 2019-10-01 Molten Metal Equipment Innovations, Llc Quick submergence molten metal pump
US10947980B2 (en) 2015-02-02 2021-03-16 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened blade tips
US11149747B2 (en) 2017-11-17 2021-10-19 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices
US11358216B2 (en) 2019-05-17 2022-06-14 Molten Metal Equipment Innovations, Llc System for melting solid metal
US11873845B2 (en) 2021-05-28 2024-01-16 Molten Metal Equipment Innovations, Llc Molten metal transfer device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833289B2 (en) * 1978-08-23 1983-07-19 川崎製鉄株式会社 Method for producing industrial pure iron using a bottom blowing converter
JPS5925058B2 (en) * 1979-01-13 1984-06-14 宮城タイル興業株式会社 Tiling method and its tools
CA1286506C (en) * 1987-02-13 1991-07-23 William Kevin Kodatsky Method of desulfurizing iron
JP4665345B2 (en) * 2001-06-12 2011-04-06 Jfeスチール株式会社 Stirring desulfurizer
JP2015007267A (en) * 2013-06-25 2015-01-15 株式会社日向製錬所 Desulfurizing method of ferronickel

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2129445A (en) * 1937-07-08 1938-09-06 American Metal Co Ltd Treating impure lead and/or tin metal
US2290961A (en) * 1939-11-15 1942-07-28 Essex Res Corp Desulphurizing apparatus
US2397737A (en) * 1942-07-14 1946-04-02 Essex Res Corp Process of desulphurizing
US3052936A (en) * 1956-10-01 1962-09-11 Babcock & Wilcox Co Method of continuously casting metals
US3258328A (en) * 1962-08-23 1966-06-28 Fuji Iron & Steel Co Ltd Method and apparatus for treating steel
US3278295A (en) * 1960-07-07 1966-10-11 Ostberg Jan-Erik Method of stirring dispersing or homogenizing metal or slag charges having a temperature of at least 800deg. c.
US3438820A (en) * 1965-04-02 1969-04-15 Dominion Foundries & Steel Silicon steel process
US3556775A (en) * 1967-06-22 1971-01-19 Tatsuo Kuratomi Continuous oxygen steel making process
US3572671A (en) * 1967-10-03 1971-03-30 Conzinc Riotinto Ltd Continuous degassing of metals
US3664826A (en) * 1968-03-23 1972-05-23 Rheinstahl Huettenwerke Ag Process for accelerating metallurgical reactions
US3687430A (en) * 1969-09-06 1972-08-29 Rheinstahl Huettenwerke Ag Method of and apparatus for desulfurizing pig iron

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2029449C3 (en) * 1970-06-15 1978-11-09 Demag Ag, 4100 Duisburg Desulphurisation channel for pig iron

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2129445A (en) * 1937-07-08 1938-09-06 American Metal Co Ltd Treating impure lead and/or tin metal
US2290961A (en) * 1939-11-15 1942-07-28 Essex Res Corp Desulphurizing apparatus
US2397737A (en) * 1942-07-14 1946-04-02 Essex Res Corp Process of desulphurizing
US3052936A (en) * 1956-10-01 1962-09-11 Babcock & Wilcox Co Method of continuously casting metals
US3278295A (en) * 1960-07-07 1966-10-11 Ostberg Jan-Erik Method of stirring dispersing or homogenizing metal or slag charges having a temperature of at least 800deg. c.
US3258328A (en) * 1962-08-23 1966-06-28 Fuji Iron & Steel Co Ltd Method and apparatus for treating steel
US3438820A (en) * 1965-04-02 1969-04-15 Dominion Foundries & Steel Silicon steel process
US3556775A (en) * 1967-06-22 1971-01-19 Tatsuo Kuratomi Continuous oxygen steel making process
US3572671A (en) * 1967-10-03 1971-03-30 Conzinc Riotinto Ltd Continuous degassing of metals
US3664826A (en) * 1968-03-23 1972-05-23 Rheinstahl Huettenwerke Ag Process for accelerating metallurgical reactions
US3687430A (en) * 1969-09-06 1972-08-29 Rheinstahl Huettenwerke Ag Method of and apparatus for desulfurizing pig iron

Cited By (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018598A (en) * 1973-11-28 1977-04-19 The Steel Company Of Canada, Limited Method for liquid mixing
US4063932A (en) * 1974-07-17 1977-12-20 Union Carbide Corporation Method for admixing solids in molten metal
US4046559A (en) * 1976-02-23 1977-09-06 Kennecott Copper Corporation Pyrometallurgical system for liquid-liquid contacting
US4618427A (en) * 1984-01-25 1986-10-21 Ardal Og Sundal Verk A.S. Method of treating and breaking up a liquid with the help of centripetal force
US4898367A (en) * 1988-07-22 1990-02-06 The Stemcor Corporation Dispersing gas into molten metal
US4954167A (en) * 1988-07-22 1990-09-04 Cooper Paul V Dispersing gas into molten metal
US5143357A (en) * 1990-11-19 1992-09-01 The Carborundum Company Melting metal particles and dispersing gas with vaned impeller
US5294245A (en) * 1990-11-19 1994-03-15 Gilbert Ronald E Melting metal particles and dispersing gas with vaned impeller
US6345964B1 (en) 1996-12-03 2002-02-12 Paul V. Cooper Molten metal pump with metal-transfer conduit molten metal pump
US5944496A (en) * 1996-12-03 1999-08-31 Cooper; Paul V. Molten metal pump with a flexible coupling and cement-free metal-transfer conduit connection
US5951243A (en) * 1997-07-03 1999-09-14 Cooper; Paul V. Rotor bearing system for molten metal pumps
US6027685A (en) * 1997-10-15 2000-02-22 Cooper; Paul V. Flow-directing device for molten metal pump
US6398525B1 (en) 1998-08-11 2002-06-04 Paul V. Cooper Monolithic rotor and rigid coupling
US6303074B1 (en) 1999-05-14 2001-10-16 Paul V. Cooper Mixed flow rotor for molten metal pumping device
US6689310B1 (en) 2000-05-12 2004-02-10 Paul V. Cooper Molten metal degassing device and impellers therefor
US6723276B1 (en) 2000-08-28 2004-04-20 Paul V. Cooper Scrap melter and impeller
US7731891B2 (en) 2002-07-12 2010-06-08 Cooper Paul V Couplings for molten metal devices
US9034244B2 (en) 2002-07-12 2015-05-19 Paul V. Cooper Gas-transfer foot
US7507367B2 (en) 2002-07-12 2009-03-24 Cooper Paul V Protective coatings for molten metal devices
US8409495B2 (en) 2002-07-12 2013-04-02 Paul V. Cooper Rotor with inlet perimeters
US8529828B2 (en) 2002-07-12 2013-09-10 Paul V. Cooper Molten metal pump components
US9435343B2 (en) 2002-07-12 2016-09-06 Molten Meal Equipment Innovations, LLC Gas-transfer foot
US8110141B2 (en) 2002-07-12 2012-02-07 Cooper Paul V Pump with rotating inlet
US8178037B2 (en) 2002-07-12 2012-05-15 Cooper Paul V System for releasing gas into molten metal
US8440135B2 (en) 2002-07-12 2013-05-14 Paul V. Cooper System for releasing gas into molten metal
US8361379B2 (en) 2002-07-12 2013-01-29 Cooper Paul V Gas transfer foot
US8475708B2 (en) 2003-07-14 2013-07-02 Paul V. Cooper Support post clamps for molten metal pumps
US8501084B2 (en) 2003-07-14 2013-08-06 Paul V. Cooper Support posts for molten metal pumps
US7402276B2 (en) 2003-07-14 2008-07-22 Cooper Paul V Pump with rotating inlet
US8075837B2 (en) 2003-07-14 2011-12-13 Cooper Paul V Pump with rotating inlet
US7470392B2 (en) 2003-07-14 2008-12-30 Cooper Paul V Molten metal pump components
US7906068B2 (en) 2003-07-14 2011-03-15 Cooper Paul V Support post system for molten metal pump
US10562097B2 (en) 2007-06-21 2020-02-18 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US10352620B2 (en) 2007-06-21 2019-07-16 Molten Metal Equipment Innovations, Llc Transferring molten metal from one structure to another
US9855600B2 (en) 2007-06-21 2018-01-02 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US11167345B2 (en) 2007-06-21 2021-11-09 Molten Metal Equipment Innovations, Llc Transfer system with dual-flow rotor
US8613884B2 (en) 2007-06-21 2013-12-24 Paul V. Cooper Launder transfer insert and system
US11130173B2 (en) 2007-06-21 2021-09-28 Molten Metal Equipment Innovations, LLC. Transfer vessel with dividing wall
US8753563B2 (en) 2007-06-21 2014-06-17 Paul V. Cooper System and method for degassing molten metal
US11103920B2 (en) 2007-06-21 2021-08-31 Molten Metal Equipment Innovations, Llc Transfer structure with molten metal pump support
US9017597B2 (en) 2007-06-21 2015-04-28 Paul V. Cooper Transferring molten metal using non-gravity assist launder
US11759854B2 (en) 2007-06-21 2023-09-19 Molten Metal Equipment Innovations, Llc Molten metal transfer structure and method
US11020798B2 (en) 2007-06-21 2021-06-01 Molten Metal Equipment Innovations, Llc Method of transferring molten metal
US8366993B2 (en) 2007-06-21 2013-02-05 Cooper Paul V System and method for degassing molten metal
US9156087B2 (en) 2007-06-21 2015-10-13 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9205490B2 (en) 2007-06-21 2015-12-08 Molten Metal Equipment Innovations, Llc Transfer well system and method for making same
US10458708B2 (en) 2007-06-21 2019-10-29 Molten Metal Equipment Innovations, Llc Transferring molten metal from one structure to another
US11185916B2 (en) 2007-06-21 2021-11-30 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel with pump
US10345045B2 (en) 2007-06-21 2019-07-09 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US9383140B2 (en) 2007-06-21 2016-07-05 Molten Metal Equipment Innovations, Llc Transferring molten metal from one structure to another
US10274256B2 (en) 2007-06-21 2019-04-30 Molten Metal Equipment Innovations, Llc Vessel transfer systems and devices
US9409232B2 (en) 2007-06-21 2016-08-09 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel and method of construction
US10195664B2 (en) 2007-06-21 2019-02-05 Molten Metal Equipment Innovations, Llc Multi-stage impeller for molten metal
US8337746B2 (en) 2007-06-21 2012-12-25 Cooper Paul V Transferring molten metal from one structure to another
US10072891B2 (en) 2007-06-21 2018-09-11 Molten Metal Equipment Innovations, Llc Transferring molten metal using non-gravity assist launder
US9982945B2 (en) 2007-06-21 2018-05-29 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel and method of construction
US9925587B2 (en) 2007-06-21 2018-03-27 Molten Metal Equipment Innovations, Llc Method of transferring molten metal from a vessel
US9909808B2 (en) 2007-06-21 2018-03-06 Molten Metal Equipment Innovations, Llc System and method for degassing molten metal
US9566645B2 (en) 2007-06-21 2017-02-14 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9581388B2 (en) 2007-06-21 2017-02-28 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US9862026B2 (en) 2007-06-21 2018-01-09 Molten Metal Equipment Innovations, Llc Method of forming transfer well
US9643247B2 (en) 2007-06-21 2017-05-09 Molten Metal Equipment Innovations, Llc Molten metal transfer and degassing system
US8444911B2 (en) 2009-08-07 2013-05-21 Paul V. Cooper Shaft and post tensioning device
US9382599B2 (en) 2009-08-07 2016-07-05 Molten Metal Equipment Innovations, Llc Rotary degasser and rotor therefor
US8449814B2 (en) 2009-08-07 2013-05-28 Paul V. Cooper Systems and methods for melting scrap metal
US10428821B2 (en) 2009-08-07 2019-10-01 Molten Metal Equipment Innovations, Llc Quick submergence molten metal pump
US9506129B2 (en) 2009-08-07 2016-11-29 Molten Metal Equipment Innovations, Llc Rotary degasser and rotor therefor
US9377028B2 (en) 2009-08-07 2016-06-28 Molten Metal Equipment Innovations, Llc Tensioning device extending beyond component
US9470239B2 (en) 2009-08-07 2016-10-18 Molten Metal Equipment Innovations, Llc Threaded tensioning device
US9657578B2 (en) 2009-08-07 2017-05-23 Molten Metal Equipment Innovations, Llc Rotary degassers and components therefor
US9464636B2 (en) 2009-08-07 2016-10-11 Molten Metal Equipment Innovations, Llc Tension device graphite component used in molten metal
US8524146B2 (en) 2009-08-07 2013-09-03 Paul V. Cooper Rotary degassers and components therefor
US8535603B2 (en) 2009-08-07 2013-09-17 Paul V. Cooper Rotary degasser and rotor therefor
US9328615B2 (en) 2009-08-07 2016-05-03 Molten Metal Equipment Innovations, Llc Rotary degassers and components therefor
US9422942B2 (en) 2009-08-07 2016-08-23 Molten Metal Equipment Innovations, Llc Tension device with internal passage
US9080577B2 (en) 2009-08-07 2015-07-14 Paul V. Cooper Shaft and post tensioning device
US10570745B2 (en) 2009-08-07 2020-02-25 Molten Metal Equipment Innovations, Llc Rotary degassers and components therefor
US8714914B2 (en) 2009-09-08 2014-05-06 Paul V. Cooper Molten metal pump filter
US10309725B2 (en) 2009-09-09 2019-06-04 Molten Metal Equipment Innovations, Llc Immersion heater for molten metal
US9108244B2 (en) 2009-09-09 2015-08-18 Paul V. Cooper Immersion heater for molten metal
US9410744B2 (en) 2010-05-12 2016-08-09 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US9482469B2 (en) 2010-05-12 2016-11-01 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US10641279B2 (en) 2013-03-13 2020-05-05 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened tip
US11391293B2 (en) 2013-03-13 2022-07-19 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened top
US9903383B2 (en) 2013-03-13 2018-02-27 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened top
US10302361B2 (en) 2013-03-14 2019-05-28 Molten Metal Equipment Innovations, Llc Transfer vessel for molten metal pumping device
US9011761B2 (en) 2013-03-14 2015-04-21 Paul V. Cooper Ladle with transfer conduit
US9587883B2 (en) 2013-03-14 2017-03-07 Molten Metal Equipment Innovations, Llc Ladle with transfer conduit
US10126058B2 (en) 2013-03-14 2018-11-13 Molten Metal Equipment Innovations, Llc Molten metal transferring vessel
US10126059B2 (en) 2013-03-14 2018-11-13 Molten Metal Equipment Innovations, Llc Controlled molten metal flow from transfer vessel
US10322451B2 (en) 2013-03-15 2019-06-18 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US10307821B2 (en) 2013-03-15 2019-06-04 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US10052688B2 (en) 2013-03-15 2018-08-21 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US11286939B2 (en) 2014-07-02 2022-03-29 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US10138892B2 (en) 2014-07-02 2018-11-27 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US10465688B2 (en) 2014-07-02 2019-11-05 Molten Metal Equipment Innovations, Llc Coupling and rotor shaft for molten metal devices
US11939994B2 (en) 2014-07-02 2024-03-26 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US10947980B2 (en) 2015-02-02 2021-03-16 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened blade tips
US11933324B2 (en) 2015-02-02 2024-03-19 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened blade tips
US11098720B2 (en) 2016-01-13 2021-08-24 Molten Metal Equipment Innovations, Llc Tensioned rotor shaft for molten metal
US10267314B2 (en) 2016-01-13 2019-04-23 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US10641270B2 (en) 2016-01-13 2020-05-05 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US11098719B2 (en) 2016-01-13 2021-08-24 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US11519414B2 (en) 2016-01-13 2022-12-06 Molten Metal Equipment Innovations, Llc Tensioned rotor shaft for molten metal
US11149747B2 (en) 2017-11-17 2021-10-19 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices
CN109988879A (en) * 2019-04-03 2019-07-09 山东钢铁股份有限公司 A method of the raising desulfurizing agent volume applied to KR desulfurizing iron process inhales effect
US11471938B2 (en) 2019-05-17 2022-10-18 Molten Metal Equipment Innovations, Llc Smart molten metal pump
US11759853B2 (en) 2019-05-17 2023-09-19 Molten Metal Equipment Innovations, Llc Melting metal on a raised surface
US11850657B2 (en) 2019-05-17 2023-12-26 Molten Metal Equipment Innovations, Llc System for melting solid metal
US11858036B2 (en) 2019-05-17 2024-01-02 Molten Metal Equipment Innovations, Llc System and method to feed mold with molten metal
US11858037B2 (en) 2019-05-17 2024-01-02 Molten Metal Equipment Innovations, Llc Smart molten metal pump
US11931803B2 (en) 2019-05-17 2024-03-19 Molten Metal Equipment Innovations, Llc Molten metal transfer system and method
US11931802B2 (en) 2019-05-17 2024-03-19 Molten Metal Equipment Innovations, Llc Molten metal controlled flow launder
US11358217B2 (en) 2019-05-17 2022-06-14 Molten Metal Equipment Innovations, Llc Method for melting solid metal
US11358216B2 (en) 2019-05-17 2022-06-14 Molten Metal Equipment Innovations, Llc System for melting solid metal
US11873845B2 (en) 2021-05-28 2024-01-16 Molten Metal Equipment Innovations, Llc Molten metal transfer device

Also Published As

Publication number Publication date
FR2197986A1 (en) 1974-03-29
JPS5219525B2 (en) 1977-05-28
FR2197986B1 (en) 1976-10-01
JPS4944927A (en) 1974-04-27

Similar Documents

Publication Publication Date Title
US3915694A (en) Process for desulphurization of molten pig iron
US4018598A (en) Method for liquid mixing
US3785632A (en) Apparatus for accelerating metallurgical reactions
US6056803A (en) Injector for gas treatment of molten metals
JP2002500273A5 (en)
JP2003119509A (en) Method for pretreating pig iron, and impeller device
JPS61246305A (en) Method and apparatus for removing slag from molten metal
US4240618A (en) Stirrer for metallurgical melts
JP2011042815A (en) Method for desulfurizing molten iron
US3212882A (en) Method and apparatus for oxygen steelmaking
US4180396A (en) Method of alloying and/or inoculating and/or deoxidizing cast iron melts produced in a cupola furnace
US3567204A (en) Apparatus for refining molten metal
US3961775A (en) Method and apparatus for liquid mixing
JP2015017290A (en) Method for desulfurizing ferronickel
JP2002241825A (en) Method for desulfurizing molten iron and desulfurizing device
US3653879A (en) Rotary reactor and method for treating melts
US3773498A (en) Method and device for varying the substance composition in metal melts and in particular for the desulfurizing of pig iron
US3334993A (en) Method of and apparatus for refining molten metals
JPH08157940A (en) Blowing of refining power into molten metal
US3687430A (en) Method of and apparatus for desulfurizing pig iron
JP5085094B2 (en) Continuous refining method of blast furnace cast floor
JP2001220620A (en) Method for stirring molten metal by impeller
US3592629A (en) Method for refining molten metal
JP2003147423A (en) Method and apparatus for refining molten metal in vessel
US4053146A (en) Continuous stream treatment of ductile iron