US3930109A - Process for the manufacture of metallized shaped bodies of macromolecular material - Google Patents

Process for the manufacture of metallized shaped bodies of macromolecular material Download PDF

Info

Publication number
US3930109A
US3930109A US38514873A US3930109A US 3930109 A US3930109 A US 3930109A US 38514873 A US38514873 A US 38514873A US 3930109 A US3930109 A US 3930109A
Authority
US
United States
Prior art keywords
film
liquid
polytetrafluoroethylene
layer
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Wilhelm Brandt
Irmgard Bindrum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19712111137 external-priority patent/DE2111137A1/en
Priority claimed from DE19712111136 external-priority patent/DE2111136A1/en
Application filed by Hoechst AG filed Critical Hoechst AG
Priority to US38514873 priority Critical patent/US3930109A/en
Application granted granted Critical
Publication of US3930109A publication Critical patent/US3930109A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06QDECORATING TEXTILES
    • D06Q1/00Decorating textiles
    • D06Q1/04Decorating textiles by metallising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2053Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment only one step pretreatment
    • C23C18/206Use of metal other than noble metals and tin, e.g. activation, sensitisation with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • Y10T428/31699Ester, halide or nitrile of addition polymer

Definitions

  • ABSTRACT This invention relates to a process for the deposition of a metal coating on the surface of a shaped body of .macromolecular material which comprises forming a layer of a noble metal salt solution or dispersion of a film-forming macromolecular material on the surface of a solid support material,
  • the present invention relates to a process for the deposition of a metal coating on the surface of a shaped body, particularly a sheet, of macromolecular material.
  • the invention also relates to shaped bodies of macromolecular material with metallized surfaces, particularly to sheet materials.
  • non-electroconductive plastics e.g. of polystyrene, acrylonitrilelbutadiene/styrene copolymers, polyolefins, and polyesters, if desired after suitable pretreatment, with thin metal coatings either by electroplating or electroless plating.
  • a process has proved particularly suitable in which a very thin layer of noble metal nuclei is deposited on the plastic surface,
  • the surface is sensitized and a noble metal salt solution and activated with a solution of a reducing agent.
  • BY means of electroplating or electroless plating baths, continuous metal layers are deposited at the noble metal nuclei.
  • the surface is first treated with a palladium salt solution, e.g. PdCl and then with a hydrazine hydrate solution, or first with a stannous chloride solution and then with a silver nitrate solution.
  • a palladium salt solution e.g. PdCl
  • a hydrazine hydrate solution or first with a stannous chloride solution and then with a silver nitrate solution.
  • small quantities of elemental noble metal are deposited on the surface.
  • the present invention provides a process by which it is possible to deposit, by electroless plating on the surface of a shaped body, a metal coating firmly adhering to the polymer surface of the shaped body and which eliminates the disadvantages of known processes.
  • a noble metal salt solution or dispersion of a film-forming macromolecular material which optionally may contain a wetting agent, is spread on the surface of a solid support material to form a layer and, for removing the liquid component of the layer and for forming a continuous film on the support, sufficient heat is caused to act on the coated support.
  • an activating solution is caused to act thereon and, in a further process step, metallization liquid is caused to act on the film-carrying support.
  • the film then is stripped from the support.
  • a shaped body of macromolecular material means in particular a sheet material of macromolecular material which is self-supporting, as well as a composite material comprising a mechanically stable support sheet material and a film of macromolecular material firmly adhering thereto.
  • a film capable of being stripped from the solid support without leaving any residue is self-supporting.
  • the self-supporting film has two free surfaces and the film adhering to the substrate one free surface accessible to metallization.
  • the support material may have a continuous structured or structureless surface.
  • the layer of a liquid polymer dispersion or solution which is first to be applied to the support according to the process of the invention is applied by known processes to the surface of the support material, e.g. by doctor devices, and levelled.
  • the liquid component of the layer is then removed, e.g. by subjecting the coated support material to heat at a temperature sufficient to remove the liquid component. This may be performed, for example, by means of a drying cabinet operated with warm air or in a drying channel.
  • a liquid layer of an aqueous tetrafluoroethylene dispersion spread on a sufficiently heat-resistant solid support is exposed in known manner to heat at a temperature of about C; after vaporizing the liquid component of the layer, heat in the temperature range above 300C, preferably in the range between 380 and 400C, is applied to the coated support material in order to form a sintered film of polytetrafluoroethylene on the surface of the support.
  • the time of the heat action is not critical.
  • the invention further provides a modification ,of the I said process including, when using a polymer dispersion and a discontinuous layer is produced on the surface of the support after vaporization of the dispersing agent, heating the metallized layer sufficiently to form a sintered film of the polymer.
  • the liquid containing the noble metal salt and the film-forming macromolecular substances in dispersed or dissolved form is called the sensitized liquid containing film-forming macromo' lecular material.
  • the liquid used for metallization of the shaped bodies which contains ions reducible to yield free metal and a reducing agent in an aqueous solution, is called the metallization liquid.
  • the metal baths generally contain substances forming complexes with the metal ions, which complexes provide for the necessary stability of the bath and which act on the structure of the metal layer to be formed, e.g. as glossing agents.
  • the metallization liquid contains no dissolved noble metal salt.
  • an aqueous solution of a chemical reducing agent is called the activating liquid.
  • Suitable aqueous noble metal salt solutions have a content of noble metal salt in the range from 0.001 to 10 per cent by weight, calculated on the total weight of the solution.
  • Suitable noble metal salts for the production of the sensitized liquid containing film-forming macromolecular material are palladium chloride, gold chloride, platinum chloride, and silver nitrate.
  • Aqueous noble metal salt solutions may be ammoniacal or acidic.
  • the aqueous noble metal salt solutions may be incorporated into ammoniacal as well as into acidic aqueous polymer dispersions or solutions.
  • a suitable wetting agent e.g. dodecyl benzene sulfonate
  • Polymer solutions or dispersions are those which contain natural or synthetic film-forming macromolecular substances, particularly those with a thermoplastic character, in a dissolved or dispersed form.
  • the solvent or dispersing agent may be water or an organic liquid.
  • Suitable macromolecular substances are: vinyl polymers and the copolymers thereof, e.g. polyvinyl chloride, copolymers of vinyl chloride and vinyl acetate, vinylidene chloride copolymers, polytetrafluoroethylene, polystyrene, synthetic elastomers, e.g. polyurethane or polyacrylates, polymethacrylates, as well as the copolymers thereof, natural rubbers and synthetic rubbers, polyolefins, cellulose derivatives, polycarbonates, epoxides, polyesters, melamine condensates, urea condensation products, phenol-formaldehyde condensation products, polyamides, and polyphenyls.
  • vinyl polymers and the copolymers thereof e.g. polyvinyl chloride, copolymers of vinyl chloride and vinyl acetate, vinylidene chloride copolymers, polytetrafluoroethylene, polystyrene, synthetic elastomers,
  • the liquid component of the sensitized liquid containing film-forming macromolecular material is an organic liquid
  • the noble metal salt is incorporated into the liquid in a manner such that it is dissolved in a suitable solvent, e.g. in acetone or butanone, and this solution is then added to the liquid containing the polymer.
  • the metallization liquid has a solids content of metal salt in the range from 5 to 20 g, preferably from 7 to 10 g, per liter of copper salt-containing metallization liquid, and 10 to 50 g, preferably from to 30 g, per liter of nickel salt-containing metallization liquid.
  • Suitable salts are CuSo and NiSO It is particularly advantageous to use metallization liquids which contain a chemical medium capable of complex formation with the metal salt; these complexforming agents maintain the concentration of the metal ions in the metallization liquid low.
  • Chemical reducing agents in the metallization liquid are, for example, sodium hypophosphite, sodium hydride or nitrogen diethyl borane; formaldehyde, hydrazine hydrate as well as sodium bisulfite are suitable for copper salt-containing liquids.
  • stannous chloride combined with hydrochloric acid dissolved in water and hydrazine hydrate in an alkaline solution.
  • metallization liquids which contain a stabilizer for the reducing agent, e.g. telluric acid in nickel salt baths.
  • the stabilizer for the chemical reducing agent generally is employed in a concentration in the range from 0.001 to 2 per cent by weight, calculated on the total weight of the liquid.
  • a gloss-imparting additive e.g. saccharin
  • the ratio by weight of metal salt to chemical reducing agent in the metallization liquid advantageously is so selected that the reducing agent is in excess.
  • the metallization liquid in accordance with the process has a temperature in the range from 30 to 100C, in the case of a nickel salt-containing liquid, and a temperature in the range from 20 to 50C in the case of a copper salt-containing liquid.
  • the time of action of the metallization liquid upon the shaped body depends upon the metal quantity to be deposited per unit area.
  • a time in the range from 1 to 10 minutes is required, depending on the chemical composition of the metallization liquid or the metal salt concentration thereof.
  • the metallized shaped bodies produced according to the process of the invention have metal coatings of a thickness in the range between 0.02 and 0.25 p
  • the metal coatings are abrasion-resistant and firmly adherent to the polymer surfaces of the shaped bodies.
  • a firmly adherent coating means a coating which cannot be separated from its contact surface of polymer material by the adhesive tape test.
  • the adhesive tape test is performed as follows:
  • a crisscross pattern is scratched into the surface of the metal coating on the shaped body, which pattern is then covered with an adhesive tape having a pressuresensitive layer.
  • the adhesive tape is then stripped with a pull.
  • the metal coating is firmly adherent to its contact surface when the metal coating cannot be separated from its contact surface under the aforementioned conditions.
  • the process of the invention is performed in a manner such that first the solution of a noble metal salt is added to a polymer dispersion or to a polymer solution.
  • the solids content of the polymer dispersion or of the polymer solution is not critical in the usual viscosity range of easily spreadable or castable solutions.
  • this dispersion advantageously has a polymer portion in the range from 1 to 10 per cent by weight, calculated on the total weight of the dispersion, particularly preferably, however, in the range from 5 to 8 per cent by weight.
  • the ratio by weight of the polymer to the noble metal salt in the liquid obtained after the mixing of the polymer dispersion or solution with the noble metal salt solution is in the range between 2 1 and l, preferably in the range between 5 l and 25 l.
  • the liquid obtained by mixing the polymer dispersion or the polymer solution with the noble metal salt solution is then applied in the form of a layer to a self-supporting planar support of sufficient inherent rigidity and sufficient strength.
  • the material forming the support must be chemically resistant to the liquid components of the liquid layer applied to the support.
  • the support must be chemically resistant as well as sufficiently mechanically stable in the temperature range in which vaporization of the liquid component of the layer applied to the support takes place.
  • Suitable supports are those of synthetic or natural organic material as well as of inorganic material which fullfil the above-mentioned conditions.
  • supports particularly suitable are those of glass, steel, aluminum, unglazed porous clay, unglazed ceramic material or roughened polyimide film. All these supports are well wetted by aqueous polytetrafluoroethylene dispersions containing wetting agents.
  • the support for a shaped body of polytetrafluoroethylene must be thermally resistant in the range between 250 and 400C.
  • the coated support After the application of the liquid layer to the support, the coated support is exposed to heat sufficient to vaporize the liquid components of the applied layer; the temperature to be maintained during heating depends upon the boiling point of the liquid component of the layer which must be vaporized.
  • the heating of the coated support may take place, for example, in a drying cabinet operated with warm air.
  • a copper layer is to be applied, it is advantageous, prior to the action of the copper salt-containing metallization liquid, to treat the surface of the polymer film with activating liquid.
  • Metallization liquid is then caused to act upon the support provided with a polymer film. This may be performed by immersing the support provided with a polymer film into a tank filled with metallization liquid. After removal of the film-carrying support from the tank, the shaped body with the metallized surface of the polymer film is treated in a rinsing liquid, preferably water, and liberated from the rinsing liquid by drymg.
  • a rinsing liquid preferably water
  • the production of a self-supporting film from polymer material, the surface of which is metallized is performed by using a planar sheet material as the support, to the surface of which is applied the above-mentioned liquid layer in the manner described above and, after the formation of a metal layer on the film of polymer material, this film is stripped as a self-supporting film from the support.
  • the film to be metallized and united with a support or the self-supporting film to be metallized is of polytetrafluoroethylene
  • film formation must be performed by a sintering process on a support.
  • the liquid component of the layer is removed by heating sufficient to vaporize this component, and the coated support is then exposed to heat sufficient to produce a sintered film of polytetrafluoroethylene on the surface of the support.
  • a sintered film is a continuous voidless film in which, by the action of heat, the plurality of discrete particles of polytetrafluoroethylene on the surface of the support fuse to form a continuous film.
  • Film formation on the support also may be performed continuously by applying a liquid layer in known manner, for example by means of a doctor knife, to the surface of a web support moving at a constant speed, levelled, and then converted in the described manner into a polymer film.
  • a liquid layer in known manner, for example by means of a doctor knife, to the surface of a web support moving at a constant speed, levelled, and then converted in the described manner into a polymer film.
  • the film produced by sintering the polytetrafluoroethylene particles on the support adheres thereto in any case.
  • the film adheres inseparably to a surface of a glass plate roughened with silicon carbide paste (depth of rougheness 11 u), independently of whether sintering of the film has occurred prior to or after the action of the metallization liquid.
  • adhesion of the metallized polytetrafluoroethylene film depends upon whether the layer has been sintered prior to or after metallization.
  • a palladium chloride-containing aqueous polytetrafluoroethylene dispersion When, for example, a palladium chloride-containing aqueous polytetrafluoroethylene dispersion is applied to a grease-free roughened surface of a steel plate (depth of roughness 3.5 1.), the dispersion is dried, the layer of a plurality of discrete particles is metallized by the action of the metallization liquid and the layer is then sintered, the metallized film cannot be stripped from the steel plate surface.
  • the aqueous polytetrafluoroethylene dispersion is applied to the polished surface of the steel plate and the polytetrafluorroethylene layer is dried, sintered and only then metallized by the action of the metallization liquid, the metallized polytetrafluoroethylene film can be stripped from the support without leaving any residue. In this manner, it is possible to produce self-supporting films with metallized surfaces.
  • the metallized film can be stripped from the support in the form of a self-supporting film independently of whether the action of the metallization liquid has taken place prior to or after sintering.
  • the support to which the polytetrafluoroethylene dispersion is applied must be so selected that easy separation of the sintered metallized film therefrom without any residue is guaranteed.
  • a device for the application of the aqueous dispersion At the periphery of the drum, is a device for the application of the aqueous dispersion, a device for drying the applied layer, a device by means of which it is possible to cause the metallization liquid to act upon the dry polytetrafluoroethylene layer, and a heating device for effecting sintering of the layer to give a film.
  • a heating device for effecting sintering of the layer to give a film In this manner, it is possible to continuously strip from the surface of the rotating drum a self-supporting metallized film of polytetrafluoroethylene in the form of a self-supporting web.
  • the metal coating applied to the polytetrafluoroethylene film may serve as an adhesive for substances which, without the adhesive metal coating on the polytetrafluoroethylene film, cannot be firmly united with a shaped body of polytetrafluoroethylene.
  • Plastics adhering to the metal coating may be sufficiently deposited from solutions, dispersions or melts in the form of self-supporting sheet materials, e.g. by laminating while hot, to the metallized surface of the polytetrafluoroethylene layer.
  • the metal layer imparting adhesion is very thin, e.g. has a thickness of 0.1
  • the quantity og noble metal salt in the aqueous polytetrafluoroethylene dispersion which is necessary to form a continuous metal coating deposited by electroless plating on the surface of the polytetrafluoroethylene layer determines:
  • the shaped bodies metallized according to the process of the invention may be used as electrical resistance elements.
  • the support When using a shaped body of a metallized film of macromolecular material which adheres to a support, the support must be an electrically insulating material.
  • FIG. 1 shows a sheet material with a metallized surface (which consists of a substrate with a continuous surface) of a noble metal salt-containing layer of macromolecular material thereon and a coating of metal on the surface and firmly adhering thereto, and
  • FIG. 2 shows a noble metal salt-containing self-supporting film of macromolecular material on the surface of which there is a firmly adhering metal coating.
  • the self-supporting film with the metallized surface according to FIG. 2 is obtained by stripping the film 2 with the metallized surface from the substrate 1 according to FIG. 1.
  • numeral 1 identifies the substrate
  • numeral 2 identifies the noble metal salt-containing film of macromolecular material
  • numeral 3 the noble metal salt uniformly distributed over the crosssection of the film
  • numeral 4 identifies the metal coating.
  • numerals 2, 3, and 4 have the same meanings as in FIG. 1.
  • EXAMPLE 1 A 60 percent by weight aqueous polytetrafluoroethylene dispersion (e.g. Hostafion TF 32, registered trade mark of Farbwerke Hoechst AG, Frankfurt, Germany), which contains 5 percent by weight of a non-ionic wetting agent, i.e. a reaction product of ethylene oxide and nonyl phenol (Hostapal, a registered tade mark of Farbwerke Hoechst AG, Frankfurt, Germany) and 0.04 percent by weight of ammonia is diluted with water in a ratio of l 12.
  • aqueous polytetrafluoroethylene dispersion e.g. Hostafion TF 32, registered trade mark of Farbwerke Hoechst AG, Frankfurt, Germany
  • a non-ionic wetting agent i.e. a reaction product of ethylene oxide and nonyl phenol (Hostapal, a registered tade mark of Farbwerke Hoechst AG, Frankfurt, Germany) and 0.04 percent by weight of am
  • a 5 percent by weight aqueous polytetrafluoroethylene dispersion is obtained thereby.
  • a solution of 0.2 g of palladium chloride dissolved in ml of concentrated ammonia and 0.8 g of the sodium salt of dodecylphenyl sulfonic acid dissolved in 4 ml of water is added to 86 ml of this diluted aqueous polytetrafluoroethylene dispersion.
  • the liquid thus prepared has a content of 4.3 per cent by weight of polytetrafluoroethylene and 0.2 per cent by weight of palladium chloride: the ratio of palladium chloride to polytetrafluoroethylene in the dispersion is 1 21.5.
  • the pH value of the liquid is 8.0.
  • One support used for the liquid layer of the abovedescribed composition is an aluminum plate of a depth of roughness of 4.8 p., and another one a glass plate of a depth of roughness of 11 u.
  • a liquid layer of the above-described palladium chloride-containing aqueous polytetrafluoroethylene dispersion is applied to each of the two plates.
  • the application is performed by casting the liquid onto the surface of the support and levelling the layer thickness.
  • the coated plate is dried for 2 minutes in a drying cabinet at 90C. After removal from the drying cabinet,
  • the plates are placed into a liquid bath of the metallization liquid which is prepared as follows: 25 g of NiSO 7 H O are dissolved in 200 ml of distilled water. A second solution is prepared containing 24.4 g of Na H- PO dissolved in 200 ml of distilled water. Both salt solutions are combined and 27 g of d,1-lactic acid and 16.8 g of succinic acid, dissolved in 200 ml of distilled water, are added to the aqueous solution containing the metal salt and the chemical reducing agent. The solution is adjusted to a pH value of 6 by addition of caustic soda. A small quantity of telluric acid is added to the solution, which is then diluted with distilled water to 1,000 ml.
  • the metallization liquid has a temperature of C.
  • the time of action of the metallization liquid onto the supporting plates coated with polytetrafluoroethylene is 1 minute. After this time of action, the plates are removed from the bath and placed in a drying cabinet heated to 380C. The plates remain in this drying cabinet for 15 minutes.
  • The. sintered polytetrafluoroethylene layer has a thickness of 1.1 u; the nickel coating deposited by electroless plating on its surface has a thickness of 0.2 [L- A crisscross pattern is scratched into the nickel coating by means of a razor blade.
  • a pressure-sensitive adhesive tape e.g. a Tesa tape marketed by Messrs. Beiersdorf, Hamburg, germany
  • the adhesive tape can be separated from the metal coating without leaving any residue, i.e. the metal coating firmly adheres to the polytetrafluoroethylene film.
  • EXAMPLE 2 A liquid layer of a palladium chloride-containing aqueous polytetrafluoroethylene dispersion, as described in Example 1, is applied to the surface of an unglazed porous clay plate and dried. In contradistinction to Example 1, the plate is then placed for 5 minutes into a metallization liquid containing, instead of a nickel salt, a 0.6 percent aqueous copper sulfate solution containing 1.5 percent of formaldehyde and 1.9 per cent of sodium hydrogen sulfite (e.g. chemical copper deposition bath CP 70 of Messrs. Shipley). Sintering takes place during 15 minutes at a temperature of 380C in a drying cabinet.
  • a metallization liquid containing, instead of a nickel salt, a 0.6 percent aqueous copper sulfate solution containing 1.5 percent of formaldehyde and 1.9 per cent of sodium hydrogen sulfite (e.g. chemical copper deposition bath CP 70 of Messrs. Shipley). Sintering takes place during 15
  • the metallization liquid has a temperature of 50C.
  • the copper coating on the film of polytetrafluoroethylene has a thickness of 0.2 to 0.3 11.. Result of the adhesive tape test: firm adhesion.
  • the polytetrafluoroethylene film provided with a copper coating adheres firmly to the supporting plate.
  • the thickness of the copper coating applied to the polytetrafluoroethylene film by electroless plating is then increased by electroplating to 10 p
  • the 10 p. thick coating is subjected to the adhesive tape test. Result: firm adhesion.
  • EXAMPLE 3 This example is similar to Example 1 with the excep- The nickel-plated polytetrafluoroethylene layer can be easily stripped from the support without leaving any rsidue.
  • EXAMPLE 4 An 8 percent aqueous solution of polyvinyl alcohol (e.g. Mowiol N 70-98 of Farbwerke Hoechst AG, Frankfurt, Germany) is prepared which contains 0.1 percent of palladium chloride, calculated on the solution weight, or 1.2 percent of palladium chloride, calculated on the polyvinyl alcohol weight. A liquid layer of this solution is applied to the roughened surface of a glass plate and dried for 5 minutes at 200C in a drying cabinet operated with warm air. The dried polymer film has a thickness of u. The filmrcarrying glass plate is then placed into a metallization liquid of the composition described in Example 1. Duration: 1 minute. The plate is then removed from the bath and rinsed with water.
  • polyvinyl alcohol e.g. Mowiol N 70-98 of Farbwerke Hoechst AG, Frankfurt, Germany
  • the nickel coating firmly adhering to the surface of the polymer film has a thickness of about 0.2 11,.
  • the thickness of the applied nickel layer is then increased in known manner by electroplating to 5 u, the time of action in the electroplating bath is minutes at a current density of l A/dm, and the electoplating bath has a temperature of 60C.
  • EXAMPLE 5 A 10 percent aqueous dispersion of a copolymer based on vinylidene chloride/methyl methacrylatelmethyl acrylate/itaconic acid which contains an addition of 0.05 percent of palladium chloride, calculated on the dispersion weight, or of 0.5 percent of palladium chloride, calculated on the polymer component weight, is applied to the surface of a textile fabric (cotton/net tle fabric) and dried for 3 minutes at 130C. The layer thickness of the polymer film formed on the support material is 10 u. The polymer film-carrying support material is then treated for 6 minutes in a metallization liquid according to the procedure of Example 1. After this treatment, a continuous nickel coating of a thickness of about 0.2 p. has formed on the surface of the polymer film to which it firmly adheres.
  • EXAMPLE 6 The example is similar to Example 5 with the exception that the coated textile material, after drying at 130C, is immersed for 1 minute into a 0.6 percent aqueous hydrazine hydrate solution containing 1.2 per cent of NaOl-l. The coated textile material is then placed for 8 minutes into a metallization bath according to example 2. A 0.2 p. thick copper coating is formed on the surface of the polymer film on the support material.
  • EXAMPLE 7 A 10 percent aqueous dispersion of a copolymer based on acrylic acid butyl ester is prepared which contains 0.1 per cent of palladium chloride, calculated on the dispersion weight, or 1 per cent of palladium chloride, calculated on the polymer component weight. A layer of the liquid is applied to the surface of a polyester film (e.g. Hostaphan, registered trade mark of Farbwerke Hoechst AG, Frankfurt, Germany).
  • a polyester film e.g. Hostaphan, registered trade mark of Farbwerke Hoechst AG, Frankfurt, Germany.
  • the coated polyester film is dried for 2 minutes at 130C in a drying cabinet operated with warm air; the thickness of the dry layer of the copolymer film on the surface of the polyester film is 7 p
  • the coated polyester film is bathed for 1 minute in a 0.6 percent aqueous hydrazine hydrate solution containing 1.2 percent of NaOH and then rinsed under running water.
  • the metal coatings produced are firmly adherent to the plastic film surfaces.
  • the shaped body is suitable for use as an electrical resistance element.
  • EXAMPLE 8 A 10 percent solution of polyvinyl acetate (e.g. Mowilith 50 of Farbwerke Hoechst AG, Frankfurt, Germany) in acetone is prepared, which contains 0.04 percent of palladium chloride, calculated on the solution weight, or 0.4 percent of palladium chloride, calculated on the polymer component weight, and applied to the surface of a supporting film of cellulose acetate.
  • the supporting film coated with the liquid is placed for 2 minutes into a drying cabinet operated with warm air of 130C. After heat treatment, the thickness of the polymer film on the supporting film is 10 u.
  • the coated supporting film is divided into two parts of equal size:
  • Example 2 One part of the coated film is placed for 1 minute into a metallization liquid according to the procedure of Example 1. A continuous 0.2 p, thick nickel coating is formed on the surface of the polyvinyl acetate film.
  • Example 2 The other half of the coated film is bathed in a 0.5 per cent aqueous stannous chloride solution and then rinsed under running water. The thus treated film is then placed for 5 minutes into a metallization liquid according to the procedure of Example 2. A 0.2 p. thick continuous copper coating is formed on the surface of the polyvinyl acetate film.
  • EXAMPLE 9 A 10 percent by weight solution of cellulose acetate in acetone is prepared which contains 0.04 percent of palladium chloride, calculated on the solution weight.
  • this acetone solution of cellulose acetate and palladium chloride 0.2 g of palladium chloride are dissolved in 1 ml of concentrated hydrochloric acid at C. After cooling this solution to room temperature, 15 ml of acetone are carefully added with continuous stirring. With further stirring, the solution prepared is heated to 40 to 50C, whereby the total quantity of palladium chloride is dissolved. This acetonic palladium chloride solution is added to the ace- 1 1 tonic cellulose acetate solution.
  • the cellulose acetate has a fatty acid content of 72 percent, a K value of 70 (e.g. Cel'lit 700 of Wegwood Bayer, Leverkusen, Germany, may be used).
  • This solution is spread on the surface of a cellulose acetate supporting film to produce a layer.
  • the coated cellulose acetate film is dried for 2 minutes at 130C.
  • the thickness of the film on the supporting film is 2 u.
  • the coated film is bathed for 1 minute in a 0.6 percent aqueous hydrazine solution and then rinsed for 1 minute in running water.
  • the pretreated coated film is then placed for 2 minutes into a metallization liquid according to Example 2. After the time of action, an about 0.2 thick continuous copper coating has formed on the surface of the applied cellulose acetate film.
  • the metal coating is firmly adherent to its support.
  • the addition of the palladium chloride is always performed in the manner described in Example 8.
  • This solution is spread in the form of a liquid layer on the surface of a polyester film (e.g. Hostaphan, registered trade mark of Farbwerke Hoechst AG, Frankfurt, Germany).
  • the coated Hostaphan film is dried for 2 minutes at 140C by placing it into a drying cabinet operated with warm air. After drying, the applied copolymer film has a layer thickness of 10 u.
  • the film sample is divided into two pieces of equal size.
  • the second half of the film sample is bathed for 1 minute in 0.6 per cent aqueous hydrazine hydrate solution.
  • the coated film is then rinse for 1 minute in running water.
  • the film is then placed for 5 minutes into a metallization liquid according to the procedure of Example 2. After the time of action of the metallization bath, an about 0.2 p. thick continuous copper coating has formed on the surface of the copolymer film on the supporting film. The coating is firmly adherent to its contact surface.
  • Shaped bodies produced in accordance with the invention may be used as electrical resistance elements provided the metallized film has a substrate of nonelectroconductive material.

Abstract

This invention relates to a process for the deposition of a metal coating on the surface of a shaped body of macromolecular material which comprises forming a layer of a noble metal salt solution or dispersion of a film-forming macromolecular material on the surface of a solid support material, HEATING THE COATED SUPPORT TO REMOVE THE LIQUID AND FORM A FILM, TREATING THE FILM WITH A METALLIZATION LIQUID, AND DRYING.

Description

United States Patent Brandt et a1.
[4 1 Dec. 30, 1975 PROCESS FOR THE MANUFACTURE OF METALLIZED SHAPED BODIES OF MACROMOLECULAR MATERIAL Inventors: Wilhelm Brandt, Wertach; Irmgard Bindrum, Wiesbaden-Biebrich, both of Germany Hoechst Aktiengesellschaft, G erm any Filed: Aug. 2, 1973 Appl. No.: 385,148
Related U.S. Application Data Division of Ser, No. 231,825, March 6, 1972.
Assignee:
Foreign Application Priority Data Mar. 9, 1971 Germany 2111136 References Cited UNITED STATES PATENTS Purvis et a1. 117/47 2,876,131 3/1959 Kumnick et al. 117/47 2,906,658 9/1959 Doban 154/139 2,997,448 8/1961 Hochberg 260/2.5 3,014,818 12/1961 Campbell 117/227 3,108,017 10/1963 Messwarb et a1. l17/l38.8 3,167,491 1/1965 Harrison et a1. 204/30 3,524,754 8/1970 Blytas et a1. 117/47 3,644,142 2/1972 Rauch et al..... 117/138.8 3,666,550 5/1972 Okuhashi et al,.,. 117/217 3,672,937 6/1972 Kallrath et al. 117/47 3,775,176 12/1973 Cross et a1. 117/227 Primary Examiner-P. E. Willis, Jr. Attorney, Agent, or Firm-James E. Bryan [57] ABSTRACT This invention relates to a process for the deposition of a metal coating on the surface of a shaped body of .macromolecular material which comprises forming a layer of a noble metal salt solution or dispersion of a film-forming macromolecular material on the surface of a solid support material,
heating the coated support to remove the liquid and form a film,
treating the film with a metallization liquid, and drying.
3 Claims, 2 Drawing Figures US. Patent Dec. 30, 1975 3,930,109
PROCESS FOR THE MANUFACTURE OF- METALLIZED SHAPED BODIES F MACROMOLECULAR MATERIAL This is a division of application Ser. No. 231,825, filed Mar. 6, 1972.
The present invention relates to a process for the deposition of a metal coating on the surface of a shaped body, particularly a sheet, of macromolecular material. The invention also relates to shaped bodies of macromolecular material with metallized surfaces, particularly to sheet materials.
It is known to provide shaped bodies of non-electroconductive plastics, e.g. of polystyrene, acrylonitrilelbutadiene/styrene copolymers, polyolefins, and polyesters, if desired after suitable pretreatment, with thin metal coatings either by electroplating or electroless plating.
In this connection, a process has proved particularly suitable in which a very thin layer of noble metal nuclei is deposited on the plastic surface, In this process, the surface is sensitized and a noble metal salt solution and activated with a solution of a reducing agent. BY means of electroplating or electroless plating baths, continuous metal layers are deposited at the noble metal nuclei.
In such a pretreatment, for example, the surface is first treated with a palladium salt solution, e.g. PdCl and then with a hydrazine hydrate solution, or first with a stannous chloride solution and then with a silver nitrate solution. In each case, small quantities of elemental noble metal are deposited on the surface.
The present invention provides a process by which it is possible to deposit, by electroless plating on the surface of a shaped body, a metal coating firmly adhering to the polymer surface of the shaped body and which eliminates the disadvantages of known processes.
In the present process for the deposition of a metal coating on the surface of a shaped body of synthetic or natural macromolecular material, a noble metal salt solution or dispersion of a film-forming macromolecular material, which optionally may contain a wetting agent, is spread on the surface of a solid support material to form a layer and, for removing the liquid component of the layer and for forming a continuous film on the support, sufficient heat is caused to act on the coated support. Then, optionally, an activating solution is caused to act thereon and, in a further process step, metallization liquid is caused to act on the film-carrying support. Optionally, the film then is stripped from the support.
A shaped body of macromolecular material means in particular a sheet material of macromolecular material which is self-supporting, as well as a composite material comprising a mechanically stable support sheet material and a film of macromolecular material firmly adhering thereto.
A film capable of being stripped from the solid support without leaving any residue is self-supporting.
The self-supporting film has two free surfaces and the film adhering to the substrate one free surface accessible to metallization.
The support material may have a continuous structured or structureless surface.
It is also possible to use textile sheet materials as supports.
The layer of a liquid polymer dispersion or solution which is first to be applied to the support according to the process of the invention is applied by known processes to the surface of the support material, e.g. by doctor devices, and levelled. The liquid component of the layer is then removed, e.g. by subjecting the coated support material to heat at a temperature sufficient to remove the liquid component. This may be performed, for example, by means of a drying cabinet operated with warm air or in a drying channel.
For the production of a sintered film of polytetrafluoroethylene, a liquid layer of an aqueous tetrafluoroethylene dispersion spread on a sufficiently heat-resistant solid support is exposed in known manner to heat at a temperature of about C; after vaporizing the liquid component of the layer, heat in the temperature range above 300C, preferably in the range between 380 and 400C, is applied to the coated support material in order to form a sintered film of polytetrafluoroethylene on the surface of the support. The time of the heat action is not critical.
The invention further provides a modification ,of the I said process including, when using a polymer dispersion and a discontinuous layer is produced on the surface of the support after vaporization of the dispersing agent, heating the metallized layer sufficiently to form a sintered film of the polymer.
In the following, the liquid containing the noble metal salt and the film-forming macromolecular substances in dispersed or dissolved form is called the sensitized liquid containing film-forming macromo' lecular material. The liquid used for metallization of the shaped bodies, which contains ions reducible to yield free metal and a reducing agent in an aqueous solution, is called the metallization liquid. Furthermore, the metal baths generally contain substances forming complexes with the metal ions, which complexes provide for the necessary stability of the bath and which act on the structure of the metal layer to be formed, e.g. as glossing agents.
The metallization liquid contains no dissolved noble metal salt.
An aqueous solution of a chemical reducing agent is called the activating liquid.
Suitable aqueous noble metal salt solutions have a content of noble metal salt in the range from 0.001 to 10 per cent by weight, calculated on the total weight of the solution.
Suitable noble metal salts for the production of the sensitized liquid containing film-forming macromolecular material are palladium chloride, gold chloride, platinum chloride, and silver nitrate.
Aqueous noble metal salt solutions may be ammoniacal or acidic.
Since the described noble metal salts dissolve in acidic media as well as in ammoniacal aqueous media, the aqueous noble metal salt solutions may be incorporated into ammoniacal as well as into acidic aqueous polymer dispersions or solutions.
If permanent adhesion of the film of polymer material to the support is desired, it is necessary to add to the polymer dispersion or solution a suitable wetting agent, e.g. dodecyl benzene sulfonate, in a quantity of at least 0.1 per cent by weight, calculated on the total weight of the dispersion.
Polymer solutions or dispersions are those which contain natural or synthetic film-forming macromolecular substances, particularly those with a thermoplastic character, in a dissolved or dispersed form.
The solvent or dispersing agent may be water or an organic liquid.
Suitable macromolecular substances are: vinyl polymers and the copolymers thereof, e.g. polyvinyl chloride, copolymers of vinyl chloride and vinyl acetate, vinylidene chloride copolymers, polytetrafluoroethylene, polystyrene, synthetic elastomers, e.g. polyurethane or polyacrylates, polymethacrylates, as well as the copolymers thereof, natural rubbers and synthetic rubbers, polyolefins, cellulose derivatives, polycarbonates, epoxides, polyesters, melamine condensates, urea condensation products, phenol-formaldehyde condensation products, polyamides, and polyphenyls.
If the liquid component of the sensitized liquid containing film-forming macromolecular material is an organic liquid, the noble metal salt is incorporated into the liquid in a manner such that it is dissolved in a suitable solvent, e.g. in acetone or butanone, and this solution is then added to the liquid containing the polymer.
The metallization liquid has a solids content of metal salt in the range from 5 to 20 g, preferably from 7 to 10 g, per liter of copper salt-containing metallization liquid, and 10 to 50 g, preferably from to 30 g, per liter of nickel salt-containing metallization liquid.
Suitable salts are CuSo and NiSO It is particularly advantageous to use metallization liquids which contain a chemical medium capable of complex formation with the metal salt; these complexforming agents maintain the concentration of the metal ions in the metallization liquid low.
Chemical reducing agents in the metallization liquid are, for example, sodium hypophosphite, sodium hydride or nitrogen diethyl borane; formaldehyde, hydrazine hydrate as well as sodium bisulfite are suitable for copper salt-containing liquids.
Particularly suitable for the production of the aqueous activating liquid are stannous chloride combined with hydrochloric acid dissolved in water and hydrazine hydrate in an alkaline solution.
In some cases, it is advantageous to activate the palladium chloride-containing plastic layers, prior to their metallization, with hydrazine hydrate solution. It may be ascertained by simple preliminary tests whether deposition of the metal salt from the metallization liquid takes place sufficiently rapidly without previous activation of the layer by the action of hydrazine hydrate solution.
It is advantageous to use metallization liquids which contain a stabilizer for the reducing agent, e.g. telluric acid in nickel salt baths.
The stabilizer for the chemical reducing agent generally is employed in a concentration in the range from 0.001 to 2 per cent by weight, calculated on the total weight of the liquid. In special cases, it is advantageous when copper-containing metallization liquids contain a gloss-imparting additive, e.g. saccharin, in a concentration of 0.01 g/l.
The ratio by weight of metal salt to chemical reducing agent in the metallization liquid advantageously is so selected that the reducing agent is in excess.
The metallization liquid in accordance with the process has a temperature in the range from 30 to 100C, in the case of a nickel salt-containing liquid, and a temperature in the range from 20 to 50C in the case of a copper salt-containing liquid.
The time of action of the metallization liquid upon the shaped body depends upon the metal quantity to be deposited per unit area.
For depositing, for example, a 0.2 mm thick metal layer, a time in the range from 1 to 10 minutes is required, depending on the chemical composition of the metallization liquid or the metal salt concentration thereof.
The metallized shaped bodies produced according to the process of the invention have metal coatings of a thickness in the range between 0.02 and 0.25 p
The metal coatings are abrasion-resistant and firmly adherent to the polymer surfaces of the shaped bodies.
A firmly adherent coating means a coating which cannot be separated from its contact surface of polymer material by the adhesive tape test.
The adhesive tape test is performed as follows:
A crisscross pattern is scratched into the surface of the metal coating on the shaped body, which pattern is then covered with an adhesive tape having a pressuresensitive layer. The adhesive tape is then stripped with a pull. The metal coating is firmly adherent to its contact surface when the metal coating cannot be separated from its contact surface under the aforementioned conditions.
The process of the invention is performed in a manner such that first the solution of a noble metal salt is added to a polymer dispersion or to a polymer solution. The solids content of the polymer dispersion or of the polymer solution is not critical in the usual viscosity range of easily spreadable or castable solutions.
When preferably using as the aqueous polymer dispersion a dispersion of polytetrafluoroethylene, this dispersion advantageously has a polymer portion in the range from 1 to 10 per cent by weight, calculated on the total weight of the dispersion, particularly preferably, however, in the range from 5 to 8 per cent by weight.
The ratio by weight of the polymer to the noble metal salt in the liquid obtained after the mixing of the polymer dispersion or solution with the noble metal salt solution is in the range between 2 1 and l, preferably in the range between 5 l and 25 l.
The liquid obtained by mixing the polymer dispersion or the polymer solution with the noble metal salt solution is then applied in the form of a layer to a self-supporting planar support of sufficient inherent rigidity and sufficient strength. The material forming the support must be chemically resistant to the liquid components of the liquid layer applied to the support.
The support must be chemically resistant as well as sufficiently mechanically stable in the temperature range in which vaporization of the liquid component of the layer applied to the support takes place.
Suitable supports are those of synthetic or natural organic material as well as of inorganic material which fullfil the above-mentioned conditions. For the production of preferable shaped bodies of polytetrafluoroethylene with metallized surfaces, supports particularly suitable are those of glass, steel, aluminum, unglazed porous clay, unglazed ceramic material or roughened polyimide film. All these supports are well wetted by aqueous polytetrafluoroethylene dispersions containing wetting agents. The support for a shaped body of polytetrafluoroethylene must be thermally resistant in the range between 250 and 400C.
After the application of the liquid layer to the support, the coated support is exposed to heat sufficient to vaporize the liquid components of the applied layer; the temperature to be maintained during heating depends upon the boiling point of the liquid component of the layer which must be vaporized.
The heating of the coated support may take place, for example, in a drying cabinet operated with warm air.
If a copper layer is to be applied, it is advantageous, prior to the action of the copper salt-containing metallization liquid, to treat the surface of the polymer film with activating liquid.
Metallization liquid is then caused to act upon the support provided with a polymer film. This may be performed by immersing the support provided with a polymer film into a tank filled with metallization liquid. After removal of the film-carrying support from the tank, the shaped body with the metallized surface of the polymer film is treated in a rinsing liquid, preferably water, and liberated from the rinsing liquid by drymg.
In accordance with the invention, the production of a self-supporting film from polymer material, the surface of which is metallized, is performed by using a planar sheet material as the support, to the surface of which is applied the above-mentioned liquid layer in the manner described above and, after the formation of a metal layer on the film of polymer material, this film is stripped as a self-supporting film from the support.
If the film to be metallized and united with a support or the self-supporting film to be metallized is of polytetrafluoroethylene, film formation must be performed by a sintering process on a support. In this case, after the application of the aqueous palladium chloride-containing polytetrafluoroethylene dispersion to the support, first the liquid component of the layer is removed by heating sufficient to vaporize this component, and the coated support is then exposed to heat sufficient to produce a sintered film of polytetrafluoroethylene on the surface of the support.
A sintered film is a continuous voidless film in which, by the action of heat, the plurality of discrete particles of polytetrafluoroethylene on the surface of the support fuse to form a continuous film.
Film formation on the support also may be performed continuously by applying a liquid layer in known manner, for example by means of a doctor knife, to the surface of a web support moving at a constant speed, levelled, and then converted in the described manner into a polymer film. In connection with the preferred production of metallized shaped bodies of polytetrafluoroethylene, the following should be borne in mind:
When the solid support has a rough surface, the film produced by sintering the polytetrafluoroethylene particles on the support adheres thereto in any case. The film, for example, adheres inseparably to a surface of a glass plate roughened with silicon carbide paste (depth of rougheness 11 u), independently of whether sintering of the film has occurred prior to or after the action of the metallization liquid.
When the support has a surface of a smaller depth of roughness, adhesion of the metallized polytetrafluoroethylene film depends upon whether the layer has been sintered prior to or after metallization.
When, for example, a palladium chloride-containing aqueous polytetrafluoroethylene dispersion is applied to a grease-free roughened surface of a steel plate (depth of roughness 3.5 1.), the dispersion is dried, the layer of a plurality of discrete particles is metallized by the action of the metallization liquid and the layer is then sintered, the metallized film cannot be stripped from the steel plate surface. When, however, the aqueous polytetrafluoroethylene dispersion is applied to the polished surface of the steel plate and the polytetrafluorroethylene layer is dried, sintered and only then metallized by the action of the metallization liquid, the metallized polytetrafluoroethylene film can be stripped from the support without leaving any residue. In this manner, it is possible to produce self-supporting films with metallized surfaces.
When the palladium chloride-containing aqueous polytetrafluoroethylene dispersion is coated onto a grease-free polished surface of a glass plate or of a high-luster polished steel plate (depth of roughness 0.1 p.) and then dried, the metallized film can be stripped from the support in the form of a self-supporting film independently of whether the action of the metallization liquid has taken place prior to or after sintering.
If the production of self-supporting metallized films of polytetrafluoroethylene is desired, the support to which the polytetrafluoroethylene dispersion is applied must be so selected that easy separation of the sintered metallized film therefrom without any residue is guaranteed.
It is possible, for example, to apply the dispersion continuously to the polished surface of a drum. At the periphery of the drum, is a device for the application of the aqueous dispersion, a device for drying the applied layer, a device by means of which it is possible to cause the metallization liquid to act upon the dry polytetrafluoroethylene layer, and a heating device for effecting sintering of the layer to give a film. In this manner, it is possible to continuously strip from the surface of the rotating drum a self-supporting metallized film of polytetrafluoroethylene in the form of a self-supporting web.
The metal coating applied to the polytetrafluoroethylene film, self-supporting or not, may serve as an adhesive for substances which, without the adhesive metal coating on the polytetrafluoroethylene film, cannot be firmly united with a shaped body of polytetrafluoroethylene.
Plastics adhering to the metal coating, for example, may be sufficiently deposited from solutions, dispersions or melts in the form of self-supporting sheet materials, e.g. by laminating while hot, to the metallized surface of the polytetrafluoroethylene layer.
For these cases, it is sufficient if the metal layer imparting adhesion is very thin, e.g. has a thickness of 0.1
In this manner, it is also possible to produce sandwiches constructed from a plurality of alternately superimposed layers of polytetrafluoroethylene and metal. The individual metal layers may be similar or different.
The quantity og noble metal salt in the aqueous polytetrafluoroethylene dispersion which is necessary to form a continuous metal coating deposited by electroless plating on the surface of the polytetrafluoroethylene layer determines:
l. the fluocculation of the dispersed plastic material or the stability of the dispersion during drying of the layer on the support,
2. the speed of deposition of the metal from the metallization liquid on the layer of polytetrafluoroethylene,
and 3. the continuity of the metal coating deposited on the surface of the polytetrafluoroethylene layer.
The shaped bodies metallized according to the process of the invention may be used as electrical resistance elements. When using a shaped body of a metallized film of macromolecular material which adheres to a support, the support must be an electrically insulating material.
The invention will be further illustrated by reference to the accompanying drawing, in which:
FIG. 1 shows a sheet material with a metallized surface (which consists of a substrate with a continuous surface) of a noble metal salt-containing layer of macromolecular material thereon and a coating of metal on the surface and firmly adhering thereto, and
FIG. 2 shows a noble metal salt-containing self-supporting film of macromolecular material on the surface of which there is a firmly adhering metal coating.
The self-supporting film with the metallized surface according to FIG. 2 is obtained by stripping the film 2 with the metallized surface from the substrate 1 according to FIG. 1.
Referring to FIG. 1, numeral 1 identifies the substrate, numeral 2 identifies the noble metal salt-containing film of macromolecular material, numeral 3 the noble metal salt uniformly distributed over the crosssection of the film, and numeral 4 identifies the metal coating.
Referring to FIG. 2, numerals 2, 3, and 4 have the same meanings as in FIG. 1.
The following examples further illustrate the invention:
EXAMPLE 1 A 60 percent by weight aqueous polytetrafluoroethylene dispersion (e.g. Hostafion TF 32, registered trade mark of Farbwerke Hoechst AG, Frankfurt, Germany), which contains 5 percent by weight of a non-ionic wetting agent, i.e. a reaction product of ethylene oxide and nonyl phenol (Hostapal, a registered tade mark of Farbwerke Hoechst AG, Frankfurt, Germany) and 0.04 percent by weight of ammonia is diluted with water in a ratio of l 12.
A 5 percent by weight aqueous polytetrafluoroethylene dispersion is obtained thereby. To 86 ml of this diluted aqueous polytetrafluoroethylene dispersion, there is added a solution of 0.2 g of palladium chloride dissolved in ml of concentrated ammonia and 0.8 g of the sodium salt of dodecylphenyl sulfonic acid dissolved in 4 ml of water. The liquid thus prepared has a content of 4.3 per cent by weight of polytetrafluoroethylene and 0.2 per cent by weight of palladium chloride: the ratio of palladium chloride to polytetrafluoroethylene in the dispersion is 1 21.5.
The pH value of the liquid is 8.0.
One support used for the liquid layer of the abovedescribed composition is an aluminum plate of a depth of roughness of 4.8 p., and another one a glass plate of a depth of roughness of 11 u.
A liquid layer of the above-described palladium chloride-containing aqueous polytetrafluoroethylene dispersion is applied to each of the two plates. The application is performed by casting the liquid onto the surface of the support and levelling the layer thickness. The coated plate is dried for 2 minutes in a drying cabinet at 90C. After removal from the drying cabinet,
the plates are placed into a liquid bath of the metallization liquid which is prepared as follows: 25 g of NiSO 7 H O are dissolved in 200 ml of distilled water. A second solution is prepared containing 24.4 g of Na H- PO dissolved in 200 ml of distilled water. Both salt solutions are combined and 27 g of d,1-lactic acid and 16.8 g of succinic acid, dissolved in 200 ml of distilled water, are added to the aqueous solution containing the metal salt and the chemical reducing agent. The solution is adjusted to a pH value of 6 by addition of caustic soda. A small quantity of telluric acid is added to the solution, which is then diluted with distilled water to 1,000 ml. The metallization liquid has a temperature of C. The time of action of the metallization liquid onto the supporting plates coated with polytetrafluoroethylene is 1 minute. After this time of action, the plates are removed from the bath and placed in a drying cabinet heated to 380C. The plates remain in this drying cabinet for 15 minutes. The. sintered polytetrafluoroethylene layer has a thickness of 1.1 u; the nickel coating deposited by electroless plating on its surface has a thickness of 0.2 [L- A crisscross pattern is scratched into the nickel coating by means of a razor blade. A pressure-sensitive adhesive tape (e.g. a Tesa tape marketed by Messrs. Beiersdorf, Hamburg, germany) is bonded over the crisscross pattern and then stripped again with a pull. The adhesive tape can be separated from the metal coating without leaving any residue, i.e. the metal coating firmly adheres to the polytetrafluoroethylene film.
Even after repeated sharp bending of the coated aluminum plate, the plastic layer does not break; the nickel coating cannot be separated.
EXAMPLE 2 A liquid layer of a palladium chloride-containing aqueous polytetrafluoroethylene dispersion, as described in Example 1, is applied to the surface of an unglazed porous clay plate and dried. In contradistinction to Example 1, the plate is then placed for 5 minutes into a metallization liquid containing, instead of a nickel salt, a 0.6 percent aqueous copper sulfate solution containing 1.5 percent of formaldehyde and 1.9 per cent of sodium hydrogen sulfite (e.g. chemical copper deposition bath CP 70 of Messrs. Shipley). Sintering takes place during 15 minutes at a temperature of 380C in a drying cabinet.
The metallization liquid has a temperature of 50C. The copper coating on the film of polytetrafluoroethylene has a thickness of 0.2 to 0.3 11.. Result of the adhesive tape test: firm adhesion.
The polytetrafluoroethylene film provided with a copper coating adheres firmly to the supporting plate. The thickness of the copper coating applied to the polytetrafluoroethylene film by electroless plating is then increased by electroplating to 10 p The 10 p. thick coating is subjected to the adhesive tape test. Result: firm adhesion.
EXAMPLE 3 This example is similar to Example 1 with the excep- The nickel-plated polytetrafluoroethylene layer can be easily stripped from the support without leaving any rsidue.
The adhesion of the metal coating to the self-supporting nickel-plated polytetrafluoroethylene layer is tested according to the adhesive tape test. Result: firm adhesion.
EXAMPLE 4 An 8 percent aqueous solution of polyvinyl alcohol (e.g. Mowiol N 70-98 of Farbwerke Hoechst AG, Frankfurt, Germany) is prepared which contains 0.1 percent of palladium chloride, calculated on the solution weight, or 1.2 percent of palladium chloride, calculated on the polyvinyl alcohol weight. A liquid layer of this solution is applied to the roughened surface of a glass plate and dried for 5 minutes at 200C in a drying cabinet operated with warm air. The dried polymer film has a thickness of u. The filmrcarrying glass plate is then placed into a metallization liquid of the composition described in Example 1. Duration: 1 minute. The plate is then removed from the bath and rinsed with water. The nickel coating firmly adhering to the surface of the polymer film has a thickness of about 0.2 11,. The thickness of the applied nickel layer is then increased in known manner by electroplating to 5 u, the time of action in the electroplating bath is minutes at a current density of l A/dm, and the electoplating bath has a temperature of 60C.
EXAMPLE 5 A 10 percent aqueous dispersion of a copolymer based on vinylidene chloride/methyl methacrylatelmethyl acrylate/itaconic acid which contains an addition of 0.05 percent of palladium chloride, calculated on the dispersion weight, or of 0.5 percent of palladium chloride, calculated on the polymer component weight, is applied to the surface of a textile fabric (cotton/net tle fabric) and dried for 3 minutes at 130C. The layer thickness of the polymer film formed on the support material is 10 u. The polymer film-carrying support material is then treated for 6 minutes in a metallization liquid according to the procedure of Example 1. After this treatment, a continuous nickel coating of a thickness of about 0.2 p. has formed on the surface of the polymer film to which it firmly adheres.
EXAMPLE 6 The example is similar to Example 5 with the exception that the coated textile material, after drying at 130C, is immersed for 1 minute into a 0.6 percent aqueous hydrazine hydrate solution containing 1.2 per cent of NaOl-l. The coated textile material is then placed for 8 minutes into a metallization bath according to example 2. A 0.2 p. thick copper coating is formed on the surface of the polymer film on the support material.
EXAMPLE 7 A 10 percent aqueous dispersion of a copolymer based on acrylic acid butyl ester is prepared which contains 0.1 per cent of palladium chloride, calculated on the dispersion weight, or 1 per cent of palladium chloride, calculated on the polymer component weight. A layer of the liquid is applied to the surface of a polyester film (e.g. Hostaphan, registered trade mark of Farbwerke Hoechst AG, Frankfurt, Germany). The coated polyester film is dried for 2 minutes at 130C in a drying cabinet operated with warm air; the thickness of the dry layer of the copolymer film on the surface of the polyester film is 7 p The coated polyester film is bathed for 1 minute in a 0.6 percent aqueous hydrazine hydrate solution containing 1.2 percent of NaOH and then rinsed under running water.
a. One half of the coated polyester film is placed for 1 minute into a metallization liquid of the composition described in Example 1. After treatment, a continuous, about 0.2 11. thick, nickel coating has formed on the surface of the film of the copolymer.
b. The other half of the polyester supporting film coating with a polymer is placed for 5 minutes into a metallization liquid according to Example 2. After the indicated time of action, a 0.2 p. thick copper coating has formed on the surface of the film of the polyacrylic ester copolymer.
The metal coatings produced are firmly adherent to the plastic film surfaces.
The shaped body is suitable for use as an electrical resistance element.
EXAMPLE 8 A 10 percent solution of polyvinyl acetate (e.g. Mowilith 50 of Farbwerke Hoechst AG, Frankfurt, Germany) in acetone is prepared, which contains 0.04 percent of palladium chloride, calculated on the solution weight, or 0.4 percent of palladium chloride, calculated on the polymer component weight, and applied to the surface of a supporting film of cellulose acetate. The supporting film coated with the liquid, is placed for 2 minutes into a drying cabinet operated with warm air of 130C. After heat treatment, the thickness of the polymer film on the supporting film is 10 u.
The coated supporting film is divided into two parts of equal size:
a. One part of the coated film is placed for 1 minute into a metallization liquid according to the procedure of Example 1. A continuous 0.2 p, thick nickel coating is formed on the surface of the polyvinyl acetate film.
b. The other half of the coated film is bathed in a 0.5 per cent aqueous stannous chloride solution and then rinsed under running water. The thus treated film is then placed for 5 minutes into a metallization liquid according to the procedure of Example 2. A 0.2 p. thick continuous copper coating is formed on the surface of the polyvinyl acetate film.
In both cases, the metal coatings are firmly adherent to the plastic film surfaces.
EXAMPLE 9 A 10 percent by weight solution of cellulose acetate in acetone is prepared which contains 0.04 percent of palladium chloride, calculated on the solution weight. For the preparation of this acetone solution of cellulose acetate and palladium chloride, 0.2 g of palladium chloride are dissolved in 1 ml of concentrated hydrochloric acid at C. After cooling this solution to room temperature, 15 ml of acetone are carefully added with continuous stirring. With further stirring, the solution prepared is heated to 40 to 50C, whereby the total quantity of palladium chloride is dissolved. This acetonic palladium chloride solution is added to the ace- 1 1 tonic cellulose acetate solution.
The cellulose acetate has a fatty acid content of 72 percent, a K value of 70 (e.g. Cel'lit 700 of Farbenfabriken Bayer, Leverkusen, Germany, may be used). This solution is spread on the surface of a cellulose acetate supporting film to produce a layer. The coated cellulose acetate film is dried for 2 minutes at 130C. The thickness of the film on the supporting film is 2 u. The coated film is bathed for 1 minute in a 0.6 percent aqueous hydrazine solution and then rinsed for 1 minute in running water.
The pretreated coated film is then placed for 2 minutes into a metallization liquid according to Example 2. After the time of action, an about 0.2 thick continuous copper coating has formed on the surface of the applied cellulose acetate film.
The metal coating is firmly adherent to its support.
EXAMPLE A 10 percent by weight acetonic solution of a copolymer based on polyvinyl chloride/acrylonitrile/itaconic acid, e.g. F 220 of Messrs. Dow Chemical Company, Midland, U. S. A., having a content of 0.04 percent of palladium chloride, calculated on the solution weight, or of 0.4 percent of palladium chloride, calculated on the copolymer component weight. The addition of the palladium chloride is always performed in the manner described in Example 8. This solution is spread in the form of a liquid layer on the surface of a polyester film (e.g. Hostaphan, registered trade mark of Farbwerke Hoechst AG, Frankfurt, Germany). The coated Hostaphan film is dried for 2 minutes at 140C by placing it into a drying cabinet operated with warm air. After drying, the applied copolymer film has a layer thickness of 10 u. The film sample is divided into two pieces of equal size.
One half of the film is placed for 1 minute into a metallization liquid according to the procedure of Ex- 12 ample 1. After the time of action, an about 02. 11. thick coating of nickel has formed on the surface of the copolymer film. The coating is firmly adherent to its contact surface. a
The second half of the film sample is bathed for 1 minute in 0.6 per cent aqueous hydrazine hydrate solution. The coated film is then rinse for 1 minute in running water. The film is then placed for 5 minutes into a metallization liquid according to the procedure of Example 2. After the time of action of the metallization bath, an about 0.2 p. thick continuous copper coating has formed on the surface of the copolymer film on the supporting film. The coating is firmly adherent to its contact surface.
Shaped bodies produced in accordance with the invention may be used as electrical resistance elements provided the metallized film has a substrate of nonelectroconductive material.
It will be obvious to those skilled in the art that many modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.
What is claimed is:
l. A self-supporting film of polytetrafluoroethylene having a noble metal salt dispersed therein and a metal coating selected from the group consisting of copper and nickel on the surface of said film.
2. A self-supporting film according to claim 1 in which the noble metal salt is selected from the group consisting of palladium chloride, platinum chloride or silver nitrate.
3. A self-supporting film according to claim 1 in which the weight ratio of polytetrafluoroethylene to noble metal salt disposed therein is in the range of about5:1to25:l.

Claims (3)

1. A SELF-SUPPORTING FILM OF POLYTETRAFLUOROETHYLENE HAVING A NOBLEE METAL SALT DISPERSED THEREIN AND A METAL COATING SELECTED FROM THE GROUP CONSISTING OF COPPER AND NICKEL ON THE SURFACE OF SAID FILM.
2. A self-supporting film according to claim 1 in which the noble metal salt is selected from the group consisting of palladium chloride, platinum chloride or silver nitrate.
3. A self-supporting film according to claim 1 in which the weight ratio of polytetrafluoroethylene to noble metal salt disposed therein is in the range of about 5 : 1 to 25 : 1.
US38514873 1971-03-09 1973-08-02 Process for the manufacture of metallized shaped bodies of macromolecular material Expired - Lifetime US3930109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US38514873 US3930109A (en) 1971-03-09 1973-08-02 Process for the manufacture of metallized shaped bodies of macromolecular material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19712111137 DE2111137A1 (en) 1971-03-09 1971-03-09 Metallized, porous molded body and process for its production
DE19712111136 DE2111136A1 (en) 1971-03-09 1971-03-09 Process for the production of metallized moldings from macromolecular material
US23182572A 1972-03-06 1972-03-06
US38514873 US3930109A (en) 1971-03-09 1973-08-02 Process for the manufacture of metallized shaped bodies of macromolecular material

Publications (1)

Publication Number Publication Date
US3930109A true US3930109A (en) 1975-12-30

Family

ID=27431218

Family Applications (1)

Application Number Title Priority Date Filing Date
US38514873 Expired - Lifetime US3930109A (en) 1971-03-09 1973-08-02 Process for the manufacture of metallized shaped bodies of macromolecular material

Country Status (1)

Country Link
US (1) US3930109A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035500A (en) * 1976-06-04 1977-07-12 Western Electric Company, Inc. Method of depositing a metal on a surface of a substrate
US4076889A (en) * 1974-11-21 1978-02-28 Kureha Kagaku Kogyo Kabushiki Kaisha Heat-insulation material
US4317856A (en) * 1978-12-04 1982-03-02 Dynamit Nobel Ag Insulating-material bodies having metal particles dispersed in the resin
WO1984003645A1 (en) * 1983-03-18 1984-09-27 Gore & Ass Microporous metal-plated polytetrafluoroethylene articles and method of manufacture
US4910072A (en) * 1986-11-07 1990-03-20 Monsanto Company Selective catalytic activation of polymeric films
US5017422A (en) * 1987-06-13 1991-05-21 Bayer Aktiengesellschaft Cast films of ABS plastics
WO1991009986A1 (en) * 1989-12-21 1991-07-11 Monsanto Company Catalytic, water-soluble polymeric films for metal coatings
US5075037A (en) * 1986-11-07 1991-12-24 Monsanto Company Selective catalytic activation of polymeric films
US5082734A (en) * 1989-12-21 1992-01-21 Monsanto Company Catalytic, water-soluble polymeric films for metal coatings
US5135780A (en) * 1990-09-06 1992-08-04 Union Oil Company Of California Method for depositing free metal containing latex
US5206051A (en) * 1990-11-08 1993-04-27 Curwood, Inc. Metallized polypropylene film and process for manufacture
US5266411A (en) * 1990-11-08 1993-11-30 Curwood, Inc. Metallized polypropylene film and process for manufacture
US5296020A (en) * 1991-04-11 1994-03-22 Bayer Aktiengesellschaft Formulation for the activation of substrate surfaces for currentless metallization thereof
US5300140A (en) * 1991-03-09 1994-04-05 Bayer Aktiengesellschaft Hydroprimer for metallising substrate surfaces
US5411795A (en) * 1992-10-14 1995-05-02 Monsanto Company Electroless deposition of metal employing thermally stable carrier polymers
US5419954A (en) * 1993-02-04 1995-05-30 The Alpha Corporation Composition including a catalytic metal-polymer complex and a method of manufacturing a laminate preform or a laminate which is catalytically effective for subsequent electroless metallization thereof
US5556711A (en) * 1992-06-29 1996-09-17 Mitsui Toatsu Chemicals, Inc. Decomposable composite material
US6468672B1 (en) 2000-06-29 2002-10-22 Lacks Enterprises, Inc. Decorative chrome electroplate on plastics
US20090137399A1 (en) * 2005-09-16 2009-05-28 Sumitomo Electric Industries, Ltd. Method of fabricating superconducting wire and superconducting apparatus
US20160374209A1 (en) * 2015-06-18 2016-12-22 Postech Academy - Industry Foundation Method of fabricating metal nanowire pattern
US20220001498A1 (en) * 2018-10-04 2022-01-06 Nitto Denko Corporation Heat-resistant release sheet and thermocompression bonding method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2789063A (en) * 1954-03-26 1957-04-16 Minnesota Mining & Mfg Method of activating the surface of perfluorocarbon polymers and resultant article
US2876131A (en) * 1954-11-23 1959-03-03 Du Pont Coating of fibrous structrues with tetrafluoroethylene polymer
US2906658A (en) * 1958-02-05 1959-09-29 Du Pont Method for the preparation of cementable fluorocarbon polymer surfaces
US2997448A (en) * 1958-09-24 1961-08-22 Du Pont Molded fluorocarbon polymer product and method of preparing same
US3014818A (en) * 1957-12-09 1961-12-26 Du Pont Electrically conducting articles and process of making same
US3108017A (en) * 1959-11-28 1963-10-22 Hoechst Ag Coating organic films with mixture of amorphous and crystalline dispersions of vinylidene chloride copolymers
US3167491A (en) * 1960-07-29 1965-01-26 Plasitron Corp Polyfluorinated ethylene polymermetal article and method
US3524754A (en) * 1967-04-28 1970-08-18 Shell Oil Co Metal plating of plastics
US3644142A (en) * 1968-12-11 1972-02-22 American Cyanamid Co Protective garment against white phosphorus
US3666550A (en) * 1968-05-24 1972-05-30 Teijin Ltd Textile materials having durable antistatic properties
US3672937A (en) * 1965-11-12 1972-06-27 Gottfried Kallrath Process for the non-electrolytic metallizing of non-conductors
US3775176A (en) * 1971-02-23 1973-11-27 Amicon Corp Method of forming an electroplatable microporous film with exposed metal particles within the pores

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2789063A (en) * 1954-03-26 1957-04-16 Minnesota Mining & Mfg Method of activating the surface of perfluorocarbon polymers and resultant article
US2876131A (en) * 1954-11-23 1959-03-03 Du Pont Coating of fibrous structrues with tetrafluoroethylene polymer
US3014818A (en) * 1957-12-09 1961-12-26 Du Pont Electrically conducting articles and process of making same
US2906658A (en) * 1958-02-05 1959-09-29 Du Pont Method for the preparation of cementable fluorocarbon polymer surfaces
US2997448A (en) * 1958-09-24 1961-08-22 Du Pont Molded fluorocarbon polymer product and method of preparing same
US3108017A (en) * 1959-11-28 1963-10-22 Hoechst Ag Coating organic films with mixture of amorphous and crystalline dispersions of vinylidene chloride copolymers
US3167491A (en) * 1960-07-29 1965-01-26 Plasitron Corp Polyfluorinated ethylene polymermetal article and method
US3672937A (en) * 1965-11-12 1972-06-27 Gottfried Kallrath Process for the non-electrolytic metallizing of non-conductors
US3524754A (en) * 1967-04-28 1970-08-18 Shell Oil Co Metal plating of plastics
US3666550A (en) * 1968-05-24 1972-05-30 Teijin Ltd Textile materials having durable antistatic properties
US3644142A (en) * 1968-12-11 1972-02-22 American Cyanamid Co Protective garment against white phosphorus
US3775176A (en) * 1971-02-23 1973-11-27 Amicon Corp Method of forming an electroplatable microporous film with exposed metal particles within the pores

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076889A (en) * 1974-11-21 1978-02-28 Kureha Kagaku Kogyo Kabushiki Kaisha Heat-insulation material
US4035500A (en) * 1976-06-04 1977-07-12 Western Electric Company, Inc. Method of depositing a metal on a surface of a substrate
US4317856A (en) * 1978-12-04 1982-03-02 Dynamit Nobel Ag Insulating-material bodies having metal particles dispersed in the resin
WO1984003645A1 (en) * 1983-03-18 1984-09-27 Gore & Ass Microporous metal-plated polytetrafluoroethylene articles and method of manufacture
US4557957A (en) * 1983-03-18 1985-12-10 W. L. Gore & Associates, Inc. Microporous metal-plated polytetrafluoroethylene articles and method of manufacture
US5075037A (en) * 1986-11-07 1991-12-24 Monsanto Company Selective catalytic activation of polymeric films
US4910072A (en) * 1986-11-07 1990-03-20 Monsanto Company Selective catalytic activation of polymeric films
US5017422A (en) * 1987-06-13 1991-05-21 Bayer Aktiengesellschaft Cast films of ABS plastics
WO1991009986A1 (en) * 1989-12-21 1991-07-11 Monsanto Company Catalytic, water-soluble polymeric films for metal coatings
US5082734A (en) * 1989-12-21 1992-01-21 Monsanto Company Catalytic, water-soluble polymeric films for metal coatings
AU635393B2 (en) * 1989-12-21 1993-03-18 Amesbury Group, Inc. Catalytic, water-soluble polymeric films for metal coatings
CN1035393C (en) * 1989-12-21 1997-07-09 孟山都公司 Catalytic, water-soluble polymeric films for metal coatings
US5135780A (en) * 1990-09-06 1992-08-04 Union Oil Company Of California Method for depositing free metal containing latex
US5206051A (en) * 1990-11-08 1993-04-27 Curwood, Inc. Metallized polypropylene film and process for manufacture
US5266411A (en) * 1990-11-08 1993-11-30 Curwood, Inc. Metallized polypropylene film and process for manufacture
US5300140A (en) * 1991-03-09 1994-04-05 Bayer Aktiengesellschaft Hydroprimer for metallising substrate surfaces
US5296020A (en) * 1991-04-11 1994-03-22 Bayer Aktiengesellschaft Formulation for the activation of substrate surfaces for currentless metallization thereof
US5556711A (en) * 1992-06-29 1996-09-17 Mitsui Toatsu Chemicals, Inc. Decomposable composite material
US5411795A (en) * 1992-10-14 1995-05-02 Monsanto Company Electroless deposition of metal employing thermally stable carrier polymers
US5419954A (en) * 1993-02-04 1995-05-30 The Alpha Corporation Composition including a catalytic metal-polymer complex and a method of manufacturing a laminate preform or a laminate which is catalytically effective for subsequent electroless metallization thereof
US5985785A (en) * 1993-02-04 1999-11-16 Alpha Corporation Composition including a catalytic metal-polymer complex and a method of manufacturing a laminate preform or a laminate which is catalytically effective for subsequent electroless metallization thereof
US6468672B1 (en) 2000-06-29 2002-10-22 Lacks Enterprises, Inc. Decorative chrome electroplate on plastics
US20090137399A1 (en) * 2005-09-16 2009-05-28 Sumitomo Electric Industries, Ltd. Method of fabricating superconducting wire and superconducting apparatus
US8048475B2 (en) * 2005-09-16 2011-11-01 Sumitomo Electric Industries, Ltd. Method of fabricating superconducting wire and superconducting apparatus
US20160374209A1 (en) * 2015-06-18 2016-12-22 Postech Academy - Industry Foundation Method of fabricating metal nanowire pattern
US20220001498A1 (en) * 2018-10-04 2022-01-06 Nitto Denko Corporation Heat-resistant release sheet and thermocompression bonding method

Similar Documents

Publication Publication Date Title
US3930109A (en) Process for the manufacture of metallized shaped bodies of macromolecular material
US4764401A (en) Process for activating substrate surfaces for electroless metallization
US4493861A (en) Process for activating substrate surfaces for currentless metallization
US4039714A (en) Pretreatment of plastic materials for metal plating
US5275861A (en) Radiation shielding fabric
CA1087599A (en) Method of depositing a metal on a surface
US6461678B1 (en) Process for metallization of a substrate by curing a catalyst applied thereto
US5082734A (en) Catalytic, water-soluble polymeric films for metal coatings
US4847139A (en) Flexible circuits
PT616053E (en) METHOD AND COMPOSITION FOR IMMERSION COATING WITHOUT FORMAL SHAPE WITH AUTO ACCELARATION AND REPLACEMENT
CA1169720A (en) Process for activating surfaces for currentless metallization
US3501332A (en) Metal plating of plastics
US4719145A (en) Catalytic process and systems
JPS586781B2 (en) Kinzoku Haku Makakei Seihou
US4804475A (en) Metallized membrane systems
US3871903A (en) Metallized shaped body of macromolecular material
US3326719A (en) Metal coating process
US4568570A (en) Process for activating substrates for electroless metallization
US4888209A (en) Catalytic process and systems
EP0280918A2 (en) Process for metal plating of substrates
US3666527A (en) Method of electroless deposition of metals with improved sensitizer
JPS60206085A (en) Method of producing printed circuit board
US4180602A (en) Electroless plating of polyvinylidene fluoride
CN103741148B (en) A kind of honeycomb fiber glass epoxy antenna metal metallization processes
US5458955A (en) Metal/polymer laminates having an anionomeric polymer film layer