US4085046A - Renal dialysis concentrate delivery system - Google Patents

Renal dialysis concentrate delivery system Download PDF

Info

Publication number
US4085046A
US4085046A US05/714,601 US71460176A US4085046A US 4085046 A US4085046 A US 4085046A US 71460176 A US71460176 A US 71460176A US 4085046 A US4085046 A US 4085046A
Authority
US
United States
Prior art keywords
concentrate
delivery system
renal dialysis
supply
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/714,601
Inventor
Thomas J. Saporito, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US05/714,601 priority Critical patent/US4085046A/en
Application granted granted Critical
Publication of US4085046A publication Critical patent/US4085046A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1654Dialysates therefor
    • A61M1/1656Apparatus for preparing dialysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1654Dialysates therefor
    • A61M1/1656Apparatus for preparing dialysates
    • A61M1/1668Details of containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/30Accessories; Auxiliary operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1654Dialysates therefor
    • A61M1/1656Apparatus for preparing dialysates
    • A61M1/1657Apparatus for preparing dialysates with centralised supply of dialysate or constituent thereof for more than one dialysis unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/84General characteristics of the apparatus for treating several patients simultaneously

Definitions

  • This invention relates to automated means for supplying renal dialysis concentrate to renal dialysis machines, and, more specifically, this invention is related to equipment for supplying a number of renal dialysis machines with concentrate in proper quantity from a remote location.
  • a dialysis machine In general, in renal dialysis work, a dialysis machine is connected to the patient in such fashion that blood from the patient circulates through the machine and is cleansed through indirect exposure with a water solution of a renal dialysis concentrate. It is critical to the well being of renal dialysis patients that a continuous and effective supply of renal dialysis concentrate is provided.
  • a sink is provided adjacent to the renal dialysis machine, which, in turn, is adjacent to the patient. The sink provides water for a mixture in specific quantities with the renal dialysis concentrate and a drain for disposal of waste material emerging from the renal dialysis machine.
  • the liquid concentrate is provided in five-gallon containers.
  • the containers which are positioned immediately adjacent to the renal dialysis machine, must be replaced after a patient's use.
  • the five-gallon concentrate-filled containers are very heavy and quite bulky for an individual, such as a female nurse, to handle. In spite of this difficulty, coupled with the regular need for dialysis treatment by a large number of kidney patients, such an approach remains a standard approach to concentrate supply.
  • the present invention has met the above-described need by providing an automated remotely positioned means for deliverying dialysis concentrate to a number of dialysis machines simultaneously.
  • This system may conveniently employ two or more concentrate reservoirs containing fifty or more gallons of concentrate which may be disposed at a position remote with respect to the machines.
  • the system provides for at least two renal dialysis concentrate reservoirs and supply conduit means for delivery of the concentrate to the renal dialysis machines.
  • Return conduit means are provided for returning concentrate to the reservoirs when a predetermined pressure is exceeded in the supply system.
  • a multiple position valve is placed in the supply conduit and a multiple position valve is placed in the return conduit. These valves have a first position wherein supply and return conduits are in communication with a first reservoir, and a second position wherein supply and return conduits are in communication with a second reservoir.
  • a pump is provided in operative relationship with the supply conduit.
  • a first container which may be a vacuum type jar or other vessel, is in communication with the pump.
  • the vacuum container or other suitable vessel is also in communication with the return conduit which may preferably contain a second vessel and a relief valve set to open at a predetermined pressure in order to permit return of concentrate to one of the reservoirs.
  • Dialysis concentrate emerging from the first vacuum container or vessel may preferably be connected to a header which, through a number of feeder tubes, is each connected to outlets for discharge of concentrate to dialysis units.
  • the feeder tubes are each preferably provided with a check valve in order to resist the flow of concentrate through the particular feeder when it is not connected to a dialysis machine.
  • Means are preferably provided for indicating when a reservoir is empty.
  • One form of such means is a pressure monitor provided in the supply conduit so as to emit a signal when the pressure in the conduit drops below a predetermined level.
  • An alternate approach is to provide an air detector which emits a signal when air begins to flow therethrough in predetermined quantities.
  • the liquid concentrate passing through the supply system preferably passes under the influence of a combination of pressure established by the pump, the suction drawn by the dialysis machine or machines which are in operation, and connected to the feeder tubes, and, where practical, also under the influence of gravity. It will be appreciated that for some installations primary or sole reliance may be placed upon one or more, but less than all three, of these transport means.
  • FIG. 1 is a schematic illustration of a portion of the fluid handling system of the present invention.
  • FIG. 2 is a schematic illustration of a concentrate supply header, the supply tubes and related delivery items.
  • FIG. 3 is a schematic illustration of a three-way valve in the supply conduit means of the present invention.
  • FIG. 4 is a schematic illustration of a three-way valve in the return conduit means of the present invention.
  • FIG. 5 is a partially schematic electrical circuit diagram showing the electrical system employed in a preferred embodiment of the present invention.
  • FIG. 6 is a partially schematic illustration of an air detector approach to monitoring reservoir depletion in accordance with the present invention.
  • FIG. 7 illustrates a fragmentary schematic view of an alternate embodiment of the present invention.
  • FIG. 8 is a fragmentary schematic illustration of another embodiment of the present invention.
  • FIG. 9 is a fragmentary schematic illustration of a modified concentrate pump control circuit.
  • FIG. 10 is a schematic illustration of a form of pump shutoff alarm.
  • a pair of large liquid dialysis concentrate reservoirs 2, 4 which may conveniently be on the order of fifty-gallon capacity.
  • a first fluid supply conduit 6 is in communication with reservoir 2 and supply valve 10.
  • supply valve 10 is preferably a three-way solenoid valve.
  • a pressure monitor 12 is in communication with valve 10 through supply conduit 14.
  • the pressure monitor 12, which forms no part of the invention, per se, may conveniently be any conventional type which emits a signal when the concentrate pressure drops below a predetermined level.
  • suitable types of pressure monitors for example, are those wherein fluid pressure deforms a diaphragm to deflect a meter and those wherein a photocell emits a signal responsive to depletion of fluid in the conduit.
  • the pressure monitor 12 is set to emit a signal when the fluid dialysis concentrate pressure within the supply system is reduced beyond a predetermined level so as to indicate that the reservoir supplying the concentrate is either empty or is becoming empty so that the supply means may be switched into communication with a full reservoir.
  • Pump 20 is preferably of the occlusion variety in order to minimize the likelihood that air or gas bubbles will be delivered with the concentrate. Pump 20 also preferably has a variable speed control. Fluid conduit 22 operatively connects pressure monitor 12 with pump 20.
  • concentrate reservoir 4 is in communication with valve 10 by means of the supply conduit 30.
  • the valve 10 In the valve position illustrated in FIG. 1, the valve 10 is in a first position which permits flow from reservoir 2 through conduit 6 to the valve 10 to the remainder of the supply system, and supply from reservoir 4 is not permitted.
  • the valve 10 is shown in a second position which permits flow from reservoir 4 through supply conduit 30 through valve 10 to the remainder of the system through supply conduit 14. Supply from reservoir 2 through supply conduit 6 is precluded.
  • the manner in which three-way valve 10 is moved from one position to the other will be described below. This switching will generally be accomplished when it is desired to switch from an empty reservoir to one which contains a supply of the dialysis concentrate.
  • the supply conduit 28 which emerges from container 24 serves as a header in distributing dialysis concentrate to a number of dialysis machines 32, 34, 36, 38. It will be appreciated that for convenience of illustration the use of the system in combination with four dialysis machines has been illustrated, but a greater or lesser number may be supplied should such an arrangement be desirable.
  • a number of supply tubes 42, 44, 46, 48 have their upper ends in communication with supply header 28 and receive concentrate therefrom.
  • valves 52, 54, 56, 58 are valves 52, 54, 56, 58, respectively. These valves when in a closed position preclude distribution of dialysis concentrate from the particular supply tubes.
  • valves are preferably in the form of check valves which are adapted to resist emergence of dialysis fluid in their normal position but may be displaced by a suitable connector so as to permit flow through a tube into the associated dialysis machine.
  • Such tubes have schematically been indicated by the reference numbers 60, 62, 64, 66, respectively.
  • a prime means of concentrate delivery is the pressure generated by pump 20.
  • a dialysis machine in operation creates a suction which will tend to draw the concentrate into the machine.
  • the header 28 is at a higher elevation that the dialysis machines 32, 34, 36, 38, and gravity will assist with the delivery of concentrate to the machine. If desired, primary reliance may be placed on one or two of these contributing features. Allowance for the contribution of gravity and/or suction can permit increased economies through reduction of pump size. It is important, however, that the pressure be adequate to provide effective delivery of the needed quantities of concentrate even when all of the dialysis machines are operating simultaneously.
  • a return conduit system As situations may arise where the relationship between the pressure in the concentrate and the rate at which the concentrate is being employed by the dialysis machine is such that pressure may build up to an undesirably high level in the system, it is preferred to provide a return conduit system.
  • dialysis concentrate when a predetermined pressure is exceeded, dialysis concentrate will be returned to a supply reservoir until the pressure within the supply system drops below the predetermined level.
  • return conduit 68 connects container 24 with container 70.
  • Return conduit 74 connects container 70 with valve 76.
  • Valve 76 is preferably a three-way solenoid valve and may be generally similar to valve 10 in respect of function, although different internal geometry may be provided if desired or required.
  • Valve 78 in the form shown in illustrated as being positioned within return conduit 74, but, if desired, it could well be placed within container 70, container 24 or return conduit 68. It is preferably a relief valve adapted to open when a predetermined pressure has been exceeded thereby permitting dialysis concentrate to flow toward valve 76.
  • valve 76 In the position of valve 76 shown in FIG. 1, concentrate passing through return conduit 74 and valve 76 emerges through return conduit 80 and delivers concentrate to reservoir 2. The passage of concentrate through valve 76 to return conduit 82 and to reservoir 4 is precluded with valve 76 in the position shown. It will be appreciated, therefore, that when valves 10 and 76 are in the illustrated positions, supply of concentrate is provided by reservoir 2, and any return concentrate is returned to reservoir 2. Referring now to FIG. 3, valve 76 is shown in another position which permits flow of return concentrate through valve 76 to return conduit 82 and precludes flow through valve 76 to return conduit.
  • valves 10, 76 are preferably three-way solenoid valves which may conveniently assume one of two positions, each of which provides for both supply and return of dialysis concentrate from and to a particular reservoir.
  • a convenient manner of controlling the position of valves 10, 76 is to provide an electrical means (to be described below) which will apply either a first voltage or a second voltage to the valve.
  • the first voltage may correspond with a first position of the valves 10, 76 (FIG. 1)
  • the second voltage may correspond with a second position of the valves 10, 76 (FIGS. 3 and 4).
  • application of 24 AC volts may correspond to the valves 10, 76 in the first position and zero AC volts may correspond with the valves 10, 76 being in a second position.
  • FIG. 5 there is shown a schematic of a preferred form of electrical control system for use in the renal dialysis concentrate delivery system of the present invention.
  • a power supply which may conveniently be a 115 volt AC source (not shown) is operatively connected and disconnected from the system by main switch S 1 .
  • Electrical lead 92 supplies the current to the audio alarm portion of this system.
  • Battery eliminator 90 receives the 115 volt AC current and converts it into nine volt DC for supply to audio alarm 96 through lead 94.
  • the battery eliminator may conveniently include a step-down transformer and rectifier.
  • Audio alarm 96 is connected to mute switch 98 by means of lead 100.
  • lead 102 connects junction 104 with relay pin 9 of relay A.
  • Lead 106 connects battery eliminator 90 with relay pin 1 of relay A.
  • the alarm circuit In the event that the pressure monitor 12 indicates that the system pressure has been reduced below the predetermined set point, the alarm circuit would be closed in a manner to be described below, and audio alarm 96 would sound as well as alarm light L 1 becoming illuminated. The sounding of the alarm 96 and illumination of the light L 1 is designed to attract the attention of personnel responsible for maintaining the system.
  • mute switch 98 By manually operating mute switch 98, the audio alarm 96 is turned off.
  • mute switch 98 is such that depression will merely result in silencing of the alarm for a fixed, relatively short, period of time, such as 45 seconds, for example, after which time the audio alarm 96 will resume sounding unless the system has been taken out of the alarm state.
  • T 1 converts the current into 24 volt AC current.
  • Lead 112 connects light L 1 with pin 4 of relay A.
  • Lead 114 is connected to pin 12 of relay A.
  • Lead 116 connects the secondary winding of transformer T 1 with rectifier bridge 118.
  • Bridge 118 converts received AC into DC.
  • Lead 120 connects lead 112 with one contact of bridge 118.
  • Switching relay 122 has pin 10 connected to another contact of bridge 118 by lead 124.
  • valves 10, 76 are adapted to be in first position which permits flow to and from one reservoir 2, 4 when no voltage is imposed upon the valves 10, 76, and a second position when a voltage of 24 volts is imposed upon the valves 10, 76.
  • Lamps L 2 , L 3 are designed to be illuminated when their related reservoirs 2, 4 (not shown in this view) are being employed. Thus, when valves 10, 76 are in a first position which connects the supply and return conduits with one reservoir 2, 4 one of lamps L 2 , L 3 will be illuminated, and when the other reservoir 2, 4 is being employed with the valves 10, 76 in the other position, the other lamp L 2 , L 3 will be illuminated.
  • Lamp L 3 is connected by lead 128 with pin 3 of relay 122 and by lead 130 with pin 9 of relay 122.
  • Lamp L 2 is connected by lead 132 with pin 4 of relay 122, and by lead 134 to pin 8 of relay 122.
  • Lead 138 connects valves 10, 76 with lead 134 at two locations.
  • transformer T 3 is a step-down transformer which provides 24 volt AC current to lamps L 2 , L 3 through switching relay 122 so that one or the other lamp may be illuminated regardless of whether switch S 2 is in the opened or closed position.
  • step-down transformer T 2 which adapted to provide 12 volts AC to pressure monitor 12.
  • Resistor 146 is provided in lead 152 which connects the secondary winding of transformer T 2 with pressure monitor 12 and resistor 148 is provided in lead 154 which connects secondary winding of transformer T 2 with pressure monitor 12.
  • power supply module 160 is energized with 24 volts AC from the secondary winding of transformer T 1 by means of lead 164 which is connected to pin 6 of power supply module 160 and lead 166 which is connected to pin 1 of power supply module 160.
  • Sensor module 162 is energized by means of lead 168 which connects pin 5 of power supply module 160 with pin 5 of sensor module 162 and lead 170 which connects pin 4 of power supply module 160 with pin 4 of sensor module 162.
  • lead 180 connects pressure monitor 12 with pin 8 of sensor module 162
  • lead 182 connects pressure monitor 12 with pin 7 of sensor module 162.
  • a signal from pin 1 of sensor module 162 passes through relay coil 186 and resistor 188 on lead 190 and then to pin 2 of sensor module 162 from which it is communicated to pin 1 of power supply module 160 and from there by means of lead 192 to pin 12 of relay A.
  • This imposes a voltage across relay A which de-energizes the relay and closes the circuits 1-9, 3-11 and 4-12. In so doing, contact between pins 1 and 9 of relay A is completed to thereby initiate sounding of audible alarm 96.
  • contact is made between pins 4 and 12 of relay A to thereby energize the lamp L 1 , and pins 3 and 4 of relay A are permanently shorted.
  • the remote alarm indicator light L 4 is illuminated as a result of closing the circuits between pins 3 and 11.
  • remote light L 4 provides the advantage of a visual alarm at a location other than that of L 1 .
  • the signal from pressure monitor 12 will cease to be emitted, and the relay A will be energized to thereby open the alarm circuit and cease both the audible alarm 96 and the illumination of lamps L 1 , L 4 .
  • a 115 volt relay 200 which is connected by lead 202 with the power supply through junctions 103 and 104.
  • Lead 202 is connected to pin 7 which is shorted with pin 8 of relay 200.
  • Lead 203 connects junction 104 with pin 2 which is shorted with pin 1.
  • Pump 20 is connected by means of leads 204, 206 to pins 3 and 6, respectively, of relay 200. When the main switch S 1 is turned on, the pump 20 will be energized to initiate flow of concentrate.
  • FIG. 10 there is shown a form of alarm system adapted to give an indication that the pump has ceased to operate. This could occur for reasons other than automatic shutoff during a general system alarm, as is shown in FIG. 9.
  • the pump fuse could be triggered to sever the circuit or the pump could merely break down.
  • the pump 20 is energized (when switch S 1 is closed) by lead 216 which connects pin 8 of relay 200 to junction 103 and lead 214 which connects pin 1 of relay 200 to junction 104.
  • Leads 218, 220 connect pins 1, 8, respectively, to pump 20.
  • Leads 222, 224 connect pins 2, 7, respectively, to field winding of pump 20 which is electrically downstream of the fuse (not shown).
  • leads 222, 224 would no longer "see” the operating voltage across the field winding.
  • a responsive signal is emitted along leads 226, 228 from pins 4 and 5 of relay 200 to battery eliminator 232 which may be the same as battery eliminator 90 (FIG. 5). This results in illumination of alarm lamp L 5 and initiation of output from audio alarm 234.
  • Mute switch 236 which may be similar to switch 98 is provided to permit shutoff of audio alarm 234.
  • the alarm 234 should be such that its output is distinguishable from that of alarm 96.
  • FIG. 6 an alternate form of pressure monitor which is adapted to signal exhaustion of one reservoir and the need to transfer to another will now be considered.
  • an air bubble detector is inserted into the supply conduit.
  • the air bubble detector will emit a signal so indicating.
  • supply conduit 14' introduces fluid into air bubble detector 194 with supply conduit 196 introducing the concentrate fluid into vessel 198 from which it passes through supply conduit 22' to pump 20' and emerges therefrom through conduit 26'.
  • the air bubble detector may contain a conventional photocell unit (not shown) wherein a light beam is disposed on one side of the concentrate conduit passing through air bubble detector 194 and a receiver is positioned on the other side thereof.
  • a photocell unit not shown
  • the receiver When a continuous stream of concentrate fluid is passing through the air bubble detector, the receiver will receive a different quantity of light than when air or other gas is present in meaningful quantities in the air bubble detector.
  • the photocell will emit an electrical signal which will result in establishing an alarm state for the system in order to indicate the need to transfer to a reservoir which contains a large quantity of the concentrate.
  • Vessel 198 is employed merely as an added convenience in order to reduce the likelihood that air will be supplied along with the concentrate.
  • a quantity of concentrate liquid 199 is shown having an upper surface above the lower extremities of supply conduit 196, 22'.
  • FIG. 7 there is shown a modified form of the invention wherein the use of container 70 has been eliminated.
  • a pressure relief valve V has been inserted either in line 68 or within container 24 so as to open automatically when a predetermined pressure has been exceeded so as to permit flow through conduit 68 to conduit 74 and valve 76.
  • FIG. 1 employing container 70 is preferred as it provides an additional reservoir for absorption of surging fluid in the event of a surge in pressure, the embodiment of FIG. 7 may, nevertheless, be employed advantageously in many uses.
  • FIG. 8 there is shown a further modified form of the invention generally similar to the embodiment of FIG. 7 except for the fact that the use of container 24 has been eliminated.
  • a T-joint 210 connects return line 68 with supply conduits 26, 28.
  • a valve V' which is a pressure relief valve adapted to permit flow therethrough only when a predetermined pressure has been exceeded is introduced into line 68. While this embodiment is not the preferred embodiment, it may, nevertheless, be employed advantageously in numerous uses.
  • the present invention has provided an economical, simple and effective means of delivering critical dialysis concentrate materials to a number of dialysis machines in a reliable fashion. All of this is accomplished without the need for personnel, such as nurses, to haul heavy and bulky individual multi-gallon drums of concentrate to each dialysis machine. Also, the present system provides safety means which insure a continuous supply of dialysis fluid from additional reservoirs when a given reservoir has been exhausted. Further, accidental explosions and other mishaps resulting from excessive pressure are eliminated as a result of the return system which has been provided.
  • a further advantage of the invention is the ability to supply the concentrate from large reservoirs positioned in remote locations, and thereby to free the patient area of the need to provide space for individual dialysis concentrate as well as the need to transport the same through the patient areas.
  • use of the concentrate delivery system by hospital personnel requires merely plugging in a connecting tube in order to initiate flow to a particular dialysis machine.
  • valves 10, 76 be provided with additional positions to accommodate the additional supply and return lines or that additional valves and lines be provided, and that appropriate control means for positioning the valves be provided.

Abstract

A renal dialysis concentrate delivery system comprising at least two renal dialysis concentrate reservoirs, first supply valve means and supply conduit means. First supply conduit means connecting a first concentrate reservoir to the first supply valve means. Second supply conduit means connecting a second concentrate reservoir to the first supply valve means. Concentrate pump means operatively associated with the supply conduit means. Conduit means for transporting the concentrate toward a renal dialysis machine. Return conduit means for returning concentrate to the concentrate reservoirs. The first supply valve means may be a three-way valve.
The return conduit means preferably includes a second three-way valve. Valve control means coordinate the positioning of the three-way valves so as to provide a first position wherein both valves are in communication with a first concentrate reservoir, and a second position wherein both valves are in communication with a second concentrate reservoir.
Means for determining when a concentrate reservoir is empty or approaching being empty may be provided. Such means may take the form of a pressure monitor in the supply conduit means and responsive signal generating means. Alternatively, such means may take the form of an air detector and responsive signal means.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to automated means for supplying renal dialysis concentrate to renal dialysis machines, and, more specifically, this invention is related to equipment for supplying a number of renal dialysis machines with concentrate in proper quantity from a remote location.
2. Description of the Prior Art
In general, in renal dialysis work, a dialysis machine is connected to the patient in such fashion that blood from the patient circulates through the machine and is cleansed through indirect exposure with a water solution of a renal dialysis concentrate. It is critical to the well being of renal dialysis patients that a continuous and effective supply of renal dialysis concentrate is provided. In general, a sink is provided adjacent to the renal dialysis machine, which, in turn, is adjacent to the patient. The sink provides water for a mixture in specific quantities with the renal dialysis concentrate and a drain for disposal of waste material emerging from the renal dialysis machine.
As the manner in which the dialysis concentrate is mixed with water and processed in the renal dialysis machine forms no part of the present invention, per se, and is known to those skilled in the art, an extensive discussion of this equipment need not be presented herein. Examples of United States patents which discuss precisely controlled mixture of the dialysis concentrate with water, temperature control, sterilization, conductivity control and pressure control, are 3,508,656; 3,528,550; 3,601,255; 3,744,636 and 3,878,095. As will be appreicated from the description which follows, the present invention places primary emphasis upon delivery of the dialysis concentrate to the dialysis machine as distinguished from processing within the dialysis machine.
In a commonly employed known approach to renal dialysis the liquid concentrate is provided in five-gallon containers. The containers, which are positioned immediately adjacent to the renal dialysis machine, must be replaced after a patient's use. The five-gallon concentrate-filled containers are very heavy and quite bulky for an individual, such as a female nurse, to handle. In spite of this difficulty, coupled with the regular need for dialysis treatment by a large number of kidney patients, such an approach remains a standard approach to concentrate supply.
There remains, therefore, a present need for equipment to provide automated and reliable delivery of dialysis concentrate without involving burdensome delivery of the individual containers of concentrate to each dialysis machine.
SUMMARY OF THE INVENTION
The present invention has met the above-described need by providing an automated remotely positioned means for deliverying dialysis concentrate to a number of dialysis machines simultaneously. This system may conveniently employ two or more concentrate reservoirs containing fifty or more gallons of concentrate which may be disposed at a position remote with respect to the machines.
In general, the system provides for at least two renal dialysis concentrate reservoirs and supply conduit means for delivery of the concentrate to the renal dialysis machines. Return conduit means are provided for returning concentrate to the reservoirs when a predetermined pressure is exceeded in the supply system. Where two reservoirs are employed, a multiple position valve is placed in the supply conduit and a multiple position valve is placed in the return conduit. These valves have a first position wherein supply and return conduits are in communication with a first reservoir, and a second position wherein supply and return conduits are in communication with a second reservoir. A pump is provided in operative relationship with the supply conduit. In one embodiment, a first container, which may be a vacuum type jar or other vessel, is in communication with the pump. The vacuum container or other suitable vessel is also in communication with the return conduit which may preferably contain a second vessel and a relief valve set to open at a predetermined pressure in order to permit return of concentrate to one of the reservoirs. Dialysis concentrate emerging from the first vacuum container or vessel may preferably be connected to a header which, through a number of feeder tubes, is each connected to outlets for discharge of concentrate to dialysis units. The feeder tubes are each preferably provided with a check valve in order to resist the flow of concentrate through the particular feeder when it is not connected to a dialysis machine.
Means are preferably provided for indicating when a reservoir is empty. One form of such means is a pressure monitor provided in the supply conduit so as to emit a signal when the pressure in the conduit drops below a predetermined level. An alternate approach is to provide an air detector which emits a signal when air begins to flow therethrough in predetermined quantities.
The liquid concentrate passing through the supply system preferably passes under the influence of a combination of pressure established by the pump, the suction drawn by the dialysis machine or machines which are in operation, and connected to the feeder tubes, and, where practical, also under the influence of gravity. It will be appreciated that for some installations primary or sole reliance may be placed upon one or more, but less than all three, of these transport means.
It is an object of the present invention to provide an economic, reliable, automated means for deliverying dialysis concentrate to one or more dialysis machines from a remote location.
It is another object of this invention to eliminate burdensome transport of individual dialysis concentrate containers to each dialysis machine.
It is yet another object of the present invention to provide such an automated dialysis concentrate delivery system wherein safety means are provided in order to monitor the depletion of the concentrate supply in a particular reservoir and to return concentrate to a reservoir when the pressure in the system exceeds a predetermined level.
These and other objects of the invention will be more fully understood from the following description of the invention on reference to the illustrations appended hereto.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic illustration of a portion of the fluid handling system of the present invention.
FIG. 2 is a schematic illustration of a concentrate supply header, the supply tubes and related delivery items.
FIG. 3 is a schematic illustration of a three-way valve in the supply conduit means of the present invention.
FIG. 4 is a schematic illustration of a three-way valve in the return conduit means of the present invention.
FIG. 5 is a partially schematic electrical circuit diagram showing the electrical system employed in a preferred embodiment of the present invention.
FIG. 6 is a partially schematic illustration of an air detector approach to monitoring reservoir depletion in accordance with the present invention.
FIG. 7 illustrates a fragmentary schematic view of an alternate embodiment of the present invention.
FIG. 8 is a fragmentary schematic illustration of another embodiment of the present invention.
FIG. 9 is a fragmentary schematic illustration of a modified concentrate pump control circuit.
FIG. 10 is a schematic illustration of a form of pump shutoff alarm.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring now to FIG. 1, there is shown a pair of large liquid dialysis concentrate reservoirs 2, 4 which may conveniently be on the order of fifty-gallon capacity. A first fluid supply conduit 6 is in communication with reservoir 2 and supply valve 10. As will be described hereinafter, supply valve 10 is preferably a three-way solenoid valve. A pressure monitor 12 is in communication with valve 10 through supply conduit 14. The pressure monitor 12, which forms no part of the invention, per se, may conveniently be any conventional type which emits a signal when the concentrate pressure drops below a predetermined level. Among the suitable types of pressure monitors, for example, are those wherein fluid pressure deforms a diaphragm to deflect a meter and those wherein a photocell emits a signal responsive to depletion of fluid in the conduit. The pressure monitor 12 is set to emit a signal when the fluid dialysis concentrate pressure within the supply system is reduced beyond a predetermined level so as to indicate that the reservoir supplying the concentrate is either empty or is becoming empty so that the supply means may be switched into communication with a full reservoir. Pump 20 is preferably of the occlusion variety in order to minimize the likelihood that air or gas bubbles will be delivered with the concentrate. Pump 20 also preferably has a variable speed control. Fluid conduit 22 operatively connects pressure monitor 12 with pump 20. Container 24, which may be a vacuum jar, receives dialysis concentrate under pressure from pump 20 through supply conduit 26. In normal operation, the concentrate emerges from container 24 through supply conduit 28 on its way to the dialysis machines as will be described below.
In the form shown, it is noted that concentrate reservoir 4 is in communication with valve 10 by means of the supply conduit 30. In the valve position illustrated in FIG. 1, the valve 10 is in a first position which permits flow from reservoir 2 through conduit 6 to the valve 10 to the remainder of the supply system, and supply from reservoir 4 is not permitted. Referring to FIG. 4, the valve 10 is shown in a second position which permits flow from reservoir 4 through supply conduit 30 through valve 10 to the remainder of the system through supply conduit 14. Supply from reservoir 2 through supply conduit 6 is precluded. The manner in which three-way valve 10 is moved from one position to the other will be described below. This switching will generally be accomplished when it is desired to switch from an empty reservoir to one which contains a supply of the dialysis concentrate.
Referring now to FIG. 2, it is seen that the supply conduit 28 which emerges from container 24 serves as a header in distributing dialysis concentrate to a number of dialysis machines 32, 34, 36, 38. It will be appreciated that for convenience of illustration the use of the system in combination with four dialysis machines has been illustrated, but a greater or lesser number may be supplied should such an arrangement be desirable. A number of supply tubes 42, 44, 46, 48 have their upper ends in communication with supply header 28 and receive concentrate therefrom. At the lower end of supply tubes 42, 44, 46, 48 are valves 52, 54, 56, 58, respectively. These valves when in a closed position preclude distribution of dialysis concentrate from the particular supply tubes. These valves are preferably in the form of check valves which are adapted to resist emergence of dialysis fluid in their normal position but may be displaced by a suitable connector so as to permit flow through a tube into the associated dialysis machine. Such tubes have schematically been indicated by the reference numbers 60, 62, 64, 66, respectively.
It will be appreciated that when it is desirable to initiate the use of a particular dialysis machine, all that need be done is that the fluid connection be completed at the valve associated with the supply tube which would be employed. For example, if one were to initiate use of dialysis machine 32, one need merely effect the connection of tube 60 with supply tube 42 with valve 52 being in an open position.
Before considering other detailed structural features of the system, it is believed desirable to discuss the means of transport of the dialysis concentrate, within the sytem. A prime means of concentrate delivery is the pressure generated by pump 20. In addition, a dialysis machine in operation creates a suction which will tend to draw the concentrate into the machine. Finally, in the form illustrated, the header 28 is at a higher elevation that the dialysis machines 32, 34, 36, 38, and gravity will assist with the delivery of concentrate to the machine. If desired, primary reliance may be placed on one or two of these contributing features. Allowance for the contribution of gravity and/or suction can permit increased economies through reduction of pump size. It is important, however, that the pressure be adequate to provide effective delivery of the needed quantities of concentrate even when all of the dialysis machines are operating simultaneously.
As situations may arise where the relationship between the pressure in the concentrate and the rate at which the concentrate is being employed by the dialysis machine is such that pressure may build up to an undesirably high level in the system, it is preferred to provide a return conduit system. In a preferred form of the invention, when a predetermined pressure is exceeded, dialysis concentrate will be returned to a supply reservoir until the pressure within the supply system drops below the predetermined level. Referring again to FIG. 1, it is noted that return conduit 68 connects container 24 with container 70. Return conduit 74 connects container 70 with valve 76. Valve 76 is preferably a three-way solenoid valve and may be generally similar to valve 10 in respect of function, although different internal geometry may be provided if desired or required. Valve 78 in the form shown in illustrated as being positioned within return conduit 74, but, if desired, it could well be placed within container 70, container 24 or return conduit 68. It is preferably a relief valve adapted to open when a predetermined pressure has been exceeded thereby permitting dialysis concentrate to flow toward valve 76.
In the position of valve 76 shown in FIG. 1, concentrate passing through return conduit 74 and valve 76 emerges through return conduit 80 and delivers concentrate to reservoir 2. The passage of concentrate through valve 76 to return conduit 82 and to reservoir 4 is precluded with valve 76 in the position shown. It will be appreciated, therefore, that when valves 10 and 76 are in the illustrated positions, supply of concentrate is provided by reservoir 2, and any return concentrate is returned to reservoir 2. Referring now to FIG. 3, valve 76 is shown in another position which permits flow of return concentrate through valve 76 to return conduit 82 and precludes flow through valve 76 to return conduit.
As has been indicated above, valves 10, 76 are preferably three-way solenoid valves which may conveniently assume one of two positions, each of which provides for both supply and return of dialysis concentrate from and to a particular reservoir. A convenient manner of controlling the position of valves 10, 76 is to provide an electrical means (to be described below) which will apply either a first voltage or a second voltage to the valve. The first voltage may correspond with a first position of the valves 10, 76 (FIG. 1), and the second voltage may correspond with a second position of the valves 10, 76 (FIGS. 3 and 4). For example, application of 24 AC volts may correspond to the valves 10, 76 in the first position and zero AC volts may correspond with the valves 10, 76 being in a second position. It will generally be desirable to permit manual switching from one reservoir to another after an indicator or alarm has indicated depletion of the concentrate supply in the reservoir that is in use. Regardless of whether the switching will be effected in a manual or in some automatic fashion, it is desirable to provide an indication to personnel that the change has been effected. This may conveniently be accomplished by a visual light signal and/or an audible indicator.
Referring now to FIG. 5, there is shown a schematic of a preferred form of electrical control system for use in the renal dialysis concentrate delivery system of the present invention. As is seen in the upper left-hand corner of FIG. 5, a power supply which may conveniently be a 115 volt AC source (not shown) is operatively connected and disconnected from the system by main switch S1. Electrical lead 92 supplies the current to the audio alarm portion of this system. Battery eliminator 90 receives the 115 volt AC current and converts it into nine volt DC for supply to audio alarm 96 through lead 94. The battery eliminator may conveniently include a step-down transformer and rectifier. Audio alarm 96 is connected to mute switch 98 by means of lead 100. It is noted that lead 102 connects junction 104 with relay pin 9 of relay A. Lead 106 connects battery eliminator 90 with relay pin 1 of relay A. When main switch S1 is in the open position with the system being turned off, relay A is in the closed position so that the circuit between pins 1 and 9 is complete, and the alarm circuit is also in functional position. But for the fact that current is not being received from the power supply, the audio alarm 96 would sound. When main switch S1 is closed to energize the system, relay A is energized, thereby breaking the completed circuit between pins 1 and 9. In the event that the pressure monitor 12 indicates that the system pressure has been reduced below the predetermined set point, the alarm circuit would be closed in a manner to be described below, and audio alarm 96 would sound as well as alarm light L1 becoming illuminated. The sounding of the alarm 96 and illumination of the light L1 is designed to attract the attention of personnel responsible for maintaining the system. By manually operating mute switch 98, the audio alarm 96 is turned off. In a preferred form, mute switch 98 is such that depression will merely result in silencing of the alarm for a fixed, relatively short, period of time, such as 45 seconds, for example, after which time the audio alarm 96 will resume sounding unless the system has been taken out of the alarm state.
Shown toward the central portion of FIG. 5 are three step-down transformers T1, T2, T3. When main switch S1 is in the closed position, 115 volt Ac current will be supplied to the transformers T1, T2, T3 by means of lead 110. T1 converts the current into 24 volt AC current. Lead 112 connects light L1 with pin 4 of relay A. Lead 114 is connected to pin 12 of relay A. Lead 116 connects the secondary winding of transformer T1 with rectifier bridge 118. Bridge 118 converts received AC into DC. Lead 120 connects lead 112 with one contact of bridge 118. Switching relay 122 has pin 10 connected to another contact of bridge 118 by lead 124. Finally, lead 126 connects pin 2 of switching relay 122 to a contact of bridge 118. Switch S2 which is positioned within lead 126 provides a manual means for switching from one reservoir 2, 4 (not shown in this view) to the other by repositioning of valves 10, 76. As was indicated in the example provided above, the valves 10, 76 are adapted to be in first position which permits flow to and from one reservoir 2, 4 when no voltage is imposed upon the valves 10, 76, and a second position when a voltage of 24 volts is imposed upon the valves 10, 76.
Lamps L2, L3 are designed to be illuminated when their related reservoirs 2, 4 (not shown in this view) are being employed. Thus, when valves 10, 76 are in a first position which connects the supply and return conduits with one reservoir 2, 4 one of lamps L2, L3 will be illuminated, and when the other reservoir 2, 4 is being employed with the valves 10, 76 in the other position, the other lamp L2, L3 will be illuminated. Lamp L3 is connected by lead 128 with pin 3 of relay 122 and by lead 130 with pin 9 of relay 122. Lamp L2 is connected by lead 132 with pin 4 of relay 122, and by lead 134 to pin 8 of relay 122. Lead 138 connects valves 10, 76 with lead 134 at two locations. With S2 in one position, 24 volts DC are supplied to valves 10, 76, and they are in a first position. With S2 in the other position, zero volts are imposed on the valves 10, 76, and they are in a second position. The secondary winding of transformer T3 is connected to pin 1 of relay 122 through lead 140, and pin 11 of relay 122 through lead 142. In the example selected for illustration, transformer T3 is a step-down transformer which provides 24 volt AC current to lamps L2, L3 through switching relay 122 so that one or the other lamp may be illuminated regardless of whether switch S2 is in the opened or closed position.
Referring still to FIG. 5, attention is now directed to step-down transformer T2 which adapted to provide 12 volts AC to pressure monitor 12. Resistor 146 is provided in lead 152 which connects the secondary winding of transformer T2 with pressure monitor 12 and resistor 148 is provided in lead 154 which connects secondary winding of transformer T2 with pressure monitor 12. Referring now to the upper right-hand portion of FIG. 5, there is shown power supply module 160 and sensor module 162. Power supply module 160 is energized with 24 volts AC from the secondary winding of transformer T1 by means of lead 164 which is connected to pin 6 of power supply module 160 and lead 166 which is connected to pin 1 of power supply module 160. Sensor module 162 is energized by means of lead 168 which connects pin 5 of power supply module 160 with pin 5 of sensor module 162 and lead 170 which connects pin 4 of power supply module 160 with pin 4 of sensor module 162. Referring again to pressure monitor 12, it is seen that lead 180 connects pressure monitor 12 with pin 8 of sensor module 162, and lead 182 connects pressure monitor 12 with pin 7 of sensor module 162. When the pressure set point in pressure monitor 12 is violated by the pressure of the concentrate dropping below the set point, a signal so indicating is communicated to sensor module 162 by leads 180, 182. A signal from pin 1 of sensor module 162 passes through relay coil 186 and resistor 188 on lead 190 and then to pin 2 of sensor module 162 from which it is communicated to pin 1 of power supply module 160 and from there by means of lead 192 to pin 12 of relay A. This imposes a voltage across relay A which de-energizes the relay and closes the circuits 1-9, 3-11 and 4-12. In so doing, contact between pins 1 and 9 of relay A is completed to thereby initiate sounding of audible alarm 96. Also, contact is made between pins 4 and 12 of relay A to thereby energize the lamp L1, and pins 3 and 4 of relay A are permanently shorted. The remote alarm indicator light L4 is illuminated as a result of closing the circuits between pins 3 and 11. The use of remote light L4 provides the advantage of a visual alarm at a location other than that of L1. When the operator moves switch S2 to the other position so that the supply of concentrate is initiated from the other reservoir and the pressure of concentrate within pressure monitor exceeds the set point, the signal from pressure monitor 12 will cease to be emitted, and the relay A will be energized to thereby open the alarm circuit and cease both the audible alarm 96 and the illumination of lamps L1, L4.
Referring now to the extreme left-hand portion of FIG. 5, there is shown a 115 volt relay 200 which is connected by lead 202 with the power supply through junctions 103 and 104. Lead 202 is connected to pin 7 which is shorted with pin 8 of relay 200. Lead 203 connects junction 104 with pin 2 which is shorted with pin 1. Pump 20 is connected by means of leads 204, 206 to pins 3 and 6, respectively, of relay 200. When the main switch S1 is turned on, the pump 20 will be energized to initiate flow of concentrate.
In a modified form of the invention illustrated in FIG. 9, means may be provided to shut off the pump 20 automatically in the event the system goes into an alarm state. Pump 20 remains wired to relay 200 as in FIG. 5. Pin 2 of relay 200 is connected to junction 104 by lead 203, and pin 7 of relay 200 is connected to pin 10 of relay A by lead 207. Lead 205 connects pin 6 of relay A with junction 103. In normal operation with relay A energized, circuit 6-10 is closed, and pump 20 is supplied with current. In the event that relay A is de-energized as in going into an alarm state, circuit 6-10 is automatically opened, and current flow to pump 20 is terminated. Upon cessation of alarm state, relay A is energized, thereby closing circuit 6-10 in relay A and providing current to operate pump 20.
Referring to FIG. 10, there is shown a form of alarm system adapted to give an indication that the pump has ceased to operate. This could occur for reasons other than automatic shutoff during a general system alarm, as is shown in FIG. 9. For example, the pump fuse could be triggered to sever the circuit or the pump could merely break down. In FIG. 10, the pump 20 is energized (when switch S1 is closed) by lead 216 which connects pin 8 of relay 200 to junction 103 and lead 214 which connects pin 1 of relay 200 to junction 104. Leads 218, 220 connect pins 1, 8, respectively, to pump 20. Leads 222, 224 connect pins 2, 7, respectively, to field winding of pump 20 which is electrically downstream of the fuse (not shown). In the event of fuse destruction or other pump failure, leads 222, 224 would no longer "see" the operating voltage across the field winding. A responsive signal is emitted along leads 226, 228 from pins 4 and 5 of relay 200 to battery eliminator 232 which may be the same as battery eliminator 90 (FIG. 5). This results in illumination of alarm lamp L5 and initiation of output from audio alarm 234. Mute switch 236 which may be similar to switch 98 is provided to permit shutoff of audio alarm 234. The alarm 234 should be such that its output is distinguishable from that of alarm 96.
Referring now to FIG. 6, an alternate form of pressure monitor which is adapted to signal exhaustion of one reservoir and the need to transfer to another will now be considered. In this version, an air bubble detector is inserted into the supply conduit. In the event that fluid flow is diminished to the point of creating a predetermined quantity of gas or air in the lines, the air bubble detector will emit a signal so indicating. In this system, supply conduit 14' introduces fluid into air bubble detector 194 with supply conduit 196 introducing the concentrate fluid into vessel 198 from which it passes through supply conduit 22' to pump 20' and emerges therefrom through conduit 26'. In this embodiment, the air bubble detector may contain a conventional photocell unit (not shown) wherein a light beam is disposed on one side of the concentrate conduit passing through air bubble detector 194 and a receiver is positioned on the other side thereof. When a continuous stream of concentrate fluid is passing through the air bubble detector, the receiver will receive a different quantity of light than when air or other gas is present in meaningful quantities in the air bubble detector. In this latter instance, the photocell will emit an electrical signal which will result in establishing an alarm state for the system in order to indicate the need to transfer to a reservoir which contains a large quantity of the concentrate. Vessel 198 is employed merely as an added convenience in order to reduce the likelihood that air will be supplied along with the concentrate. A quantity of concentrate liquid 199 is shown having an upper surface above the lower extremities of supply conduit 196, 22'.
Referring now to FIG. 7, there is shown a modified form of the invention wherein the use of container 70 has been eliminated. As is seen, a pressure relief valve V has been inserted either in line 68 or within container 24 so as to open automatically when a predetermined pressure has been exceeded so as to permit flow through conduit 68 to conduit 74 and valve 76. While the embodiment of FIG. 1 employing container 70 is preferred as it provides an additional reservoir for absorption of surging fluid in the event of a surge in pressure, the embodiment of FIG. 7 may, nevertheless, be employed advantageously in many uses.
Referring to FIG. 8, there is shown a further modified form of the invention generally similar to the embodiment of FIG. 7 except for the fact that the use of container 24 has been eliminated. In this embodiment, a T-joint 210 connects return line 68 with supply conduits 26, 28. A valve V' which is a pressure relief valve adapted to permit flow therethrough only when a predetermined pressure has been exceeded is introduced into line 68. While this embodiment is not the preferred embodiment, it may, nevertheless, be employed advantageously in numerous uses.
It will be appreciated, therefore, that the present invention has provided an economical, simple and effective means of delivering critical dialysis concentrate materials to a number of dialysis machines in a reliable fashion. All of this is accomplished without the need for personnel, such as nurses, to haul heavy and bulky individual multi-gallon drums of concentrate to each dialysis machine. Also, the present system provides safety means which insure a continuous supply of dialysis fluid from additional reservoirs when a given reservoir has been exhausted. Further, accidental explosions and other mishaps resulting from excessive pressure are eliminated as a result of the return system which has been provided. It will be appreciated that a further advantage of the invention is the ability to supply the concentrate from large reservoirs positioned in remote locations, and thereby to free the patient area of the need to provide space for individual dialysis concentrate as well as the need to transport the same through the patient areas. In effect, use of the concentrate delivery system by hospital personnel requires merely plugging in a connecting tube in order to initiate flow to a particular dialysis machine.
While for purposes of simplicity of illustration herein, reference has been made to the use of a system employing two reservoirs, it will be appreciated that a greater number of reservoirs may be employed if desired. All that is required is that either the valves 10, 76 be provided with additional positions to accommodate the additional supply and return lines or that additional valves and lines be provided, and that appropriate control means for positioning the valves be provided.
While the system is uniquely adapted to supply a larger number of dialysis machines simultaneously, it will be appreciated that four have been shown in the present disclosure solely for purposes of example, and that the invention is not limited to either a system arranged to supply solely four dialysis machines or to a system wherein all or a substantial portion of the machines to be supplied are, in fact, in operation simultaneously.
Whereas particular embodiments of the invention have been described above for purposes of illustration, it will be evident to those skilled in the art that numerous variations of the details may be made without departing from the invention as defined in the appended claims.

Claims (30)

I claim:
1. A renal dialysis concentrate delivery system comprising:
at least two renal dialysis concentrate reservoirs,
first supply valve means,
supply conduit means having first, second and third supply conduit means,
said first supply conduit means connecting a first said concentrate reservoir to said first supply valve means,
said second supply conduit means connecting a second said concentrate reservoir to said first supply valve means,
said third supply conduit means for transporting said concentrate from said first supply valve means to at least one renal dialysis machine,
said first supply valve means being a multiple position valve having a first position permitting flow of concentrate from said first concentrate reservoir through said first supply valve means, and a second position permitting flow from said second concentrate reservoir through said first supply valve means,
a concentrate pump in said third supply conduit means, and
return conduit means disposed downstream from said pump and connecting said third conduit means
with said concentrate reservoirs.
2. The renal dialysis concentrate delivery system of claim 1 including
pressure monitor means in communication with said third supply conduit means.
3. The renal dialysis concentrate delivery system of claim 2 including
means responsive to said pressure monitoring system indication of concentrate pressure being below a predetermined level to initiate a signal so indicated.
4. The renal dialysis concentrate delivery system of claim 3 including
said means responsive to said pressure monitoring system including electrical means for initiating an alarm responsive to receipt of said signal.
5. The renal dialysis concentrate delivery system of claim 4 including
said electrical means including relay means for completing the circuit for initiating said alarm.
6. The renal dialysis concentrate delivery system of claim 5 including said alarm system having audible alarm means.
7. The renal dialysis concentrate delivery system of claim 5 including said alarm means including visual alarm means.
8. The renal dialysis concentrate delivery system of claim 5 including
means for terminating said alarm responsive to cessation of said signal indicating concentrate pressure deficiencies.
9. The renal dialysis concentrate delivery system of claim 1, including said first supply valve means being a solenoid valve.
10. The renal dialysis concentrate delivery system of claim 1 including
said return conduit means having first return conduit means, second return conduit means and third return conduit means,
first return valve means operatively associated with said return conduit means for selectively permitting concentrate flow to said first and second reservoirs,
said first return conduit means connecting said third supply conduit means with said first return valve means,
said second return conduit means connecting said return valve means with a first said concentrate reservoir, and
said third return conduit means connecting said return valve means with said second concentrate reservoir.
11. The renal dialysis concentrate delivery system of claim 10 including first container means for providing additional concentrate receiving capacity in communication with said third supply conduit means.
12. The renal dialysis concentrate delivery system of claim 11 including second container means for providing additional concentrate receiving capacity disposed within said first return conduit means.
13. The renal dialysis concentrate delivery system of claim 10 including
pressure relief valve means for permitting flow of said concentrate to said return valve means when concentrate pressure exceeds a predetermined level.
14. The renal dialysis concentrate delivery system of claim 10 including
said return valve means being a three-way valve having a first position permitting flow through said valve from said first return conduit means to said first concentrate reservoir, and a second position permitting flow through said valve from said first return conduit means to said second concentrate reservoir.
15. The renal dialysis concentrate delivery system of claim 14 including said return valve means being a solenoid valve.
16. The renal dialysis concentrate delivery system of claim 10 including
said first supply valve means and said return valve means each being three-way valves,
valve control means for placing said three-way valves in a first position in communication with one said concentrate reservoir, and a second position in communication with the other said concentrate reservoir.
17. The renal dialysis concentrate delivery system of claim 16 including
said three-way valves being solenoid valves, and
said valve control means being electrical.
18. The renal dialysis concentrate delivery system of claim 17 including
said valve control means adapted to impose one of two voltages across said valves with each voltage placing said valves in one of two said positions.
19. The renal dialysis concentrate delivery system of claim 18 including said valve control means including a manually operable electrical switch.
20. The renal dialysis concentrate delivery system of claim 19 including said valve control means including stepdown transformer means, rectifier means and relay means.
21. The renal dialysis concentrate delivery system of claim 20 including
lamp means responsive to the positions of said valves to provide a visual indication as to which said concentrate reservoir is in use.
22. The renal dialysis concentrate delivery system of claim 1 including first container means for providing additional concentrate receiving capacity in communication with said third supply conduit means.
23. The renal dialysis concentrate delivery system of claim 22 including second container means for providing additional concentrate receiving capacity in communication with said return conduit means.
24. The renal dialysis concentrate delivery system of claim 22 including
relief valve means for permitting flow of concentrate through said return conduit means to a said concentrate reservoir when concentrate pressure in the supply system exceeds a predetermined level.
25. The renal dialysis concentrate delivery system of claim 1 including said third supply conduit means including a supply header and feeder tubes connected at one end to said supply header and having free ends adapted to be connected to a renal dialysis machine, and check valve means in said feeder tubes.
26. The renal dialysis concentrate delivery system of claim 1 including said pump being an occlusion pump.
27. The renal dialysis concentrate delivery system of claim 1 including
an air detector disposed in communication with said supply conduit means, and
signal means responsive to the presence of greater than a predetermined quantity of air or gas in said air detector means to emit a signal.
28. The renal dialysis concentrate delivery system of claim 27 including
said air detector including photocell means.
29. The renal dialysis concentrate delivery system of claim 27 including
pump shutoff means responsive to a signal from signal means to shut off the concentrate pump when the quantity of air or gas detected exceeds said predetermined quantity
30. The renal dialysis concentrate delivery system of claim 1 including
alarm means for indicating pump shutoff for reasons other than shutting off the entire system.
US05/714,601 1976-08-16 1976-08-16 Renal dialysis concentrate delivery system Expired - Lifetime US4085046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/714,601 US4085046A (en) 1976-08-16 1976-08-16 Renal dialysis concentrate delivery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/714,601 US4085046A (en) 1976-08-16 1976-08-16 Renal dialysis concentrate delivery system

Publications (1)

Publication Number Publication Date
US4085046A true US4085046A (en) 1978-04-18

Family

ID=24870711

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/714,601 Expired - Lifetime US4085046A (en) 1976-08-16 1976-08-16 Renal dialysis concentrate delivery system

Country Status (1)

Country Link
US (1) US4085046A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2440741A1 (en) * 1978-11-06 1980-06-06 Cordis Dow Corp DIALYSATE CLOSED CIRCUIT AND METHOD FOR AUTOMATICALLY CONTROLLING ULTRAFILTRATION DURING HEMODIALYSIS
EP0022922A1 (en) * 1979-07-24 1981-01-28 Gambro Dialysatoren K.G. Method of forming an aqueous dialysis solution
US4376707A (en) * 1979-05-21 1983-03-15 Gambro Dialysatoren G.M.B.H. & Co. K.G. Process for the removal of urea from blood wash fluids and blood
US4560472A (en) * 1982-12-10 1985-12-24 Baxter Travenol Laboratories, Inc. Peritoneal dialysis apparatus
GB2220869A (en) * 1988-06-03 1990-01-24 Cobe Lab Pumping fluid through plural flow lines
DE3930181A1 (en) * 1989-09-09 1991-03-21 Fresenius Ag PRESSURE COMPENSATING VESSEL FOR A HEMODIALYSIS CONCENTRATE
DE4203905A1 (en) * 1992-02-11 1993-08-12 Fresenius Ag Dialysis stations with a central supply - each have a pressure compensating bubble container under atmospheric pressure
WO1998033537A1 (en) * 1997-01-31 1998-08-06 Hospal Ag Hydraulic circuit for dialysis liquid
ES2134708A1 (en) * 1996-12-17 1999-10-01 Piro Bigorda Jordi New procedure for the distribution of haemodialysis concentrates.
US5972223A (en) * 1994-09-20 1999-10-26 Gambro Ab Method and apparatus for the central preparation and distribution of salt concentrates
US20040231414A1 (en) * 2003-05-23 2004-11-25 Gambro Dasco S.P.A. Method for detecting a liquid level in a container in a circuit and a dialysis machine for actuating the method
US20060005886A1 (en) * 2002-09-06 2006-01-12 Andrea Parrino Multiway wave
US20060127271A1 (en) * 2001-05-07 2006-06-15 Regents Of The University Of Minnesota Non-thermal disinfection of biological fluids using non-thermal plasma
US20090008306A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Extracorporeal dialysis ready peritoneal dialysis machine
WO2009015882A2 (en) * 2007-07-31 2009-02-05 Fresenius Medical Care Deutschland Gmbh Dialysis liquid circuit, dialysis apparatus comprising a dialysis liquid circuit, method for detecting air in a dialysis liquid flowing through a dialysis liquid circuit, and use of a gas sensor in a dialysis liquid circuit
US20090118695A1 (en) * 2006-07-06 2009-05-07 Frederic Neftel Medical device for administering a solution
US20090294359A1 (en) * 2008-06-03 2009-12-03 Baxter International Inc. Priming system and method using pumping and gravity
US20100181235A1 (en) * 2007-05-25 2010-07-22 Gambro Lundia Ab device for connecting to a liquid source
CN101678161B (en) * 2007-04-12 2012-11-07 甘布罗伦迪亚股份公司 Method and apparatus for priming an extracorporeal blood circuit
US9440017B2 (en) 2013-03-14 2016-09-13 Baxter International Inc. System and method for performing alternative and sequential blood and peritoneal dialysis modalities

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3605783A (en) * 1966-03-17 1971-09-20 Bio Systems Inc Fluid mixing system
US3722680A (en) * 1971-03-17 1973-03-27 F Smith Hemodialysis apparatus
US3744636A (en) * 1971-01-06 1973-07-10 Rhone Poulenc Sa Dialysis liquid monitoring and generating assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3605783A (en) * 1966-03-17 1971-09-20 Bio Systems Inc Fluid mixing system
US3744636A (en) * 1971-01-06 1973-07-10 Rhone Poulenc Sa Dialysis liquid monitoring and generating assembly
US3722680A (en) * 1971-03-17 1973-03-27 F Smith Hemodialysis apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Dialung, from Trans. Amer. Soc. Artif. Int. Organs, 1964, p. 125. *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2440741A1 (en) * 1978-11-06 1980-06-06 Cordis Dow Corp DIALYSATE CLOSED CIRCUIT AND METHOD FOR AUTOMATICALLY CONTROLLING ULTRAFILTRATION DURING HEMODIALYSIS
US4209391A (en) * 1978-11-06 1980-06-24 Cordis Dow Corp. Apparatus and method for automatically controlling hemodialysis at a pre-selected ultrafiltration rate
US4376707A (en) * 1979-05-21 1983-03-15 Gambro Dialysatoren G.M.B.H. & Co. K.G. Process for the removal of urea from blood wash fluids and blood
EP0022922A1 (en) * 1979-07-24 1981-01-28 Gambro Dialysatoren K.G. Method of forming an aqueous dialysis solution
US4560472A (en) * 1982-12-10 1985-12-24 Baxter Travenol Laboratories, Inc. Peritoneal dialysis apparatus
GB2220869A (en) * 1988-06-03 1990-01-24 Cobe Lab Pumping fluid through plural flow lines
GB2220869B (en) * 1988-06-03 1992-11-04 Cobe Lab Pumping fluid through plural flow lines
DE3930181A1 (en) * 1989-09-09 1991-03-21 Fresenius Ag PRESSURE COMPENSATING VESSEL FOR A HEMODIALYSIS CONCENTRATE
US5178179A (en) * 1989-09-09 1993-01-12 Fresenius Ag Pressure equalizing vessel for a hemodialysis concentrate
DE4203905A1 (en) * 1992-02-11 1993-08-12 Fresenius Ag Dialysis stations with a central supply - each have a pressure compensating bubble container under atmospheric pressure
US5972223A (en) * 1994-09-20 1999-10-26 Gambro Ab Method and apparatus for the central preparation and distribution of salt concentrates
US6113793A (en) * 1994-09-20 2000-09-05 Gambro Ab Method of disinfecting an apparatus for the central preparation and distribution of salt concentrates
US6296762B1 (en) 1994-09-20 2001-10-02 Gambro Ab Apparatus for disinfecting a device for the central preparation and distribution of salt concentrates
ES2134708A1 (en) * 1996-12-17 1999-10-01 Piro Bigorda Jordi New procedure for the distribution of haemodialysis concentrates.
WO1998033537A1 (en) * 1997-01-31 1998-08-06 Hospal Ag Hydraulic circuit for dialysis liquid
US20060127271A1 (en) * 2001-05-07 2006-06-15 Regents Of The University Of Minnesota Non-thermal disinfection of biological fluids using non-thermal plasma
US20060005886A1 (en) * 2002-09-06 2006-01-12 Andrea Parrino Multiway wave
US7469716B2 (en) 2002-09-06 2008-12-30 Gambro Lundia Ab Multiway valve
US7013727B2 (en) 2003-05-23 2006-03-21 Gambro Dasco S.P.A. Dialysis machine for actuating a method for detecting a liquid level in a container in a circuit
US6952963B2 (en) * 2003-05-23 2005-10-11 Gambro Dasco S.P.A. Method for detecting a liquid level in a container in a circuit and a dialysis machine for actuating the method
US20050171475A1 (en) * 2003-05-23 2005-08-04 Gambro Dasco S.P.A. Dialysis machine for actuating a method for detecting a liquid level in a container in a circuit
US20040231414A1 (en) * 2003-05-23 2004-11-25 Gambro Dasco S.P.A. Method for detecting a liquid level in a container in a circuit and a dialysis machine for actuating the method
US10112008B2 (en) * 2006-07-06 2018-10-30 Debiotech S.A. Medical device for administering a solution
US20090118695A1 (en) * 2006-07-06 2009-05-07 Frederic Neftel Medical device for administering a solution
CN101678161B (en) * 2007-04-12 2012-11-07 甘布罗伦迪亚股份公司 Method and apparatus for priming an extracorporeal blood circuit
US20100181235A1 (en) * 2007-05-25 2010-07-22 Gambro Lundia Ab device for connecting to a liquid source
US8425767B2 (en) 2007-05-25 2013-04-23 Gambro Lundia Ab Device for connecting to a liquid source
US20090008306A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Extracorporeal dialysis ready peritoneal dialysis machine
US10441703B2 (en) 2007-07-05 2019-10-15 Baxter International Inc. Weight controlled and/or sorbent hybrid blood and peritoneal dialysis treatment systems and methods
US11672895B2 (en) 2007-07-05 2023-06-13 Baxter International Inc. Method for peritoneal dialysis and extracorporeal blood treatments
US11045595B2 (en) 2007-07-05 2021-06-29 Baxter International Inc. System for peritoneal dialysis and extracorporeal blood treatments
US10434237B2 (en) 2007-07-05 2019-10-08 Baxter International Inc. Hybrid blood and peritoneal dialysis treatment systems and methods
US9744284B2 (en) 2007-07-05 2017-08-29 Baxter International Inc. Hybrid blood and peritoneal dialysis treatment systems and methods
US8512553B2 (en) 2007-07-05 2013-08-20 Baxter International Inc. Extracorporeal dialysis ready peritoneal dialysis machine
US9227003B2 (en) 2007-07-05 2016-01-05 Baxter International Inc. Hybrid blood and peritoneal dialysis treatment systems and methods
US8465641B2 (en) 2007-07-31 2013-06-18 Fresenius Medical Care Deutschland Gmbh Dialysis liquid circuit, dialysis apparatus comprising a dialysis liquid circuit, method for detecting air in a dialysis liquid flowing through a dialysis liquid circuit, and use of a gas sensor in a dialysis liquid circuit
DE102008005516B4 (en) * 2007-07-31 2018-05-03 Fresenius Medical Care Deutschland Gmbh Dialysis fluid circuit, dialysis machine with dialysis fluid circuit, method for detecting air in a dialysis fluid flowing through a dialysis fluid circuit and use of a gas sensor in a dialysis fluid circuit
WO2009015882A2 (en) * 2007-07-31 2009-02-05 Fresenius Medical Care Deutschland Gmbh Dialysis liquid circuit, dialysis apparatus comprising a dialysis liquid circuit, method for detecting air in a dialysis liquid flowing through a dialysis liquid circuit, and use of a gas sensor in a dialysis liquid circuit
WO2009015882A3 (en) * 2007-07-31 2009-06-11 Fresenius Medical Care De Gmbh Dialysis liquid circuit, dialysis apparatus comprising a dialysis liquid circuit, method for detecting air in a dialysis liquid flowing through a dialysis liquid circuit, and use of a gas sensor in a dialysis liquid circuit
US20100133189A1 (en) * 2007-07-31 2010-06-03 Andreas Maierhofer Dialysis liquid circuit, dialysis apparatus comprising a dialysis liquid circuit, method for detecting air in a dialysis liquid flowing through a dialysis liquid circuit, and use of a gas sensor in a dialysis liquid circuit
JP2010534541A (en) * 2007-07-31 2010-11-11 フレゼニウス メディカル ケアー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Dialysate circuit, dialysate device equipped with dialysate circuit, method for detecting air in dialysate flowing through dialysate circuit, and method of using gas sensor in dialysate circuit
US20090294359A1 (en) * 2008-06-03 2009-12-03 Baxter International Inc. Priming system and method using pumping and gravity
US9440017B2 (en) 2013-03-14 2016-09-13 Baxter International Inc. System and method for performing alternative and sequential blood and peritoneal dialysis modalities
US10632243B2 (en) 2013-03-14 2020-04-28 Baxter International Inc. System and method for performing alternative and sequential blood and peritoneal dialysis modalities

Similar Documents

Publication Publication Date Title
US4085046A (en) Renal dialysis concentrate delivery system
US4158034A (en) Sterilization method and apparatus for dialysis system
US5914047A (en) On-site biohazardous liquid medical waste collection and treatment system and method of using such system
US3719197A (en) Aseptic suction drainage system and valve therefor
ATE161798T1 (en) AUTOMATIC, LEAK-PROOF REFUELING DEVICE
US6266945B1 (en) Ice supply system
JPS6336807B2 (en)
JPH0352296B2 (en)
CA1147254A (en) Chemical feed system
JPH10502596A (en) Method and apparatus for storage and dispensing of chemical solutions
US5255820A (en) Apparatus for dilution of liquid products
EP0161042B1 (en) Self-fill system
US5062443A (en) Automatic changeover manifold
US3982535A (en) Signal device for dialysis apparatus
JPS60217985A (en) Sirup sensor device in distributor
TW200414343A (en) Wet etching chemical mixing system
US3347416A (en) Proportioning apparatus
US20110036768A1 (en) Continuous blood purification system provided with syringe pumps
US10365665B2 (en) Automatic detection system for detecting disruptions in the flow to a dispensing apparatus
US10279942B1 (en) Automatic detection system for detecting disruptions in the flow to a dispensing apparatus
CN214486430U (en) Blending device
GB2118333A (en) Infusion monitors
CN209640747U (en) A kind of roll ultrasonic examination automatic water replenishing controller
CN206570862U (en) A kind of city intelligent water system
NO862127L (en) DEVICE FOR PACKAGING AND EXPORTS OF LIQUID PRODUCTS.