US4248224A - Double venous cannula - Google Patents

Double venous cannula Download PDF

Info

Publication number
US4248224A
US4248224A US05/929,999 US92999978A US4248224A US 4248224 A US4248224 A US 4248224A US 92999978 A US92999978 A US 92999978A US 4248224 A US4248224 A US 4248224A
Authority
US
United States
Prior art keywords
tube
branch
sleeve
members
vena cava
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/929,999
Inventor
James W. Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US05/929,999 priority Critical patent/US4248224A/en
Application granted granted Critical
Publication of US4248224A publication Critical patent/US4248224A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • A61M25/0071Multiple separate lumens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0074Dynamic characteristics of the catheter tip, e.g. openable, closable, expandable or deformable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M25/0026Multi-lumen catheters with stationary elements
    • A61M25/003Multi-lumen catheters with stationary elements characterized by features relating to least one lumen located at the distal part of the catheter, e.g. filters, plugs or valves
    • A61M2025/0031Multi-lumen catheters with stationary elements characterized by features relating to least one lumen located at the distal part of the catheter, e.g. filters, plugs or valves characterized by lumina for withdrawing or delivering, i.e. used for extracorporeal circuit treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M2025/0188Introducing, guiding, advancing, emplacing or holding catheters having slitted or breakaway lumens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • A61M2025/0681Systems with catheter and outer tubing, e.g. sheath, sleeve or guide tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/03Heart-lung

Definitions

  • the present invention relates to medical and surgical tubes, and more particularly relates to cannulae and venous cannula and the like, as used in cardio-pulmonary bypass operations. Even more particularly the present invention relates to a venous cannula apparatus and its method of installation wherein a single cannula structure mounted in a single opening with a purse string, for example, closure provides branch tube members forming fluid connections with the superior and inferior vena cava.
  • a fluid connection between the heart and the machine When a surgeon places a patient on a cardio-pulmonary bypass machine, there is required a fluid connection between the heart and the machine.
  • the machine circulates both blood returning from the body to the heart, termed the venous return, and blood pumped into the body from the heart-lung machine, termed the arterial outflow.
  • the venous return is normally collected by a flexible tube, or several flexible tubes which is/are known in the art as a cannula(e) or venous cannula(e).
  • the cannula is fed through an opening in the artium which opening is formed by the surgeon.
  • the surgeon provides a "purse string" suture for example to seal the cannula properly after it is placed through the opening.
  • the lower portion of the ell-shaped cannula is inserted in a curved fashion into the superior or inferior vene cava.
  • a substantially fluid tight seal is formed using the purse string suture about the surgical opening by utilizing snares or clamps around the inferior vena cava and superior vena cava to form fluid tight connections with the cannula tube and the respective vein.
  • the present invention solves all the prior art problems and shortcomings in a simple and inexpensive manner.
  • the present invention provides a cannula structure which is comprised of an upper fluid conveying tube having preferably two lower branch tube members which are normally urged to an angular tee-like position with respect to the upper tube portion of the cannula.
  • An outer slideable sleeve is fitted over the upper tube structure and slides up and down the cannula with respect to its central bore.
  • the sleeve is substantially stiff and its movement along the upper tube to the lower tube branches urges the tube branch members into a substantial alignment with the upper fluid conveying tube.
  • the sleeve urges the branch members of the cannula into an aligned "collapsed" position so the entire structure can be passed through a single suture opening as is desirable.
  • the combined external diameter of the two tube branch members is substantially equal to the external diameter of the main fluid conveying tube.
  • the outer sleeve provides an internal diameter slightly greater than the external diameter of the main fluid conveying tube. Thus a slideable fit is achieved (Note FIGS. 1 and 2).
  • the sleeve then provides the maximum diameter of the cannula structure in its "collapsed" state which allows placement of the structure through a minimal diameter opening in the atrium (See FIG. 4A).
  • Memory can be supplied to the branch members by utilizing a suitable plastic-like material which will cause each branch member to spring back into its tee-like orientation when the outer sleeve is removed.
  • FIG. 1 is a perspective view of the preferred embodiment of the apparatus of the present invention illustrating the sleeve portion in a retaining position over the tube branches;
  • FIG. 2 is a perspective view of the perferred embodiment of the apparatus of the present invention showing the sleeve in a removed position with the branch members being urged into lateral "tee-like" orientation;
  • FIG. 3 is an exploded perspective view of the perferred embodiment of the apparatus of the present invention.
  • FIGS. 4A-4C are sequential views illustrating the installation of the preferred embodiment of the apparatus of the present invention into a human heart prior to a cardio-pulmonary bypass operation.
  • FIG. 1 best illustrates the perferred embodiment of the apparatus of the present invention designated generally by the numeral 10.
  • an upper tube 12 which is, for example, a fluid conveying cylindrical tube having an upper 20 tube portion and a lower or distal tube portion which is comprised of a right lower tube branch 18 and a left lower tube branch 16.
  • FIG. 1 Further provided in FIG. 1 can be seen a sleeve 14 which slideably and moveably fits over upper tube 12.
  • Sleeve 14 is provided with a proximal end portion 31 and a lower distal end portion 21.
  • a proximate opening 22 is provided at the upper portion 20 of tube 12.
  • Openings 17, 19 are provided at lower tube branch 16 and lower tube branch 18 respectively. It should be understood that a continuous inner open bore is provided through the central portion of tube 12 and branch tubes 16, 18 providing a communication between opening 22 and openings 17, 19. Thus, fluid introduced into opening 22 could flow through the center portion of tube 20 and exit at openings 17, 19. Likewise fluid entering openings 17, 19 would flow through branch tubes 16, 18 and into tube 12 exiting opening 22. Thus, a communicating fluid conveying tube is provided in tube 12 and branch tubes 16, 18.
  • FIG. 2 illustrate the slideable movement of sleeve 14 along tube 12.
  • sleeve 14 has moved to a first lowermost position coverably contacting branch tubes 16, 18 and urging them to an intermost "collapsed" position where each tube of branch 16, 18 is substantially aligned with tube 12.
  • Sleeve 14 as seen in FIG. 1 provides an internal diameter slightly greater than the external diameter of tube 12, and slightly greater than the combined external diameter of branch tube members 16, 18. It can be seen from the above that the external diameter of sleeve 14 thus provides the maximum external diameter when cannula 10 is in its "collapsed" position as seen in FIG. 1. Further, the external diameter of sleeve 10 controls the diameter of an opening 42 formed in the atrium.
  • Branch tubes 16, 18 and tube 20 would preferably be manufactured of a suitable flexible material, but of a meterial which would have a "memory". Thus, when tubes 16, 18 are bent they will return to their original manufactured and cast position. Alternatively, resilient springs could be provided within the walls of tube branches 16, 18 and tube 12.
  • tubes 16, 18 have returned to a "tee-like" position, this position further being illustrated in FIG. 3. Note that the removal of sleeve 14 from its adjacent coverable position over to branches 16, 18 as is shown in FIG. 1 causes each tube 16, 18 to assume this tee-like lateral position as is desirable.
  • each tube branch 16, 18 is placed laterally into the superior 28 or inferior 26 vena cava respectively (FIG. 4C).
  • FIG. 3 there is provided an exploded view of the cannula apparatus 10 of the present invention showing the sleeve 14 removed from tube 12.
  • each tube of branch 16, 18 is provided in a length L which length would be sufficient to allow the tube branch members 16, 18 to sufficiently penetrate and enter the superior and inferior vena cava when the entire assembly of cannula 10 is placed through a purse string opening 42 in the atrium portion 30 of heart 32.
  • tube 12 should be provided with a sufficient height H as to allow the tube branch members 16, 18 to fully occupy and implant themselves within the superior and inferior vena cava (28, 26 respectively) while still leaving the upper portion 20 of tube 12 for the connection of opening 22 to a heart lung machine or the like.
  • each tube branch member 16, 18 is provided in FIG. 3. It should be understood however, that other suitable angular orientations of tube branch members 16, 18 with respect to tube 12 could be provided to fit particular anatomical applications.
  • FIGS. 4A-4C illustrate the method of installation of cannula 12 within the teaching of the present invention.
  • sleeve 14 has been movably slided to a position (See arrows FIG. 4A) adjacent and covering branch tube members 16, 18. Note that the branch members 16, 18 have been urged into a substantially aligned position with tube 12. In this position the entire cannula apparatus 10 provides a substantially constant diameter D which can pass through the opening 42 formed by the surgeon.
  • FIG. 4A the surgeon has formed an opening 42 in the atrium 30 portion of heart 42. It can be seen that the lowermost end portion 21 of sleeve 14 has penetrated the atrium 30 through opening 42.
  • a purse string or like suitable closure 44 is provided for forming a sealable substantially fluid tight connection sealing the atrium 30 to the walls of sleeve 14 and cannula 10.
  • sleeve 14 is moved upwardly by the surgeon (See arrow 24) while the surgeon simultaneously pushes the tube 12 portion of cannula 10 downward (See arrow 27).
  • each tube branch member 16, 18 "clears” the end portion 21 of sleeve 14, it diverges outwardly (See Arrow 23) toward the superior vena cava 28 and inferior vena cava 26 respectively.
  • the material utilized to manufacture cannula 10 will be of a pliable yet firm material, having a "memory”
  • the cannula tube branches 16, 18 will move towards superior vena cava 28 and inferior vena cava 26 as illustrated in FIG. 4B.
  • a rough ninety degree orientation of each tube branch member is satisfactory.
  • branches 16, 18 will have some pliability which in combination with the pliability of the superior and inferior vena cava 23, 26 allows the surgeon to manipulate each branch 16, 18 into its respective vena cava 23, 26 as is illustrated in FIGS. 4B and 4C.
  • each tube branch members 16, 18 of cannula 10 has fully diverged to its respective vena cava 28, 26.
  • clamps 34 would have been utilized to form substantially fluid tight connections between the vena cava and the cannula tube branch wall.
  • Rummel type tourniquets could be utilized which are comprised generally of a umbilical tape tension member 38, an annular rubber tubing sleeve 40 and a homestat 36. Such "Rummel type" tourniquets are known in the art.
  • FIG. 4C sleeve 14 has been removed as cannula 10 has assumed its operative "tee-like" position. The surgeon then tightens his purse string or like connection 44 to secure a fluid tight connection between the atrium 30 and cannula 10.
  • Cannula 10 should be manufactured of a material that preserves the tube lumen, reducing the chance for collapse of the tube during operation. Further, an FDA approved material for use as surgical tubing such as any number of plastics could be used including polyvinyl chloride and the like.

Abstract

A venous cannula apparatus is comprised of a fluid conveying tube, the tube providing an upper tube portion which communicates with a pair of lower connected tube branch members. Each of the lower tube branches is normally in an angular position with respect to the upper tube, thus allowing the tube branches to coincide with the atrium, superior vena cava and inferior vena cava during an operation requiring a cardio pulmonary bypass. In the preferred embodiment, two flexible lower branch members are provided forming a "wye" or "tee" with the upper tube portion. The entire cannula structure is manufactured of a material having a "memory" so that after a flexure of the branch members, they return to their operative or normal "tee" or "wye" position. A substantially stiffened sleeve member is cooperatively associated with and connectable to the fluid conveying tube, the sleeve being slideable about the tube and being capable of urging the lower tube branches into an aligned position with the upper tube portion. The apparatus can be utilized during a cardiopulmonary bypass, with only a single opening being formed in the atrium. The cannula apparatus is operatively inserted through an opening surgically formed in the atrium. Removal thereafter of the sleeve allows the branch members to diverge and insert respectfully into the superior and inferior vena cava. Closures form substantially fluid tight seals between the cannula structure and the heart before bypass begins.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to medical and surgical tubes, and more particularly relates to cannulae and venous cannula and the like, as used in cardio-pulmonary bypass operations. Even more particularly the present invention relates to a venous cannula apparatus and its method of installation wherein a single cannula structure mounted in a single opening with a purse string, for example, closure provides branch tube members forming fluid connections with the superior and inferior vena cava.
2. General Background and Prior Art
When a surgeon places a patient on a cardio-pulmonary bypass machine, there is required a fluid connection between the heart and the machine. The machine circulates both blood returning from the body to the heart, termed the venous return, and blood pumped into the body from the heart-lung machine, termed the arterial outflow. The venous return is normally collected by a flexible tube, or several flexible tubes which is/are known in the art as a cannula(e) or venous cannula(e). The cannula is fed through an opening in the artium which opening is formed by the surgeon. The surgeon provides a "purse string" suture for example to seal the cannula properly after it is placed through the opening. The lower portion of the ell-shaped cannula is inserted in a curved fashion into the superior or inferior vene cava.
Presently, two tubes are usually required since each must make an approximate ninety degree bend for its proper placement and operation. The placement of a "tee" or "wye" would not be possible since such a structure could not pass through a small purse string opening. Due to the desire to reduce trauma to the heart, two very small openings are thus made with a single substantially ell-shaped cannula being entered and placed through each respective surgical opening, one tube or cannula placed through the atrium to the inferior vena cava, the other being placed through a second respective opening into the superior vena cava.
After placement of the cannulae a substantially fluid tight seal is formed using the purse string suture about the surgical opening by utilizing snares or clamps around the inferior vena cava and superior vena cava to form fluid tight connections with the cannula tube and the respective vein.
The placement aforedescribed of two separate cannula structures still represents a serious trauma to the heart with two surgical openings being formed. The operative procedure of placing two cannulae in the atrium and superior and inferior vena cava consumes a significant amount of time.
3. General Description of the Present Invention
The present invention solves all the prior art problems and shortcomings in a simple and inexpensive manner. The present invention provides a cannula structure which is comprised of an upper fluid conveying tube having preferably two lower branch tube members which are normally urged to an angular tee-like position with respect to the upper tube portion of the cannula.
An outer slideable sleeve is fitted over the upper tube structure and slides up and down the cannula with respect to its central bore. The sleeve is substantially stiff and its movement along the upper tube to the lower tube branches urges the tube branch members into a substantial alignment with the upper fluid conveying tube. Thus, the sleeve urges the branch members of the cannula into an aligned "collapsed" position so the entire structure can be passed through a single suture opening as is desirable. The combined external diameter of the two tube branch members is substantially equal to the external diameter of the main fluid conveying tube. The outer sleeve provides an internal diameter slightly greater than the external diameter of the main fluid conveying tube. Thus a slideable fit is achieved (Note FIGS. 1 and 2). The sleeve then provides the maximum diameter of the cannula structure in its "collapsed" state which allows placement of the structure through a minimal diameter opening in the atrium (See FIG. 4A).
After placement of the lowermost portion of the aligned tube branch members through the single surgical opening, the surgeon can slowly remove the sleeve in an upward fashion with the two branch tubes (now inside the atrium) being urged by "memory" into their proper angular "operative" positions feeding the inferior and superior vena cava respectively. Clamps secure the branch tubes in these operative positions (See FIG. 4C).
Memory can be supplied to the branch members by utilizing a suitable plastic-like material which will cause each branch member to spring back into its tee-like orientation when the outer sleeve is removed.
BRIEF DESCRIPTION OF THE DRAWINGS
For a further understanding of the nature and objects of the present invention, reference should be had to the following detailed description, taken in conjunction with the accompanying drawings, in which like parts are given like reference numerals and wherein:
FIG. 1 is a perspective view of the preferred embodiment of the apparatus of the present invention illustrating the sleeve portion in a retaining position over the tube branches;
FIG. 2 is a perspective view of the perferred embodiment of the apparatus of the present invention showing the sleeve in a removed position with the branch members being urged into lateral "tee-like" orientation;
FIG. 3 is an exploded perspective view of the perferred embodiment of the apparatus of the present invention;
FIGS. 4A-4C are sequential views illustrating the installation of the preferred embodiment of the apparatus of the present invention into a human heart prior to a cardio-pulmonary bypass operation.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
FIG. 1 best illustrates the perferred embodiment of the apparatus of the present invention designated generally by the numeral 10.
In FIG. 1 there can be seen an upper tube 12 which is, for example, a fluid conveying cylindrical tube having an upper 20 tube portion and a lower or distal tube portion which is comprised of a right lower tube branch 18 and a left lower tube branch 16.
Further provided in FIG. 1 can be seen a sleeve 14 which slideably and moveably fits over upper tube 12.
Sleeve 14 is provided with a proximal end portion 31 and a lower distal end portion 21.
A proximate opening 22 is provided at the upper portion 20 of tube 12.
Openings 17, 19 are provided at lower tube branch 16 and lower tube branch 18 respectively. It should be understood that a continuous inner open bore is provided through the central portion of tube 12 and branch tubes 16, 18 providing a communication between opening 22 and openings 17, 19. Thus, fluid introduced into opening 22 could flow through the center portion of tube 20 and exit at openings 17, 19. Likewise fluid entering openings 17, 19 would flow through branch tubes 16, 18 and into tube 12 exiting opening 22. Thus, a communicating fluid conveying tube is provided in tube 12 and branch tubes 16, 18.
Arrows 24, FIG. 2 illustrate the slideable movement of sleeve 14 along tube 12.
Note in FIG. 1 that sleeve 14 has moved to a first lowermost position coverably contacting branch tubes 16, 18 and urging them to an intermost "collapsed" position where each tube of branch 16, 18 is substantially aligned with tube 12. Sleeve 14 as seen in FIG. 1 provides an internal diameter slightly greater than the external diameter of tube 12, and slightly greater than the combined external diameter of branch tube members 16, 18. It can be seen from the above that the external diameter of sleeve 14 thus provides the maximum external diameter when cannula 10 is in its "collapsed" position as seen in FIG. 1. Further, the external diameter of sleeve 10 controls the diameter of an opening 42 formed in the atrium.
This is desirable, because the entire cannula structure 10 can then be placed through a single small opening 42 formed by the surgeon in the atrium 30 of the heart (See FIG. 4A), thus minimizing trauma.
In FIG. 2, as indicated by arrows 24 sleeve 14 has been moved to an uppermost position, removed from the branch tubes 16, 18, with tubes 16, 18 assuming their lateral operative position. Branch tubes 16, 18 and tube 20 would preferably be manufactured of a suitable flexible material, but of a meterial which would have a "memory". Thus, when tubes 16, 18 are bent they will return to their original manufactured and cast position. Alternatively, resilient springs could be provided within the walls of tube branches 16, 18 and tube 12.
In FIG. 2, tubes 16, 18 have returned to a "tee-like" position, this position further being illustrated in FIG. 3. Note that the removal of sleeve 14 from its adjacent coverable position over to branches 16, 18 as is shown in FIG. 1 causes each tube 16, 18 to assume this tee-like lateral position as is desirable.
As will be described more fully hereinafter, the removal of sleeve 14 allows each tube branch 16, 18 to be placed laterally into the superior 28 or inferior 26 vena cava respectively (FIG. 4C).
In FIG. 3, there is provided an exploded view of the cannula apparatus 10 of the present invention showing the sleeve 14 removed from tube 12. In the preferred embodiment each tube of branch 16, 18 is provided in a length L which length would be sufficient to allow the tube branch members 16, 18 to sufficiently penetrate and enter the superior and inferior vena cava when the entire assembly of cannula 10 is placed through a purse string opening 42 in the atrium portion 30 of heart 32.
Likewise, tube 12 should be provided with a sufficient height H as to allow the tube branch members 16, 18 to fully occupy and implant themselves within the superior and inferior vena cava (28, 26 respectively) while still leaving the upper portion 20 of tube 12 for the connection of opening 22 to a heart lung machine or the like.
In FIG. 3, a ninety degree angular orientation of each tube branch members 16, 18 is provided. It should be understood however, that other suitable angular orientations of tube branch members 16, 18 with respect to tube 12 could be provided to fit particular anatomical applications.
FIGS. 4A-4C illustrate the method of installation of cannula 12 within the teaching of the present invention.
In FIG. 4A, sleeve 14 has been movably slided to a position (See arrows FIG. 4A) adjacent and covering branch tube members 16, 18. Note that the branch members 16, 18 have been urged into a substantially aligned position with tube 12. In this position the entire cannula apparatus 10 provides a substantially constant diameter D which can pass through the opening 42 formed by the surgeon.
In FIG. 4A, the surgeon has formed an opening 42 in the atrium 30 portion of heart 42. It can be seen that the lowermost end portion 21 of sleeve 14 has penetrated the atrium 30 through opening 42. A purse string or like suitable closure 44 is provided for forming a sealable substantially fluid tight connection sealing the atrium 30 to the walls of sleeve 14 and cannula 10.
In FIG. 4B, sleeve 14 is moved upwardly by the surgeon (See arrow 24) while the surgeon simultaneously pushes the tube 12 portion of cannula 10 downward (See arrow 27). As each tube branch member 16, 18 "clears" the end portion 21 of sleeve 14, it diverges outwardly (See Arrow 23) toward the superior vena cava 28 and inferior vena cava 26 respectively. Since the material utilized to manufacture cannula 10 will be of a pliable yet firm material, having a "memory", the cannula tube branches 16, 18 will move towards superior vena cava 28 and inferior vena cava 26 as illustrated in FIG. 4B. A rough ninety degree orientation of each tube branch member is satisfactory. Also, branches 16, 18 will have some pliability which in combination with the pliability of the superior and inferior vena cava 23, 26 allows the surgeon to manipulate each branch 16, 18 into its respective vena cava 23, 26 as is illustrated in FIGS. 4B and 4C.
In FIG. 4C, each tube branch members 16, 18 of cannula 10 has fully diverged to its respective vena cava 28, 26. Note that clamps 34 would have been utilized to form substantially fluid tight connections between the vena cava and the cannula tube branch wall. Rummel type tourniquets could be utilized which are comprised generally of a umbilical tape tension member 38, an annular rubber tubing sleeve 40 and a homestat 36. Such "Rummel type" tourniquets are known in the art.
In FIG. 4C, sleeve 14 has been removed as cannula 10 has assumed its operative "tee-like" position. The surgeon then tightens his purse string or like connection 44 to secure a fluid tight connection between the atrium 30 and cannula 10.
Cannula 10 should be manufactured of a material that preserves the tube lumen, reducing the chance for collapse of the tube during operation. Further, an FDA approved material for use as surgical tubing such as any number of plastics could be used including polyvinyl chloride and the like.

Claims (19)

What is claimed as invention is:
1. A cardio pulmonary bypass venous cannula apparatus, comprising:
a. a fluid conveying tube, said tube providing an upper proximate tube portion communicating with a pair of lower distal tube branch members, each of said lower distal tube branch members being movable into an angular lateral position with respect to said upper tube with one of said tube branch members being insertable into the inferior vena cava and the other of said tube branch members being insertable into the superior vena cave;
b. means slideably surrounding the exterior surface of said tube branch members for urging each of said lower distal tube branches into a collapsed aligned position with said upper tube portion allowing said distal tube branches to be inserted through a single surgical opening in the atrium of a patient during a cardio pulmonary bypass; and
c. closure means associated with said upper tube for forming a substantially fluid tight enclosure between said upper proximate tube portion and the walls of the single surgical opening into which said tube is inserted during the cardio pulmonary bypass.
2. The venous cannula apparatus of claim 1 wherein each of said tube branch members normally assumes an angular "tee-like" lateral position with respect to said fluid conveying tube.
3. The venous cannula apparatus of claim 1 wherein said tube branch members are of a material having a memory wherein said tube branch members will return to their original position after being flexed.
4. The venous cannula apparatus of claim 3 wherein said urging means a sleeve member movably attached to the outer portion of said fluid conveying tube.
5. The venous cannula apparatus of claim 4 wherein each of said tube branch members is normally laterally deposed with respect to said tube body.
6. The venous cannula apparatus of claim 5 wherein said sleeve member is cylindrical sleeve having an internal diameter equal to or greater than the combined external diameters of said tube branch members.
7. The venous cannula apparatus of claim 4 wherein said sleeve member provides the maximum diameter to said venous cannula apparatus when said branch tube members are urged to said collapsed aligned position.
8. A venous cannula apparatus, comprising:
a. cylindrical fluid conveying tube, said tube providing an upper tube portion communicating with a pair of cylindrical lower tube branch members connected to said fluid conveying tube and said lower tube branch members are of a combined external diameter substantially equal to the external diameter of said fluid conveying tube, and each of said lower tube branch members normally assumes a lateral operative position with respect to said fluid conveying tube, and each of said lower tube branch members are adapted to fit within the superior and inferior vena cava of a patient during coronary bypass surgical operation;
b. a cylindrical annular sleeve fittable over said fluid conveying tube and said pair of cylindrical lower tube branch members in a slidable fashion, said sleeve being slideably movable over said tube and said tube branch members from a first aligned collapsed position to a second removed operative postion, each of said branch members being substantially aligned with said fluid conveying tube and said sleeve when said sleeve assumes said first aligned position, said cannula apparatus further providing a maximum external diameter substantially equal to the external diameter of said fluid conveying tube, said maximum diameter adapted to pass through a formed surgical opening when said sleeve assumes said collapsed position, each of said tube branch members being extendable laterally into the superior and inferior vena cava respectively during a surgical bypass of the heart when said sleeve assumes said second removed operative position; and
c. a pair of clamp members for forming a substantially fluid tight seal between each of said tube branch members and the superior and inferior vena cava respectively.
9. The venous cannula apparatus of claim 8 wherein each of said clamp member is comprised of a tensile flexible tape member, an annular tubing sleeve covering the end portions of said tape and a clamp instrument securing the end portions of said tape within said tubing member.
10. The venous cannula apparatus of claim 8, further comprising closure means associated with said upper tube for forming a substantially fluid tight enclosure between said upper tube portion and the walls of a single surgically formed opening in the atrium of a heart.
11. The venous cannulae apparatus of claim 8 wherein each of said tube branch members are flexible and have a memory, allowing each tube to return to its original lateral position after being temporarily bent.
12. The venous cannula apparatus of claim 8 wherein each of said tube branch members is normally oriented at generally ninety degrees with respect to said upper tube portion.
13. A method of forming a cardio pulmonary bypass surgical connection comprising the steps of:
a. forming a single opening in the atrium portion of the heart;
b. providing a fluid conveying y-cannula having an upper tube and a pair of depending branch tubes integrally connected thereto, the upper tube defining a proximate end portion of the y-cannula and the branch tubes defining a distal end portion thereof;
c. substantially surrounding the y-cannula with an external sleeve;
d. inserting the distal branched end portion of the y-cannula and surrounding sleeve into the formed single opening;
e. withdrawing the sleeve from the branch tubes allowing them to diverge laterally within the atrium;
f. placing the end portion of one of the branch tubes into the superior vena cava;
g. placing the end portion of the second of the branch tubes into the inferior vena cava;
h. forming a substantially fluid tight connection at the single opening between the atrium and the proximate end portion of the y-cannula.
14. The method of claim 13 further comprising the step of securing an end portion of each respective fluid conveying tube to the superior vena cava and inferior vena cava respectively.
15. A method of forming a coronary bypass surgical connection comprising the steps of:
a. forming a single opening in the atrium portion of the heart;
b. providing a pair of elongated fluid conveying cannulae;
c. placing a sleeve about the pair of fluid conveying cannulae at the single formed surgical opening;
d. inserting the distal end portion of the combined sleeve and cannulae into the formed single opening;
e. diverging the pair of fluid conveying cannulae from the sleeve distal end portion respectively toward the superior vena cava and the inferior vena cava;
f. placing the end portion of one of the fluid conveying cannulae into the superior vena cava;
g. placing the end portion of the second of the fluid conveying cannulae into the inferior vena cava; and
h. forming a substantially fluid tight connection at the single opening between the atrium and the fluid conveying tubes.
16. The method of claim 15 further comprising the step of forming a seal around each cannulae and its respective vena cava with blood flow in the respective vena cava being thereafter through the respective cannulae.
17. The method of claim 15 wherein the step "b" each cannula is connected to an upper tube portion with fluid flow from each cannula being into said upper tube.
18. The method of implanting a cannula apparatus in a heart during a surgical cardio pulmonary bypass operation comprising the steps of:
a. providing a branched cannula apparatus which apparatus comprises a fluid conveying tube and a pair of connected normally laterally extending branch tube members;
b. urging the branch tube members into substantial alignment with the fluid conveying tube;
c. surrounding the aligned branch tube members with a sleeve;
d. forming a single opening in the atrium portion of the heart;
e. passing the lower tip portions of the tube branch members of the aligned cannula apparatus a distance through the formed opening and into the atrium;
f. allowing the branch tube members to diverge laterally within the atrium towards the superior and inferior vena cava respectively as the branch tube members exit the lower distal end of the sleeve; and
g. securing each tube branch member within the superior and inferior vena cava respectively in a substantially fluid tight fashion.
19. The method of claim 10 further comprising the step of forming a substantially fluid tight seal between the fluid conveying tube and the atrium portion of the heart at the formed opening.
US05/929,999 1978-08-01 1978-08-01 Double venous cannula Expired - Lifetime US4248224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/929,999 US4248224A (en) 1978-08-01 1978-08-01 Double venous cannula

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/929,999 US4248224A (en) 1978-08-01 1978-08-01 Double venous cannula

Publications (1)

Publication Number Publication Date
US4248224A true US4248224A (en) 1981-02-03

Family

ID=25458816

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/929,999 Expired - Lifetime US4248224A (en) 1978-08-01 1978-08-01 Double venous cannula

Country Status (1)

Country Link
US (1) US4248224A (en)

Cited By (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981002678A1 (en) * 1980-03-28 1981-10-01 Sherwood Medical Ind Inc Method and apparatus for displacing fluid in tubing
US4309994A (en) * 1980-02-25 1982-01-12 Grunwald Ronald P Cardiovascular cannula
US4402683A (en) * 1981-12-28 1983-09-06 Kopman Ercument A Cannula introducer
US4478219A (en) * 1982-03-24 1984-10-23 Manuel Dujovny Temporary microvascular occluder
US4563171A (en) * 1980-03-28 1986-01-07 Sherwood Medical Company Method for displacing fluid in tubing
US4574173A (en) * 1984-05-04 1986-03-04 Warner-Lambert Company Device for RF welding an IV tube to a catheter lumen
WO1986001416A1 (en) * 1984-08-21 1986-03-13 Mehealus Partnership Fully portable semi-automatic mechanical heart-lung substitution system and method
US4596548A (en) * 1985-03-25 1986-06-24 Dlp Inc. Single stage venous catheter
US4643712A (en) * 1985-10-18 1987-02-17 Blagoveschensky Gosudarstvenny Meditsinsky Institut Aortic cannula
US4738667A (en) * 1986-11-04 1988-04-19 Galloway Niall T M Preformed catheter assembly
US4804359A (en) * 1987-10-23 1989-02-14 Research Medical, Inc. Cardiovascular cannula and obturator
US4838881A (en) * 1984-05-04 1989-06-13 Deseret Medical, Inc. Multilumen catheter and associated IV tubing
EP0405749A1 (en) * 1989-06-30 1991-01-02 Steven J. Phillips Ventricular assist device cannulae
US5213575A (en) * 1990-03-20 1993-05-25 Scotti Daniel M Two-piece retrievable catheter forming straight and T-shape configurations
US5395353A (en) * 1993-11-02 1995-03-07 Vascular Technologies, Inc. Guiding catheter with controllable perfusion ports
WO1996017644A1 (en) * 1994-12-07 1996-06-13 Heartport, Inc. Cardioplegia catheter system
FR2738154A1 (en) * 1995-09-05 1997-03-07 Pourchez Thierry MULTI-PIPE CATHETER, ESPECIALLY HEMODIALYSIS
US5702368A (en) * 1991-07-16 1997-12-30 Heartport, Inc. System for cardiac procedures
US5720735A (en) * 1997-02-12 1998-02-24 Dorros; Gerald Bifurcated endovascular catheter
US5725496A (en) * 1992-12-03 1998-03-10 Heartport, Inc. Method for intraluminally inducing cardioplegic arrest and catheter for use therein
US5755687A (en) * 1997-04-01 1998-05-26 Heartport, Inc. Methods and devices for occluding a patient's ascending aorta
US5759170A (en) * 1993-11-30 1998-06-02 Heartport, Inc. Method for intraluminally inducing cardioplegic arrest and catheter for use therein
US5765568A (en) * 1994-05-27 1998-06-16 Heartport, Inc. Catheter system and method for venting the left ventricle
US5769812A (en) * 1991-07-16 1998-06-23 Heartport, Inc. System for cardiac procedures
US5797869A (en) * 1987-12-22 1998-08-25 Vas-Cath Incorporated Multiple lumen catheter
WO1999016497A1 (en) * 1997-09-26 1999-04-08 Cardeon Corporation Introducer and perfusion cannula
US5935103A (en) * 1991-12-17 1999-08-10 Heartport, Inc. Blood vessel occlusion device
US6013054A (en) * 1997-04-28 2000-01-11 Advanced Cardiovascular Systems, Inc. Multifurcated balloon catheter
US6042576A (en) * 1996-04-22 2000-03-28 Medtronic, Inc. Two-stage angled venous cannula
US6077256A (en) * 1998-10-06 2000-06-20 Mann; Michael J. Delivery of a composition to the lung
US6090096A (en) * 1997-04-23 2000-07-18 Heartport, Inc. Antegrade cardioplegia catheter and method
US6135981A (en) * 1997-10-22 2000-10-24 Dyke; Charles C. Protective aortic occlusion catheter
US6159178A (en) * 1998-01-23 2000-12-12 Heartport, Inc. Methods and devices for occluding the ascending aorta and maintaining circulation of oxygenated blood in the patient when the patient's heart is arrested
US6186981B1 (en) 1999-03-23 2001-02-13 Peter Cho Cavo-atrial cannula
WO2001036035A1 (en) * 1999-11-16 2001-05-25 Coaxia, Inc. Aortic shunt with spinal perfusion and cooling device
US20010003795A1 (en) * 1997-07-22 2001-06-14 Mitta Suresh Catheter system and method for posterior epicardial revascularization and intracardiac surgery on a beating heart
GB2373445A (en) * 2000-12-14 2002-09-25 Andrew Robert Bodenham A bronchial ventilation device
US6482171B1 (en) 1991-07-16 2002-11-19 Heartport, Inc. Multi-lumen catheter
US6558356B2 (en) * 1999-01-15 2003-05-06 Coaxia, Inc. Medical device for flow augmentation in patients with occlusive cerebrovascular disease and methods of use
US20030191462A1 (en) * 1996-05-03 2003-10-09 Jacobs Clemens J. Method for interrupting conduction paths within the heart
US6668198B2 (en) * 1996-12-19 2003-12-23 Ep Technologies, Inc. Structures for supporting porous electrode elements
US20040015219A1 (en) * 2002-05-16 2004-01-22 Francischelli David E. Device and method for ablation of cardiac tissue
US20040015106A1 (en) * 2000-01-19 2004-01-22 Coleman R. Glen Focused ultrasound ablation devices having selectively actuatable emitting elements and methods of using the same
US20040049179A1 (en) * 2001-04-26 2004-03-11 Francischelli David E. Ablation system
US20040059179A1 (en) * 2002-09-20 2004-03-25 Mark Maguire Intra-aortic renal delivery catheter
US20040064090A1 (en) * 1999-01-11 2004-04-01 Gad Keren Apparatus and methods for treating congestive heart disease
US20040078069A1 (en) * 2001-12-11 2004-04-22 Francischelli David E. Method and system for treatment of atrial tachyarrhythmias
US20040097900A1 (en) * 1999-01-11 2004-05-20 Gad Keren Apparatus and methods for treating congestive heart disease
US20040106918A1 (en) * 1996-10-22 2004-06-03 Epicor, Inc. Surgical system and procedure for treatment of medically refractory atrial fibrillation
US20040113542A1 (en) * 2002-12-11 2004-06-17 Applied Materials, Inc. Low temperature process for passivation applications
US20040138621A1 (en) * 2003-01-14 2004-07-15 Jahns Scott E. Devices and methods for interstitial injection of biologic agents into tissue
US20040138656A1 (en) * 2000-04-27 2004-07-15 Francischelli David E. System and method for assessing transmurality of ablation lesions
US20040143260A1 (en) * 2001-04-26 2004-07-22 Francischelli David E. Method and apparatus for tissue ablation
US20040167463A1 (en) * 2003-02-21 2004-08-26 Zawacki John A. Multi-lumen catheter with separate distal tips
US20040210187A1 (en) * 2002-02-07 2004-10-21 Zawacki John A. Split tip dialysis catheter
US20040215183A1 (en) * 1995-02-22 2004-10-28 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US20040220560A1 (en) * 2003-04-29 2004-11-04 Briscoe Roderick E. Endocardial dispersive electrode for use with a monopolar RF ablation pen
US20040236322A1 (en) * 1997-07-18 2004-11-25 Mulier Peter M.J. Device and method for ablating tissue
US20040267326A1 (en) * 2002-01-25 2004-12-30 Ocel Jon M Cardiac mapping instrument with shapeable electrode
US20050033280A1 (en) * 2001-04-26 2005-02-10 Francischelli David E. Method and system for treatment of atrial tachyarrhythmias
US20050054990A1 (en) * 2003-09-08 2005-03-10 Joanna Graft Split-tip catheter divider
US6866650B2 (en) 1991-07-16 2005-03-15 Heartport, Inc. System for cardiac procedures
US20050165392A1 (en) * 2002-01-25 2005-07-28 Medtronic, Inc. System and method of performing an electrosurgical procedure
US20050187578A1 (en) * 2002-09-20 2005-08-25 Rosenberg Michael S. Temporary retention device
US20050197624A1 (en) * 2004-03-04 2005-09-08 Flowmedica, Inc. Sheath for use in peripheral interventions
US20050209564A1 (en) * 2001-01-13 2005-09-22 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US6951555B1 (en) 1998-03-16 2005-10-04 Chase Medical, L.P. Catheter having integral expandable/collapsible lumen
US20050245892A1 (en) * 2002-09-20 2005-11-03 Flowmedica, Inc. Apparatus and method for inserting an intra-aorta catheter through a delivery sheath
US20050245882A1 (en) * 2002-09-20 2005-11-03 Flowmedica, Inc. Method and apparatus for intra-aortic substance delivery to a branch vessel
US20050256522A1 (en) * 2004-05-12 2005-11-17 Medtronic, Inc. Device and method for determining tissue thickness and creating cardiac ablation lesions
US20050267010A1 (en) * 2004-05-14 2005-12-01 Flowmedica, Inc. Bi-lateral local renal delivery for treating congestive heart failure and for BNP therapy
US20050267454A1 (en) * 2000-01-19 2005-12-01 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US20050273006A1 (en) * 2000-10-10 2005-12-08 Medtronic, Inc. Heart wall ablation/mapping catheter and method
US20050277862A1 (en) * 2004-06-09 2005-12-15 Anand Pj Splitable tip catheter with bioresorbable adhesive
US20060009760A1 (en) * 1998-07-07 2006-01-12 Medtronic, Inc. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US20060009756A1 (en) * 2004-05-14 2006-01-12 Francischelli David E Method and devices for treating atrial fibrillation by mass ablation
US20060009759A1 (en) * 2004-06-02 2006-01-12 Chrisitian Steven C Loop ablation apparatus and method
US20060020271A1 (en) * 2004-06-18 2006-01-26 Stewart Mark T Methods and devices for occlusion of an atrial appendage
US20060020263A1 (en) * 2004-06-02 2006-01-26 Rothstein Paul T Clamping ablation tool and method
US20060025756A1 (en) * 2000-01-19 2006-02-02 Francischelli David E Methods of using high intensity focused ultrasound to form an ablated tissue area
US20060036218A1 (en) * 2002-09-20 2006-02-16 Flowmedica, Inc. Method and apparatus for selective material delivery via an intra-renal catheter
US20060036236A1 (en) * 2004-06-02 2006-02-16 Rothstein Paul T Compound bipolar ablation device and method
US20060041243A1 (en) * 2001-01-13 2006-02-23 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US20060041254A1 (en) * 2002-10-30 2006-02-23 Medtronic, Inc. Electrosurgical hemostat
US20060047278A1 (en) * 2004-06-02 2006-03-02 Christian Steven C Ablation device with jaws
US20060052770A1 (en) * 1998-07-07 2006-03-09 Medtronic, Inc. Helical needle apparatus for creating a virtual electrode used for the ablation of tissue
US20060069323A1 (en) * 2004-09-24 2006-03-30 Flowmedica, Inc. Systems and methods for bi-lateral guidewire cannulation of branched body lumens
US20060079859A1 (en) * 2002-09-20 2006-04-13 Flowmedica, Inc. Renal infusion systems and methods
US20060149350A1 (en) * 2003-06-05 2006-07-06 Flowmedica, Inc. Systems and methods for performing bi-lateral interventions or diagnosis in branched body lumens
US7077822B1 (en) * 1994-02-09 2006-07-18 The University Of Iowa Research Foundation Stereotactic hypothalamic obesity probe
US20060167437A1 (en) * 2003-06-17 2006-07-27 Flowmedica, Inc. Method and apparatus for intra aortic substance delivery to a branch vessel
US7118566B2 (en) 2002-05-16 2006-10-10 Medtronic, Inc. Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US20060229594A1 (en) * 2000-01-19 2006-10-12 Medtronic, Inc. Method for guiding a medical device
US20060259066A1 (en) * 2005-04-28 2006-11-16 Euteneuer Charles L Bifurcated artery filter system
US7166105B2 (en) 1995-02-22 2007-01-23 Medtronic, Inc. Pen-type electrosurgical instrument
US20070049920A1 (en) * 2000-03-06 2007-03-01 Tissuelink Medical, Inc. Fluid-Assisted Medical Devices, Fluid Delivery Systems and Controllers for Such Devices, and Methods
US20070118107A1 (en) * 2000-04-27 2007-05-24 Francischelli David E Vibration sensitive ablation device and method
US20070167913A1 (en) * 2005-10-11 2007-07-19 Flowmedica, Inc. Vascular sheath with variable lumen construction
US7250048B2 (en) 2001-04-26 2007-07-31 Medtronic, Inc. Ablation system and method of use
US20070213686A1 (en) * 2003-08-05 2007-09-13 Flowmedica, Inc. System and method for prevention of radiocontrast induced nephropathy
US20070225651A1 (en) * 2006-03-09 2007-09-27 Rosenberg Michael S Anchor device and method
US20070287967A1 (en) * 2006-06-08 2007-12-13 Flowmedica, Inc. Selective renal cannulation and infusion systems and methods
US20080015562A1 (en) * 2001-04-26 2008-01-17 Medtronic, Inc. Transmural ablation systems and methods
US20080039746A1 (en) * 2006-05-25 2008-02-14 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US20080221551A1 (en) * 2007-03-09 2008-09-11 Flowmedica, Inc. Acute kidney injury treatment systems and methods
US7435250B2 (en) 2000-04-27 2008-10-14 Medtronic, Inc. Method and apparatus for tissue ablation
US20080275439A1 (en) * 2002-01-25 2008-11-06 David Francischelli Cardiac ablation and electrical interface system and instrument
US20080312599A1 (en) * 2007-06-15 2008-12-18 Interrad Medical, Inc. Anchor instrumentation and methods
US7481803B2 (en) 2000-11-28 2009-01-27 Flowmedica, Inc. Intra-aortic renal drug delivery catheter
US7507235B2 (en) 2001-01-13 2009-03-24 Medtronic, Inc. Method and system for organ positioning and stabilization
WO2009050478A1 (en) * 2007-10-19 2009-04-23 Barts And The London Nhs Trust Catheter apparatus
US20090105799A1 (en) * 2007-10-23 2009-04-23 Flowmedica, Inc. Renal assessment systems and methods
US20090112153A1 (en) * 2007-10-26 2009-04-30 C.R. Bard, Inc. Split-tip catheter including lateral distal openings
US20090192435A1 (en) * 2007-10-26 2009-07-30 C. R. Bard, Inc. Solid-body catheter including lateral distal openings
US20090204052A1 (en) * 2007-10-17 2009-08-13 Spire Corporation Manufacture of split tip catheters
US20090204079A1 (en) * 2007-10-17 2009-08-13 Spire Corporation Catheters with enlarged arterial lumens
US20090205189A1 (en) * 2008-02-15 2009-08-20 Spire Corporation Manufacture of fixed tip catheters
US20090209940A1 (en) * 2008-02-15 2009-08-20 Spire Corporation Fusion manufacture of multi-lumen catheters
US20090222001A1 (en) * 2007-12-28 2009-09-03 Salient Surgical Technologies, Inc. Fluid-Assisted Electrosurgical Devices, Methods and Systems
US20090299365A1 (en) * 2008-05-13 2009-12-03 Medtronic , Inc. Tissue Lesion Evaluation
US20090326473A1 (en) * 2008-06-27 2009-12-31 Interrad Medical, Inc. System for anchoring medical devices
US20100042110A1 (en) * 2004-06-18 2010-02-18 Medtronic, Inc. Method and system for placement of electrical lead inside heart
US20100145361A1 (en) * 2004-06-18 2010-06-10 Francischelli David E Methods and Devices for Occlusion of an Atrial Appendage
US20100198216A1 (en) * 2009-02-02 2010-08-05 Palanker Daniel V Electro-thermotherapy of tissue using penetrating microelectrode array
US20100204656A1 (en) * 2009-02-06 2010-08-12 Interrad Medical, Inc. System for anchoring medical devices
US20100217255A1 (en) * 2009-02-23 2010-08-26 Salient Surgical Technologies, Inc. Fluid-Assisted Electrosurgical Device and Methods of Use Thereof
US7818039B2 (en) 2000-04-27 2010-10-19 Medtronic, Inc. Suction stabilized epicardial ablation devices
US7824399B2 (en) 2001-04-26 2010-11-02 Medtronic, Inc. Ablation system and method of use
US20110071500A1 (en) * 2009-09-21 2011-03-24 Navilyst Medical, Inc. Branched catheter tip
US20110125146A1 (en) * 2009-09-08 2011-05-26 Salient Surgical Technologies, Inc. Cartridge Assembly For Electrosurgical Devices, Electrosurgical Unit And Methods Of Use Thereof
US20110177975A1 (en) * 1996-02-09 2011-07-21 Cornell Research Foundation, Inc. Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays
US8038653B2 (en) 2008-07-16 2011-10-18 Interrad Medical, Inc. Anchor systems and methods
US8092415B2 (en) 2007-11-01 2012-01-10 C. R. Bard, Inc. Catheter assembly including triple lumen tip
US8206371B2 (en) 2003-05-27 2012-06-26 Bard Access Systems, Inc. Methods and apparatus for inserting multi-lumen split-tip catheters into a blood vessel
US8343108B2 (en) 2010-09-29 2013-01-01 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US8568409B2 (en) 2000-03-06 2013-10-29 Medtronic Advanced Energy Llc Fluid-assisted medical devices, systems and methods
US20140025037A1 (en) * 2002-09-20 2014-01-23 Angiodynamics, Inc. Method and Apparatus for Intra-Aortic Substance Delivery to a Branch Vessel
US20140026395A1 (en) * 2010-05-28 2014-01-30 Medtronic Advanced Energy Llc Fluid-assisted electrosurgical devices, and methods of manufacture thereof
US8663245B2 (en) 2004-06-18 2014-03-04 Medtronic, Inc. Device for occlusion of a left atrial appendage
JP2014517721A (en) * 2011-04-05 2014-07-24 ソリン・グループ・イタリア・ソシエタ・ア・レスポンサビリタ・リミタータ Bidirectional perfusion cannula
US8870864B2 (en) 2011-10-28 2014-10-28 Medtronic Advanced Energy Llc Single instrument electrosurgery apparatus and its method of use
US8906012B2 (en) 2010-06-30 2014-12-09 Medtronic Advanced Energy Llc Electrosurgical devices with wire electrode
US8920417B2 (en) 2010-06-30 2014-12-30 Medtronic Advanced Energy Llc Electrosurgical devices and methods of use thereof
US8932263B2 (en) 2012-02-17 2015-01-13 Interrad Medical, Inc. Anchoring an intravenous cannula
US8936576B2 (en) 2011-09-15 2015-01-20 Interrad Medical, Inc. System for anchoring medical devices
US9023040B2 (en) 2010-10-26 2015-05-05 Medtronic Advanced Energy Llc Electrosurgical cutting devices
US9138289B2 (en) 2010-06-28 2015-09-22 Medtronic Advanced Energy Llc Electrode sheath for electrosurgical device
US9168352B2 (en) 2011-12-19 2015-10-27 Cardiacassist, Inc. Dual lumen cannula
US9226792B2 (en) 2012-06-12 2016-01-05 Medtronic Advanced Energy Llc Debridement device and method
USD748252S1 (en) 2013-02-08 2016-01-26 C. R. Bard, Inc. Multi-lumen catheter tip
US9314596B2 (en) 2012-10-11 2016-04-19 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US9381321B2 (en) 2013-05-03 2016-07-05 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US9381061B2 (en) 2000-03-06 2016-07-05 Medtronic Advanced Energy Llc Fluid-assisted medical devices, systems and methods
US9415190B2 (en) 2013-02-13 2016-08-16 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US9427281B2 (en) 2011-03-11 2016-08-30 Medtronic Advanced Energy Llc Bronchoscope-compatible catheter provided with electrosurgical device
US9550043B2 (en) 2012-12-13 2017-01-24 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US9579485B2 (en) 2007-11-01 2017-02-28 C. R. Bard, Inc. Catheter assembly including a multi-lumen configuration
US9592090B2 (en) 2010-03-11 2017-03-14 Medtronic Advanced Energy Llc Bipolar electrosurgical cutter with position insensitive return electrode contact
US9707339B2 (en) 2012-03-28 2017-07-18 Angiodynamics, Inc. High flow rate dual reservoir port system
US9713704B2 (en) 2012-03-29 2017-07-25 Bradley D. Chartrand Port reservoir cleaning system and method
US9750565B2 (en) 2011-09-30 2017-09-05 Medtronic Advanced Energy Llc Electrosurgical balloons
US9895523B2 (en) 2002-10-21 2018-02-20 Angiodynamics, Inc. Implantable medical device for improved placement and adherence in the body
US9956029B2 (en) 2014-10-31 2018-05-01 Medtronic Advanced Energy Llc Telescoping device with saline irrigation line
US9974599B2 (en) 2014-08-15 2018-05-22 Medtronic Ps Medical, Inc. Multipurpose electrosurgical device
GB2556021A (en) * 2016-07-11 2018-05-23 Ganapathy Ramesh Medical apparatus
US10105477B2 (en) 1998-02-24 2018-10-23 Angiodynamics, Inc. High flow rate dialysis catheters and related methods
US10166321B2 (en) 2014-01-09 2019-01-01 Angiodynamics, Inc. High-flow port and infusion needle systems
US10188456B2 (en) 2015-02-18 2019-01-29 Medtronic Xomed, Inc. Electrode assembly for RF energy enabled tissue debridement device
US10194975B1 (en) 2017-07-11 2019-02-05 Medtronic Advanced Energy, Llc Illuminated and isolated electrosurgical apparatus
US10258768B2 (en) 2014-07-14 2019-04-16 C. R. Bard, Inc. Apparatuses, systems, and methods for inserting catheters having enhanced stiffening and guiding features
US10314647B2 (en) 2013-12-23 2019-06-11 Medtronic Advanced Energy Llc Electrosurgical cutting instrument
US10335280B2 (en) 2000-01-19 2019-07-02 Medtronic, Inc. Method for ablating target tissue of a patient
US10376302B2 (en) 2015-02-18 2019-08-13 Medtronic Xomed, Inc. Rotating electrical connector for RF energy enabled tissue debridement device
US10631914B2 (en) 2013-09-30 2020-04-28 Covidien Lp Bipolar electrosurgical instrument with movable electrode and related systems and methods
US10716612B2 (en) 2015-12-18 2020-07-21 Medtronic Advanced Energy Llc Electrosurgical device with multiple monopolar electrode assembly
US10813686B2 (en) 2014-02-26 2020-10-27 Medtronic Advanced Energy Llc Electrosurgical cutting instrument
US11051875B2 (en) 2015-08-24 2021-07-06 Medtronic Advanced Energy Llc Multipurpose electrosurgical device
US11207130B2 (en) 2015-02-18 2021-12-28 Medtronic Xomed, Inc. RF energy enabled tissue debridement device
US11234760B2 (en) 2012-10-05 2022-02-01 Medtronic Advanced Energy Llc Electrosurgical device for cutting and removing tissue
US11389227B2 (en) 2015-08-20 2022-07-19 Medtronic Advanced Energy Llc Electrosurgical device with multivariate control
US11564733B2 (en) * 2018-01-17 2023-01-31 Covidien Lp Surgical instruments incorporating ultrasonic and electrosurgical functionality

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2935068A (en) * 1955-08-04 1960-05-03 Donaldson John Shearman Surgical procedure and apparatus for use in carrying out the same
US3372695A (en) * 1965-04-27 1968-03-12 Prosit Service Corp Method of overcoming incontinence
US3490456A (en) * 1967-04-14 1970-01-20 William M Kortum Intrauterine catheter anchor
US3683911A (en) * 1970-08-13 1972-08-15 Pelam Inc Protective seal for catheter
US3851646A (en) * 1973-04-13 1974-12-03 Sarns Inc Connector for open heart surgery
US4043346A (en) * 1976-03-10 1977-08-23 Baylor College Of Medicine Catheter
US4072153A (en) * 1976-03-03 1978-02-07 Swartz William H Post hysterectomy fluid drainage tube
US4114618A (en) * 1976-12-15 1978-09-19 Vargas Jorge J Catheter assembly
US4129129A (en) * 1977-03-18 1978-12-12 Sarns, Inc. Venous return catheter and a method of using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2935068A (en) * 1955-08-04 1960-05-03 Donaldson John Shearman Surgical procedure and apparatus for use in carrying out the same
US3372695A (en) * 1965-04-27 1968-03-12 Prosit Service Corp Method of overcoming incontinence
US3490456A (en) * 1967-04-14 1970-01-20 William M Kortum Intrauterine catheter anchor
US3683911A (en) * 1970-08-13 1972-08-15 Pelam Inc Protective seal for catheter
US3851646A (en) * 1973-04-13 1974-12-03 Sarns Inc Connector for open heart surgery
US4072153A (en) * 1976-03-03 1978-02-07 Swartz William H Post hysterectomy fluid drainage tube
US4043346A (en) * 1976-03-10 1977-08-23 Baylor College Of Medicine Catheter
US4114618A (en) * 1976-12-15 1978-09-19 Vargas Jorge J Catheter assembly
US4129129A (en) * 1977-03-18 1978-12-12 Sarns, Inc. Venous return catheter and a method of using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Campbell et al., "Cardiac Bypass in Humans", Surgery, vol. 40, No. 2, Aug. 1956, pp. 365-370. *
Maraist et al., "Experimental Cardiac Surgery", Surgery, vol. 31, No. 1, Jan. 1952, pp. 146-153. *

Cited By (440)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309994A (en) * 1980-02-25 1982-01-12 Grunwald Ronald P Cardiovascular cannula
WO1981002678A1 (en) * 1980-03-28 1981-10-01 Sherwood Medical Ind Inc Method and apparatus for displacing fluid in tubing
US4563171A (en) * 1980-03-28 1986-01-07 Sherwood Medical Company Method for displacing fluid in tubing
US4402683A (en) * 1981-12-28 1983-09-06 Kopman Ercument A Cannula introducer
US4478219A (en) * 1982-03-24 1984-10-23 Manuel Dujovny Temporary microvascular occluder
US4838881A (en) * 1984-05-04 1989-06-13 Deseret Medical, Inc. Multilumen catheter and associated IV tubing
US4574173A (en) * 1984-05-04 1986-03-04 Warner-Lambert Company Device for RF welding an IV tube to a catheter lumen
WO1986001416A1 (en) * 1984-08-21 1986-03-13 Mehealus Partnership Fully portable semi-automatic mechanical heart-lung substitution system and method
US4610656A (en) * 1984-08-21 1986-09-09 Mehealus Partnership Fully portable semi-automatic mechanical heart-lung substitution system and method
US4596548A (en) * 1985-03-25 1986-06-24 Dlp Inc. Single stage venous catheter
US4643712A (en) * 1985-10-18 1987-02-17 Blagoveschensky Gosudarstvenny Meditsinsky Institut Aortic cannula
US4738667A (en) * 1986-11-04 1988-04-19 Galloway Niall T M Preformed catheter assembly
US4804359A (en) * 1987-10-23 1989-02-14 Research Medical, Inc. Cardiovascular cannula and obturator
US6206849B1 (en) 1987-12-22 2001-03-27 Vas-Cath Incorporated Multiple lumen catheter
US5797869A (en) * 1987-12-22 1998-08-25 Vas-Cath Incorporated Multiple lumen catheter
US7229429B2 (en) 1987-12-22 2007-06-12 Vas-Cath Inc. Multiple lumen catheter
EP0405749A1 (en) * 1989-06-30 1991-01-02 Steven J. Phillips Ventricular assist device cannulae
US5213575A (en) * 1990-03-20 1993-05-25 Scotti Daniel M Two-piece retrievable catheter forming straight and T-shape configurations
US6482171B1 (en) 1991-07-16 2002-11-19 Heartport, Inc. Multi-lumen catheter
US5769812A (en) * 1991-07-16 1998-06-23 Heartport, Inc. System for cardiac procedures
US5702368A (en) * 1991-07-16 1997-12-30 Heartport, Inc. System for cardiac procedures
US5885238A (en) * 1991-07-16 1999-03-23 Heartport, Inc. System for cardiac procedures
US5868702A (en) * 1991-07-16 1999-02-09 Heartport, Inc. System for cardiac procedures
US6866650B2 (en) 1991-07-16 2005-03-15 Heartport, Inc. System for cardiac procedures
US5792094A (en) * 1991-07-16 1998-08-11 Heartport, Inc. Method of delivering cardioplegic fluid to a patient's heart
US5997505A (en) * 1991-12-17 1999-12-07 Heartport, Inc. Method of cannulating an ascending aorta using a blood vessel occlusion device
US6224619B1 (en) 1991-12-17 2001-05-01 Heartport, Inc. Blood vessel occlusion trocar having size and shape varying insertion body
US5935103A (en) * 1991-12-17 1999-08-10 Heartport, Inc. Blood vessel occlusion device
US5941894A (en) * 1991-12-17 1999-08-24 Heartport, Inc. Blood vessel occlusion device
US5762624A (en) * 1992-12-03 1998-06-09 Heartport, Inc. Venous cannula
US5725496A (en) * 1992-12-03 1998-03-10 Heartport, Inc. Method for intraluminally inducing cardioplegic arrest and catheter for use therein
US5395353A (en) * 1993-11-02 1995-03-07 Vascular Technologies, Inc. Guiding catheter with controllable perfusion ports
US5759170A (en) * 1993-11-30 1998-06-02 Heartport, Inc. Method for intraluminally inducing cardioplegic arrest and catheter for use therein
US6451004B1 (en) 1993-11-30 2002-09-17 William S Peters Method for intraluminally inducing cardioplegic arrest and catheter for use therein
US5971973A (en) * 1993-11-30 1999-10-26 Heartport, Inc. Method of occluding a patient's ascending aorta and returning oxygenated blood to the patient from a bypass system
US7077822B1 (en) * 1994-02-09 2006-07-18 The University Of Iowa Research Foundation Stereotactic hypothalamic obesity probe
US20020161321A1 (en) * 1994-05-27 2002-10-31 Sweezer, William P. Method of occluding a patient's ascending aorta and delivering cardioplegic fluid
US5800375A (en) * 1994-05-27 1998-09-01 Heartport, Inc. Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery
US5810757A (en) * 1994-05-27 1998-09-22 Heartport, Inc. Catheter system and method for total isolation of the heart
US6293920B1 (en) 1994-05-27 2001-09-25 Heartport, Inc. Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery
US6248086B1 (en) 1994-05-27 2001-06-19 Heartport, Inc. Method for cannulating a patient's aortic arch and occluding the patient's ascending aortic arch
US5765568A (en) * 1994-05-27 1998-06-16 Heartport, Inc. Catheter system and method for venting the left ventricle
US6398752B1 (en) 1994-05-27 2002-06-04 William P. Sweezer, Jr. Method of occluding a patient's ascending aorta and delivery cardioplegic fluid
US5807318A (en) * 1994-07-28 1998-09-15 Heartport, Inc. Method of perfusing the coronary vasculature
US5695457A (en) * 1994-07-28 1997-12-09 Heartport, Inc. Cardioplegia catheter system
US6913601B2 (en) 1994-12-07 2005-07-05 Heartport, Inc. Method for delivering a fluid to the coronary ostia
US20010023334A1 (en) * 1994-12-07 2001-09-20 Heartport, Inc. Method for delivering a fluid to the coronary ostia
WO1996017644A1 (en) * 1994-12-07 1996-06-13 Heartport, Inc. Cardioplegia catheter system
US20070208332A1 (en) * 1995-02-22 2007-09-06 Mulier Peter M Pen-type electrosurgical instrument
US9770282B2 (en) 1995-02-22 2017-09-26 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US7422588B2 (en) 1995-02-22 2008-09-09 Medtronic, Inc. Pen-type electrosurgical instrument
US7247155B2 (en) 1995-02-22 2007-07-24 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US7794460B2 (en) 1995-02-22 2010-09-14 Medtronic, Inc. Method of ablating tissue
US7166105B2 (en) 1995-02-22 2007-01-23 Medtronic, Inc. Pen-type electrosurgical instrument
US20040215183A1 (en) * 1995-02-22 2004-10-28 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
WO1997009086A1 (en) * 1995-09-05 1997-03-13 Thierry Pourchez Multilumen catheter, particularly for hemodialysis
FR2738154A1 (en) * 1995-09-05 1997-03-07 Pourchez Thierry MULTI-PIPE CATHETER, ESPECIALLY HEMODIALYSIS
US6001079A (en) * 1995-09-05 1999-12-14 Pourchez; Thierry Multilumen catheter, particularly for hemodialysis
US20110177975A1 (en) * 1996-02-09 2011-07-21 Cornell Research Foundation, Inc. Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays
US6042576A (en) * 1996-04-22 2000-03-28 Medtronic, Inc. Two-stage angled venous cannula
US7128740B2 (en) 1996-05-03 2006-10-31 Jacobs Clemens J Method for interrupting conduction paths within the heart
US20030191462A1 (en) * 1996-05-03 2003-10-09 Jacobs Clemens J. Method for interrupting conduction paths within the heart
US20040106918A1 (en) * 1996-10-22 2004-06-03 Epicor, Inc. Surgical system and procedure for treatment of medically refractory atrial fibrillation
US7387126B2 (en) * 1996-10-22 2008-06-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Surgical system and procedure for treatment of medically refractory atrial fibrillation
US8535301B2 (en) 1996-10-22 2013-09-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Surgical system and procedure for treatment of medically refractory atrial fibrillation
US6668198B2 (en) * 1996-12-19 2003-12-23 Ep Technologies, Inc. Structures for supporting porous electrode elements
US5720735A (en) * 1997-02-12 1998-02-24 Dorros; Gerald Bifurcated endovascular catheter
US5755687A (en) * 1997-04-01 1998-05-26 Heartport, Inc. Methods and devices for occluding a patient's ascending aorta
US6423031B1 (en) 1997-04-01 2002-07-23 Brian S. Donlon Methods and devices for occluding a patient's ascending aorta
US6056723A (en) * 1997-04-01 2000-05-02 Heartport, Inc. Methods and devices for occluding a patient's ascending aorta
US6932792B1 (en) 1997-04-23 2005-08-23 Frederick G. St. Goar Antegrade cardioplegia catheter and method
US6090096A (en) * 1997-04-23 2000-07-18 Heartport, Inc. Antegrade cardioplegia catheter and method
US6013054A (en) * 1997-04-28 2000-01-11 Advanced Cardiovascular Systems, Inc. Multifurcated balloon catheter
US6287277B1 (en) 1997-04-28 2001-09-11 Advanced Cardiovascular Systems, Inc. Balloon formation by vacuum deposition
US20060079888A1 (en) * 1997-07-18 2006-04-13 Mulier Peter M J Device and method for ablating tissue
US7470272B2 (en) 1997-07-18 2008-12-30 Medtronic, Inc. Device and method for ablating tissue
US7678111B2 (en) 1997-07-18 2010-03-16 Medtronic, Inc. Device and method for ablating tissue
US20040236322A1 (en) * 1997-07-18 2004-11-25 Mulier Peter M.J. Device and method for ablating tissue
US20010003795A1 (en) * 1997-07-22 2001-06-14 Mitta Suresh Catheter system and method for posterior epicardial revascularization and intracardiac surgery on a beating heart
US6099506A (en) * 1997-09-26 2000-08-08 Macoviak; John A. Introducer and perfusion cannula
WO1999016497A1 (en) * 1997-09-26 1999-04-08 Cardeon Corporation Introducer and perfusion cannula
US6135981A (en) * 1997-10-22 2000-10-24 Dyke; Charles C. Protective aortic occlusion catheter
US6159178A (en) * 1998-01-23 2000-12-12 Heartport, Inc. Methods and devices for occluding the ascending aorta and maintaining circulation of oxygenated blood in the patient when the patient's heart is arrested
US6589206B1 (en) 1998-01-23 2003-07-08 Heartport, Inc. Methods and devices for occluding the ascending aorta and maintaining circulation of oxygenated blood in the patient when the patient's heart is arrested
US6902556B2 (en) 1998-01-23 2005-06-07 Heartport, Inc. Methods and devices for occluding the ascending aorta and maintaining circulation oxygenated blood in the patient when the patient's heart is arrested
US10105477B2 (en) 1998-02-24 2018-10-23 Angiodynamics, Inc. High flow rate dialysis catheters and related methods
US6951555B1 (en) 1998-03-16 2005-10-04 Chase Medical, L.P. Catheter having integral expandable/collapsible lumen
US7699805B2 (en) 1998-07-07 2010-04-20 Medtronic, Inc. Helical coil apparatus for ablation of tissue
US7169144B2 (en) 1998-07-07 2007-01-30 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US9113896B2 (en) 1998-07-07 2015-08-25 Medtronic, Inc. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US20060052770A1 (en) * 1998-07-07 2006-03-09 Medtronic, Inc. Helical needle apparatus for creating a virtual electrode used for the ablation of tissue
US7156845B2 (en) 1998-07-07 2007-01-02 Medtronic, Inc. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US20060009760A1 (en) * 1998-07-07 2006-01-12 Medtronic, Inc. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US20080091194A1 (en) * 1998-07-07 2008-04-17 Mulier Peter M Helical coil apparatus for ablation of tissue
US7309325B2 (en) 1998-07-07 2007-12-18 Medtronic, Inc. Helical needle apparatus for creating a virtual electrode used for the ablation of tissue
US20070093808A1 (en) * 1998-07-07 2007-04-26 Mulier Peter M J Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US6077256A (en) * 1998-10-06 2000-06-20 Mann; Michael J. Delivery of a composition to the lung
US7341570B2 (en) 1999-01-11 2008-03-11 Flowmedica, Inc. Apparatus and methods for treating congestive heart disease
US20070100314A1 (en) * 1999-01-11 2007-05-03 Flowmedica, Inc. Apparatus and methods for treating congestive heart disease
US7780628B1 (en) 1999-01-11 2010-08-24 Angiodynamics, Inc. Apparatus and methods for treating congestive heart disease
US20040097900A1 (en) * 1999-01-11 2004-05-20 Gad Keren Apparatus and methods for treating congestive heart disease
US20040064090A1 (en) * 1999-01-11 2004-04-01 Gad Keren Apparatus and methods for treating congestive heart disease
US6878140B2 (en) 1999-01-15 2005-04-12 Coaxia, Inc. Methods for flow augmentation in patients with occlusive cerebrovascular disease
US6558356B2 (en) * 1999-01-15 2003-05-06 Coaxia, Inc. Medical device for flow augmentation in patients with occlusive cerebrovascular disease and methods of use
US6186981B1 (en) 1999-03-23 2001-02-13 Peter Cho Cavo-atrial cannula
WO2001036035A1 (en) * 1999-11-16 2001-05-25 Coaxia, Inc. Aortic shunt with spinal perfusion and cooling device
US20040015106A1 (en) * 2000-01-19 2004-01-22 Coleman R. Glen Focused ultrasound ablation devices having selectively actuatable emitting elements and methods of using the same
US7615015B2 (en) 2000-01-19 2009-11-10 Medtronic, Inc. Focused ultrasound ablation devices having selectively actuatable emitting elements and methods of using the same
US20060229594A1 (en) * 2000-01-19 2006-10-12 Medtronic, Inc. Method for guiding a medical device
US20060025756A1 (en) * 2000-01-19 2006-02-02 Francischelli David E Methods of using high intensity focused ultrasound to form an ablated tissue area
US7706882B2 (en) 2000-01-19 2010-04-27 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area
US20050267454A1 (en) * 2000-01-19 2005-12-01 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US10335280B2 (en) 2000-01-19 2019-07-02 Medtronic, Inc. Method for ablating target tissue of a patient
US8221402B2 (en) 2000-01-19 2012-07-17 Medtronic, Inc. Method for guiding a medical device
US8568409B2 (en) 2000-03-06 2013-10-29 Medtronic Advanced Energy Llc Fluid-assisted medical devices, systems and methods
US20070049920A1 (en) * 2000-03-06 2007-03-01 Tissuelink Medical, Inc. Fluid-Assisted Medical Devices, Fluid Delivery Systems and Controllers for Such Devices, and Methods
US9381061B2 (en) 2000-03-06 2016-07-05 Medtronic Advanced Energy Llc Fluid-assisted medical devices, systems and methods
US20110066146A1 (en) * 2000-04-27 2011-03-17 Jahns Scott E Suction Stabilized Epicardial Ablation Devices
US7435250B2 (en) 2000-04-27 2008-10-14 Medtronic, Inc. Method and apparatus for tissue ablation
US7818039B2 (en) 2000-04-27 2010-10-19 Medtronic, Inc. Suction stabilized epicardial ablation devices
US20070118107A1 (en) * 2000-04-27 2007-05-24 Francischelli David E Vibration sensitive ablation device and method
US20040138656A1 (en) * 2000-04-27 2004-07-15 Francischelli David E. System and method for assessing transmurality of ablation lesions
US8162933B2 (en) 2000-04-27 2012-04-24 Medtronic, Inc. Vibration sensitive ablation device and method
US9693819B2 (en) 2000-04-27 2017-07-04 Medtronic, Inc. Vibration sensitive ablation device and method
US8706260B2 (en) 2000-10-10 2014-04-22 Medtronic, Inc. Heart wall ablation/mapping catheter and method
US20100168740A1 (en) * 2000-10-10 2010-07-01 Medtronic, Inc. Heart Wall Ablation/Mapping Catheter and Method
US20050273006A1 (en) * 2000-10-10 2005-12-08 Medtronic, Inc. Heart wall ablation/mapping catheter and method
US7706894B2 (en) 2000-10-10 2010-04-27 Medtronic, Inc. Heart wall ablation/mapping catheter and method
US7481803B2 (en) 2000-11-28 2009-01-27 Flowmedica, Inc. Intra-aortic renal drug delivery catheter
GB2373445A (en) * 2000-12-14 2002-09-25 Andrew Robert Bodenham A bronchial ventilation device
US20050209564A1 (en) * 2001-01-13 2005-09-22 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US7628780B2 (en) 2001-01-13 2009-12-08 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US7740623B2 (en) 2001-01-13 2010-06-22 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US20060041243A1 (en) * 2001-01-13 2006-02-23 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US7507235B2 (en) 2001-01-13 2009-03-24 Medtronic, Inc. Method and system for organ positioning and stabilization
US20090143638A1 (en) * 2001-01-13 2009-06-04 Medtronic, Inc. Method and System for Organ Positioning and Stabilization
US7250048B2 (en) 2001-04-26 2007-07-31 Medtronic, Inc. Ablation system and method of use
US8221415B2 (en) 2001-04-26 2012-07-17 Medtronic, Inc. Method and apparatus for tissue ablation
US20040049179A1 (en) * 2001-04-26 2004-03-11 Francischelli David E. Ablation system
US20050033280A1 (en) * 2001-04-26 2005-02-10 Francischelli David E. Method and system for treatment of atrial tachyarrhythmias
US7367972B2 (en) 2001-04-26 2008-05-06 Medtronic, Inc. Ablation system
US20060195082A1 (en) * 2001-04-26 2006-08-31 Francischelli David E Method and apparatus for tissue ablation
US7094235B2 (en) 2001-04-26 2006-08-22 Medtronic, Inc. Method and apparatus for tissue ablation
US20080071271A1 (en) * 2001-04-26 2008-03-20 Francischelli David E Method and apparatus for tissue ablation
US20040143260A1 (en) * 2001-04-26 2004-07-22 Francischelli David E. Method and apparatus for tissue ablation
US7824399B2 (en) 2001-04-26 2010-11-02 Medtronic, Inc. Ablation system and method of use
US7959626B2 (en) 2001-04-26 2011-06-14 Medtronic, Inc. Transmural ablation systems and methods
US8512337B2 (en) 2001-04-26 2013-08-20 Medtronic, Inc. Method and system for treatment of atrial tachyarrhythmias
US20080015562A1 (en) * 2001-04-26 2008-01-17 Medtronic, Inc. Transmural ablation systems and methods
US20070270799A1 (en) * 2001-04-26 2007-11-22 Francischelli David E Method and apparatus for tissue ablation
US7250051B2 (en) 2001-04-26 2007-07-31 Medtronic, Inc. Method and apparatus for tissue ablation
US8262649B2 (en) 2001-04-26 2012-09-11 Medtronic, Inc. Method and apparatus for tissue ablation
US20040078069A1 (en) * 2001-12-11 2004-04-22 Francischelli David E. Method and system for treatment of atrial tachyarrhythmias
US7347858B2 (en) 2001-12-11 2008-03-25 Medtronic, Inc. Method and system for treatment of atrial tachyarrhythmias
US20050165392A1 (en) * 2002-01-25 2005-07-28 Medtronic, Inc. System and method of performing an electrosurgical procedure
US20040267326A1 (en) * 2002-01-25 2004-12-30 Ocel Jon M Cardiac mapping instrument with shapeable electrode
US20080275439A1 (en) * 2002-01-25 2008-11-06 David Francischelli Cardiac ablation and electrical interface system and instrument
US20070043397A1 (en) * 2002-01-25 2007-02-22 Ocel Jon M Cardiac mapping instrument with shapeable electrode
US8623010B2 (en) 2002-01-25 2014-01-07 Medtronic, Inc. Cardiac mapping instrument with shapeable electrode
US7967816B2 (en) 2002-01-25 2011-06-28 Medtronic, Inc. Fluid-assisted electrosurgical instrument with shapeable electrode
US20090326527A1 (en) * 2002-01-25 2009-12-31 Ocel Jon M Cardiac Mapping Instrument with Shapeable Electrode
US7364578B2 (en) 2002-01-25 2008-04-29 Medtronic, Inc. System and method of performing an electrosurgical procedure
US8021321B2 (en) 2002-02-07 2011-09-20 C. R. Bard, Inc. Split tip dialysis catheter
US20040210187A1 (en) * 2002-02-07 2004-10-21 Zawacki John A. Split tip dialysis catheter
US20070032786A1 (en) * 2002-05-16 2007-02-08 Francischelli David E Device and method for ablation of cardiac tissue
US20040015219A1 (en) * 2002-05-16 2004-01-22 Francischelli David E. Device and method for ablation of cardiac tissue
US7294143B2 (en) 2002-05-16 2007-11-13 Medtronic, Inc. Device and method for ablation of cardiac tissue
US7118566B2 (en) 2002-05-16 2006-10-10 Medtronic, Inc. Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US20070049923A1 (en) * 2002-05-16 2007-03-01 Jahns Scott E Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US8414573B2 (en) 2002-05-16 2013-04-09 Medtronic, Inc. Device and method for ablation of cardiac tissue
US7975703B2 (en) 2002-05-16 2011-07-12 Medtronic, Inc. Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US9227040B2 (en) 2002-09-20 2016-01-05 Interrad Medical, Inc. Temporary retention device
US7241273B2 (en) 2002-09-20 2007-07-10 Flowmedica, Inc. Intra-aortic renal delivery catheter
US20040059179A1 (en) * 2002-09-20 2004-03-25 Mark Maguire Intra-aortic renal delivery catheter
US20140025037A1 (en) * 2002-09-20 2014-01-23 Angiodynamics, Inc. Method and Apparatus for Intra-Aortic Substance Delivery to a Branch Vessel
US7935127B2 (en) 2002-09-20 2011-05-03 Interrad Medical, Inc. Temporary retention device
US7931658B2 (en) 2002-09-20 2011-04-26 Interrad Medical, Inc. Temporary retention device
US20040059277A1 (en) * 2002-09-20 2004-03-25 Mark Maguire Intra-aortic renal delivery catheter
US20050245882A1 (en) * 2002-09-20 2005-11-03 Flowmedica, Inc. Method and apparatus for intra-aortic substance delivery to a branch vessel
US7364566B2 (en) 2002-09-20 2008-04-29 Flowmedica, Inc. Method and apparatus for intra-aortic substance delivery to a branch vessel
US10737068B2 (en) 2002-09-20 2020-08-11 Interrad Medical, Inc. Temporary retention device
US11439793B2 (en) 2002-09-20 2022-09-13 Interrad Medical, Inc. Temporary retention device
US8585678B2 (en) 2002-09-20 2013-11-19 Angiodynamics, Inc. Method and apparatus for intra-aortic substance delivery to a branch vessel
US7914503B2 (en) * 2002-09-20 2011-03-29 Angio Dynamics Method and apparatus for selective material delivery via an intra-renal catheter
US20060036218A1 (en) * 2002-09-20 2006-02-16 Flowmedica, Inc. Method and apparatus for selective material delivery via an intra-renal catheter
US7563247B2 (en) 2002-09-20 2009-07-21 Angiodynamics, Inc. Intra-aortic renal delivery catheter
US20110172607A1 (en) * 2002-09-20 2011-07-14 Interrad Medical, Inc. Temporary Retention Device
US7993325B2 (en) * 2002-09-20 2011-08-09 Angio Dynamics, Inc. Renal infusion systems and methods
US20070249997A1 (en) * 2002-09-20 2007-10-25 Flowmedica, Inc. Method and apparatus for selective material delivery via an intra-renal catheter
US9956377B2 (en) * 2002-09-20 2018-05-01 Angiodynamics, Inc. Method and apparatus for intra-aortic substance delivery to a branch vessel
US7104981B2 (en) 2002-09-20 2006-09-12 Flowmedica, Inc. Apparatus and method for inserting an intra-aorta catheter through a delivery sheath
US9884168B2 (en) 2002-09-20 2018-02-06 Interrad Medical, Inc. Temporary retention device
US8012121B2 (en) 2002-09-20 2011-09-06 Angiodynamics, Inc. Method and apparatus for selective material delivery via an intra-renal catheter
US6994700B2 (en) 2002-09-20 2006-02-07 Flowmedica, Inc. Apparatus and method for inserting an intra-aorta catheter through a delivery sheath
US8252004B2 (en) 2002-09-20 2012-08-28 Interrad Medical, Inc. Temporary retention device
US8715295B2 (en) 2002-09-20 2014-05-06 Interrad Medical, Inc. Temporary retention device
US20060079859A1 (en) * 2002-09-20 2006-04-13 Flowmedica, Inc. Renal infusion systems and methods
US20050187578A1 (en) * 2002-09-20 2005-08-25 Rosenberg Michael S. Temporary retention device
US20050245892A1 (en) * 2002-09-20 2005-11-03 Flowmedica, Inc. Apparatus and method for inserting an intra-aorta catheter through a delivery sheath
US20070106330A1 (en) * 2002-09-20 2007-05-10 Interrad Medical, Inc. Temporary retention device
US9895523B2 (en) 2002-10-21 2018-02-20 Angiodynamics, Inc. Implantable medical device for improved placement and adherence in the body
US20060195083A1 (en) * 2002-10-30 2006-08-31 Jahns Scott E Electrosurgical hemostat
US7083620B2 (en) 2002-10-30 2006-08-01 Medtronic, Inc. Electrosurgical hemostat
US20060041254A1 (en) * 2002-10-30 2006-02-23 Medtronic, Inc. Electrosurgical hemostat
US7963963B2 (en) 2002-10-30 2011-06-21 Medtronic, Inc. Electrosurgical hemostat
US20040113542A1 (en) * 2002-12-11 2004-06-17 Applied Materials, Inc. Low temperature process for passivation applications
US8273072B2 (en) 2003-01-14 2012-09-25 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US7744562B2 (en) 2003-01-14 2010-06-29 Medtronics, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US20040138621A1 (en) * 2003-01-14 2004-07-15 Jahns Scott E. Devices and methods for interstitial injection of biologic agents into tissue
US8808227B2 (en) 2003-02-21 2014-08-19 C. R. Bard, Inc. Multi-lumen catheter with separate distal tips
US9387304B2 (en) 2003-02-21 2016-07-12 C.R. Bard, Inc. Multi-lumen catheter with separate distal tips
US8152951B2 (en) 2003-02-21 2012-04-10 C. R. Bard, Inc. Multi-lumen catheter with separate distal tips
US7393339B2 (en) 2003-02-21 2008-07-01 C. R. Bard, Inc. Multi-lumen catheter with separate distal tips
US20040167463A1 (en) * 2003-02-21 2004-08-26 Zawacki John A. Multi-lumen catheter with separate distal tips
US20090138008A1 (en) * 2003-04-29 2009-05-28 Medtronic, Inc. Endocardial Dispersive Electrode for Use with a Monopolar RF Ablation Pen
US7871409B2 (en) 2003-04-29 2011-01-18 Medtronic, Inc. Endocardial dispersive electrode for use with a monopolar RF ablation pen
US20040220560A1 (en) * 2003-04-29 2004-11-04 Briscoe Roderick E. Endocardial dispersive electrode for use with a monopolar RF ablation pen
US7497857B2 (en) 2003-04-29 2009-03-03 Medtronic, Inc. Endocardial dispersive electrode for use with a monopolar RF ablation pen
US10806895B2 (en) 2003-05-27 2020-10-20 Bard Access Systems, Inc. Methods and apparatus for inserting multi-lumen split-tip catheters into a blood vessel
US10105514B2 (en) 2003-05-27 2018-10-23 Bard Access Systems, Inc. Methods and apparatus for inserting multi-lumen split-tip catheters into a blood vessel
US9572956B2 (en) 2003-05-27 2017-02-21 Bard Access Systems, Inc. Methods and apparatus for inserting multi-lumen split-tip catheters into a blood vessel
US8597275B2 (en) 2003-05-27 2013-12-03 Bard Access Systems, Inc. Methods and apparatus for inserting multi-lumen split-tip catheters into a blood vessel
US8206371B2 (en) 2003-05-27 2012-06-26 Bard Access Systems, Inc. Methods and apparatus for inserting multi-lumen split-tip catheters into a blood vessel
US7766961B2 (en) 2003-06-05 2010-08-03 Angio Dynamics, Inc. Systems and methods for performing bi-lateral interventions or diagnosis in branched body lumens
US20060149350A1 (en) * 2003-06-05 2006-07-06 Flowmedica, Inc. Systems and methods for performing bi-lateral interventions or diagnosis in branched body lumens
US20060167437A1 (en) * 2003-06-17 2006-07-27 Flowmedica, Inc. Method and apparatus for intra aortic substance delivery to a branch vessel
US20070213686A1 (en) * 2003-08-05 2007-09-13 Flowmedica, Inc. System and method for prevention of radiocontrast induced nephropathy
US20050054990A1 (en) * 2003-09-08 2005-03-10 Joanna Graft Split-tip catheter divider
US8518011B2 (en) 2004-03-04 2013-08-27 Angiodynamics, Inc. Sheath for use in peripheral interventions
US20090318857A1 (en) * 2004-03-04 2009-12-24 Flowmedica, Inc. Sheath for use in peripheral interventions
US20050197624A1 (en) * 2004-03-04 2005-09-08 Flowmedica, Inc. Sheath for use in peripheral interventions
US8333764B2 (en) 2004-05-12 2012-12-18 Medtronic, Inc. Device and method for determining tissue thickness and creating cardiac ablation lesions
US20050256522A1 (en) * 2004-05-12 2005-11-17 Medtronic, Inc. Device and method for determining tissue thickness and creating cardiac ablation lesions
US20050267010A1 (en) * 2004-05-14 2005-12-01 Flowmedica, Inc. Bi-lateral local renal delivery for treating congestive heart failure and for BNP therapy
US8801707B2 (en) 2004-05-14 2014-08-12 Medtronic, Inc. Method and devices for treating atrial fibrillation by mass ablation
US7585836B2 (en) 2004-05-14 2009-09-08 Goodson Iv Harry Burt Bi-lateral local renal delivery for treating congestive heart failure and for BNP therapy
US20060009756A1 (en) * 2004-05-14 2006-01-12 Francischelli David E Method and devices for treating atrial fibrillation by mass ablation
US20090270857A1 (en) * 2004-06-02 2009-10-29 Christian Steven C Ablation Device with Jaws
US7758580B2 (en) 2004-06-02 2010-07-20 Medtronic, Inc. Compound bipolar ablation device and method
US20060020263A1 (en) * 2004-06-02 2006-01-26 Rothstein Paul T Clamping ablation tool and method
US20110087205A1 (en) * 2004-06-02 2011-04-14 Christian Steven C Ablation device with jaws
US20110071519A1 (en) * 2004-06-02 2011-03-24 Rothstein Paul T Clamping Ablation Tool and Method
US20060009759A1 (en) * 2004-06-02 2006-01-12 Chrisitian Steven C Loop ablation apparatus and method
US20060036236A1 (en) * 2004-06-02 2006-02-16 Rothstein Paul T Compound bipolar ablation device and method
US7875028B2 (en) 2004-06-02 2011-01-25 Medtronic, Inc. Ablation device with jaws
US20060047278A1 (en) * 2004-06-02 2006-03-02 Christian Steven C Ablation device with jaws
US8172837B2 (en) 2004-06-02 2012-05-08 Medtronic, Inc. Clamping ablation tool and method
US7758576B2 (en) 2004-06-02 2010-07-20 Medtronic, Inc. Clamping ablation tool and method
US8162941B2 (en) 2004-06-02 2012-04-24 Medtronic, Inc. Ablation device with jaws
US7678108B2 (en) 2004-06-02 2010-03-16 Medtronic, Inc. Loop ablation apparatus and method
US7566334B2 (en) 2004-06-02 2009-07-28 Medtronic, Inc. Ablation device with jaws
US9782535B2 (en) 2004-06-09 2017-10-10 Bard Access Systems, Inc. Splitable tip catheter with bioresorbable adhesive
US20080214980A1 (en) * 2004-06-09 2008-09-04 Spire Corporation Splitable tip catheter with bioresorbable adhesive
US20050277862A1 (en) * 2004-06-09 2005-12-15 Anand Pj Splitable tip catheter with bioresorbable adhesive
US9669149B2 (en) 2004-06-09 2017-06-06 Bard Access Systems, Inc. Splitable tip catheter with bioresorbable adhesive
US8992454B2 (en) * 2004-06-09 2015-03-31 Bard Access Systems, Inc. Splitable tip catheter with bioresorbable adhesive
US8926635B2 (en) 2004-06-18 2015-01-06 Medtronic, Inc. Methods and devices for occlusion of an atrial appendage
US9656063B2 (en) 2004-06-18 2017-05-23 Medtronic, Inc. Method and system for placement of electrical lead inside heart
US20100042110A1 (en) * 2004-06-18 2010-02-18 Medtronic, Inc. Method and system for placement of electrical lead inside heart
US8409219B2 (en) 2004-06-18 2013-04-02 Medtronic, Inc. Method and system for placement of electrical lead inside heart
US20100145361A1 (en) * 2004-06-18 2010-06-10 Francischelli David E Methods and Devices for Occlusion of an Atrial Appendage
US20060020271A1 (en) * 2004-06-18 2006-01-26 Stewart Mark T Methods and devices for occlusion of an atrial appendage
US8663245B2 (en) 2004-06-18 2014-03-04 Medtronic, Inc. Device for occlusion of a left atrial appendage
US20060069323A1 (en) * 2004-09-24 2006-03-30 Flowmedica, Inc. Systems and methods for bi-lateral guidewire cannulation of branched body lumens
US20060259066A1 (en) * 2005-04-28 2006-11-16 Euteneuer Charles L Bifurcated artery filter system
US20070167913A1 (en) * 2005-10-11 2007-07-19 Flowmedica, Inc. Vascular sheath with variable lumen construction
US9381323B2 (en) 2006-03-09 2016-07-05 Interrad Medical, Inc. Anchor device and method
US8771232B2 (en) 2006-03-09 2014-07-08 Interrad Medical, Inc. Anchor device and method
US8016813B2 (en) 2006-03-09 2011-09-13 Interrad Medical, Inc. Anchor device and method
US8016794B2 (en) 2006-03-09 2011-09-13 Interrad Medical, Inc. Anchor device and method
US11058853B2 (en) 2006-03-09 2021-07-13 Interrad Medical, Inc. Anchor device and method
US20090326470A1 (en) * 2006-03-09 2009-12-31 Interrad Medical, Inc. Anchor Device and Method
US20070225651A1 (en) * 2006-03-09 2007-09-27 Rosenberg Michael S Anchor device and method
US11738177B2 (en) 2006-03-09 2023-08-29 Interrad Medical, Inc. Anchor device and method
US10293140B2 (en) 2006-03-09 2019-05-21 Interrad Medical, Inc. Anchor device and method
US20100217162A1 (en) * 2006-05-25 2010-08-26 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US9931134B2 (en) 2006-05-25 2018-04-03 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US9724119B2 (en) 2006-05-25 2017-08-08 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US9227088B2 (en) 2006-05-25 2016-01-05 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US10589130B2 (en) 2006-05-25 2020-03-17 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US20080039746A1 (en) * 2006-05-25 2008-02-14 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US7771401B2 (en) 2006-06-08 2010-08-10 Angiodynamics, Inc. Selective renal cannulation and infusion systems and methods
US20070287967A1 (en) * 2006-06-08 2007-12-13 Flowmedica, Inc. Selective renal cannulation and infusion systems and methods
US20080221551A1 (en) * 2007-03-09 2008-09-11 Flowmedica, Inc. Acute kidney injury treatment systems and methods
US8142401B2 (en) 2007-06-15 2012-03-27 Interrad Medical, Inc. Anchor instrumentation and methods
US11452846B2 (en) 2007-06-15 2022-09-27 Interrad Medical, Inc. Anchor instrumentation and methods
US7753889B2 (en) 2007-06-15 2010-07-13 Interrad Medical, Inc. Anchor instrumentation and methods
US8920380B2 (en) 2007-06-15 2014-12-30 Interrad Medical, Inc. Anchor instrumentation and methods
US10046142B2 (en) 2007-06-15 2018-08-14 Interrad Medical, Inc. Anchor instrumentation and methods
US20080312599A1 (en) * 2007-06-15 2008-12-18 Interrad Medical, Inc. Anchor instrumentation and methods
US8500939B2 (en) 2007-10-17 2013-08-06 Bard Access Systems, Inc. Manufacture of split tip catheters
US20090204079A1 (en) * 2007-10-17 2009-08-13 Spire Corporation Catheters with enlarged arterial lumens
US20090204052A1 (en) * 2007-10-17 2009-08-13 Spire Corporation Manufacture of split tip catheters
AU2008313476B2 (en) * 2007-10-19 2014-06-12 Barts And The London Nhs Trust Catheter apparatus
US20100280450A1 (en) * 2007-10-19 2010-11-04 Barts And The London Nhs Trust Catheter apparatus
WO2009050478A1 (en) * 2007-10-19 2009-04-23 Barts And The London Nhs Trust Catheter apparatus
JP2011500191A (en) * 2007-10-19 2011-01-06 バーツ・アンド・ザ・ロンドン・エヌエイチエス・トラスト Catheter device
US8608688B2 (en) 2007-10-19 2013-12-17 Barts And The London Nhs Trust Catheter apparatus
US20090105799A1 (en) * 2007-10-23 2009-04-23 Flowmedica, Inc. Renal assessment systems and methods
US9233200B2 (en) 2007-10-26 2016-01-12 C.R. Bard, Inc. Split-tip catheter including lateral distal openings
US8696614B2 (en) 2007-10-26 2014-04-15 C. R. Bard, Inc. Split-tip catheter including lateral distal openings
US8292841B2 (en) 2007-10-26 2012-10-23 C. R. Bard, Inc. Solid-body catheter including lateral distal openings
US20090112153A1 (en) * 2007-10-26 2009-04-30 C.R. Bard, Inc. Split-tip catheter including lateral distal openings
US10258732B2 (en) 2007-10-26 2019-04-16 C. R. Bard, Inc. Split-tip catheter including lateral distal openings
US10207043B2 (en) 2007-10-26 2019-02-19 C. R. Bard, Inc. Solid-body catheter including lateral distal openings
US20090192435A1 (en) * 2007-10-26 2009-07-30 C. R. Bard, Inc. Solid-body catheter including lateral distal openings
US11338075B2 (en) 2007-10-26 2022-05-24 C. R. Bard, Inc. Split-tip catheter including lateral distal openings
US8066660B2 (en) 2007-10-26 2011-11-29 C. R. Bard, Inc. Split-tip catheter including lateral distal openings
US8540661B2 (en) 2007-10-26 2013-09-24 C. R. Bard, Inc. Solid-body catheter including lateral distal openings
US11260161B2 (en) 2007-10-26 2022-03-01 C. R. Bard, Inc. Solid-body catheter including lateral distal openings
US9174019B2 (en) 2007-10-26 2015-11-03 C. R. Bard, Inc. Solid-body catheter including lateral distal openings
US9610422B2 (en) 2007-11-01 2017-04-04 C. R. Bard, Inc. Catheter assembly
US8894601B2 (en) 2007-11-01 2014-11-25 C. R. Bard, Inc. Catheter assembly including triple lumen tip
US11918758B2 (en) 2007-11-01 2024-03-05 C. R. Bard, Inc. Catheter assembly including a multi-lumen configuration
US10518064B2 (en) 2007-11-01 2019-12-31 C. R. Bard, Inc. Catheter assembly including a multi-lumen configuration
US8092415B2 (en) 2007-11-01 2012-01-10 C. R. Bard, Inc. Catheter assembly including triple lumen tip
US9579485B2 (en) 2007-11-01 2017-02-28 C. R. Bard, Inc. Catheter assembly including a multi-lumen configuration
US20090222001A1 (en) * 2007-12-28 2009-09-03 Salient Surgical Technologies, Inc. Fluid-Assisted Electrosurgical Devices, Methods and Systems
US8882756B2 (en) 2007-12-28 2014-11-11 Medtronic Advanced Energy Llc Fluid-assisted electrosurgical devices, methods and systems
US20090209940A1 (en) * 2008-02-15 2009-08-20 Spire Corporation Fusion manufacture of multi-lumen catheters
US20090205189A1 (en) * 2008-02-15 2009-08-20 Spire Corporation Manufacture of fixed tip catheters
US20090299365A1 (en) * 2008-05-13 2009-12-03 Medtronic , Inc. Tissue Lesion Evaluation
US8821488B2 (en) 2008-05-13 2014-09-02 Medtronic, Inc. Tissue lesion evaluation
US9919134B2 (en) 2008-06-27 2018-03-20 Interrad Medical, Inc. System for anchoring medical devices
US8235948B2 (en) 2008-06-27 2012-08-07 Interrad Medical, Inc. System for anchoring medical devices
US20090326473A1 (en) * 2008-06-27 2009-12-31 Interrad Medical, Inc. System for anchoring medical devices
US10471236B2 (en) 2008-06-27 2019-11-12 Interrad Medical, Inc. System for anchoring medical devices
US8628511B2 (en) 2008-06-27 2014-01-14 Interrad Medical, Inc. System for anchoring medical devices
US9283355B2 (en) 2008-06-27 2016-03-15 Interrad Medical, Inc. System for anchoring medical devices
US11672955B2 (en) 2008-06-27 2023-06-13 Interrad Medical, Inc. System for anchoring medical devices
US11224723B2 (en) 2008-06-27 2022-01-18 Interrad Medical, Inc. System for anchoring medical devices
US9056187B2 (en) 2008-07-16 2015-06-16 Interrad Medical, Inc. Anchor systems and methods
US11147951B2 (en) 2008-07-16 2021-10-19 Interrad Medical, Inc. Subcutaneous anchor device for securing a catheter
US11839726B2 (en) 2008-07-16 2023-12-12 Interrad Medical, Inc. Subcutaneous anchor device for securing a catheter
US8579864B2 (en) 2008-07-16 2013-11-12 Interrad Medical, Inc. Anchor systems and methods
US8038653B2 (en) 2008-07-16 2011-10-18 Interrad Medical, Inc. Anchor systems and methods
US8444603B2 (en) 2008-07-16 2013-05-21 Interrad Medical, Inc. Anchor systems and methods
US9937327B2 (en) 2008-07-16 2018-04-10 Interrad Medical, Inc. Anchor systems and methods
US10335576B2 (en) 2008-07-16 2019-07-02 Interrad Medical, Inc. Anchor systems and methods
US9254168B2 (en) 2009-02-02 2016-02-09 Medtronic Advanced Energy Llc Electro-thermotherapy of tissue using penetrating microelectrode array
US20100198216A1 (en) * 2009-02-02 2010-08-05 Palanker Daniel V Electro-thermotherapy of tissue using penetrating microelectrode array
US8328764B2 (en) 2009-02-06 2012-12-11 Interrad Medical, Inc. System for anchoring medical devices
US8974434B2 (en) 2009-02-06 2015-03-10 Interrad Medical, Inc. System for anchoring medical devices
US11744996B2 (en) 2009-02-06 2023-09-05 Interrad Medical, Inc. System for anchoring medical devices
US9656045B2 (en) 2009-02-06 2017-05-23 Interrad Medical, Inc. System for anchoring medical devices
US20100204656A1 (en) * 2009-02-06 2010-08-12 Interrad Medical, Inc. System for anchoring medical devices
US10384037B2 (en) 2009-02-06 2019-08-20 Interrad Medical, Inc. System for anchoring medical devices
US8986257B2 (en) 2009-02-06 2015-03-24 Interrad Medical, Inc. System for anchoring medical devices
US11045629B2 (en) 2009-02-06 2021-06-29 Interrad Medical, Inc. System for anchoring medical devices
US20100217255A1 (en) * 2009-02-23 2010-08-26 Salient Surgical Technologies, Inc. Fluid-Assisted Electrosurgical Device and Methods of Use Thereof
US8632533B2 (en) 2009-02-23 2014-01-21 Medtronic Advanced Energy Llc Fluid-assisted electrosurgical device
US9486283B2 (en) 2009-02-23 2016-11-08 Medtronic Advanced Energy Llc Fluid-assisted electrosurgical device
US11751942B2 (en) 2009-09-08 2023-09-12 Medtronic Advanced Energy Llc Surgical device
US20110125146A1 (en) * 2009-09-08 2011-05-26 Salient Surgical Technologies, Inc. Cartridge Assembly For Electrosurgical Devices, Electrosurgical Unit And Methods Of Use Thereof
US9345541B2 (en) 2009-09-08 2016-05-24 Medtronic Advanced Energy Llc Cartridge assembly for electrosurgical devices, electrosurgical unit and methods of use thereof
US20110071500A1 (en) * 2009-09-21 2011-03-24 Navilyst Medical, Inc. Branched catheter tip
US10085796B2 (en) 2010-03-11 2018-10-02 Medtronic Advanced Energy Llc Bipolar electrosurgical cutter with position insensitive return electrode contact
US9592090B2 (en) 2010-03-11 2017-03-14 Medtronic Advanced Energy Llc Bipolar electrosurgical cutter with position insensitive return electrode contact
US20140026395A1 (en) * 2010-05-28 2014-01-30 Medtronic Advanced Energy Llc Fluid-assisted electrosurgical devices, and methods of manufacture thereof
US9333027B2 (en) * 2010-05-28 2016-05-10 Medtronic Advanced Energy Llc Method of producing an electrosurgical device
US9138289B2 (en) 2010-06-28 2015-09-22 Medtronic Advanced Energy Llc Electrode sheath for electrosurgical device
US9895191B2 (en) 2010-06-28 2018-02-20 Medtronic Advanced Energy Llc Electrode sheath for electrosurgical device
US9445858B2 (en) 2010-06-30 2016-09-20 Medtronic Advanced Energy Llc Bipolar electrosurgical device
US8920417B2 (en) 2010-06-30 2014-12-30 Medtronic Advanced Energy Llc Electrosurgical devices and methods of use thereof
US8906012B2 (en) 2010-06-30 2014-12-09 Medtronic Advanced Energy Llc Electrosurgical devices with wire electrode
US8343108B2 (en) 2010-09-29 2013-01-01 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US9662476B2 (en) 2010-09-29 2017-05-30 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US10960185B2 (en) 2010-09-29 2021-03-30 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US9381322B2 (en) 2010-09-29 2016-07-05 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US10201682B2 (en) 2010-09-29 2019-02-12 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US8956329B2 (en) 2010-09-29 2015-02-17 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US9023040B2 (en) 2010-10-26 2015-05-05 Medtronic Advanced Energy Llc Electrosurgical cutting devices
US10517671B2 (en) 2011-03-11 2019-12-31 Medtronic Advanced Engery LLC Broncoscope-compatible catheter provided with electrosurgical device
US9427281B2 (en) 2011-03-11 2016-08-30 Medtronic Advanced Energy Llc Bronchoscope-compatible catheter provided with electrosurgical device
JP2014517721A (en) * 2011-04-05 2014-07-24 ソリン・グループ・イタリア・ソシエタ・ア・レスポンサビリタ・リミタータ Bidirectional perfusion cannula
US10183148B2 (en) 2011-04-05 2019-01-22 Sorin Group Italia S.R.L. Bi-directional perfusion cannula
US11464942B2 (en) 2011-04-05 2022-10-11 Sorin Group Italia S.R.L. Bi-directional perfusion cannula
US9849269B2 (en) 2011-09-15 2017-12-26 Interrad Medical, Inc. System for anchoring medical devices
US8936576B2 (en) 2011-09-15 2015-01-20 Interrad Medical, Inc. System for anchoring medical devices
US10709874B2 (en) 2011-09-15 2020-07-14 Interrad Medical, Inc. System for anchoring medical devices
US11344703B2 (en) 2011-09-15 2022-05-31 Interrad Medical, Inc. System for anchoring medical devices
US10154878B2 (en) 2011-09-30 2018-12-18 Medtronic Advanced Energy Llc Electrosurgical balloons
US9750565B2 (en) 2011-09-30 2017-09-05 Medtronic Advanced Energy Llc Electrosurgical balloons
US8870864B2 (en) 2011-10-28 2014-10-28 Medtronic Advanced Energy Llc Single instrument electrosurgery apparatus and its method of use
US9782534B2 (en) 2011-12-19 2017-10-10 Cardiacassist, Inc. Dual lumen cannula
US11179510B2 (en) 2011-12-19 2021-11-23 Cardiac Pacemakers, Inc. Method of assisting a heart using a dual lumen cannula
US11344659B2 (en) 2011-12-19 2022-05-31 Cardiacassist, Inc. Dual lumen cannula
US10279101B2 (en) 2011-12-19 2019-05-07 Cardiacassist, Inc. Dual lumen cannula
US11918725B2 (en) 2011-12-19 2024-03-05 Cardiacassist, Inc. Dual lumen cannula
US9168352B2 (en) 2011-12-19 2015-10-27 Cardiacassist, Inc. Dual lumen cannula
US8932263B2 (en) 2012-02-17 2015-01-13 Interrad Medical, Inc. Anchoring an intravenous cannula
US10532188B2 (en) 2012-02-17 2020-01-14 Interrad Medical, Inc. Anchoring an intravenous cannula
US9782567B2 (en) 2012-02-17 2017-10-10 Interrad Medical, Inc. Anchoring an intravenous cannula
US9707339B2 (en) 2012-03-28 2017-07-18 Angiodynamics, Inc. High flow rate dual reservoir port system
US9713704B2 (en) 2012-03-29 2017-07-25 Bradley D. Chartrand Port reservoir cleaning system and method
US10653478B2 (en) 2012-06-12 2020-05-19 Medtronic Advanced Energy, Llc Debridement device and method
US9226792B2 (en) 2012-06-12 2016-01-05 Medtronic Advanced Energy Llc Debridement device and method
US11737812B2 (en) 2012-06-12 2023-08-29 Medtronic Advanced Energy Llc Debridement device and method
US11234760B2 (en) 2012-10-05 2022-02-01 Medtronic Advanced Energy Llc Electrosurgical device for cutting and removing tissue
US10342954B2 (en) 2012-10-11 2019-07-09 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US9907934B2 (en) 2012-10-11 2018-03-06 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US11577051B2 (en) 2012-10-11 2023-02-14 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US9314596B2 (en) 2012-10-11 2016-04-19 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US10874835B2 (en) 2012-10-11 2020-12-29 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US10912927B2 (en) 2012-12-13 2021-02-09 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US9550043B2 (en) 2012-12-13 2017-01-24 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US11793975B2 (en) 2012-12-13 2023-10-24 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US9789288B2 (en) 2012-12-13 2017-10-17 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US10279148B2 (en) 2012-12-13 2019-05-07 Interrad Medical, Inc. Systems and methods for anchoring medical devices
USD748252S1 (en) 2013-02-08 2016-01-26 C. R. Bard, Inc. Multi-lumen catheter tip
US11890433B2 (en) 2013-02-13 2024-02-06 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US10828464B2 (en) 2013-02-13 2020-11-10 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US9415190B2 (en) 2013-02-13 2016-08-16 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US9381321B2 (en) 2013-05-03 2016-07-05 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US11511080B2 (en) 2013-05-03 2022-11-29 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US9662475B2 (en) 2013-05-03 2017-05-30 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US10420917B2 (en) 2013-05-03 2019-09-24 Interrad Medical, Inc. Systems and methods for anchoring medical devices
US11241272B2 (en) 2013-09-30 2022-02-08 Covidien Lp Bipolar electrosurgical instrument with movable electrode and related systems and methods
US10631914B2 (en) 2013-09-30 2020-04-28 Covidien Lp Bipolar electrosurgical instrument with movable electrode and related systems and methods
US10314647B2 (en) 2013-12-23 2019-06-11 Medtronic Advanced Energy Llc Electrosurgical cutting instrument
US10166321B2 (en) 2014-01-09 2019-01-01 Angiodynamics, Inc. High-flow port and infusion needle systems
US11864824B2 (en) 2014-02-26 2024-01-09 Medtronic Advanced Energy Llc Electrosurgical cutting instrument
US10813686B2 (en) 2014-02-26 2020-10-27 Medtronic Advanced Energy Llc Electrosurgical cutting instrument
US10258768B2 (en) 2014-07-14 2019-04-16 C. R. Bard, Inc. Apparatuses, systems, and methods for inserting catheters having enhanced stiffening and guiding features
US10857330B2 (en) 2014-07-14 2020-12-08 C. R. Bard, Inc. Apparatuses, systems, and methods for inserting catheters having enhanced stiffening and guiding features
US9974599B2 (en) 2014-08-15 2018-05-22 Medtronic Ps Medical, Inc. Multipurpose electrosurgical device
US9956029B2 (en) 2014-10-31 2018-05-01 Medtronic Advanced Energy Llc Telescoping device with saline irrigation line
US10376302B2 (en) 2015-02-18 2019-08-13 Medtronic Xomed, Inc. Rotating electrical connector for RF energy enabled tissue debridement device
US11207130B2 (en) 2015-02-18 2021-12-28 Medtronic Xomed, Inc. RF energy enabled tissue debridement device
US10188456B2 (en) 2015-02-18 2019-01-29 Medtronic Xomed, Inc. Electrode assembly for RF energy enabled tissue debridement device
US11197714B2 (en) 2015-02-18 2021-12-14 Medtronic Xomed, Inc. Electrode assembly for RF energy enabled tissue debridement device
US11389227B2 (en) 2015-08-20 2022-07-19 Medtronic Advanced Energy Llc Electrosurgical device with multivariate control
US11051875B2 (en) 2015-08-24 2021-07-06 Medtronic Advanced Energy Llc Multipurpose electrosurgical device
US10716612B2 (en) 2015-12-18 2020-07-21 Medtronic Advanced Energy Llc Electrosurgical device with multiple monopolar electrode assembly
GB2556021A (en) * 2016-07-11 2018-05-23 Ganapathy Ramesh Medical apparatus
GB2556021B (en) * 2016-07-11 2022-11-23 Ganapathy Ramesh Medical apparatus
US11672591B2 (en) 2017-07-11 2023-06-13 Medtronic Advanced Energy Llc Illuminated and isolated electrosurgical apparatus
US10194975B1 (en) 2017-07-11 2019-02-05 Medtronic Advanced Energy, Llc Illuminated and isolated electrosurgical apparatus
US10806504B2 (en) 2017-07-11 2020-10-20 Medtronic Advanced Energy, Llc Illuminated and isolated electrosurgical apparatus
US11564733B2 (en) * 2018-01-17 2023-01-31 Covidien Lp Surgical instruments incorporating ultrasonic and electrosurgical functionality

Similar Documents

Publication Publication Date Title
US4248224A (en) Double venous cannula
US4795446A (en) Medical tube device
US6315787B1 (en) Sutureless vessel plug and methods of use
US4309994A (en) Cardiovascular cannula
US4129129A (en) Venous return catheter and a method of using the same
US6695810B2 (en) Endolumenal aortic isolation assembly and method
US6344022B1 (en) Right ventricular bypass devices and methods of their use during heart surgery
US4498902A (en) Catheter guide
US5190528A (en) Percutaneous transseptal left atrial cannulation system
EP1990066B1 (en) A pump-outflow-cannula and a blood managing system
US5312344A (en) Arterial perfusion cannula for extracorporeal circulation and other uses
US4955856A (en) Method and apparatus for installing a ventricular assist device cannulae
US8591539B2 (en) Expandable conduit-guide and a method for applying and positioning an expandable conduit-guide
US6123725A (en) Single port cardiac support apparatus
US4643712A (en) Aortic cannula
US5928181A (en) Cardiac bypass catheter system and method of use
US4944729A (en) Femoral arterial cannula
US20040171997A1 (en) Double-y-shaped multi-lumen catheter with selectively attachable hubs
US20140100430A1 (en) Applicator, assembly, and method for connecting an inlet conduit to a hollow organ
US20060247570A1 (en) Cardiac support cannula device and method
JP2002522149A (en) Perfusion catheter system having a sutureless arteriotomy seal and method of use thereof
JPH09509074A (en) Cardiopulmonary bypass system for performing chest closure interventions
US6969379B1 (en) Intravascular cannulation apparatus and methods of use
JPS6279069A (en) Catheter for circulatory system
US5540653A (en) Preassembled bypass circuit