US4838654A - Liquid crystal display device having display and driver sections on a single board - Google Patents

Liquid crystal display device having display and driver sections on a single board Download PDF

Info

Publication number
US4838654A
US4838654A US07/109,227 US10922787A US4838654A US 4838654 A US4838654 A US 4838654A US 10922787 A US10922787 A US 10922787A US 4838654 A US4838654 A US 4838654A
Authority
US
United States
Prior art keywords
board
liquid crystal
insulating layer
stripes
electrode stripes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/109,227
Inventor
Tsueno Hamaguchi
Yoshihiko Hirai
Setsuo Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Assigned to NEC CORPORATION, 33-1, SHIBA 5-CHOME, MINATO-KU, TOKYO, JAPAN reassignment NEC CORPORATION, 33-1, SHIBA 5-CHOME, MINATO-KU, TOKYO, JAPAN ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: HAMAGUCHI, TSUNEO, HIRAI, YOSHIHIKO, KANEKO, SETSUO
Application granted granted Critical
Publication of US4838654A publication Critical patent/US4838654A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/103Materials and properties semiconductor a-Si
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/104Materials and properties semiconductor poly-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate

Definitions

  • the present invention relates to a liquid crystal display (hereinafter, referred to LCD) device, and more particularly to a structural improvement of the same device.
  • LCD liquid crystal display
  • LCD devices using liquid crystal such as twisted nematic (TN) liquid crystal have been developed to an extent of commercial use in some industrial fields including wrist watches, disk-top calculators and so on.
  • active-matrix type LCD devices attract many attentions.
  • Those active-matrix type LCD devices are composed of a first board having a plane electrode held at a reference potential, a second board of transparent material on which there provides a lattice of conductive stripes and a pair of thin film transistor (TFT) and picture element electrode at each crossing point of the conductive stripes, and a liquid crystal interposed between the first and second boards.
  • the TFT's are insulated gate field effect transistors having polycrystalline silicone or amorphous silicon at a channel portion between source and drain regions.
  • the scanning signals are produced with semiconductor integrated circuit (IC) which is formed in a monocrystalline silicon substrate.
  • IC semiconductor integrated circuit
  • the IC is difficult to be formed with use of the polycrystalline or amorphous silicon, due to their crystal imperfection.
  • the LCD device and the IC for driving the LCD are separately formed and wired therebetween.
  • the LCD device having picture elements of 400 ⁇ 600 there are 400 conductive stripes in a vertical direction and 640 conductive stripes in a horizontal direction.
  • 1,040 interconnections are required in one display apparatus.
  • the interconnections are formed by wire-bonding process, the 1,040 or more interconnections increase a probability of connection errors and rise a production cost. Technically, such large number of interconnections on a small area is an upper limit of present connection technique.
  • the LCD device in which an LCD panel and a driving circuit are integrated on a single board has been proposed on pages 48 to 49 of "Society for Information Display, International Symposium, Digest of Technical Papers, 82" (referred to "SID 82 DIGEST") and on pages 316 to 319 of "Society for Information Display, International Symposium, Digest of Technical papers, 84" (referred to "SID 84 DIGEST”).
  • the SID 82 DIGEST formed both of LCD panel and driving circuit on a monocrystalline silicon substrate.
  • the monocrystalline silicon substrate is not a transparent material.
  • the proposed LCD device is not used as a light transmission type device. Even in a case using as a light reflection type device, the produced picture has a poor contrast.
  • the SID 84 DIGEST formed both of them on a glass substrate using polycrystalline silicon.
  • the driving circuit is formed of TFT's using polycrystalline silicon and has a limited low operating frequency.
  • the reproduced picture is not stable.
  • the reproduced picture quality is insufficient for commercial use.
  • an LCD device comprising a first board having a reference voltage electrode, a second board having a lattice of conductive stripes, a pair of transistor and picture element electrode at each crossing point of the conductive stripes and a driving circuit applying signals to the conductive stripes and liquid crystal interposed between the first and second boards, at least one of first and second board being formed of transparent material, the transistor including polycrystalline or amorphous semiconductor as a channel region, the driving circuit being formed on a monocrystalline semiconductor and the conductive stripes and the driving circuit being interconnected on the second board by conductive layers without using bonding wire.
  • the LCD device of the present invention forms the driving circuit on the second board together with the conductive stripes and the pairs of transistor and picture element electrode and interconnects the driving circuit and the conductive stripes by using the conductive layers. Those interconnections are easily achieved by IC process. The number of external connections becomes small, because the driving signals are formed on the second board. Thus, the high density wire-bondings are not required, causing a small probability of bonding error, a decrease of production cost and an easiness of production technique.
  • FIG. 1 is a brief plan view of a preferred embodiment according to the present invention.
  • FIG. 2 is a partial section view of encircled portion in FIG. 1 for explaining a pair of transistor and picture element electrode;
  • FIG. 3 is a brief circuit diagram showing a driving circuit for scanning the lattice of conductive stripes
  • FIG. 4 is a brief circuit diagram showing another driving circuit for applying data signals to the lattice of conductive stripes.
  • FIGS. 5 to 7 are sectional views for explaining steps of manufacturing the preferred embodiment of the present invention.
  • An LCD device of the preferred embodiment has a transparent board 1 of quartz glass, borosilicate glass and so on, a common electrode board 15 of the transparent glass such as quartz glass, borosilicate glass and so on and liquid crystal layer 13 such as twisted nematic liquid crystal interposed between the transparent board 1 and the common electrode board 15 (see FIG. 2).
  • the common electrode board 15 provides a common electrode 14 in contact with the liquid crystal layer 13.
  • a reference voltage is applied to the common electrode 14.
  • the plan view of the transparent board 1 is shown in FIG. 1.
  • the TFT's 18 and picture element electrodes 5 are formed on the transparent board 1 so as to face the liquid crystal.
  • a plurality of scan electrode stripes 20 and a plurality of data electrode stripes 21 are provided on the transparent board 1 to form a lattice.
  • Pairs of the TFT 18 and the picture element electrode 5 are disposed at respective crossing points of the scan and data electrode stripes 20 and 21.
  • the transparent board 1 also provides a driving circuit 22 of the scan electrode stripes 20 and another driving circuit 23 of the data electrode stripes 21.
  • Those driving circuit 22 and 23 are formed in a form of MOS IC in which a plurality of MOS (Metal-Oxide-Semiconductor) field effect transistors are formed on a monocrystalline silicon substrate and wired to form the respective driving circuits.
  • MOS Metal-Oxide-Semiconductor
  • the liquid crystal layer 13 is preferably interposed between the common electrode 14 and a part of the transparent board 1, except for the driving circuits 22 and 23. However, layer 13 may also be interposed between the common electrode 14 and the entire surface of the transparent board 1. In the later case, the image can be displayed in the part of layer 13, except for the driving circuits 22 and 23, regardless of the liquid crystal layer on the driving circuits 22 and 23.
  • TFT 18 and its peripheral portion are schematically shown in FIG. 2.
  • a silicon dioxide layer 3 is attached on a surface of the transparent substrate 1 with a binder 2 such as epoxy resin or polyimide.
  • a plurality of polycrystalline silicon 24 are formed on the silicon dioxide layer 3 so as to form a matrix.
  • Amorphous silicon or other semiconductor may be replaced with the polycrystalline silicon 24.
  • the use of polycrystalline silicon is more preferable.
  • Gate electrodes 12 are formed on central portion of the polycrystalline silicons 24 through gate insulator films 25. Impurity atoms are diffused into the polycrystalline silicons 24 on both sides of the gate electrodes 12 to form source regions 11 and drain regions 10.
  • the gate electrodes 12, the gate insulator films 25 and the polycrystalline silicons 24 including the source regions 11 and the drain regions 10 are covered with silicon dioxide layers 6 having electrode lead-out openings. Through the openings, source and drain electrodes 17 and 16 are led out.
  • the source electrodes 17 are connected to the scan electrode stripes 20.
  • the gate electrodes 12 are connected to the data electrode stripes 21.
  • the drain electrodes 16 are connected to picture element electrodes 19.
  • the scan electrode stripes 20 run along the horizontal direction of FIG. 2.
  • the data electrode stripes 21 run in a direction perpendicular to the drawing of FIG. 2.
  • the data electrode stripes 21 overlay the scan electrode stripes 20 through a silicon oxide film 26 to cross the scan electrode stripes 20.
  • the electrode stripes 20 and 21 are formed of metallized aluminum, impurity doped polycrystalline or other conductive layer formed on the silicon dioxide layer 3 and are directly connected to the driving circuits 22 and 23.
  • the picture element electrodes 19 are made of transparent conductor such as indium tin oxide (ITO).
  • the driving circuit 22 of the scan electrode stripes 20 is composed of a shift-register 32 and a plurality of output drivers 31, as shown in FIG. 3.
  • a vertical synchronizing signal is applied to the shift-register 32 through an input terminal 30.
  • scan pulses are derived and applied to the respective output drivers 31.
  • the scan pulses are applied to the scan electrode stripes 20 through the output terminals 33.
  • the driving circuit 23 of the data electrode stripes 21 is composed of a plurality of sample-hold circuits 38 and output drivers 39, as shown in FIG. 4.
  • Each of the sample-hold circuits includes a switch 40 and a capacitor 41.
  • the switches 40 are sequentially turned on by a horizontal synchronizing signal applied to the input terminal 36. The sequential turning-on may be achieved by using another shift-register shifting the horizontal synchronizing signal.
  • a video signal data applied to the input terminal 35 is sampled in the capacitors 41 by sequentially turning on the switches 40.
  • the sampled data are amplified by the output drivers 39 and then applied to the data electrode stripes 21 through the output terminals 37.
  • the above-explained LCD device provides a matrix of picture elements and driver circuits 22 and 23 on a common board 1. Therefore, interconnections between the scan electrode stripes 20 and the driver circuit 22 and between the data electode stripes 21 and the driver circuit 23 are performed on the board 1 by using IC process. The number of interconnections and the density of interconnections are no longer reasons for decreasing yield and increasing cost.
  • Such integrated device requires small number of external terminals. Indispensable terminals are those for vertical and horizontal synchronizing signals and for video signal in addition to power supply terminals. Clock signal terminal may be avoided, if a clock generator is formed in the driving circuits 22 and 23. Thus, the assembling process of the LCD device into an LCD apparatus becomes easy.
  • the LCD device of the preferred embodiment uses polycrystalline silicon for TFT's in LCD panel and monocrystalline silicon for driving circuits.
  • the LCD panel is usable as light transmission type device.
  • a light reflection board having a sufficient reflection coefficient may be used to reflect the light transmitted through the LCD panel.
  • a reproduced picture having a superior quality of contrast can be obtained.
  • the driving circuits 22 and 23 are formed in MOS IC's having sufficiently high operating frequency. The LCD panel can be driven in a high scanning frequency to obtain a stable picture.
  • the LCD panel including the TFT's 18, picture element electrodes 5 and the scan and data electrode stripes 20 and 21 and the driving circuit 22 and 23 are integrated, those can be formed in a single manufacturing process.
  • the manufacture of the LCD device is not difficult and decreases the total manufacturing process. An example of such manufacturing process will be next explained with reference to FIGS. 5 to 7.
  • a surface of monocrystalline silicon substrate 4 is selectively oxidized so as to form a silicon dioxide layer 3 of about 2 ⁇ m except for portions 42 in which driving circuits 22 and 23 are to be formed. Since thus formed silicon dioxide layer 3 has a thickness slightly thicker than the un-oxidized monocrystalline silicon portions, monocrystalline silicon is selectively grown on the un-oxidized portion by CVD process to equalize the thicknesses of the silicon dioxide layer 3 and the monocrystalline silicon portions 42. Thereafter, usual process for forming the MOS IC is followed. That is, the surfaces of the monocrystalline silicon portions 42 are oxidized to form thick field oxide film 51.
  • Selective etching is applied to the field oxide film 51 to expose selective areas of the monocrystalline portions 42 in which MOS FET's are to be formed. The exposed areas are re-oxidized to form gate oxide film.
  • Polycrystalline silicon is depositted on the whole surface of the field and gate oxide films 52 and the silicon dioxide layer 3 and is subjected to a selective etching process to leave on regions on which TFT's 18 and gate electrodes 54 in MOS IC's are to be formed.
  • the gate oxide film 25 is formed on the polycrystalline silicon for TFT's 18, polycrystalline is further formed on the gate oxide film 25 to form gate electrodes 12 for TFT's 18. Impurity ion implantation process is followed to form source and drain regions of MOS FET's and TFT's 18.
  • the polycrystalline silicons of TFT's are covered with silicon dioxide film 6 having openings for electrode connection.
  • ITO is formed on the silicon dioxide layer 3 adjacent to the TFT's 18 as picture element electrodes 19.
  • Aluminum is evaporated on the whole surface and is selectively etched to form wirings of MOS IC's, the scan electrode stripes 20 (53 in FIG. 5), connections between the MOS IC of the driver circuit 22 and the scan electrode stripes 20, source electrodes 17 of TFT's 18 being connected to the scan electrode stripes 20 and drain electrodes 16 of the TFT's 18 being connected to the picture element electrodes 19.
  • the scan electrode stripes 20 are covered with the oxide film 26
  • aluminum is evaporated again and selectively etched to form the data electrode stripes 21 (5 in FIG. 5) crossing the scan electrode stripes 20 and connecting to the gate electrodes 12 of TFT's 18 and MOS IC of the driver circuit 23.
  • a semiprocessed substrate 44 of FIG. 5 is obtained.
  • a silicon wafer 7 is attached on the element-formed surface of the semiprocessed substrate 44 with a binder such as epoxy resin or polyimide.
  • the monocrystalline silicon substrate 4 is etched away by mechanical-chemical etching process using organic amine, to form a second semiprocessed substrate 45, as shown in FIG. 6.
  • the organic amine does not resolve silicon oxide. Therefore, the etching process using organic amine stops etching at the bottom of the silicon dioxide layer 3. Thus, precise control of the etching can be achieved.
  • the silicon wafer 7 operates only as a holder of the semiprocessed substrate 44 for the etching process and may be substituted with any suitable material.
  • the etched surface of the second semiprocessed substrate 45 is attached to a transparent board 1 of quartz glass or borosilicate glass with a binder 2 of epoxy resin or polyimide. Thereafter, the silicon wafer 7 is removed by grinding or etching. The binder 8 is burned out by plasma reaction, to expose the elementformed surface, as shown in FIG. 7.
  • the exposed surface of thus formed board is placed to face the common electrode 14 of the common electrode board 15.
  • the common electrode 14 is formed of transparent conductor such as ITO and is formed on whole surface of the common electrode board 15 of transparent material such as quartz glass or borosilicate glass. Bubbing process is preliminary subjected to both boards for orientation treatment. Usually, polyimide film is used for the orientation treatment. TN type liquid crystal is inserted into the space between the common electrode 14 and the element-formed surface of the transparent board 1.
  • the number of terminals for external connection was reduced to 10 from 1040, compared to the LCD device having separate driving circuit. This reduction results in easy assemble of the LCD device by reducing the number of external connection process.
  • LCD panel of thus produced LCD device was so small that it was suitable for a view finder of video camera.
  • the LCD device was also suitable for using in projection display. A fine picture of 1 m ⁇ 1 m was obtained. A fidelity of half-tone reproduction was satisfactory.
  • the LCD device of the present invention is applicable to either projection display or direct view display of either transmittive type or reflective type.
  • As the projection display light of xenon lamp is exposed to the LCD panel of the LCD device so that the transmitted light present an enlarged picture.
  • expensive LASER diode and its driving circuit may be eliminated. Miniaturization of the projection display can be achieved with low cost.
  • the present invention is applicable to a color display by covering the outside surface of the common electrode board 15 with RGB color filter 47, as shown in FIG. 2 by dotted line.
  • the color picture may be obtained by using three LCD device which are used for projecting red picture, green picture and blue picture, respectively.

Abstract

A liquid crystal display device includes first board having a reference voltage electrode on one surface, a second board having, on a main surface, a lattice of conductive stripes, a plurality of pairs of a transistor and a picture element electrode, each pair being disposed at each crossing point of the conductive stripes and the transistors being thin film transistors using polycrystalline or amorphous silicon, and a driving circuit for driving the conductive stripes, the driving circuit being formed in a monocrystalline silicon in a form of semiconductor integrated circuit directly connected to the conductive stripes, and a liquid crystal interposed between the one surface of the first board and the main surface of the second board.

Description

DESCRIPTION OF THE BACKGROUND
1. Field of the Invention:
The present invention relates to a liquid crystal display (hereinafter, referred to LCD) device, and more particularly to a structural improvement of the same device.
2. Description of the Related Art:
In recent years, LCD devices using liquid crystal such as twisted nematic (TN) liquid crystal have been developed to an extent of commercial use in some industrial fields including wrist watches, disk-top calculators and so on. For TV display devices, word-processors and other information display devices, active-matrix type LCD devices attract many attentions. Those active-matrix type LCD devices are composed of a first board having a plane electrode held at a reference potential, a second board of transparent material on which there provides a lattice of conductive stripes and a pair of thin film transistor (TFT) and picture element electrode at each crossing point of the conductive stripes, and a liquid crystal interposed between the first and second boards. The TFT's are insulated gate field effect transistors having polycrystalline silicone or amorphous silicon at a channel portion between source and drain regions.
For improving the quality of produced picture on the active-matrix type LCD devices, it is necessary to increase the density of picture elements, causing an increment of the conductive stripes to be scanned. The scanning signals are produced with semiconductor integrated circuit (IC) which is formed in a monocrystalline silicon substrate. The IC is difficult to be formed with use of the polycrystalline or amorphous silicon, due to their crystal imperfection.
The LCD device and the IC for driving the LCD are separately formed and wired therebetween. However, in the LCD device having picture elements of 400×600, there are 400 conductive stripes in a vertical direction and 640 conductive stripes in a horizontal direction. Thus, 1,040 interconnections are required in one display apparatus.
Although the interconnections are formed by wire-bonding process, the 1,040 or more interconnections increase a probability of connection errors and rise a production cost. Technically, such large number of interconnections on a small area is an upper limit of present connection technique.
The LCD device in which an LCD panel and a driving circuit are integrated on a single board has been proposed on pages 48 to 49 of "Society for Information Display, International Symposium, Digest of Technical Papers, 82" (referred to "SID 82 DIGEST") and on pages 316 to 319 of "Society for Information Display, International Symposium, Digest of Technical papers, 84" (referred to "SID 84 DIGEST"). The SID 82 DIGEST formed both of LCD panel and driving circuit on a monocrystalline silicon substrate. The monocrystalline silicon substrate is not a transparent material. The proposed LCD device is not used as a light transmission type device. Even in a case using as a light reflection type device, the produced picture has a poor contrast. The SID 84 DIGEST formed both of them on a glass substrate using polycrystalline silicon. The driving circuit is formed of TFT's using polycrystalline silicon and has a limited low operating frequency. The reproduced picture is not stable. The reproduced picture quality is insufficient for commercial use. Furthermore, it is difficult to form the driving circuit into a small area to miniaturize the LCD device.
SUMMARY OF THE INVENTION
It is, therefore, a major object of the present invention to provide an LCD device formed in an integrated form on a single board and requiring a small number of external connections
It is another object of the present invention to provide an LCD device producing a picture of improved quality.
According to the present invention, there is provided an LCD device comprising a first board having a reference voltage electrode, a second board having a lattice of conductive stripes, a pair of transistor and picture element electrode at each crossing point of the conductive stripes and a driving circuit applying signals to the conductive stripes and liquid crystal interposed between the first and second boards, at least one of first and second board being formed of transparent material, the transistor including polycrystalline or amorphous semiconductor as a channel region, the driving circuit being formed on a monocrystalline semiconductor and the conductive stripes and the driving circuit being interconnected on the second board by conductive layers without using bonding wire.
The LCD device of the present invention forms the driving circuit on the second board together with the conductive stripes and the pairs of transistor and picture element electrode and interconnects the driving circuit and the conductive stripes by using the conductive layers. Those interconnections are easily achieved by IC process. The number of external connections becomes small, because the driving signals are formed on the second board. Thus, the high density wire-bondings are not required, causing a small probability of bonding error, a decrease of production cost and an easiness of production technique.
BRIEF DESCRIPTION OF DRAWINGS
The above and further objects, features and advantages of the present invention will become more apparent from the following description taken in conjunction with the accompanying drawings, wherein:
FIG. 1 is a brief plan view of a preferred embodiment according to the present invention;
FIG. 2 is a partial section view of encircled portion in FIG. 1 for explaining a pair of transistor and picture element electrode;
FIG. 3 is a brief circuit diagram showing a driving circuit for scanning the lattice of conductive stripes, and
FIG. 4 is a brief circuit diagram showing another driving circuit for applying data signals to the lattice of conductive stripes; and
FIGS. 5 to 7 are sectional views for explaining steps of manufacturing the preferred embodiment of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT
An LCD device of the preferred embodiment has a transparent board 1 of quartz glass, borosilicate glass and so on, a common electrode board 15 of the transparent glass such as quartz glass, borosilicate glass and so on and liquid crystal layer 13 such as twisted nematic liquid crystal interposed between the transparent board 1 and the common electrode board 15 (see FIG. 2). The common electrode board 15 provides a common electrode 14 in contact with the liquid crystal layer 13. A reference voltage is applied to the common electrode 14. The plan view of the transparent board 1 is shown in FIG. 1. The TFT's 18 and picture element electrodes 5 are formed on the transparent board 1 so as to face the liquid crystal. A plurality of scan electrode stripes 20 and a plurality of data electrode stripes 21 are provided on the transparent board 1 to form a lattice. Pairs of the TFT 18 and the picture element electrode 5 are disposed at respective crossing points of the scan and data electrode stripes 20 and 21. The transparent board 1 also provides a driving circuit 22 of the scan electrode stripes 20 and another driving circuit 23 of the data electrode stripes 21. Those driving circuit 22 and 23 are formed in a form of MOS IC in which a plurality of MOS (Metal-Oxide-Semiconductor) field effect transistors are formed on a monocrystalline silicon substrate and wired to form the respective driving circuits. Such driving circuits are schematically demonstrated in FIGS. 3 and 4 and will be explained later. The liquid crystal layer 13 is preferably interposed between the common electrode 14 and a part of the transparent board 1, except for the driving circuits 22 and 23. However, layer 13 may also be interposed between the common electrode 14 and the entire surface of the transparent board 1. In the later case, the image can be displayed in the part of layer 13, except for the driving circuits 22 and 23, regardless of the liquid crystal layer on the driving circuits 22 and 23.
One TFT 18 and its peripheral portion are schematically shown in FIG. 2. A silicon dioxide layer 3 is attached on a surface of the transparent substrate 1 with a binder 2 such as epoxy resin or polyimide. A plurality of polycrystalline silicon 24 are formed on the silicon dioxide layer 3 so as to form a matrix. Amorphous silicon or other semiconductor may be replaced with the polycrystalline silicon 24. However, in order to form the TFT's 18 and the driving circuit 22 and 23 of MOS IC with a common process, the use of polycrystalline silicon is more preferable. Gate electrodes 12 are formed on central portion of the polycrystalline silicons 24 through gate insulator films 25. Impurity atoms are diffused into the polycrystalline silicons 24 on both sides of the gate electrodes 12 to form source regions 11 and drain regions 10. The gate electrodes 12, the gate insulator films 25 and the polycrystalline silicons 24 including the source regions 11 and the drain regions 10 are covered with silicon dioxide layers 6 having electrode lead-out openings. Through the openings, source and drain electrodes 17 and 16 are led out. The source electrodes 17 are connected to the scan electrode stripes 20. The gate electrodes 12 are connected to the data electrode stripes 21. The drain electrodes 16 are connected to picture element electrodes 19. The scan electrode stripes 20 run along the horizontal direction of FIG. 2. The data electrode stripes 21 run in a direction perpendicular to the drawing of FIG. 2. The data electrode stripes 21 overlay the scan electrode stripes 20 through a silicon oxide film 26 to cross the scan electrode stripes 20. The electrode stripes 20 and 21 are formed of metallized aluminum, impurity doped polycrystalline or other conductive layer formed on the silicon dioxide layer 3 and are directly connected to the driving circuits 22 and 23. The picture element electrodes 19 are made of transparent conductor such as indium tin oxide (ITO).
The driving circuit 22 of the scan electrode stripes 20 is composed of a shift-register 32 and a plurality of output drivers 31, as shown in FIG. 3. A vertical synchronizing signal is applied to the shift-register 32 through an input terminal 30. From each stage of the shift-register 32, scan pulses are derived and applied to the respective output drivers 31. The scan pulses are applied to the scan electrode stripes 20 through the output terminals 33.
The driving circuit 23 of the data electrode stripes 21 is composed of a plurality of sample-hold circuits 38 and output drivers 39, as shown in FIG. 4. Each of the sample-hold circuits includes a switch 40 and a capacitor 41. The switches 40 are sequentially turned on by a horizontal synchronizing signal applied to the input terminal 36. The sequential turning-on may be achieved by using another shift-register shifting the horizontal synchronizing signal. A video signal data applied to the input terminal 35 is sampled in the capacitors 41 by sequentially turning on the switches 40. The sampled data are amplified by the output drivers 39 and then applied to the data electrode stripes 21 through the output terminals 37.
The above-explained LCD device provides a matrix of picture elements and driver circuits 22 and 23 on a common board 1. Therefore, interconnections between the scan electrode stripes 20 and the driver circuit 22 and between the data electode stripes 21 and the driver circuit 23 are performed on the board 1 by using IC process. The number of interconnections and the density of interconnections are no longer reasons for decreasing yield and increasing cost. Such integrated device requires small number of external terminals. Indispensable terminals are those for vertical and horizontal synchronizing signals and for video signal in addition to power supply terminals. Clock signal terminal may be avoided, if a clock generator is formed in the driving circuits 22 and 23. Thus, the assembling process of the LCD device into an LCD apparatus becomes easy.
The LCD device of the preferred embodiment uses polycrystalline silicon for TFT's in LCD panel and monocrystalline silicon for driving circuits. The LCD panel is usable as light transmission type device. In using the LCD panel as light reflection type, a light reflection board having a sufficient reflection coefficient may be used to reflect the light transmitted through the LCD panel. In both usage, a reproduced picture having a superior quality of contrast can be obtained. Furthermore, the driving circuits 22 and 23 are formed in MOS IC's having sufficiently high operating frequency. The LCD panel can be driven in a high scanning frequency to obtain a stable picture.
Additionally, since the LCD panel including the TFT's 18, picture element electrodes 5 and the scan and data electrode stripes 20 and 21 and the driving circuit 22 and 23 are integrated, those can be formed in a single manufacturing process. The manufacture of the LCD device is not difficult and decreases the total manufacturing process. An example of such manufacturing process will be next explained with reference to FIGS. 5 to 7.
Referring to FIG. 5, a surface of monocrystalline silicon substrate 4 is selectively oxidized so as to form a silicon dioxide layer 3 of about 2 μm except for portions 42 in which driving circuits 22 and 23 are to be formed. Since thus formed silicon dioxide layer 3 has a thickness slightly thicker than the un-oxidized monocrystalline silicon portions, monocrystalline silicon is selectively grown on the un-oxidized portion by CVD process to equalize the thicknesses of the silicon dioxide layer 3 and the monocrystalline silicon portions 42. Thereafter, usual process for forming the MOS IC is followed. That is, the surfaces of the monocrystalline silicon portions 42 are oxidized to form thick field oxide film 51. Selective etching is applied to the field oxide film 51 to expose selective areas of the monocrystalline portions 42 in which MOS FET's are to be formed. The exposed areas are re-oxidized to form gate oxide film. Polycrystalline silicon is depositted on the whole surface of the field and gate oxide films 52 and the silicon dioxide layer 3 and is subjected to a selective etching process to leave on regions on which TFT's 18 and gate electrodes 54 in MOS IC's are to be formed. After the gate oxide film 25 is formed on the polycrystalline silicon for TFT's 18, polycrystalline is further formed on the gate oxide film 25 to form gate electrodes 12 for TFT's 18. Impurity ion implantation process is followed to form source and drain regions of MOS FET's and TFT's 18. The polycrystalline silicons of TFT's are covered with silicon dioxide film 6 having openings for electrode connection. Then, ITO is formed on the silicon dioxide layer 3 adjacent to the TFT's 18 as picture element electrodes 19. Aluminum is evaporated on the whole surface and is selectively etched to form wirings of MOS IC's, the scan electrode stripes 20 (53 in FIG. 5), connections between the MOS IC of the driver circuit 22 and the scan electrode stripes 20, source electrodes 17 of TFT's 18 being connected to the scan electrode stripes 20 and drain electrodes 16 of the TFT's 18 being connected to the picture element electrodes 19. After the scan electrode stripes 20 are covered with the oxide film 26, aluminum is evaporated again and selectively etched to form the data electrode stripes 21 (5 in FIG. 5) crossing the scan electrode stripes 20 and connecting to the gate electrodes 12 of TFT's 18 and MOS IC of the driver circuit 23. Thus, a semiprocessed substrate 44 of FIG. 5 is obtained.
Next, a silicon wafer 7 is attached on the element-formed surface of the semiprocessed substrate 44 with a binder such as epoxy resin or polyimide. The monocrystalline silicon substrate 4 is etched away by mechanical-chemical etching process using organic amine, to form a second semiprocessed substrate 45, as shown in FIG. 6. The organic amine does not resolve silicon oxide. Therefore, the etching process using organic amine stops etching at the bottom of the silicon dioxide layer 3. Thus, precise control of the etching can be achieved. The silicon wafer 7 operates only as a holder of the semiprocessed substrate 44 for the etching process and may be substituted with any suitable material.
The etched surface of the second semiprocessed substrate 45 is attached to a transparent board 1 of quartz glass or borosilicate glass with a binder 2 of epoxy resin or polyimide. Thereafter, the silicon wafer 7 is removed by grinding or etching. The binder 8 is burned out by plasma reaction, to expose the elementformed surface, as shown in FIG. 7.
The exposed surface of thus formed board is placed to face the common electrode 14 of the common electrode board 15. The common electrode 14 is formed of transparent conductor such as ITO and is formed on whole surface of the common electrode board 15 of transparent material such as quartz glass or borosilicate glass. Bubbing process is preliminary subjected to both boards for orientation treatment. Usually, polyimide film is used for the orientation treatment. TN type liquid crystal is inserted into the space between the common electrode 14 and the element-formed surface of the transparent board 1.
When thus produced LCD apparatus was tested with a static drive, a constant ratio of 5:1 and a viewing angle of ±50° are obtained. Furthermore, similarly produced active-matrix LCD device having 400×600 picture elements and an element pitch of 0.05 mm were tested. Similar result to the case of the static drive was also obtained. The active-matrix was scanned with 2,000 lines per field. The result was also similar to the case of static drive. With use of the active-matrix LCD device, television picture was reproduced. The reproduced picture was high fidelity of half-tone reproduction and had a high contrast. Any defect of picture element was not found.
The number of terminals for external connection was reduced to 10 from 1040, compared to the LCD device having separate driving circuit. This reduction results in easy assemble of the LCD device by reducing the number of external connection process. LCD panel of thus produced LCD device was so small that it was suitable for a view finder of video camera. The LCD device was also suitable for using in projection display. A fine picture of 1 m×1 m was obtained. A fidelity of half-tone reproduction was satisfactory.
The LCD device of the present invention is applicable to either projection display or direct view display of either transmittive type or reflective type. As the projection display, light of xenon lamp is exposed to the LCD panel of the LCD device so that the transmitted light present an enlarged picture. Compared to the conventional LASER writing LCD panel, expensive LASER diode and its driving circuit may be eliminated. Miniaturization of the projection display can be achieved with low cost.
Although the present invention was explained with an embodiment of black-and-white display, the present invention is applicable to a color display by covering the outside surface of the common electrode board 15 with RGB color filter 47, as shown in FIG. 2 by dotted line. In a case of projection display, the color picture may be obtained by using three LCD device which are used for projecting red picture, green picture and blue picture, respectively.

Claims (5)

What is claimed is:
1. A liquid crystal display device comprising:
a first board made of a transparent material and having one surface;
a common electrode formed on said one surface of said first board, said common electrode being made of a transparent conductor;
a second board made of a transparent insulating material and having a main surface;
an insulating layer formed on said main surface of said second board;
a plurality of parallel disposed scan electrode stripes made of conductive layers and formed on said insulating layer;
a plurality of parallel disposed data electrode stripes made of other conductive layers and formed on said insulating layer, said scan electrode stripes and said data electrode stripes being arranged orthogonally and made of conductive layers physically attached on said insulating layer;
a plurality of thin film insulated gate field effect transistors, each of said thin film transistors being disposed on said insulating layer at every crossing points of said scan and data electrode stripes, said thin film transistors being formed with a use of polycrystalline or amorphous semiconductor and each of said thin film transistors having a source electrode connected to an adjacent one of said data electrode stripes, a gate electrode connected to an adjacent one of said scan electrode stripes and a drain electrode;
a plurality of picture element electrodes made of a transparent conductor, each of said picture element electrodes being disposed on said insulating layer adjacent to a corresponding one of every one of the thin film transistors, said picture element electrodes being connected to an adjacent one of said drain electrodes;
first and second monocrystalline semiconductor layers having the same thickness as said insulating layer and formed on said main surface of said second board in contact with said insulating layer to form a substantially flat upper surface plane with said insulating layer, said first monocrystalline semiconductor layer forming a first driver circuit for driving said scan electrode stripes, said first driver circuit being a semiconductor integrated circuit directly connected to said scan electrode stripes by said conductive layers on said upper surface plane, said second monocrystalline semiconductor layer forming a second driver circuit for driving said data electrode stripes, said second driver circuit being a semiconductor integrated circuit directly connected to said data electrode stripes by said other conductive layers on said upper surface plane; and
a liquid crystal interposed between said one surface of said first board and said main surface of said second board.
2. A liquid crystal display device as claimed in claim 1, wherein said polycrystalline or amorphous semiconductor is polycrystalline or amorphous silicon and said first and second monocrystalline semiconductor layers are made of monocrystalline silicon.
3. A liquid crystal display device as claimed in claim 2, wherein said insulating layer is made of silicon oxide.
4. A liquid crystal display device as claimed in claim 3, wherein said first and second driver circuits are formed in a form of MOS integrated circuit.
5. A liquid crystal display device as claimed in claim 4, said liquid crystal display device further comprising a color filter formed on the other surface of said first board opposite to said one surface.
US07/109,227 1986-10-17 1987-10-16 Liquid crystal display device having display and driver sections on a single board Expired - Lifetime US4838654A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-246653 1986-10-17
JP61246653A JPS63101829A (en) 1986-10-17 1986-10-17 Active matrix liquid crystal display device and its production

Publications (1)

Publication Number Publication Date
US4838654A true US4838654A (en) 1989-06-13

Family

ID=17151617

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/109,227 Expired - Lifetime US4838654A (en) 1986-10-17 1987-10-16 Liquid crystal display device having display and driver sections on a single board

Country Status (4)

Country Link
US (1) US4838654A (en)
EP (1) EP0268380B1 (en)
JP (1) JPS63101829A (en)
DE (1) DE3784449T2 (en)

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971436A (en) * 1988-12-09 1990-11-20 Hosiden Electronics Co., Ltd. Projector
WO1991003003A1 (en) * 1989-08-11 1991-03-07 Raf Electronics Corp. An active matrix reflective projection system
WO1991002998A1 (en) * 1989-08-11 1991-03-07 Raf Electronics Corp. Reflective image plane module
US5076667A (en) * 1990-01-29 1991-12-31 David Sarnoff Research Center, Inc. High speed signal and power supply bussing for liquid crystal displays
US5108172A (en) * 1989-08-11 1992-04-28 Raf Electronics Corp. Active matrix reflective image plane module and projection system
US5206749A (en) * 1990-12-31 1993-04-27 Kopin Corporation Liquid crystal display having essentially single crystal transistors pixels and driving circuits
US5208690A (en) * 1990-03-24 1993-05-04 Sony Corporation Liquid crystal display having a plurality of pixels with switching transistors
US5225875A (en) * 1988-07-21 1993-07-06 Proxima Corporation High speed color display system and method of using same
US5250931A (en) * 1988-05-17 1993-10-05 Seiko Epson Corporation Active matrix panel having display and driver TFT's on the same substrate
US5276436A (en) * 1988-07-21 1994-01-04 Proxima Corporation Television signal projection system and method of using same
US5362671A (en) * 1990-12-31 1994-11-08 Kopin Corporation Method of fabricating single crystal silicon arrayed devices for display panels
US5377031A (en) * 1990-12-31 1994-12-27 Kopin Corporation Single crystal silicon tiles for liquid crystal display panels including light shielding layers
US5376979A (en) * 1990-12-31 1994-12-27 Kopin Corporation Slide projector mountable light valve display
US5453858A (en) * 1990-12-25 1995-09-26 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device constructed with thin film transistors
US5475514A (en) * 1990-12-31 1995-12-12 Kopin Corporation Transferred single crystal arrayed devices including a light shield for projection displays
US5486708A (en) * 1990-11-15 1996-01-23 Seiko Instruments Inc. Light valve device using semiconductive composite substrate
US5499124A (en) * 1990-12-31 1996-03-12 Vu; Duy-Phach Polysilicon transistors formed on an insulation layer which is adjacent to a liquid crystal material
US5528397A (en) * 1991-12-03 1996-06-18 Kopin Corporation Single crystal silicon transistors for display panels
US5539550A (en) * 1990-12-31 1996-07-23 Kopin Corporation Liquid crystal display having adhered circuit tiles
US5543819A (en) * 1988-07-21 1996-08-06 Proxima Corporation High resolution display system and method of using same
US5614730A (en) * 1990-11-09 1997-03-25 Seiko Epson Corporation Active matrix substrate
US5618739A (en) * 1990-11-15 1997-04-08 Seiko Instruments Inc. Method of making light valve device using semiconductive composite substrate
US5648662A (en) * 1991-06-19 1997-07-15 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device with amorphous and crystalline shift registers
US5694155A (en) * 1995-04-25 1997-12-02 Stapleton; Robert E. Flat panel display with edge contacting image area and method of manufacture thereof
US5705424A (en) * 1992-09-11 1998-01-06 Kopin Corporation Process of fabricating active matrix pixel electrodes
US5743614A (en) * 1990-12-31 1998-04-28 Kopin Corporation Housing assembly for a matrix display
US5815223A (en) * 1994-06-20 1998-09-29 Canon Kabushiki Kaisha Display device having a silicon substrate, a locos film formed on the substrate, a tensile stress film formed on the locos film, and TFTs formed on the tensile stress film
US5818564A (en) * 1996-09-13 1998-10-06 Raychem Corporation Assembly including an active matrix liquid crystal display module
US5821138A (en) * 1995-02-16 1998-10-13 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device using a metal which promotes crystallization of silicon and substrate bonding
US5821559A (en) * 1991-02-16 1998-10-13 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US5859445A (en) * 1990-11-20 1999-01-12 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device including thin film transistors having spoiling impurities added thereto
US5889291A (en) * 1994-04-22 1999-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
US5982461A (en) * 1990-04-27 1999-11-09 Hayashi; Yutaka Light valve device
US6100879A (en) * 1996-08-27 2000-08-08 Silicon Image, Inc. System and method for controlling an active matrix display
US6100868A (en) * 1997-09-15 2000-08-08 Silicon Image, Inc. High density column drivers for an active matrix display
US6128052A (en) * 1992-12-25 2000-10-03 Canon Kabushiki Kaisha Semiconductor device applicable for liquid crystal display device, and process for its fabrication
US6143582A (en) * 1990-12-31 2000-11-07 Kopin Corporation High density electronic circuit modules
US6157421A (en) * 1994-12-12 2000-12-05 Canon Kabushiki Kaisha Liquid crystal display and method of manufacturing the same
US6157360A (en) * 1997-03-11 2000-12-05 Silicon Image, Inc. System and method for driving columns of an active matrix display
US6198133B1 (en) 1993-12-03 2001-03-06 Semiconductor Energy Laboratory Company, Ltd. Electro-optical device having silicon nitride interlayer insulating film
US6246459B1 (en) 1998-06-10 2001-06-12 Tyco Electronics Corporation Assembly including an active matrix liquid crystal display module and having plural environmental seals
US6266037B1 (en) 1989-08-11 2001-07-24 Raf Electronics Wafer based active matrix
US6320568B1 (en) 1990-12-31 2001-11-20 Kopin Corporation Control system for display panels
US6326642B1 (en) 1992-05-29 2001-12-04 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US6388652B1 (en) * 1997-08-20 2002-05-14 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device
US6466195B1 (en) * 1998-07-31 2002-10-15 Kabushiki Kaisha Toshiba Flat panel display unit
US6545654B2 (en) 1996-10-31 2003-04-08 Kopin Corporation Microdisplay for portable communication systems
US6566711B1 (en) 1991-08-23 2003-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having interlayer insulating film
US6593978B2 (en) 1990-12-31 2003-07-15 Kopin Corporation Method for manufacturing active matrix liquid crystal displays
US6608654B2 (en) 1992-09-11 2003-08-19 Kopin Corporation Methods of fabricating active matrix pixel electrodes
US6627953B1 (en) 1990-12-31 2003-09-30 Kopin Corporation High density electronic circuit modules
US6747627B1 (en) 1994-04-22 2004-06-08 Semiconductor Energy Laboratory Co., Ltd. Redundancy shift register circuit for driver circuit in active matrix type liquid crystal display device
US20040207777A1 (en) * 1991-02-16 2004-10-21 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US7098479B1 (en) 1990-12-25 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US7115902B1 (en) 1990-11-20 2006-10-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US20060273319A1 (en) * 2005-06-03 2006-12-07 Semiconductor Energy Laboratory Co., Ltd. Integrated circuit device and manufacturing method thereof
US20070018165A1 (en) * 1990-12-25 2007-01-25 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US7820495B2 (en) 2005-06-30 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2238644B (en) * 1989-11-29 1994-02-02 Gen Electric Co Plc Matrix addressable displays
US6067062A (en) * 1990-09-05 2000-05-23 Seiko Instruments Inc. Light valve device
EP0530972B1 (en) * 1991-08-02 1997-11-05 Canon Kabushiki Kaisha Liquid crystal image display unit
JPH05127182A (en) * 1991-11-07 1993-05-25 Seiko Instr Inc Light valve device
EP0554051A1 (en) * 1992-01-31 1993-08-04 Canon Kabushiki Kaisha Image display device with single crystal silicon layer and methods of producing and driving the same
TW214603B (en) * 1992-05-13 1993-10-11 Seiko Electron Co Ltd Semiconductor device
JP3526058B2 (en) * 1992-08-19 2004-05-10 セイコーインスツルメンツ株式会社 Semiconductor device for light valve
US5633176A (en) * 1992-08-19 1997-05-27 Seiko Instruments Inc. Method of producing a semiconductor device for a light valve
US5859627A (en) * 1992-10-19 1999-01-12 Fujitsu Limited Driving circuit for liquid-crystal display device
JPH0798460A (en) 1992-10-21 1995-04-11 Seiko Instr Inc Semiconductor device and light valve device
US5691794A (en) * 1993-02-01 1997-11-25 Canon Kabushiki Kaisha Liquid crystal display device
US5674758A (en) * 1995-06-06 1997-10-07 Regents Of The University Of California Silicon on insulator achieved using electrochemical etching
JP2006039272A (en) * 2004-07-28 2006-02-09 Sony Corp Display device and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US28891A (en) * 1860-06-26 Improvement in corn-planters
US4368523A (en) * 1979-12-20 1983-01-11 Tokyo Shibaura Denki Kabushiki Kaisha Liquid crystal display device having redundant pairs of address buses
US4644338A (en) * 1982-07-12 1987-02-17 Hosiden Electronics Co., Ltd. Dot-matrix liquid crystal display
US4728172A (en) * 1984-08-08 1988-03-01 Energy Conversion Devices, Inc. Subassemblies for displays having pixels with two portions and capacitors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210657A (en) * 1981-06-19 1982-12-24 Toshiba Corp Array substrate for display device
JPS58117584A (en) * 1982-01-05 1983-07-13 株式会社東芝 Display device array substrate
JPS5945486A (en) * 1982-09-07 1984-03-14 セイコーエプソン株式会社 Display panel
JPS6026932A (en) * 1983-07-25 1985-02-09 Canon Inc Liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US28891A (en) * 1860-06-26 Improvement in corn-planters
US4368523A (en) * 1979-12-20 1983-01-11 Tokyo Shibaura Denki Kabushiki Kaisha Liquid crystal display device having redundant pairs of address buses
US4644338A (en) * 1982-07-12 1987-02-17 Hosiden Electronics Co., Ltd. Dot-matrix liquid crystal display
US4654117A (en) * 1982-07-12 1987-03-31 Hosiden Electronics Co. Ltd. Method of fabricating a thin film transistor array
US4728172A (en) * 1984-08-08 1988-03-01 Energy Conversion Devices, Inc. Subassemblies for displays having pixels with two portions and capacitors

Cited By (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648685A (en) * 1988-05-17 1997-07-15 Seiko Epson Corporation Active matrix assembly with lines of equal resistance
US6700135B2 (en) 1988-05-17 2004-03-02 Seiko Epson Corporation Active matrix panel
US5754158A (en) * 1988-05-17 1998-05-19 Seiko Epson Corporation Liquid crystal device
US5811837A (en) * 1988-05-17 1998-09-22 Seiko Epson Corporation Liquid crystal device with unit cell pitch twice the picture element pitch
US5714771A (en) * 1988-05-17 1998-02-03 Seiko Epson Corporation Projection type color display device, liquid crystal device, active matrix assembly and electric view finder
US5904511A (en) * 1988-05-17 1999-05-18 Seiko Epson Corporation Method of forming a liquid crystal device
US5677212A (en) * 1988-05-17 1997-10-14 Seiko Epson Corporation Method of forming a liquid crystal device
US5656826A (en) * 1988-05-17 1997-08-12 Seiko Epson Corporation Liquid crystal device with thick passivation layer over driver region
US5780872A (en) * 1988-05-17 1998-07-14 Seiko Epson Corporation Liquid crystal device, projection type color display device and driving circuit
US5616936A (en) * 1988-05-17 1997-04-01 Seiko Epson Corporation Active matrix assembly with signal line crossing to equalize stray capacitance
US5250931A (en) * 1988-05-17 1993-10-05 Seiko Epson Corporation Active matrix panel having display and driver TFT's on the same substrate
US5591990A (en) * 1988-05-17 1997-01-07 Seiko Epson Corporation Active matrix assembly
US5341012A (en) * 1988-05-17 1994-08-23 Seiko Epson Corporation CMOS device for use in connection with an active matrix panel
US5583347A (en) * 1988-05-17 1996-12-10 Seiko Epson Corporation Liquid crystal device
US6486497B2 (en) 1988-05-17 2002-11-26 Seiko Epson Corporation Liquid crystal device, projection type display device and driving circuit
US5276436A (en) * 1988-07-21 1994-01-04 Proxima Corporation Television signal projection system and method of using same
US5225875A (en) * 1988-07-21 1993-07-06 Proxima Corporation High speed color display system and method of using same
US5543819A (en) * 1988-07-21 1996-08-06 Proxima Corporation High resolution display system and method of using same
US4971436A (en) * 1988-12-09 1990-11-20 Hosiden Electronics Co., Ltd. Projector
WO1991002998A1 (en) * 1989-08-11 1991-03-07 Raf Electronics Corp. Reflective image plane module
US5024524A (en) * 1989-08-11 1991-06-18 Raf Electronics Corp. Reflective image plane module
US5022750A (en) * 1989-08-11 1991-06-11 Raf Electronics Corp. Active matrix reflective projection system
US5108172A (en) * 1989-08-11 1992-04-28 Raf Electronics Corp. Active matrix reflective image plane module and projection system
US6266037B1 (en) 1989-08-11 2001-07-24 Raf Electronics Wafer based active matrix
WO1991003003A1 (en) * 1989-08-11 1991-03-07 Raf Electronics Corp. An active matrix reflective projection system
US5076667A (en) * 1990-01-29 1991-12-31 David Sarnoff Research Center, Inc. High speed signal and power supply bussing for liquid crystal displays
US5208690A (en) * 1990-03-24 1993-05-04 Sony Corporation Liquid crystal display having a plurality of pixels with switching transistors
US5982461A (en) * 1990-04-27 1999-11-09 Hayashi; Yutaka Light valve device
US5614730A (en) * 1990-11-09 1997-03-25 Seiko Epson Corporation Active matrix substrate
US5618739A (en) * 1990-11-15 1997-04-08 Seiko Instruments Inc. Method of making light valve device using semiconductive composite substrate
US5486708A (en) * 1990-11-15 1996-01-23 Seiko Instruments Inc. Light valve device using semiconductive composite substrate
US5728591A (en) * 1990-11-15 1998-03-17 Seiko Instruments Inc. Process for manufacturing light valve device using semiconductive composite substrate
US5572045A (en) * 1990-11-15 1996-11-05 Seiko Instruments Inc. Light valve device using semiconductive composite substrate
US6737676B2 (en) 1990-11-20 2004-05-18 Semiconductor Energy Laboratory Co., Ltd. Gate insulated field effect transistor and method of manufacturing the same
US6011277A (en) * 1990-11-20 2000-01-04 Semiconductor Energy Laboratory Co., Ltd. Gate insulated field effect transistors and method of manufacturing the same
US7115902B1 (en) 1990-11-20 2006-10-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US5859445A (en) * 1990-11-20 1999-01-12 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device including thin film transistors having spoiling impurities added thereto
US6306213B1 (en) 1990-11-20 2001-10-23 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US7067844B2 (en) 1990-11-20 2006-06-27 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6281520B1 (en) 1990-11-20 2001-08-28 Semiconductor Energy Laboratory Co., Ltd. Gate insulated field effect transistors and method of manufacturing the same
US6252249B1 (en) 1990-11-20 2001-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having crystalline silicon clusters
US6023075A (en) * 1990-12-25 2000-02-08 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US20070018165A1 (en) * 1990-12-25 2007-01-25 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US5453858A (en) * 1990-12-25 1995-09-26 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device constructed with thin film transistors
US7576360B2 (en) 1990-12-25 2009-08-18 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device which comprises thin film transistors and method for manufacturing the same
US7098479B1 (en) 1990-12-25 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US5701167A (en) * 1990-12-25 1997-12-23 Semiconductor Energy Laboratory Co., Ltd. LCD having a peripheral circuit with TFTs having the same structure as TFTs in the display region
US6627953B1 (en) 1990-12-31 2003-09-30 Kopin Corporation High density electronic circuit modules
US5206749A (en) * 1990-12-31 1993-04-27 Kopin Corporation Liquid crystal display having essentially single crystal transistors pixels and driving circuits
US5713652A (en) * 1990-12-31 1998-02-03 Kopin Corporation Slide projector mountable light valve display
US5377031A (en) * 1990-12-31 1994-12-27 Kopin Corporation Single crystal silicon tiles for liquid crystal display panels including light shielding layers
US20040070697A1 (en) * 1990-12-31 2004-04-15 Kopin Corporation Method of forming an active matrix display
US5362671A (en) * 1990-12-31 1994-11-08 Kopin Corporation Method of fabricating single crystal silicon arrayed devices for display panels
US5376979A (en) * 1990-12-31 1994-12-27 Kopin Corporation Slide projector mountable light valve display
US5539550A (en) * 1990-12-31 1996-07-23 Kopin Corporation Liquid crystal display having adhered circuit tiles
US6593978B2 (en) 1990-12-31 2003-07-15 Kopin Corporation Method for manufacturing active matrix liquid crystal displays
US6919935B2 (en) 1990-12-31 2005-07-19 Kopin Corporation Method of forming an active matrix display
US6521940B1 (en) 1990-12-31 2003-02-18 Kopin Corporation High density electronic circuit modules
US6486929B1 (en) 1990-12-31 2002-11-26 Kopin Corporation Bonded layer semiconductor device
US6143582A (en) * 1990-12-31 2000-11-07 Kopin Corporation High density electronic circuit modules
US5757445A (en) * 1990-12-31 1998-05-26 Kopin Corporation Single crystal silicon tiles for display panels
US5743614A (en) * 1990-12-31 1998-04-28 Kopin Corporation Housing assembly for a matrix display
US5475514A (en) * 1990-12-31 1995-12-12 Kopin Corporation Transferred single crystal arrayed devices including a light shield for projection displays
US6414783B2 (en) 1990-12-31 2002-07-02 Kopin Corporation Method of transferring semiconductors
US6232136B1 (en) 1990-12-31 2001-05-15 Kopin Corporation Method of transferring semiconductors
US6320568B1 (en) 1990-12-31 2001-11-20 Kopin Corporation Control system for display panels
US5499124A (en) * 1990-12-31 1996-03-12 Vu; Duy-Phach Polysilicon transistors formed on an insulation layer which is adjacent to a liquid crystal material
US7701523B2 (en) 1991-02-16 2010-04-20 Semiconductor Energy Laboratory Co., Ltd Electro-optical device
US20090021663A1 (en) * 1991-02-16 2009-01-22 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US7948569B2 (en) 1991-02-16 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Active matrix type display device
US7420628B1 (en) 1991-02-16 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Method of making an active-type LCD with digitally graded display
US5821559A (en) * 1991-02-16 1998-10-13 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US7479939B1 (en) 1991-02-16 2009-01-20 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US7646441B2 (en) 1991-02-16 2010-01-12 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display device having thin film transistors including a gate insulating film containing fluorine
US20050007329A1 (en) * 1991-02-16 2005-01-13 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US20050001965A1 (en) * 1991-02-16 2005-01-06 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US20040207777A1 (en) * 1991-02-16 2004-10-21 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US7671827B2 (en) 1991-02-16 2010-03-02 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US20050017243A1 (en) * 1991-06-19 2005-01-27 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US6124155A (en) * 1991-06-19 2000-09-26 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US5811328A (en) * 1991-06-19 1998-09-22 Semiconductor Energy Laboratory Co, Ltd. Electro-optical device and thin film transistor and method forming the same
US6335213B1 (en) 1991-06-19 2002-01-01 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US5648662A (en) * 1991-06-19 1997-07-15 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device with amorphous and crystalline shift registers
US20110101362A1 (en) * 1991-06-19 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US6847064B2 (en) 1991-06-19 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a thin film transistor
US6166399A (en) * 1991-06-19 2000-12-26 Semiconductor Energy Laboratory Co., Ltd. Active matrix device including thin film transistors
US20080044962A1 (en) * 1991-06-19 2008-02-21 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US6797548B2 (en) 1991-06-19 2004-09-28 Semiconductor Energy Laboratory Co., Inc. Electro-optical device and thin film transistor and method for forming the same
US7923311B2 (en) 1991-06-19 2011-04-12 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US7507991B2 (en) 1991-06-19 2009-03-24 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US6756258B2 (en) 1991-06-19 2004-06-29 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6977392B2 (en) 1991-08-23 2005-12-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US6566711B1 (en) 1991-08-23 2003-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having interlayer insulating film
US5528397A (en) * 1991-12-03 1996-06-18 Kopin Corporation Single crystal silicon transistors for display panels
US7223996B2 (en) 1992-05-29 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US20050214990A1 (en) * 1992-05-29 2005-09-29 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US6953713B2 (en) 1992-05-29 2005-10-11 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device and semiconductor memory having thin-film transistors
US6326642B1 (en) 1992-05-29 2001-12-04 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US5705424A (en) * 1992-09-11 1998-01-06 Kopin Corporation Process of fabricating active matrix pixel electrodes
US6608654B2 (en) 1992-09-11 2003-08-19 Kopin Corporation Methods of fabricating active matrix pixel electrodes
US6128052A (en) * 1992-12-25 2000-10-03 Canon Kabushiki Kaisha Semiconductor device applicable for liquid crystal display device, and process for its fabrication
US6198133B1 (en) 1993-12-03 2001-03-06 Semiconductor Energy Laboratory Company, Ltd. Electro-optical device having silicon nitride interlayer insulating film
US20100039602A1 (en) * 1993-12-03 2010-02-18 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US20090267072A1 (en) * 1993-12-03 2009-10-29 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US8339562B2 (en) 1993-12-03 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US20060256273A1 (en) * 1993-12-03 2006-11-16 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US7564512B2 (en) 1993-12-03 2009-07-21 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US20110012122A1 (en) * 1993-12-03 2011-01-20 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US7081938B1 (en) 1993-12-03 2006-07-25 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US8223289B2 (en) 1993-12-03 2012-07-17 Semiconductor Energy Laboratory Electro-optical device and method for manufacturing the same
US7812894B2 (en) 1993-12-03 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US6441399B1 (en) 1994-04-22 2002-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated system
US7477222B2 (en) 1994-04-22 2009-01-13 Semiconductor Energy Laboratory Co., Ltd. Redundancy shift register circuit for driver circuit in active matrix type liquid crystal display device
US8638286B2 (en) 1994-04-22 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Redundancy shift register circuit for driver circuit in active matrix type liquid crystal display device
US7166862B2 (en) 1994-04-22 2007-01-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
US5889291A (en) * 1994-04-22 1999-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
US6943764B1 (en) 1994-04-22 2005-09-13 Semiconductor Energy Laboratory Co., Ltd. Driver circuit for an active matrix display device
US7145173B2 (en) 1994-04-22 2006-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
US6599791B1 (en) 1994-04-22 2003-07-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
US6747627B1 (en) 1994-04-22 2004-06-08 Semiconductor Energy Laboratory Co., Ltd. Redundancy shift register circuit for driver circuit in active matrix type liquid crystal display device
US20090046049A1 (en) * 1994-04-22 2009-02-19 Semiconductor Energy Laboratory Co., Ltd. Redundancy shift register circuit for driver circuit in active matrix type liquid crystal display device
US8319720B2 (en) 1994-04-22 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Redundancy shift register circuit for driver circuit in active matrix type liquid crystal display device
US5815223A (en) * 1994-06-20 1998-09-29 Canon Kabushiki Kaisha Display device having a silicon substrate, a locos film formed on the substrate, a tensile stress film formed on the locos film, and TFTs formed on the tensile stress film
US6157421A (en) * 1994-12-12 2000-12-05 Canon Kabushiki Kaisha Liquid crystal display and method of manufacturing the same
US8497509B2 (en) 1995-02-16 2013-07-30 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US20080309585A1 (en) * 1995-02-16 2008-12-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7425931B1 (en) * 1995-02-16 2008-09-16 Semiconductor Energy Laboratory Co. Ltd. Display unit of a helmet or a vehicle or an airplane
US20050162578A1 (en) * 1995-02-16 2005-07-28 Shunpei Yamazaki Method of manufacturing a semiconductor device
US7375782B2 (en) 1995-02-16 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7361519B2 (en) * 1995-02-16 2008-04-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US20050162421A1 (en) * 1995-02-16 2005-07-28 Semiconductor Energy Laboratory Co., Ltd., A Japan Corporation Method of manufacturing a semiconductor device
US5821138A (en) * 1995-02-16 1998-10-13 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device using a metal which promotes crystallization of silicon and substrate bonding
US6998282B1 (en) * 1995-02-16 2006-02-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US5694155A (en) * 1995-04-25 1997-12-02 Stapleton; Robert E. Flat panel display with edge contacting image area and method of manufacture thereof
US6100879A (en) * 1996-08-27 2000-08-08 Silicon Image, Inc. System and method for controlling an active matrix display
US5818564A (en) * 1996-09-13 1998-10-06 Raychem Corporation Assembly including an active matrix liquid crystal display module
US6545654B2 (en) 1996-10-31 2003-04-08 Kopin Corporation Microdisplay for portable communication systems
US6157360A (en) * 1997-03-11 2000-12-05 Silicon Image, Inc. System and method for driving columns of an active matrix display
US7978190B2 (en) 1997-08-20 2011-07-12 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device
US7256776B2 (en) 1997-08-20 2007-08-14 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device
US20050017940A1 (en) * 1997-08-20 2005-01-27 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device
US6388652B1 (en) * 1997-08-20 2002-05-14 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device
US6778164B2 (en) 1997-08-20 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device
US6100868A (en) * 1997-09-15 2000-08-08 Silicon Image, Inc. High density column drivers for an active matrix display
US6246459B1 (en) 1998-06-10 2001-06-12 Tyco Electronics Corporation Assembly including an active matrix liquid crystal display module and having plural environmental seals
US6466195B1 (en) * 1998-07-31 2002-10-15 Kabushiki Kaisha Toshiba Flat panel display unit
US7972910B2 (en) 2005-06-03 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of integrated circuit device including thin film transistor
US8492246B2 (en) 2005-06-03 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing integrated circuit device
US20060273319A1 (en) * 2005-06-03 2006-12-07 Semiconductor Energy Laboratory Co., Ltd. Integrated circuit device and manufacturing method thereof
US20110033987A1 (en) * 2005-06-30 2011-02-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8361845B2 (en) 2005-06-30 2013-01-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7820495B2 (en) 2005-06-30 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
DE3784449D1 (en) 1993-04-08
EP0268380B1 (en) 1993-03-03
EP0268380A2 (en) 1988-05-25
EP0268380A3 (en) 1989-09-27
JPS63101829A (en) 1988-05-06
DE3784449T2 (en) 1993-10-07
JPH0567208B2 (en) 1993-09-24

Similar Documents

Publication Publication Date Title
US4838654A (en) Liquid crystal display device having display and driver sections on a single board
US7116390B2 (en) Electro-optical device and electronic apparatus comprising the same
US4804953A (en) Redundant conductor structures for thin film FET driven liquid crystal displays
EP0609919B1 (en) Active matrix panel
KR20050105113A (en) A method of manufacturing a semiconductor device
KR20040025845A (en) Semiconductor device, electrooptical device, electronic apparatus, and manufacturing method of semiconductor device
JPH0567210B2 (en)
KR100781104B1 (en) Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
JP3336900B2 (en) Liquid crystal display panel and projection display device using the same
JPH0555854B2 (en)
JPH0567209B2 (en)
JP4321094B2 (en) Electro-optical device and electronic apparatus
JPH0567211B2 (en)
JPH07248508A (en) Liquid crystal display device
JPH0862616A (en) Reflection type liquid crystal element and projection type display device using this element
JPH07128687A (en) Active matrix type pannel device
JPH06160892A (en) Liquid crystal display device and its defect correction method
JPS6059383A (en) Active matrix substrate
JP2005266814A (en) Electro-optical device and electronic equipment
JP2000172192A (en) Liquid crystal display device and its manufacture
JP2000305072A (en) Active matrix substrate, display device and electronic instrument
JPS5937814Y2 (en) lcd matrix display panel
JP3988734B2 (en) Electro-optical device and electronic apparatus
JPH11258572A (en) Active matrix type liquid crystal display
JPH03293639A (en) Liquid crystal display device

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEC CORPORATION, 33-1, SHIBA 5-CHOME, MINATO-KU, T

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:HAMAGUCHI, TSUNEO;HIRAI, YOSHIHIKO;KANEKO, SETSUO;REEL/FRAME:004808/0240

Effective date: 19871016

Owner name: NEC CORPORATION, 33-1, SHIBA 5-CHOME, MINATO-KU, T

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAMAGUCHI, TSUNEO;HIRAI, YOSHIHIKO;KANEKO, SETSUO;REEL/FRAME:004808/0240

Effective date: 19871016

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12