US5154189A - Method for repairing a torn meniscus - Google Patents

Method for repairing a torn meniscus Download PDF

Info

Publication number
US5154189A
US5154189A US07/759,032 US75903291A US5154189A US 5154189 A US5154189 A US 5154189A US 75903291 A US75903291 A US 75903291A US 5154189 A US5154189 A US 5154189A
Authority
US
United States
Prior art keywords
clip
jaws
staple
legs
instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/759,032
Inventor
Michael A. Oberlander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CA002001658A external-priority patent/CA2001658A1/en
Priority claimed from JP1334669A external-priority patent/JP2927475B2/en
Application filed by Individual filed Critical Individual
Priority to US07/759,032 priority Critical patent/US5154189A/en
Application granted granted Critical
Publication of US5154189A publication Critical patent/US5154189A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/10Surgical instruments, devices or methods, e.g. tourniquets for applying or removing wound clamps, e.g. containing only one clamp or staple; Wound clamp magazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B2017/0646Surgical staples, i.e. penetrating the tissue for insertion into cartillege, e.g. meniscus

Definitions

  • This invention relates to a method for inserting a clip used to repair menisci and soft tissue.
  • a tear in the vascular region of the meniscus is sutured using arthroscopic techniques.
  • the instrument may be inserted through small incisions which serve as anterior knee portals.
  • Sutures on long needles are then passed through a meniscal repair instrument and through the meniscus.
  • An incision is made in the back of the knee to permit the surgeon to pull the needles and suture out, and to tie the suture over the posterior joint capsule. This technique reapproximates the torn edges of the meniscus and allows for healing.
  • this repair technique requires a surgeon skilled in arthroscopic meniscal repair.
  • the technique is also relatively time consuming and more invasive than it need be, as it requires a second, posterior incision that increases the risk of infection and neurovascular damage.
  • few surgeons will attempt meniscal repair, choosing instead to simply remove the damaged portion of the meniscus.
  • the problem with this approach is that meniscal removal can cause increased stress on the articular cartilage, which may then lead to degenerative arthritis.
  • Surgical clips are often easier to insert than sutures. However, most clips are not biodegradable, and occasionally a second operation must be performed to remove the clip once the tissue has healed. Another disadvantage of these clips is that they are not well suited for meniscal and soft tissue repair, as they are typically metallic, relatively large, and may protrude from the tissue and cause joint irritation. Thus, although arthroscopic clips can be inserted through a single incision, they have typically not been used for repair of peripheral meniscal tears nor for arthroscopic repair of soft tissue.
  • This invention results from the realization that arthroscopic surgical clips for repairing tears in menisci and soft tissue can be improved dramatically by providing a biodegradable clip with rigid, barbed legs interconnected by a flexible section that is inserted in the tissue with an arthroscopic tool and anchors itself in the tissue to approximate the tear.
  • the clip has a pair of opposed legs formed of rigid biodegradable material interconnected by a flexible, biodegradable section. Each leg has at least one barb that allows the clip to be easily inserted into the tissue being repaired but keeps the clip from working out of the tissue.
  • the legs of the clip are preferably curved inwardly toward each other, and each leg preferably has more than one barb on its outer side.
  • a preferred material for the legs is a polyglycolic acid polymer.
  • the arthroscopic instrument for applying the barbed arthroscopic clips has a pair of opposed jaws that are preferably offset to allow them to overlap when closed. Each jaw has at least one notch for holding the barbs of the clip. These specialized jaws tightly hold the clips in place until they are fully inserted, which allows the physician to place them in exactly the right position and to exactly the right depth before they are released.
  • the instrument includes a biasing means for separating the jaws in a normally open position, which is the position in which the jaws remain as the clip insertion begins.
  • the jaws are connected to a handle by a member such as a tubular member.
  • the instrument also includes means for closing the jaws when the two handle members are moved one way relative to one another and opening the jaws when the handles are moved another way.
  • the actuating handle is normally biased open, and the means for closing the jaws closes them when the handle members are squeezed together and opens them when the handle members are spread apart.
  • the means for closing may include means for pulling the jaws together as the handle members are moved.
  • the jaws may be disposed at an angle to the tubular member to facilitate clip insertion. Additionally, the tips of the jaws are preferably sharpened to facilitate clip insertion.
  • the instrument further includes means for releasing the clip from the jaws so it stays in place when the jaws are opened.
  • the means for releasing may include means for releasably holding at least one barb of the clip, and may further include means for selectively releasing the means for releasably holding the barb from the barb.
  • Means for actuating the means for selectively releasing which may include an actuating member or switch on the handle of the instrument, are also preferably included.
  • the clip In use, the clip is placed in the jaws with the barbs in the jaw notches. This holds the clip tightly in place as it is inserted.
  • the physician begins pushing the jaws into the tissue, squeezing the handle members at the same time. The sharpened tips of the jaws pierce the tissue and, as it is inserted, the legs are moved together.
  • the jaws of the instrument overlap when they are completely closed. This overlapping causes the legs of the clip to overlap when it is completely inserted in the tissue.
  • the switch on the handle then is moved upward to release the clip from the jaws.
  • the barbs on the clip legs then hold the clip in position once the jaws are opened up and pulled away from the clip.
  • the clip When the instrument is removed from the tissue, the clip remains with its legs completely embedded within the tissue with only the flexible, non-irritating interconnecting member protruding from the tissue surface. Since the clip is biodegradable, it slowly dissolves as the tissue heals itself, and there is no need for a second operation to remove the clips.
  • FIG. 1 is an elevational view of an arthroscopic clip for repairing tears in cartilage and soft tissue according to this invention
  • FIG. 2 is a diagram of a meniscular tear reapproximated by three of the clips of FIG. 1;
  • FIG. 3 is a cross-sectional view taken along line 3--3 of FIG. 2;
  • FIG. 4A is an axonometric view of an arthroscopic tool for inserting the clip of FIG. 1 according to this invention
  • FIG. 4B is a close-up view of the jaws of the tool of FIG. 4A;
  • FIG. 4C is a partial cross-sectional view of the handle, trigger and actuating member of the tool of FIG. 4A;
  • FIG. 4D is a diagrammatic view of an angled jaw for the tool of FIG. 4A;
  • FIG. 5 is an elevational view of an alternative arthroscopic clip according to this invention.
  • FIG. 6 is an elevational view of an alternative to the jaws of FIG. 4A.
  • An arthroscopic clip for arthroscopic repair of tears in fibrocartilage and soft tissue which is especially useful for meniscal repair according to this invention may be accomplished by providing a clip with a pair of opposed legs formed of a rigid biodegradable material. Each leg has at least one barb that allows the clip to easily penetrate the tissue being repaired and oppose withdrawal from it. The legs are interconnected by a flexible, non-irritating biodegradable section that allows the clip to bend.
  • the legs of the clip are curved inwardly toward each other, and the barbs are on the outside of the legs.
  • the barbs may alternatively be on the insides of the legs.
  • These legs are preferably made from a polyglycolic acid polymer.
  • the flexible interconnecting section can be formed of suture material or another relatively soft, flexible material that allows the clip to bend as it is inserted so that the clip can overlap inside the tissue being approximated.
  • the clip is ideally suited for reapproximating peripheral meniscal tears.
  • the arthroscopic instrument for applying the clips includes a pair of opposed jaws each having at least one notch for holding the barbs of the clip. This allows the clip to be tightly held in place in the jaws until it is completely inserted in the tissue being repaired.
  • the jaws are biased apart in a normally open position, and they are attached to the handle by a tubular member.
  • the actuating handle has opposed handle members and is also connected to the jaws by means such as a pair of wires or an actuating member which close the jaws when the handle is squeezed.
  • the instrument may have jaws preset at different angles to further facilitate insertion of the clip.
  • the jaws may also have sharpened tips to facilitate insertion.
  • the jaws are preferably offset so they overlap when closed, so that the legs of the clip overlap inside the tissue to better approximate the torn tissue.
  • FIG. 1 There is shown in FIG. 1 one embodiment of an arthroscopic clip 10 for repair of tears in cartilage and soft tissue according to this invention.
  • the clip is especially useful for repairing peripheral meniscal tears, partial or small rotator cuff tears, labrum tears in shoulder arthroscopy, and retinacular repair after patellar dislocations.
  • the clip has barbed legs 12 and 14 with barbs 18 and 20, and 22 and 24, respectively.
  • Legs 12 and 14 are formed of a rigid biodegradable material which may be a polyglycolic acid polymer.
  • Legs 12 and 14 are interconnected by biodegradable, flexible, non-irritating section 16 which may be a suture material. Section 16 bends to allow the legs to move in toward each other and overlap as they are pushed into the tissue. Once inserted, the clips hold the tissue in place long enough for it to heal, and slowly dissolve so the patient does not have to undergo a second operation for clip removal.
  • Peripheral meniscal tear 32 is a relatively small tear that is considered repairable. Because of the problems to date with meniscal surgery, portion 94 of meniscus 30, encompassed by the dashed lines, has often been removed when a peripheral tear is found. Since meniscal removal may cause increased stress on the articular cartilage and secondarily lead to degenerative arthritis, repair is far superior to removal. By using clips such as clips 34, 35, and 38, the meniscus can be successfully repaired with a single operative procedure.
  • Clip 34 is shown embedded in meniscus 30 in FIG. 3.
  • Clip 34 includes barbed legs 38 and 40 interconnected by flexible section 36. When inserted, legs 38 and 40 overlap, which causes the legs to approximate the tissue and minimize gap 32 through which fibrous tissue will form and thus further enhance healing.
  • the clip is inserted as shown, only the soft connecting portion 36 protrudes from the tissue and is exposed to the articular cartilage. Since this soft material does not irritate the surrounding articular cartilage, the patient does not need to have the joint rigidly immobilized for a long period of time. This is an additional advantage of the arthroscopic clip according to this invention.
  • Instrument 50 includes notched jaws 64 and 66 made of spring steel formed to keep them in a normally open position.
  • Tubular member 60 interconnects jaws 64 and 66 to handle 62.
  • Pin, bolt, or rivet 79 attaches the jaws to member 60.
  • Handle 62 includes handle members 52 and 54 that are normally biased apart by spring 56. Hinge pin 58 allows handle member 54 to move toward handle member 52 as the handle is squeezed.
  • Jaws 64 and 66 are formed from spring steel member 68. Wires 53 and 55 are attached to jaws 66 and 64 at points 84 and 82, respectively, and are separated by running them through channels 78 and 80 attached to the inside of tubular member 60. Wires 53 and 55 are pulled taut when the handle member is squeezed. This causes the jaws to close.
  • the clip is held firmly in place in the jaws as it is inserted in the tissue by providing notches 70 and 72 in jaw 64 and notches 74 and 76 in jaw 66 that are shaped to hold the clip barbs. Insertion is further facilitated by sharpened tips 65 and 67, which pierce the tissue just ahead of tips of the clip.
  • a clip such as clip 10, FIG. 1, is inserted in the open jaws 64 and 66.
  • Barbs 18 and 20 fit in slots 70 and 72.
  • Barbs 22 and 24 fit in slots 74 and 76.
  • the tip of the clip is located very close to tips 65 and 67 of jaws 64 and 66, respectively.
  • the instrument is moved forward and handle 62 is squeezed. This pushes the legs of the clip into the tissue and moves the legs together as the clip is inserted.
  • the jaws of the instrument are preferably made slightly offset as shown so that they overlap when completely closed. In that case, when the clip is completely inserted its legs are crossed as they are in FIG. 3.
  • the clip legs are crossed or not, they are completely embedded within the tissue. This is advantageous because the rigid leg material could irritate the tissue surrounding the area being repaired as the prior art surgical clips have done in other parts of the body.
  • Tubular member 60 is attached to handle member 52 by rivet 57.
  • Wires 53 and 55 are attached to handle member 54, which pivots on pin 58 when handles 52 and 54 are squeezed together. As handle 54 moves toward handle 52, it pulls wires 53 and 55 back, which pulls the jaws together and causes them to close. Since the jaws are normally biased apart, when the handle members are released, wires 53 and 55 are relaxed, and the jaws open to release the clip.
  • Wire 108 is attached to sliding switch 92, which pulls wire 108 when it is slid in the direction of the arrow to release the clip as fully explained below in conjunction with FIG. 6.
  • FIG. 4D An alternative way of forming the jaws of the arthroscopic instrument is shown in FIG. 4D.
  • Jaws 64a and 66a are formed at a 30 degree angle to tubular member 60a.
  • Pin, rivet, or bolt 79a attaches the jaws to the tubular member.
  • At least three insertion tools with jaws at different angles are available.
  • FIG. 5 Another way of forming the arthroscopic clip is shown in FIG. 5.
  • Clip 10a includes barbed legs 12a and 14a formed of a rigid biodegradable material, for example a polyglycolic acid polymer. Barbs 18a, 20a, 22a and 24a are fully embedded within the tissue being repaired and do not interfere with joint movement. Tip barbs 96 and 98 allow clip 10a to grip the meniscus so it stays embedded when the jaws are pulled back and out of the patient. This is more clearly shown in FIG. 6.
  • Flexible section 81 is made an intergral part of clip 10a, but is preferably made from a relatively soft, flexible biodegradable material which allows the clip to bend as it is inserted so the legs can be fully embedded in the tissue.
  • a preferred material of the flexible clip is 2.0 Dexon suture. Since interconnecting section 81 is the only section of the clip that is exposed from the meniscus after the clip is inserted, the soft material also provides a clip that is less irritating to the surrounding cartilage than the typical stiff or metallic clips would be and which would not be able to be used intra-articularly.
  • Jaws 100 and 102 are formed to hold the barbs of clip 10a while the clip is being inserted and to release the clip after insertion so that it remains in place embedded in the meniscus.
  • Barb-holding members 104 are spring steel members with small indentations shaped to fit and hold the clip barbs.
  • Wire 106 is attached to members 104.
  • Wire 108 connects wire 106 to switch 92, FIG. 4A.
  • Insertion barbs 96 and 98 also may be included to help hold clip 10a in place by gripping the tissue just enough to allow clip 10a to separate from jaws 102 and 100 as the jaws are opened and backed out of the meniscus. In conjunction with members 104, insertion barbs 96 and 98 prevent clip 10a from not properly separating from the instrument as it is removed from the mensicus.

Abstract

A method for repairing tears in fibrocartilage and soft tissue. The clip has a pair of opposed legs formed of rigid biodegradable material. Each leg has at least one barb for easily penetrating the cartilage and soft tissue, and for opposing withdrawal from it. The legs are interconnected by a flexible section that is also biodegradable. The instrument for applying these clips has a pair of opposed jaws, each with at least one notch for holding the barbs of the clip. The jaws are biased apart in a normally open position and are interconnected to an actuating handle. The instrument further includes a device which closes the jaws when the handles are moved a first way relative to one another and opens them when the handles are moved the other way.

Description

This is a continuation of co-pending application Ser. No. 07/672,895, filed on Mar. 21, 1991 now abandoned, which is a continuation of pending U.S. application Ser. No. 07/511,445, filed Apr. 18, 1990 now U.S. Pat. No. 5,002,562, which is a continuation of application Ser. No. 07/201,841 filed Jun. 3, 1988, now abandoned.
FIELD OF INVENTION
This invention relates to a method for inserting a clip used to repair menisci and soft tissue.
BACKGROUND OF INVENTION
Tears in fibrocartilage and soft tissue, especially peripheral meniscal tears, are reatively difficult to repair. Typically, a tear in the vascular region of the meniscus is sutured using arthroscopic techniques. The instrument may be inserted through small incisions which serve as anterior knee portals. Sutures on long needles are then passed through a meniscal repair instrument and through the meniscus. An incision is made in the back of the knee to permit the surgeon to pull the needles and suture out, and to tie the suture over the posterior joint capsule. This technique reapproximates the torn edges of the meniscus and allows for healing.
Although effective, this repair technique requires a surgeon skilled in arthroscopic meniscal repair. The technique is also relatively time consuming and more invasive than it need be, as it requires a second, posterior incision that increases the risk of infection and neurovascular damage. As a result, few surgeons will attempt meniscal repair, choosing instead to simply remove the damaged portion of the meniscus. The problem with this approach is that meniscal removal can cause increased stress on the articular cartilage, which may then lead to degenerative arthritis.
Surgical clips are often easier to insert than sutures. However, most clips are not biodegradable, and occasionally a second operation must be performed to remove the clip once the tissue has healed. Another disadvantage of these clips is that they are not well suited for meniscal and soft tissue repair, as they are typically metallic, relatively large, and may protrude from the tissue and cause joint irritation. Thus, although arthroscopic clips can be inserted through a single incision, they have typically not been used for repair of peripheral meniscal tears nor for arthroscopic repair of soft tissue.
SUMMARY OF INVENTION
It is therefore an object of this invention to provide a method for inserted arthroscopic clip for operative arthroscopic repair of menisci and soft tissue.
It is a further object of this invention to provide a method for inserting an arthroscopic clip which allows a surgeon not trained in meniscal repair to reapproximate torn meniscal tissue.
It is a further object of this invention to provide a method and an arthroscopic clip which decrease risk of neurovascular damage to the patient.
It is a further object of this invention to provide a method and an arthroscopic clip which decrease operative time, by facilitating the operative procedure.
It is a further object of this invention to provide a method and an arthroscopic clip that do not require a second operation to remove the clip.
It is a further object of this invention to provide a method and an arthroscopic surgical clip with legs that remain buried in the tissue and do not irritate surrounding tissue.
This invention results from the realization that arthroscopic surgical clips for repairing tears in menisci and soft tissue can be improved dramatically by providing a biodegradable clip with rigid, barbed legs interconnected by a flexible section that is inserted in the tissue with an arthroscopic tool and anchors itself in the tissue to approximate the tear.
This invention features an arthroscopic clip and insertion tool for repair of tears in fibrocartilage and soft tissue. The clip has a pair of opposed legs formed of rigid biodegradable material interconnected by a flexible, biodegradable section. Each leg has at least one barb that allows the clip to be easily inserted into the tissue being repaired but keeps the clip from working out of the tissue. The legs of the clip are preferably curved inwardly toward each other, and each leg preferably has more than one barb on its outer side. A preferred material for the legs is a polyglycolic acid polymer.
The arthroscopic instrument for applying the barbed arthroscopic clips has a pair of opposed jaws that are preferably offset to allow them to overlap when closed. Each jaw has at least one notch for holding the barbs of the clip. These specialized jaws tightly hold the clips in place until they are fully inserted, which allows the physician to place them in exactly the right position and to exactly the right depth before they are released. The instrument includes a biasing means for separating the jaws in a normally open position, which is the position in which the jaws remain as the clip insertion begins. The jaws are connected to a handle by a member such as a tubular member. The instrument also includes means for closing the jaws when the two handle members are moved one way relative to one another and opening the jaws when the handles are moved another way.
Preferably, the actuating handle is normally biased open, and the means for closing the jaws closes them when the handle members are squeezed together and opens them when the handle members are spread apart. The means for closing may include means for pulling the jaws together as the handle members are moved. The jaws may be disposed at an angle to the tubular member to facilitate clip insertion. Additionally, the tips of the jaws are preferably sharpened to facilitate clip insertion.
Preferably, the instrument further includes means for releasing the clip from the jaws so it stays in place when the jaws are opened. The means for releasing may include means for releasably holding at least one barb of the clip, and may further include means for selectively releasing the means for releasably holding the barb from the barb. Means for actuating the means for selectively releasing, which may include an actuating member or switch on the handle of the instrument, are also preferably included.
In use, the clip is placed in the jaws with the barbs in the jaw notches. This holds the clip tightly in place as it is inserted. To insert the clip, the physician begins pushing the jaws into the tissue, squeezing the handle members at the same time. The sharpened tips of the jaws pierce the tissue and, as it is inserted, the legs are moved together. Preferably, the jaws of the instrument overlap when they are completely closed. This overlapping causes the legs of the clip to overlap when it is completely inserted in the tissue. The switch on the handle then is moved upward to release the clip from the jaws. The barbs on the clip legs then hold the clip in position once the jaws are opened up and pulled away from the clip. When the instrument is removed from the tissue, the clip remains with its legs completely embedded within the tissue with only the flexible, non-irritating interconnecting member protruding from the tissue surface. Since the clip is biodegradable, it slowly dissolves as the tissue heals itself, and there is no need for a second operation to remove the clips.
DISCLOSURE OF PREFERRED EMBODIMENT
Other objects, features, and advantages will occur from the following description of a preferred embodiment and the accompanying drawings, in which:
FIG. 1 is an elevational view of an arthroscopic clip for repairing tears in cartilage and soft tissue according to this invention;
FIG. 2 is a diagram of a meniscular tear reapproximated by three of the clips of FIG. 1;
FIG. 3 is a cross-sectional view taken along line 3--3 of FIG. 2;
FIG. 4A is an axonometric view of an arthroscopic tool for inserting the clip of FIG. 1 according to this invention;
FIG. 4B is a close-up view of the jaws of the tool of FIG. 4A;
FIG. 4C is a partial cross-sectional view of the handle, trigger and actuating member of the tool of FIG. 4A;
FIG. 4D is a diagrammatic view of an angled jaw for the tool of FIG. 4A;
FIG. 5 is an elevational view of an alternative arthroscopic clip according to this invention; and
FIG. 6 is an elevational view of an alternative to the jaws of FIG. 4A.
An arthroscopic clip for arthroscopic repair of tears in fibrocartilage and soft tissue which is especially useful for meniscal repair according to this invention may be accomplished by providing a clip with a pair of opposed legs formed of a rigid biodegradable material. Each leg has at least one barb that allows the clip to easily penetrate the tissue being repaired and oppose withdrawal from it. The legs are interconnected by a flexible, non-irritating biodegradable section that allows the clip to bend.
Preferably, the legs of the clip are curved inwardly toward each other, and the barbs are on the outside of the legs. The barbs may alternatively be on the insides of the legs. These legs are preferably made from a polyglycolic acid polymer. The flexible interconnecting section can be formed of suture material or another relatively soft, flexible material that allows the clip to bend as it is inserted so that the clip can overlap inside the tissue being approximated. The clip is ideally suited for reapproximating peripheral meniscal tears.
The arthroscopic instrument for applying the clips includes a pair of opposed jaws each having at least one notch for holding the barbs of the clip. This allows the clip to be tightly held in place in the jaws until it is completely inserted in the tissue being repaired. The jaws are biased apart in a normally open position, and they are attached to the handle by a tubular member. The actuating handle has opposed handle members and is also connected to the jaws by means such as a pair of wires or an actuating member which close the jaws when the handle is squeezed. The instrument may have jaws preset at different angles to further facilitate insertion of the clip. The jaws may also have sharpened tips to facilitate insertion. In addition, the jaws are preferably offset so they overlap when closed, so that the legs of the clip overlap inside the tissue to better approximate the torn tissue.
There is shown in FIG. 1 one embodiment of an arthroscopic clip 10 for repair of tears in cartilage and soft tissue according to this invention. The clip is especially useful for repairing peripheral meniscal tears, partial or small rotator cuff tears, labrum tears in shoulder arthroscopy, and retinacular repair after patellar dislocations. The clip has barbed legs 12 and 14 with barbs 18 and 20, and 22 and 24, respectively. Legs 12 and 14 are formed of a rigid biodegradable material which may be a polyglycolic acid polymer. Legs 12 and 14 are interconnected by biodegradable, flexible, non-irritating section 16 which may be a suture material. Section 16 bends to allow the legs to move in toward each other and overlap as they are pushed into the tissue. Once inserted, the clips hold the tissue in place long enough for it to heal, and slowly dissolve so the patient does not have to undergo a second operation for clip removal.
Peripheral meniscal tear 32, FIG. 2, is a relatively small tear that is considered repairable. Because of the problems to date with meniscal surgery, portion 94 of meniscus 30, encompassed by the dashed lines, has often been removed when a peripheral tear is found. Since meniscal removal may cause increased stress on the articular cartilage and secondarily lead to degenerative arthritis, repair is far superior to removal. By using clips such as clips 34, 35, and 38, the meniscus can be successfully repaired with a single operative procedure.
Clip 34 is shown embedded in meniscus 30 in FIG. 3. Clip 34 includes barbed legs 38 and 40 interconnected by flexible section 36. When inserted, legs 38 and 40 overlap, which causes the legs to approximate the tissue and minimize gap 32 through which fibrous tissue will form and thus further enhance healing. When the clip is inserted as shown, only the soft connecting portion 36 protrudes from the tissue and is exposed to the articular cartilage. Since this soft material does not irritate the surrounding articular cartilage, the patient does not need to have the joint rigidly immobilized for a long period of time. This is an additional advantage of the arthroscopic clip according to this invention.
The arthroscopic instrument for applying the barbed clips is shown in FIG. 4A. Instrument 50 includes notched jaws 64 and 66 made of spring steel formed to keep them in a normally open position. Tubular member 60 interconnects jaws 64 and 66 to handle 62. Pin, bolt, or rivet 79 attaches the jaws to member 60. Handle 62 includes handle members 52 and 54 that are normally biased apart by spring 56. Hinge pin 58 allows handle member 54 to move toward handle member 52 as the handle is squeezed.
The action of the opening and closing of the jaws of the instrument can be more clearly seen in FIG. 4B. Jaws 64 and 66 are formed from spring steel member 68. Wires 53 and 55 are attached to jaws 66 and 64 at points 84 and 82, respectively, and are separated by running them through channels 78 and 80 attached to the inside of tubular member 60. Wires 53 and 55 are pulled taut when the handle member is squeezed. This causes the jaws to close. The clip is held firmly in place in the jaws as it is inserted in the tissue by providing notches 70 and 72 in jaw 64 and notches 74 and 76 in jaw 66 that are shaped to hold the clip barbs. Insertion is further facilitated by sharpened tips 65 and 67, which pierce the tissue just ahead of tips of the clip.
In operation, a clip such as clip 10, FIG. 1, is inserted in the open jaws 64 and 66. Barbs 18 and 20 fit in slots 70 and 72. Barbs 22 and 24 fit in slots 74 and 76. The tip of the clip is located very close to tips 65 and 67 of jaws 64 and 66, respectively. When the jaws are in place against the two sides of the torn tissue being repaired, the instrument is moved forward and handle 62 is squeezed. This pushes the legs of the clip into the tissue and moves the legs together as the clip is inserted. The jaws of the instrument are preferably made slightly offset as shown so that they overlap when completely closed. In that case, when the clip is completely inserted its legs are crossed as they are in FIG. 3.
Whether the clip legs are crossed or not, they are completely embedded within the tissue. This is advantageous because the rigid leg material could irritate the tissue surrounding the area being repaired as the prior art surgical clips have done in other parts of the body. Once the clip is inserted, the jaws are backed out of the tissue and the instrument is removed from the patient. The instrument can then be used to insert another clip in the torn tissue.
The operation of the handle member to open and close the jaws is shown more clearly in FIG. 4C. Tubular member 60 is attached to handle member 52 by rivet 57. Wires 53 and 55 are attached to handle member 54, which pivots on pin 58 when handles 52 and 54 are squeezed together. As handle 54 moves toward handle 52, it pulls wires 53 and 55 back, which pulls the jaws together and causes them to close. Since the jaws are normally biased apart, when the handle members are released, wires 53 and 55 are relaxed, and the jaws open to release the clip. Wire 108 is attached to sliding switch 92, which pulls wire 108 when it is slid in the direction of the arrow to release the clip as fully explained below in conjunction with FIG. 6.
An alternative way of forming the jaws of the arthroscopic instrument is shown in FIG. 4D. Jaws 64a and 66a are formed at a 30 degree angle to tubular member 60a. Pin, rivet, or bolt 79a attaches the jaws to the tubular member.
Preferably, at least three insertion tools with jaws at different angles are available. One with jaws aligned with the tubular member, one with jaws turned down at approximately 15 degrees, and one with jaws turned down at approximately 30 degrees. This allows the physician to place the clip exactly as desired, depending on the location of the tear, utilizing the same arthroscopic portal during repair.
Another way of forming the arthroscopic clip is shown in FIG. 5. Clip 10a includes barbed legs 12a and 14a formed of a rigid biodegradable material, for example a polyglycolic acid polymer. Barbs 18a, 20a, 22a and 24a are fully embedded within the tissue being repaired and do not interfere with joint movement. Tip barbs 96 and 98 allow clip 10a to grip the meniscus so it stays embedded when the jaws are pulled back and out of the patient. This is more clearly shown in FIG. 6. Flexible section 81 is made an intergral part of clip 10a, but is preferably made from a relatively soft, flexible biodegradable material which allows the clip to bend as it is inserted so the legs can be fully embedded in the tissue. A preferred material of the flexible clip is 2.0 Dexon suture. Since interconnecting section 81 is the only section of the clip that is exposed from the meniscus after the clip is inserted, the soft material also provides a clip that is less irritating to the surrounding cartilage than the typical stiff or metallic clips would be and which would not be able to be used intra-articularly.
Another way of forming the jaws to ensure proper insertion of clip 10a is shown in FIG. 6. Jaws 100 and 102 are formed to hold the barbs of clip 10a while the clip is being inserted and to release the clip after insertion so that it remains in place embedded in the meniscus. Barb-holding members 104 are spring steel members with small indentations shaped to fit and hold the clip barbs. Wire 106 is attached to members 104. Wire 108 connects wire 106 to switch 92, FIG. 4A.
When clip 10a is fully inserted in the meniscus, the physician operates switch or lever 92. Switch operation pulls on wire 108, FIG. 6, which in turn pulls wire 106. Wire 106 is attached to the underside of members 104. As wire 106 is pulled tight, it pulls members 104 down away from clip 10a. This frees the barbs and leaves them embedded in the meniscus. Insertion barbs 96 and 98 also may be included to help hold clip 10a in place by gripping the tissue just enough to allow clip 10a to separate from jaws 102 and 100 as the jaws are opened and backed out of the meniscus. In conjunction with members 104, insertion barbs 96 and 98 prevent clip 10a from not properly separating from the instrument as it is removed from the mensicus.
Although specific features of the invention are shown in some drawings and not others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention.
Other embodiments will occur to those skilled in the art and are within the following claims:

Claims (11)

What is claimed is:
1. A method for repairing a tear in the meniscus comprising:
providing a staple having a pair of legs joined together by a flexible suture material;
inserting the staple into the meniscus so the suture material overlies the tear; and
bending the staple legs inwardly towards each other.
2. A method as in claim 1, wherein said staple legs and said suture material are biodegradable.
3. A method of repairing a tear in the meniscus comprising:
providing a staple having a pair of legs joined together by a flexible material; and
inserting the staple into the meniscus so the flexible material overlies the tear.
4. The method of claim 3, wherein the staple legs are composed of a biodegradable material.
5. The method of claim 4, wherein the flexible material is a biodegradable suture material.
6. The method of claim 3, wherein said legs are composed of a rigid material.
7. The method of claim 6 wherein each said leg includes at least one tissue retaining barb.
8. The method of repairing a tear in the meniscus comprising:
providing an instrument having a pair of opposed jaws;
placing a staple having a pair of legs joined by a suture material in said jaws so each staple leg is received in the notch formed in each jaw;
inserting the instrument in the body to position the jaws over the tear;
squeezing said handles of the instrument to close the jaws; and
releasing the staple from the jaws so that the flexible material overlies the tear.
9. The method of claim 8, wherein the staple is composed of biodegradable material.
10. The method of claim 9, wherein each staple leg has an integral tissue retaining barb and said barb is positioned in the notch of the jaw.
11. The method of claim 10, wherein the step of releasing the staple comprises pulling a wire to actuate barb holding members to disengage the instrument from the barbs.
US07/759,032 1988-06-03 1991-09-04 Method for repairing a torn meniscus Expired - Lifetime US5154189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/759,032 US5154189A (en) 1988-06-03 1991-09-04 Method for repairing a torn meniscus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US20184188A 1988-06-03 1988-06-03
CA002001658A CA2001658A1 (en) 1988-11-14 1989-10-27 Display hanger with finger clamps
JP1334669A JP2927475B2 (en) 1988-06-03 1989-12-22 Arthroscopic clip and its insertion device
US07/759,032 US5154189A (en) 1988-06-03 1991-09-04 Method for repairing a torn meniscus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07672895 Continuation 1991-03-21

Publications (1)

Publication Number Publication Date
US5154189A true US5154189A (en) 1992-10-13

Family

ID=27426782

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/759,032 Expired - Lifetime US5154189A (en) 1988-06-03 1991-09-04 Method for repairing a torn meniscus

Country Status (1)

Country Link
US (1) US5154189A (en)

Cited By (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269783A (en) * 1991-05-13 1993-12-14 United States Surgical Corporation Device and method for repairing torn tissue
US5500000A (en) * 1993-07-01 1996-03-19 United States Surgical Corporation Soft tissue repair system and method
US5643319A (en) * 1991-05-13 1997-07-01 United States Surgical Corporation Device for applying a meniscal staple
US5645568A (en) * 1995-11-20 1997-07-08 Medicinelodge, Inc. Expandable body suture
US5702462A (en) * 1996-01-24 1997-12-30 Oberlander; Michael Method of meniscal repair
US5895395A (en) * 1997-07-17 1999-04-20 Yeung; Teresa T. Partial to full thickness suture device & method for endoscopic surgeries
US5906827A (en) * 1994-06-03 1999-05-25 Creative Biomolecules, Inc. Matrix for the manufacture of autogenous replacement body parts
US5993475A (en) * 1998-04-22 1999-11-30 Bristol-Myers Squibb Co. Tissue repair device
US5997552A (en) * 1995-10-20 1999-12-07 United States Surgical Corporation Meniscal fastener applying device
WO2001010312A1 (en) 1999-08-10 2001-02-15 Innovasive Devices, Inc. Self-locking suture anchor
US20020016557A1 (en) * 1997-02-14 2002-02-07 Duarte Luiz R. Ultrasonic treatment for wounds
US6387113B1 (en) 1999-02-02 2002-05-14 Biomet, Inc. Method and apparatus for repairing a torn meniscus
US6514265B2 (en) 1999-03-01 2003-02-04 Coalescent Surgical, Inc. Tissue connector apparatus with cable release
US6530933B1 (en) 1998-12-31 2003-03-11 Teresa T. Yeung Methods and devices for fastening bulging or herniated intervertebral discs
US6551332B1 (en) 2000-03-31 2003-04-22 Coalescent Surgical, Inc. Multiple bias surgical fastener
US6607541B1 (en) 1998-06-03 2003-08-19 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6613059B2 (en) 1999-03-01 2003-09-02 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US20030167072A1 (en) * 1999-08-25 2003-09-04 Oberlander Michael A. Multi-anchor suture
US6623492B1 (en) 2000-01-25 2003-09-23 Smith & Nephew, Inc. Tissue fastener
US20030199877A1 (en) * 2000-09-07 2003-10-23 Peter Steiger Device for fixing surgical implants
US6641593B1 (en) 1998-06-03 2003-11-04 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6666872B2 (en) 2000-04-11 2003-12-23 United States Surgical Single shot meniscal repair device
US20040122471A1 (en) * 2002-12-20 2004-06-24 Toby E. Bruce Connective tissue repair system
US20040138683A1 (en) * 2003-01-09 2004-07-15 Walter Shelton Suture arrow device and method of using
US20040176800A1 (en) * 2003-03-07 2004-09-09 Paraschac Joseph Francis Barbed closure device
US6945980B2 (en) 1998-06-03 2005-09-20 Medtronic, Inc. Multiple loop tissue connector apparatus and methods
US20050288675A1 (en) * 2004-06-24 2005-12-29 Med Ideas, Llc Disk incision repair method
US20060009765A1 (en) * 2004-07-06 2006-01-12 Jonathan Martinek Instrument kit and method for performing meniscal repair
US20060161160A1 (en) * 1991-05-13 2006-07-20 Sander Thomas W Tissue repair device and apparatus and method for fabricating same
US20060271103A1 (en) * 2005-05-31 2006-11-30 Mauro Ferrari Clip and clip applicator for closing blood vessels
US7153312B1 (en) 1999-12-02 2006-12-26 Smith & Nephew Inc. Closure device and method for tissue repair
US7182769B2 (en) 2003-07-25 2007-02-27 Medtronic, Inc. Sealing clip, delivery systems, and methods
US20080091237A1 (en) * 1998-12-30 2008-04-17 Schwartz Herbert E Suture locking device
US7547326B2 (en) 2005-04-29 2009-06-16 Jmea Corporation Disc annulus repair system
US7594922B1 (en) 2005-04-07 2009-09-29 Medicine Lodge, Inc System and method for meniscal repair through a meniscal capsular tunnel
US7608108B2 (en) 2005-04-29 2009-10-27 Jmea Corporation Tissue repair system
US7651509B2 (en) 1999-12-02 2010-01-26 Smith & Nephew, Inc. Methods and devices for tissue repair
US7658751B2 (en) 2006-09-29 2010-02-09 Biomet Sports Medicine, Llc Method for implanting soft tissue
US7744611B2 (en) 2000-10-10 2010-06-29 Medtronic, Inc. Minimally invasive valve repair procedure and apparatus
US7749250B2 (en) 2006-02-03 2010-07-06 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US7789841B2 (en) * 1997-02-06 2010-09-07 Exogen, Inc. Method and apparatus for connective tissue treatment
US20100298645A1 (en) * 2007-11-26 2010-11-25 Eastern Virginia Medical School Magnaretractor system and method
US7857830B2 (en) 2006-02-03 2010-12-28 Biomet Sports Medicine, Llc Soft tissue repair and conduit device
US7867264B2 (en) 2000-11-16 2011-01-11 Ethicon, Inc. Apparatus and method for attaching soft tissue to bone
US7879047B2 (en) 2003-12-10 2011-02-01 Medtronic, Inc. Surgical connection apparatus and methods
US7896907B2 (en) 1999-07-23 2011-03-01 Ethicon, Inc. System and method for attaching soft tissue to bone
US7905904B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US7905903B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Method for tissue fixation
US7909851B2 (en) 2006-02-03 2011-03-22 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US7914539B2 (en) 2004-11-09 2011-03-29 Biomet Sports Medicine, Llc Tissue fixation device
WO2011037900A1 (en) * 2009-09-22 2011-03-31 Jmea Corporation Tissue repair system
US7938840B2 (en) 1999-04-05 2011-05-10 Medtronic, Inc. Apparatus and methods for anastomosis
US7959650B2 (en) 2006-09-29 2011-06-14 Biomet Sports Medicine, Llc Adjustable knotless loops
US7976556B2 (en) 2002-09-12 2011-07-12 Medtronic, Inc. Anastomosis apparatus and methods
US8029519B2 (en) 2003-08-22 2011-10-04 Medtronic, Inc. Eversion apparatus and methods
US8034090B2 (en) 2004-11-09 2011-10-11 Biomet Sports Medicine, Llc Tissue fixation device
US8088130B2 (en) 2006-02-03 2012-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8105345B2 (en) 2002-10-04 2012-01-31 Medtronic, Inc. Anastomosis apparatus and methods
US8118822B2 (en) 1999-03-01 2012-02-21 Medtronic, Inc. Bridge clip tissue connector apparatus and methods
US8118836B2 (en) 2004-11-05 2012-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8177836B2 (en) 2008-03-10 2012-05-15 Medtronic, Inc. Apparatus and methods for minimally invasive valve repair
US8221454B2 (en) 2004-02-20 2012-07-17 Biomet Sports Medicine, Llc Apparatus for performing meniscus repair
US8251998B2 (en) 2006-08-16 2012-08-28 Biomet Sports Medicine, Llc Chondral defect repair
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US8317825B2 (en) 2004-11-09 2012-11-27 Biomet Sports Medicine, Llc Soft tissue conduit device and method
WO2012169974A1 (en) * 2011-06-09 2012-12-13 Singapore Health Services Pte Ltd Bio-absorbable micro-clip and applicator for minimal access wound closure
US8343227B2 (en) 2009-05-28 2013-01-01 Biomet Manufacturing Corp. Knee prosthesis assembly with ligament link
US8361113B2 (en) 2006-02-03 2013-01-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8394114B2 (en) 2003-09-26 2013-03-12 Medtronic, Inc. Surgical connection apparatus and methods
US8500818B2 (en) 2006-09-29 2013-08-06 Biomet Manufacturing, Llc Knee prosthesis assembly with ligament link
US8506597B2 (en) 2011-10-25 2013-08-13 Biomet Sports Medicine, Llc Method and apparatus for interosseous membrane reconstruction
US8518060B2 (en) 2009-04-09 2013-08-27 Medtronic, Inc. Medical clip with radial tines, system and method of using same
US8529583B1 (en) 1999-09-03 2013-09-10 Medtronic, Inc. Surgical clip removal apparatus
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US8623051B2 (en) 2005-06-24 2014-01-07 Smith & Nephew, Inc. Tissue repair device
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US8668704B2 (en) 2009-04-24 2014-03-11 Medtronic, Inc. Medical clip with tines, system and method of using same
US8672969B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US8702718B2 (en) 2005-04-29 2014-04-22 Jmea Corporation Implantation system for tissue repair
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US8840645B2 (en) 2004-11-05 2014-09-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8936621B2 (en) 2006-02-03 2015-01-20 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8968336B2 (en) 2011-12-07 2015-03-03 Edwards Lifesciences Corporation Self-cinching surgical clips and delivery system
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US9017347B2 (en) 2011-12-22 2015-04-28 Edwards Lifesciences Corporation Suture clip deployment devices
US9078644B2 (en) 2006-09-29 2015-07-14 Biomet Sports Medicine, Llc Fracture fixation device
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9161755B1 (en) * 2008-05-08 2015-10-20 Edward D. Simmons Method of repairing an annulus
US9259217B2 (en) 2012-01-03 2016-02-16 Biomet Manufacturing, Llc Suture Button
US9271713B2 (en) 2006-02-03 2016-03-01 Biomet Sports Medicine, Llc Method and apparatus for tensioning a suture
US9314235B2 (en) 2003-02-05 2016-04-19 Smith & Nephew, Inc. Tissue anchor and insertion tool
US9314241B2 (en) 2011-11-10 2016-04-19 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9498202B2 (en) 2012-07-10 2016-11-22 Edwards Lifesciences Corporation Suture securement devices
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US9592048B2 (en) 2013-07-11 2017-03-14 Edwards Lifesciences Corporation Knotless suture fastener installation system
US9592047B2 (en) 2012-12-21 2017-03-14 Edwards Lifesciences Corporation System for securing sutures
US9615822B2 (en) 2014-05-30 2017-04-11 Biomet Sports Medicine, Llc Insertion tools and method for soft anchor
US9700291B2 (en) 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
US9750492B2 (en) 2006-08-04 2017-09-05 Depuy Mitek, Llc Suture anchor system with tension relief mechanism
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US9788825B2 (en) 2006-08-04 2017-10-17 Depuy Mitek, Llc Suture anchor with relief mechanism
US9801708B2 (en) 2004-11-05 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US9955980B2 (en) 2015-02-24 2018-05-01 Biomet Sports Medicine, Llc Anatomic soft tissue repair
US10016193B2 (en) 2013-11-18 2018-07-10 Edwards Lifesciences Ag Multiple-firing crimp device and methods for using and manufacturing same
US10039543B2 (en) 2014-08-22 2018-08-07 Biomet Sports Medicine, Llc Non-sliding soft anchor
US10136886B2 (en) 2013-12-20 2018-11-27 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US10188383B2 (en) 2013-07-09 2019-01-29 Edwards Lifesciences Corporation Suture clip deployment devices
US10285706B2 (en) * 2008-09-10 2019-05-14 Unique Surgical Innovations Llc Surgical string applicator for anastomosis surgery and method of use
US10470759B2 (en) 2015-03-16 2019-11-12 Edwards Lifesciences Corporation Suture securement devices
US10517587B2 (en) 2006-02-03 2019-12-31 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10624630B2 (en) 2012-07-10 2020-04-21 Edwards Lifesciences Ag Multiple-firing securing device and methods for using and manufacturing same
US10786244B2 (en) 2014-05-30 2020-09-29 Edwards Lifesciences Corporation Systems for securing sutures
US10863980B2 (en) 2016-12-28 2020-12-15 Edwards Lifesciences Corporation Suture fastener having spaced-apart layers
US10912551B2 (en) 2015-03-31 2021-02-09 Biomet Sports Medicine, Llc Suture anchor with soft anchor of electrospun fibers
US10939905B2 (en) 2016-08-26 2021-03-09 Edwards Lifesciences Corporation Suture clips, deployment devices therefor, and methods of use
US11259792B2 (en) 2006-02-03 2022-03-01 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US11259794B2 (en) 2006-09-29 2022-03-01 Biomet Sports Medicine, Llc Method for implanting soft tissue
US11311287B2 (en) 2006-02-03 2022-04-26 Biomet Sports Medicine, Llc Method for tissue fixation
US11357525B2 (en) 2013-03-12 2022-06-14 Levita Magnetics International Corp. Grasper with magnetically-controlled positioning
US11583354B2 (en) 2015-04-13 2023-02-21 Levita Magnetics International Corp. Retractor systems, devices, and methods for use
US11730476B2 (en) 2014-01-21 2023-08-22 Levita Magnetics International Corp. Laparoscopic graspers and systems therefor
US11751965B2 (en) 2015-04-13 2023-09-12 Levita Magnetics International Corp. Grasper with magnetically-controlled positioning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602635A (en) * 1983-11-14 1986-07-29 Mulhollan James S Remote surgical knot tier and method of use
US4669473A (en) * 1985-09-06 1987-06-02 Acufex Microsurgical, Inc. Surgical fastener
US4781190A (en) * 1985-06-18 1988-11-01 Lee Wilson K C Method of arthroscopic repair of a limb joint
US4923461A (en) * 1987-11-05 1990-05-08 Concept, Inc. Method of arthroscopic suturing of tissue
US4983176A (en) * 1989-03-06 1991-01-08 University Of New Mexico Deformable plastic surgical clip

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602635A (en) * 1983-11-14 1986-07-29 Mulhollan James S Remote surgical knot tier and method of use
US4781190A (en) * 1985-06-18 1988-11-01 Lee Wilson K C Method of arthroscopic repair of a limb joint
US4669473A (en) * 1985-09-06 1987-06-02 Acufex Microsurgical, Inc. Surgical fastener
US4923461A (en) * 1987-11-05 1990-05-08 Concept, Inc. Method of arthroscopic suturing of tissue
US4923461B1 (en) * 1987-11-05 1994-10-18 Linvatec Corp Method of arthroscopic suturing of tissue
US4923461B2 (en) * 1987-11-05 1995-06-20 Linvatec Corp Method of arthroscopic suturing
US4983176A (en) * 1989-03-06 1991-01-08 University Of New Mexico Deformable plastic surgical clip

Cited By (338)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875063B1 (en) 1991-05-13 2011-01-25 Tyco Healthcare Group Lp Tissue repair device and apparatus and method for fabricating same
US7588594B2 (en) * 1991-05-13 2009-09-15 Sander Thomas W Tissue repair device and apparatus and method for fabricating same
US5643319A (en) * 1991-05-13 1997-07-01 United States Surgical Corporation Device for applying a meniscal staple
US20100016966A1 (en) * 1991-05-13 2010-01-21 Sander Thomas W Tissue Repair Device And Apparatus And Method For Fabricating Same
US20060161160A1 (en) * 1991-05-13 2006-07-20 Sander Thomas W Tissue repair device and apparatus and method for fabricating same
US5374268A (en) * 1991-05-13 1994-12-20 United States Surgical Corporation Device and method for repairing torn tissue
US6190401B1 (en) 1991-05-13 2001-02-20 United States Surgical Corporation Device for applying a meniscal staple
US5269783A (en) * 1991-05-13 1993-12-14 United States Surgical Corporation Device and method for repairing torn tissue
US5500000A (en) * 1993-07-01 1996-03-19 United States Surgical Corporation Soft tissue repair system and method
US6027743A (en) * 1994-06-03 2000-02-22 Stryker Corporation Manufacture of autogenous replacement body parts
US5906827A (en) * 1994-06-03 1999-05-25 Creative Biomolecules, Inc. Matrix for the manufacture of autogenous replacement body parts
US6110482A (en) * 1994-06-03 2000-08-29 Styker Corporation Manufacture of autogenous replacement body parts
US20050089544A1 (en) * 1994-06-03 2005-04-28 Khouri Roger K. Manufacture of autogenous replacement body parts
US5997552A (en) * 1995-10-20 1999-12-07 United States Surgical Corporation Meniscal fastener applying device
US5645568A (en) * 1995-11-20 1997-07-08 Medicinelodge, Inc. Expandable body suture
US5702462A (en) * 1996-01-24 1997-12-30 Oberlander; Michael Method of meniscal repair
US7789841B2 (en) * 1997-02-06 2010-09-07 Exogen, Inc. Method and apparatus for connective tissue treatment
US8123707B2 (en) 1997-02-06 2012-02-28 Exogen, Inc. Method and apparatus for connective tissue treatment
US20020016557A1 (en) * 1997-02-14 2002-02-07 Duarte Luiz R. Ultrasonic treatment for wounds
US5895395A (en) * 1997-07-17 1999-04-20 Yeung; Teresa T. Partial to full thickness suture device & method for endoscopic surgeries
US5993475A (en) * 1998-04-22 1999-11-30 Bristol-Myers Squibb Co. Tissue repair device
US7763040B2 (en) 1998-06-03 2010-07-27 Medtronic, Inc. Tissue connector apparatus and methods
US6607541B1 (en) 1998-06-03 2003-08-19 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6641593B1 (en) 1998-06-03 2003-11-04 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US7963973B2 (en) 1998-06-03 2011-06-21 Medtronic, Inc. Multiple loop tissue connector apparatus and methods
US6945980B2 (en) 1998-06-03 2005-09-20 Medtronic, Inc. Multiple loop tissue connector apparatus and methods
US20080091237A1 (en) * 1998-12-30 2008-04-17 Schwartz Herbert E Suture locking device
US8323315B2 (en) 1998-12-30 2012-12-04 Depuy Mitek, Inc. Suture locking device
US8512374B2 (en) 1998-12-30 2013-08-20 Depuy Mitek, Llc Soft tissue locking device
US6626916B1 (en) 1998-12-31 2003-09-30 Teresa T. Yeung Tissue fastening devices and methods for sustained holding strength
EP2055244A1 (en) * 1998-12-31 2009-05-06 Kensey Nash Corporation Tissue fastening devices
US6530933B1 (en) 1998-12-31 2003-03-11 Teresa T. Yeung Methods and devices for fastening bulging or herniated intervertebral discs
US6387113B1 (en) 1999-02-02 2002-05-14 Biomet, Inc. Method and apparatus for repairing a torn meniscus
US7892255B2 (en) 1999-03-01 2011-02-22 Medtronic, Inc. Tissue connector apparatus and methods
US8353921B2 (en) 1999-03-01 2013-01-15 Medtronic, Inc Tissue connector apparatus and methods
US8118822B2 (en) 1999-03-01 2012-02-21 Medtronic, Inc. Bridge clip tissue connector apparatus and methods
US6514265B2 (en) 1999-03-01 2003-02-04 Coalescent Surgical, Inc. Tissue connector apparatus with cable release
US6960221B2 (en) 1999-03-01 2005-11-01 Medtronic, Inc. Tissue connector apparatus with cable release
US6613059B2 (en) 1999-03-01 2003-09-02 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US7722643B2 (en) 1999-03-01 2010-05-25 Medtronic, Inc. Tissue connector apparatus and methods
US8211131B2 (en) 1999-04-05 2012-07-03 Medtronic, Inc. Apparatus and methods for anastomosis
US7938840B2 (en) 1999-04-05 2011-05-10 Medtronic, Inc. Apparatus and methods for anastomosis
US7896907B2 (en) 1999-07-23 2011-03-01 Ethicon, Inc. System and method for attaching soft tissue to bone
US8491600B2 (en) 1999-07-23 2013-07-23 Depuy Mitek, Llc System and method for attaching soft tissue to bone
US8518091B2 (en) 1999-07-23 2013-08-27 Depuy Mitek, Llc System and method for attaching soft tissue to bone
US7081126B2 (en) 1999-08-10 2006-07-25 Ethicon, Inc. Self-locking suture anchor
US6660023B2 (en) 1999-08-10 2003-12-09 Ethicon, Inc. Self-locking suture anchor
US20090099598A1 (en) * 1999-08-10 2009-04-16 Depuy Mitek, Inc. Self-locking suture anchor
US9510816B2 (en) 1999-08-10 2016-12-06 Depuy Mitek, Llc Self-locking suture anchor
US6527794B1 (en) 1999-08-10 2003-03-04 Ethicon, Inc. Self-locking suture anchor
WO2001010312A1 (en) 1999-08-10 2001-02-15 Innovasive Devices, Inc. Self-locking suture anchor
US20050149122A1 (en) * 1999-08-10 2005-07-07 Mcdevitt Dennis Self-locking suture anchor
US20050090862A1 (en) * 1999-08-10 2005-04-28 Ethicon, Inc. Self-locking suture anchor
US20030167072A1 (en) * 1999-08-25 2003-09-04 Oberlander Michael A. Multi-anchor suture
US8529583B1 (en) 1999-09-03 2013-09-10 Medtronic, Inc. Surgical clip removal apparatus
US8366744B2 (en) 1999-12-02 2013-02-05 Smith & Nephew, Inc. Apparatus for tissue repair
US7153312B1 (en) 1999-12-02 2006-12-26 Smith & Nephew Inc. Closure device and method for tissue repair
US9220494B2 (en) 1999-12-02 2015-12-29 Smith & Nephew, Inc. Methods for tissue repair
US7887551B2 (en) 1999-12-02 2011-02-15 Smith & Nephew, Inc. Soft tissue attachment and repair
US7651509B2 (en) 1999-12-02 2010-01-26 Smith & Nephew, Inc. Methods and devices for tissue repair
US9545251B2 (en) 1999-12-02 2017-01-17 Smith & Nephew, Inc. Apparatus for tissue repair
US9492160B2 (en) 1999-12-02 2016-11-15 Smith & Nephew, Inc. Closure device and method for tissue repair
US9295461B2 (en) 1999-12-02 2016-03-29 Smith & Nephew, Inc. Methods for tissue repair
US8512375B2 (en) 1999-12-02 2013-08-20 Smith & Nephew, Inc. Closure device and method for tissue repair
US9833231B2 (en) 1999-12-02 2017-12-05 Smith & Nephew, Inc. Apparatus for tissue repair
US6623492B1 (en) 2000-01-25 2003-09-23 Smith & Nephew, Inc. Tissue fastener
US8353092B2 (en) 2000-03-31 2013-01-15 Medtronic, Inc. Multiple bias surgical fastener
US6551332B1 (en) 2000-03-31 2003-04-22 Coalescent Surgical, Inc. Multiple bias surgical fastener
US7896892B2 (en) 2000-03-31 2011-03-01 Medtronic, Inc. Multiple bias surgical fastener
US6666872B2 (en) 2000-04-11 2003-12-23 United States Surgical Single shot meniscal repair device
US20030199877A1 (en) * 2000-09-07 2003-10-23 Peter Steiger Device for fixing surgical implants
US7744611B2 (en) 2000-10-10 2010-06-29 Medtronic, Inc. Minimally invasive valve repair procedure and apparatus
US7914544B2 (en) 2000-10-10 2011-03-29 Medtronic, Inc. Minimally invasive valve repair procedure and apparatus
US8834543B2 (en) 2000-11-16 2014-09-16 Depuy Mitek, Llc Apparatus and method for attaching soft tissue to bone
US7867264B2 (en) 2000-11-16 2011-01-11 Ethicon, Inc. Apparatus and method for attaching soft tissue to bone
US9757114B2 (en) 2000-11-16 2017-09-12 Depuy Mitek, Llc Apparatus and method for attaching soft tissue to bone
US7976556B2 (en) 2002-09-12 2011-07-12 Medtronic, Inc. Anastomosis apparatus and methods
US8066724B2 (en) 2002-09-12 2011-11-29 Medtronic, Inc. Anastomosis apparatus and methods
US8105345B2 (en) 2002-10-04 2012-01-31 Medtronic, Inc. Anastomosis apparatus and methods
US8298251B2 (en) 2002-10-04 2012-10-30 Medtronic, Inc. Anastomosis apparatus and methods
WO2004058053A3 (en) * 2002-12-20 2004-09-02 Bruce E Toby Connective tissue repair system
US20040122471A1 (en) * 2002-12-20 2004-06-24 Toby E. Bruce Connective tissue repair system
WO2004058053A2 (en) * 2002-12-20 2004-07-15 Toby Bruce E Connective tissue repair system
US7343920B2 (en) 2002-12-20 2008-03-18 Toby E Bruce Connective tissue repair system
US20040138683A1 (en) * 2003-01-09 2004-07-15 Walter Shelton Suture arrow device and method of using
US9314235B2 (en) 2003-02-05 2016-04-19 Smith & Nephew, Inc. Tissue anchor and insertion tool
US20040176800A1 (en) * 2003-03-07 2004-09-09 Paraschac Joseph Francis Barbed closure device
US7182769B2 (en) 2003-07-25 2007-02-27 Medtronic, Inc. Sealing clip, delivery systems, and methods
US8211124B2 (en) 2003-07-25 2012-07-03 Medtronic, Inc. Sealing clip, delivery systems, and methods
US8029519B2 (en) 2003-08-22 2011-10-04 Medtronic, Inc. Eversion apparatus and methods
US8394114B2 (en) 2003-09-26 2013-03-12 Medtronic, Inc. Surgical connection apparatus and methods
US7879047B2 (en) 2003-12-10 2011-02-01 Medtronic, Inc. Surgical connection apparatus and methods
US8221454B2 (en) 2004-02-20 2012-07-17 Biomet Sports Medicine, Llc Apparatus for performing meniscus repair
US20050288675A1 (en) * 2004-06-24 2005-12-29 Med Ideas, Llc Disk incision repair method
US20060009765A1 (en) * 2004-07-06 2006-01-12 Jonathan Martinek Instrument kit and method for performing meniscal repair
US7632284B2 (en) 2004-07-06 2009-12-15 Tyco Healthcare Group Lp Instrument kit and method for performing meniscal repair
US8133231B2 (en) 2004-07-06 2012-03-13 Tyco Healthcare Group Lp Instrument kit and method for performing meniscal repair
US9504460B2 (en) 2004-11-05 2016-11-29 Biomet Sports Medicine, LLC. Soft tissue repair device and method
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8840645B2 (en) 2004-11-05 2014-09-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US11109857B2 (en) 2004-11-05 2021-09-07 Biomet Sports Medicine, Llc Soft tissue repair device and method
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US9801708B2 (en) 2004-11-05 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US9572655B2 (en) 2004-11-05 2017-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8118836B2 (en) 2004-11-05 2012-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8551140B2 (en) 2004-11-05 2013-10-08 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US10265064B2 (en) 2004-11-05 2019-04-23 Biomet Sports Medicine, Llc Soft tissue repair device and method
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
US8034090B2 (en) 2004-11-09 2011-10-11 Biomet Sports Medicine, Llc Tissue fixation device
US7914539B2 (en) 2004-11-09 2011-03-29 Biomet Sports Medicine, Llc Tissue fixation device
US8317825B2 (en) 2004-11-09 2012-11-27 Biomet Sports Medicine, Llc Soft tissue conduit device and method
US7594922B1 (en) 2005-04-07 2009-09-29 Medicine Lodge, Inc System and method for meniscal repair through a meniscal capsular tunnel
US20100010497A1 (en) * 2005-04-07 2010-01-14 Medicinelodge, Inc. System and method for meniscal repair through a meniscal capsular tunnel
US7547326B2 (en) 2005-04-29 2009-06-16 Jmea Corporation Disc annulus repair system
US7608108B2 (en) 2005-04-29 2009-10-27 Jmea Corporation Tissue repair system
US8070818B2 (en) 2005-04-29 2011-12-06 Jmea Corporation Disc annulus repair system
US8702718B2 (en) 2005-04-29 2014-04-22 Jmea Corporation Implantation system for tissue repair
US20100057145A1 (en) * 2005-04-29 2010-03-04 Jmea Corporation Disc Repair System
US8317868B2 (en) 2005-04-29 2012-11-27 Jmea Corporation Disc repair system
US7632313B2 (en) 2005-04-29 2009-12-15 Jmea Corporation Disc repair system
US8961530B2 (en) 2005-04-29 2015-02-24 Jmea Corporation Implantation system for tissue repair
US8177847B2 (en) 2005-04-29 2012-05-15 Jmea Corporation Disc repair system
US20090182342A1 (en) * 2005-04-29 2009-07-16 Jmea Corporation Disc Annulus Repair System
US20060271103A1 (en) * 2005-05-31 2006-11-30 Mauro Ferrari Clip and clip applicator for closing blood vessels
US8282654B2 (en) * 2005-05-31 2012-10-09 Karl Storz Gmbh & Co. Kg Clip and clip applicator for closing blood vessels
US9173653B2 (en) 2005-06-24 2015-11-03 Smith & Nephew, Inc. Tissue repair device
US8623051B2 (en) 2005-06-24 2014-01-07 Smith & Nephew, Inc. Tissue repair device
US9173651B2 (en) 2006-02-03 2015-11-03 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9271713B2 (en) 2006-02-03 2016-03-01 Biomet Sports Medicine, Llc Method and apparatus for tensioning a suture
US11896210B2 (en) 2006-02-03 2024-02-13 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US11819205B2 (en) 2006-02-03 2023-11-21 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8409253B2 (en) 2006-02-03 2013-04-02 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US11786236B2 (en) 2006-02-03 2023-10-17 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US11730464B2 (en) 2006-02-03 2023-08-22 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US11723648B2 (en) 2006-02-03 2023-08-15 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US11617572B2 (en) 2006-02-03 2023-04-04 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8608777B2 (en) 2006-02-03 2013-12-17 Biomet Sports Medicine Method and apparatus for coupling soft tissue to a bone
US8361113B2 (en) 2006-02-03 2013-01-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8632569B2 (en) 2006-02-03 2014-01-21 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US11589859B2 (en) 2006-02-03 2023-02-28 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US11471147B2 (en) 2006-02-03 2022-10-18 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US11446019B2 (en) 2006-02-03 2022-09-20 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US11317907B2 (en) 2006-02-03 2022-05-03 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8721684B2 (en) 2006-02-03 2014-05-13 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US11311287B2 (en) 2006-02-03 2022-04-26 Biomet Sports Medicine, Llc Method for tissue fixation
US8771316B2 (en) 2006-02-03 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US7905904B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US11284884B2 (en) 2006-02-03 2022-03-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8337525B2 (en) 2006-02-03 2012-12-25 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US11259792B2 (en) 2006-02-03 2022-03-01 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US11116495B2 (en) 2006-02-03 2021-09-14 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US8932331B2 (en) 2006-02-03 2015-01-13 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8936621B2 (en) 2006-02-03 2015-01-20 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
US11065103B2 (en) 2006-02-03 2021-07-20 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US8292921B2 (en) 2006-02-03 2012-10-23 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9005287B2 (en) 2006-02-03 2015-04-14 Biomet Sports Medicine, Llc Method for bone reattachment
US11039826B2 (en) 2006-02-03 2021-06-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10987099B2 (en) 2006-02-03 2021-04-27 Biomet Sports Medicine, Llc Method for tissue fixation
US10973507B2 (en) 2006-02-03 2021-04-13 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7857830B2 (en) 2006-02-03 2010-12-28 Biomet Sports Medicine, Llc Soft tissue repair and conduit device
US8273106B2 (en) 2006-02-03 2012-09-25 Biomet Sports Medicine, Llc Soft tissue repair and conduit device
US9801620B2 (en) 2006-02-03 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US10932770B2 (en) 2006-02-03 2021-03-02 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9993241B2 (en) 2006-02-03 2018-06-12 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10729421B2 (en) 2006-02-03 2020-08-04 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US9763656B2 (en) 2006-02-03 2017-09-19 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US10729430B2 (en) 2006-02-03 2020-08-04 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10716557B2 (en) 2006-02-03 2020-07-21 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US10702259B2 (en) 2006-02-03 2020-07-07 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US10695052B2 (en) 2006-02-03 2020-06-30 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10687803B2 (en) 2006-02-03 2020-06-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10675073B2 (en) 2006-02-03 2020-06-09 Biomet Sports Medicine, Llc Method and apparatus for sternal closure
US10603029B2 (en) 2006-02-03 2020-03-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US10595851B2 (en) 2006-02-03 2020-03-24 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9402621B2 (en) 2006-02-03 2016-08-02 Biomet Sports Medicine, LLC. Method for tissue fixation
US10542967B2 (en) 2006-02-03 2020-01-28 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10517587B2 (en) 2006-02-03 2019-12-31 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US9414833B2 (en) 2006-02-03 2016-08-16 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US10441264B2 (en) 2006-02-03 2019-10-15 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US10398428B2 (en) 2006-02-03 2019-09-03 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US9468433B2 (en) 2006-02-03 2016-10-18 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10321906B2 (en) 2006-02-03 2019-06-18 Biomet Sports Medicine, Llc Method for tissue fixation
US9492158B2 (en) 2006-02-03 2016-11-15 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8088130B2 (en) 2006-02-03 2012-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7749250B2 (en) 2006-02-03 2010-07-06 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US9498204B2 (en) 2006-02-03 2016-11-22 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US10251637B2 (en) 2006-02-03 2019-04-09 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9510819B2 (en) 2006-02-03 2016-12-06 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9510821B2 (en) 2006-02-03 2016-12-06 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US10154837B2 (en) 2006-02-03 2018-12-18 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9532777B2 (en) 2006-02-03 2017-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10098629B2 (en) 2006-02-03 2018-10-16 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US7909851B2 (en) 2006-02-03 2011-03-22 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US10092288B2 (en) 2006-02-03 2018-10-09 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9561025B2 (en) 2006-02-03 2017-02-07 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US7905903B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Method for tissue fixation
US10022118B2 (en) 2006-02-03 2018-07-17 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10004588B2 (en) 2006-02-03 2018-06-26 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US9603591B2 (en) 2006-02-03 2017-03-28 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US10004489B2 (en) 2006-02-03 2018-06-26 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9622736B2 (en) 2006-02-03 2017-04-18 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9642661B2 (en) 2006-02-03 2017-05-09 Biomet Sports Medicine, Llc Method and Apparatus for Sternal Closure
US10813633B2 (en) 2006-08-04 2020-10-27 DePuy Synthes Products, Inc. Suture anchor system with tension relief mechanism
US10939902B2 (en) 2006-08-04 2021-03-09 DePuy Synthes Products, Inc. Suture anchor with relief mechanism
US9788825B2 (en) 2006-08-04 2017-10-17 Depuy Mitek, Llc Suture anchor with relief mechanism
US9750492B2 (en) 2006-08-04 2017-09-05 Depuy Mitek, Llc Suture anchor system with tension relief mechanism
US8251998B2 (en) 2006-08-16 2012-08-28 Biomet Sports Medicine, Llc Chondral defect repair
US8777956B2 (en) 2006-08-16 2014-07-15 Biomet Sports Medicine, Llc Chondral defect repair
US10835232B2 (en) 2006-09-29 2020-11-17 Biomet Sports Medicine, Llc Fracture fixation device
US11376115B2 (en) 2006-09-29 2022-07-05 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US9788876B2 (en) 2006-09-29 2017-10-17 Biomet Sports Medicine, Llc Fracture fixation device
US9724090B2 (en) 2006-09-29 2017-08-08 Biomet Manufacturing, Llc Method and apparatus for attaching soft tissue to bone
US10695045B2 (en) 2006-09-29 2020-06-30 Biomet Sports Medicine, Llc Method and apparatus for attaching soft tissue to bone
US9681940B2 (en) 2006-09-29 2017-06-20 Biomet Sports Medicine, Llc Ligament system for knee joint
US9833230B2 (en) 2006-09-29 2017-12-05 Biomet Sports Medicine, Llc Fracture fixation device
US10743925B2 (en) 2006-09-29 2020-08-18 Biomet Sports Medicine, Llc Fracture fixation device
US8231654B2 (en) 2006-09-29 2012-07-31 Biomet Sports Medicine, Llc Adjustable knotless loops
US8500818B2 (en) 2006-09-29 2013-08-06 Biomet Manufacturing, Llc Knee prosthesis assembly with ligament link
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US10610217B2 (en) 2006-09-29 2020-04-07 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US9414925B2 (en) 2006-09-29 2016-08-16 Biomet Manufacturing, Llc Method of implanting a knee prosthesis assembly with a ligament link
US11672527B2 (en) 2006-09-29 2023-06-13 Biomet Sports Medicine, Llc Method for implanting soft tissue
US10004493B2 (en) 2006-09-29 2018-06-26 Biomet Sports Medicine, Llc Method for implanting soft tissue
US10517714B2 (en) 2006-09-29 2019-12-31 Biomet Sports Medicine, Llc Ligament system for knee joint
US9078644B2 (en) 2006-09-29 2015-07-14 Biomet Sports Medicine, Llc Fracture fixation device
US11096684B2 (en) 2006-09-29 2021-08-24 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US7658751B2 (en) 2006-09-29 2010-02-09 Biomet Sports Medicine, Llc Method for implanting soft tissue
US9539003B2 (en) 2006-09-29 2017-01-10 Biomet Sports Medicine, LLC. Method and apparatus for forming a self-locking adjustable loop
US8672969B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US10398430B2 (en) 2006-09-29 2019-09-03 Biomet Sports Medicine, Llc Method for implanting soft tissue
US10349931B2 (en) 2006-09-29 2019-07-16 Biomet Sports Medicine, Llc Fracture fixation device
US8672968B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Method for implanting soft tissue
US11259794B2 (en) 2006-09-29 2022-03-01 Biomet Sports Medicine, Llc Method for implanting soft tissue
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US7959650B2 (en) 2006-09-29 2011-06-14 Biomet Sports Medicine, Llc Adjustable knotless loops
US9486211B2 (en) 2006-09-29 2016-11-08 Biomet Sports Medicine, Llc Method for implanting soft tissue
US11612391B2 (en) 2007-01-16 2023-03-28 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9861351B2 (en) 2007-04-10 2018-01-09 Biomet Sports Medicine, Llc Adjustable knotless loops
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US10729423B2 (en) 2007-04-10 2020-08-04 Biomet Sports Medicine, Llc Adjustable knotless loops
US11185320B2 (en) 2007-04-10 2021-11-30 Biomet Sports Medicine, Llc Adjustable knotless loops
US11413025B2 (en) 2007-11-26 2022-08-16 Attractive Surgical, Llc Magnaretractor system and method
US10335134B2 (en) 2007-11-26 2019-07-02 Attractive Surgical, Llc Magnaretractor system and method
US20100298645A1 (en) * 2007-11-26 2010-11-25 Eastern Virginia Medical School Magnaretractor system and method
US11413026B2 (en) 2007-11-26 2022-08-16 Attractive Surgical, Llc Magnaretractor system and method
US8602981B2 (en) * 2007-11-26 2013-12-10 Eastern Virginia Medical School Magnaretractor system and method
US9962148B2 (en) 2007-11-26 2018-05-08 Attractive Surgical, Llc Magnaretractor system and method
US9386973B2 (en) 2007-11-26 2016-07-12 Attractive Surgical, Llc Magnaretractor system and method
US8177836B2 (en) 2008-03-10 2012-05-15 Medtronic, Inc. Apparatus and methods for minimally invasive valve repair
US9161755B1 (en) * 2008-05-08 2015-10-20 Edward D. Simmons Method of repairing an annulus
US11534159B2 (en) 2008-08-22 2022-12-27 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10285706B2 (en) * 2008-09-10 2019-05-14 Unique Surgical Innovations Llc Surgical string applicator for anastomosis surgery and method of use
US8518060B2 (en) 2009-04-09 2013-08-27 Medtronic, Inc. Medical clip with radial tines, system and method of using same
US8668704B2 (en) 2009-04-24 2014-03-11 Medtronic, Inc. Medical clip with tines, system and method of using same
US8343227B2 (en) 2009-05-28 2013-01-01 Biomet Manufacturing Corp. Knee prosthesis assembly with ligament link
US8900314B2 (en) 2009-05-28 2014-12-02 Biomet Manufacturing, Llc Method of implanting a prosthetic knee joint assembly
US10149767B2 (en) 2009-05-28 2018-12-11 Biomet Manufacturing, Llc Method of implanting knee prosthesis assembly with ligament link
US8603118B2 (en) 2009-09-22 2013-12-10 Jmea Corporation Tissue repair system
WO2011037900A1 (en) * 2009-09-22 2011-03-31 Jmea Corporation Tissue repair system
US8211126B2 (en) 2009-09-22 2012-07-03 Jmea Corporation Tissue repair system
US9216078B2 (en) 2011-05-17 2015-12-22 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
WO2012169974A1 (en) * 2011-06-09 2012-12-13 Singapore Health Services Pte Ltd Bio-absorbable micro-clip and applicator for minimal access wound closure
US9445827B2 (en) 2011-10-25 2016-09-20 Biomet Sports Medicine, Llc Method and apparatus for intraosseous membrane reconstruction
US8506597B2 (en) 2011-10-25 2013-08-13 Biomet Sports Medicine, Llc Method and apparatus for interosseous membrane reconstruction
US10265159B2 (en) 2011-11-03 2019-04-23 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US11241305B2 (en) 2011-11-03 2022-02-08 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US10368856B2 (en) 2011-11-10 2019-08-06 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9314241B2 (en) 2011-11-10 2016-04-19 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US11534157B2 (en) 2011-11-10 2022-12-27 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US10363028B2 (en) 2011-11-10 2019-07-30 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9357992B2 (en) 2011-11-10 2016-06-07 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US11090053B2 (en) 2011-12-07 2021-08-17 Edwards Lifesciences Corporation Methods of deploying self-cinching surgical clips
US10245037B2 (en) 2011-12-07 2019-04-02 Edwards Lifesciences Corporation Self-cinching surgical clips and delivery system
US11707280B2 (en) 2011-12-07 2023-07-25 Edwards Lifesciences Corporation Methods of deploying self-cinching surgical clips
US8968336B2 (en) 2011-12-07 2015-03-03 Edwards Lifesciences Corporation Self-cinching surgical clips and delivery system
US9668739B2 (en) 2011-12-07 2017-06-06 Edwards Lifesciences Corporation Self-cinching surgical clips and delivery system
US9549730B2 (en) 2011-12-22 2017-01-24 Edwards Lifesciences Corporation Suture clip deployment devices
US9017347B2 (en) 2011-12-22 2015-04-28 Edwards Lifesciences Corporation Suture clip deployment devices
US10314573B2 (en) 2011-12-22 2019-06-11 Edwards Lifesciences Corporation Suture clip deployment devices
US11185321B2 (en) 2011-12-22 2021-11-30 Edwards Lifesciences Corporation Suture clip deployment devices
US9414837B2 (en) 2011-12-22 2016-08-16 Edwards Lifesciences Corporation Suture clip deployment devices
US9433407B2 (en) 2012-01-03 2016-09-06 Biomet Manufacturing, Llc Method of implanting a bone fixation assembly
US9259217B2 (en) 2012-01-03 2016-02-16 Biomet Manufacturing, Llc Suture Button
US10624630B2 (en) 2012-07-10 2020-04-21 Edwards Lifesciences Ag Multiple-firing securing device and methods for using and manufacturing same
USRE47209E1 (en) 2012-07-10 2019-01-22 Edwards Lifesciences Corporation Suture securement devices
US9498202B2 (en) 2012-07-10 2016-11-22 Edwards Lifesciences Corporation Suture securement devices
US11382616B2 (en) 2012-12-21 2022-07-12 Edwards Lifesciences Corporation Systems for securing sutures
US9592047B2 (en) 2012-12-21 2017-03-14 Edwards Lifesciences Corporation System for securing sutures
US10441275B2 (en) 2012-12-21 2019-10-15 Edwards Lifesciences Corporation Systems for securing sutures
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US11357525B2 (en) 2013-03-12 2022-06-14 Levita Magnetics International Corp. Grasper with magnetically-controlled positioning
US10758221B2 (en) 2013-03-14 2020-09-01 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US10188383B2 (en) 2013-07-09 2019-01-29 Edwards Lifesciences Corporation Suture clip deployment devices
US9592048B2 (en) 2013-07-11 2017-03-14 Edwards Lifesciences Corporation Knotless suture fastener installation system
US10426458B2 (en) 2013-07-11 2019-10-01 Edwards Lifesciences Corporation Knotless suture fastener installation system
US11553908B2 (en) 2013-07-11 2023-01-17 Edwards Lifesciences Corporation Knotless suture fastener installation system
US10327759B2 (en) 2013-11-18 2019-06-25 Edwards Lifesciences Ag Multiple-firing suture fixation device and methods for using and manufacturing same
US10016193B2 (en) 2013-11-18 2018-07-10 Edwards Lifesciences Ag Multiple-firing crimp device and methods for using and manufacturing same
US10327758B2 (en) 2013-11-18 2019-06-25 Edwards Lifesciences Ag Multiple-firing suture fixation device and methods for using and manufacturing same
US11471150B2 (en) 2013-11-18 2022-10-18 Edwards Lifesciences Ag Multiple-firing suture fixation device and methods for using and manufacturing same
US10806443B2 (en) 2013-12-20 2020-10-20 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US10136886B2 (en) 2013-12-20 2018-11-27 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US11648004B2 (en) 2013-12-20 2023-05-16 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US11730476B2 (en) 2014-01-21 2023-08-22 Levita Magnetics International Corp. Laparoscopic graspers and systems therefor
US10786244B2 (en) 2014-05-30 2020-09-29 Edwards Lifesciences Corporation Systems for securing sutures
US11395650B2 (en) 2014-05-30 2022-07-26 Edwards Life Sciences Corporation Systems for securing sutures
US9615822B2 (en) 2014-05-30 2017-04-11 Biomet Sports Medicine, Llc Insertion tools and method for soft anchor
US9700291B2 (en) 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
US10039543B2 (en) 2014-08-22 2018-08-07 Biomet Sports Medicine, Llc Non-sliding soft anchor
US10743856B2 (en) 2014-08-22 2020-08-18 Biomet Sports Medicine, Llc Non-sliding soft anchor
US11219443B2 (en) 2014-08-22 2022-01-11 Biomet Sports Medicine, Llc Non-sliding soft anchor
US11172924B2 (en) 2014-12-10 2021-11-16 Edwards Lifesciences Ag Multiple-firing suture fixation device and methods for using and manufacturing same
US10966711B2 (en) 2014-12-24 2021-04-06 Edwards Lifesciences Corporation Suture clip deployment devices
US11690613B2 (en) 2014-12-24 2023-07-04 Edwards Lifesciences Corporation Suture clip deployment device
US9955980B2 (en) 2015-02-24 2018-05-01 Biomet Sports Medicine, Llc Anatomic soft tissue repair
US10470759B2 (en) 2015-03-16 2019-11-12 Edwards Lifesciences Corporation Suture securement devices
US11759200B2 (en) 2015-03-16 2023-09-19 Edwards Lifesciences Corporation Suture securement devices
US10912551B2 (en) 2015-03-31 2021-02-09 Biomet Sports Medicine, Llc Suture anchor with soft anchor of electrospun fibers
US11751965B2 (en) 2015-04-13 2023-09-12 Levita Magnetics International Corp. Grasper with magnetically-controlled positioning
US11583354B2 (en) 2015-04-13 2023-02-21 Levita Magnetics International Corp. Retractor systems, devices, and methods for use
US10939905B2 (en) 2016-08-26 2021-03-09 Edwards Lifesciences Corporation Suture clips, deployment devices therefor, and methods of use
US10863980B2 (en) 2016-12-28 2020-12-15 Edwards Lifesciences Corporation Suture fastener having spaced-apart layers

Similar Documents

Publication Publication Date Title
US5154189A (en) Method for repairing a torn meniscus
US4997436A (en) Arthroscopic clip insertion tool
US5002562A (en) Surgical clip
US5374268A (en) Device and method for repairing torn tissue
US5984949A (en) Tissue hooks and tools for applying same
US5947982A (en) Suture-passing forceps
US5618311A (en) Surgical subcuticular fastener system
US4983176A (en) Deformable plastic surgical clip
US6074409A (en) Soft tissue suture anchor
US6706048B2 (en) Method and device for use in minimally invasive approximation of muscle and other tissue
US5954747A (en) Meniscus repair anchor system
JP4094268B2 (en) Knotless bioabsorbable suture anchor system
JP4097296B2 (en) Applicator for deploying surgical fasteners in tissue
US5368596A (en) Augmented awl for creating channels in human bone tissue
EP1161184B1 (en) Free loop knotless suture anchor assembly
US6770084B1 (en) Suture capture device
AU2005202179B2 (en) Minimally invasive stitching device
US6436123B1 (en) System apparatus and method for closing severed bone or tissue of a patient
US8241326B2 (en) Tack device
US8512377B2 (en) Suture anchoring assemblies and methods of use
US5354305A (en) Nerve repair device
JPH11299805A (en) Tissue restoration device for human body and attachment method for the device
US20080140091A1 (en) Minimally invasive suture-based repair of soft tissue
JP2005506864A (en) Apparatus and method for reconstructing tendons or ligaments
JP2002355250A (en) Knot pusher for surgical operation

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12