US5254638A - Composite materials of interpenetrating inorganic and organic polymer networks - Google Patents

Composite materials of interpenetrating inorganic and organic polymer networks Download PDF

Info

Publication number
US5254638A
US5254638A US07/674,849 US67484991A US5254638A US 5254638 A US5254638 A US 5254638A US 67484991 A US67484991 A US 67484991A US 5254638 A US5254638 A US 5254638A
Authority
US
United States
Prior art keywords
inorganic
alkoxide
organic
composite material
polymerizable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/674,849
Inventor
Bruce M. Novak
Mark W. Ellsworth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Priority to US07/674,849 priority Critical patent/US5254638A/en
Assigned to REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, reassignment REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ELLSWORTH, MARK W., NOVAK, BRUCE M.
Priority to DE69213723T priority patent/DE69213723T2/en
Priority to AU17909/92A priority patent/AU1790992A/en
Priority to JP4510610A priority patent/JPH06506499A/en
Priority to EP92910358A priority patent/EP0577748B1/en
Priority to AT92910358T priority patent/ATE142657T1/en
Priority to PCT/US1992/002330 priority patent/WO1992016571A1/en
Priority to CA002106770A priority patent/CA2106770A1/en
Priority to US08/110,850 priority patent/US5412043A/en
Publication of US5254638A publication Critical patent/US5254638A/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/148Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/08Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/12Polymers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/32Nature of the non-vitreous component comprising a sol-gel process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S525/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S525/903Interpenetrating network

Definitions

  • This invention relates to sol-gel methods for forming non-shrinking, high-glass composite materials and the products.
  • a traditional method of forming inorganic oxide glass requires melting of glass forming compounds, such as SiO 2 , at high temperatures (e.g. greater than 1400° C.).
  • a more recent method has been described for glass preparation which does not require such high temperatures.
  • the condensation of reactive metal oxide monomers can occur in the liquid phase at temperatures in the range of 25°-60° C.
  • the sol-gel reaction is a two-step process during which metal alkoxides are hydrolyzed to form metal hydroxides, which in turn condense to form a three-dimensional network.
  • the sol-gel products of inorganic components are generally sintered to produce hard and brittle glass.
  • the sol-gel method allows composite materials made of inorganic (glass) and organic components which would not survive the very high temperatures of traditional glass making methods.
  • Such a composite material can provide advantages resulting from the combination of the tensile strength and impact resistance of the organic polymer and the compressive strength of the inorganic matrix.
  • the introduction of organic groups into glass can thus provide variations in properties such as strength, toughness, stiffness, brittleness, hardness, homogeneity, density, free volume, and thermal stability. Secondary considerations include resistance to corrosion, creep, and moisture. Both the strength and stiffness of a composite can be derived from the properties of the reinforcing fiber. Toughness results from the interaction between the matrix and the fibers.
  • Such composite materials may be used in the manufacture of piezoelectric, ferroelectric, electro-optic, and superconducting fibers and films (Schmidt, H. 1989 J. Non-Crys. Sol. 112, 419-423; Ulrich, D. R. 1990 J. Non-Crys. Sol. 121, 465-479).
  • U.S. Pat. No 4,584,365 is directed to formation of a polymer of metal alkoxide wherein polymerization occurs between the SiO 2 groups.
  • the alkoxide groups are not polymerized.
  • Huang, H.H. et al (1987, Macromolecules 1987, 20, 1322-1330) reported the formation of a similar composite. ##STR2##
  • Polymer-modified glasses similar to the above structure based on silicon, titanium, and zirconium were synthesized by Mark, J. E. et al (1987 Polymer Bulletin 18, 259-264) and Glaser, R. H. et al. (1988 Polymer Bulletin 19, 51-57).
  • a silica gel-polymer composite was produced by impregnating a pre-prepared silica gel with methyl methacrylate monomer, then catalyzing the polymerization in situ of the methacrylate to polymethacrylate (Pope, E. J. A. et al 1989 J. Mater. Res. 4, 1018-1026). This method is limited by the necessity to preform the silica gel and by the requirement for homogeneous penetration of the monomeric species into the gel in order to produce a homogeneous composite.
  • This invention is directed to methods for forming an interwoven organic-inorganic solid composite material by forming a mixture of a precursor polymer, an alcohol, and a catalyst system.
  • the precursor polymer has an inorganic polymer backbone of Si or Ti with linkages to polymerizable alkoxide groups.
  • the catalyst system promotes the hydrolysis and polymerization of the alkoxide groups and the condensation of the inorganic backbone to form a solid interwoven network with the organic polymer chains interpenetrating the network.
  • network refers to a glass composed of a three-dimensional array of interconnecting, covalently bonded oxides, usually silcaceous oxides.
  • composite material refers to a network containing organic polymers which occupy the spaces between glass components.
  • interpenetrating polymers refers to organic polymers which occupy the spaces in a network.
  • substituted refers to a poly(silicic) acid or a poly(titanic) acid in which an --OH group has been replaced by an --OR group, the R being a polymerizable alkoxide.
  • unsubstituted refers to a silaceous acid, a titanic acid, a poly(silicic) acid, or a poly(titanic) acid lacking any covalently bonded carbon atoms.
  • degree of substitution is an expression for the percent of --OH groups on a poly(silicic) acid backbone which have been substituted by an --OR group. The degree of substitution is assessed by further substituting the residual --OH groups with trimethylsilane and measuring, using proton NMR, the ratio of --OR groups to trimethylsilane groups.
  • non-shrinking refers to a substance which maintains the same volume displacement from the start of synthesis to the final product.
  • catalyst system refers to one or more catalysts capable of catalyzing the recited reactions.
  • free radical initiator refers to a catalyst or a combination of catalysts which can promote the polymerization of organic monomers which have alkene groups, and which can also promote the condensation of inorganic polymers.
  • free radical initiators include 1) UV light with or without azobisisobutyronitrile (AIBN); 2) temperatures over 60° C. under N2 atmosphere; 3) ammonium persulfate with sodium metabisulfite; and 4) ammonium persulfate with N,N,N',N'-tetramethylenediamine (TMEDA).
  • ring-opening metathesis polymerizer refers to a catalyst which can promote the polymerization of alcohol monomers which have a ring structure containing a double bond between two carbon atoms.
  • condensation refers to the combined hydrolysis and polymerization of an inorganic backbone.
  • This invention relates to a method for producing a non-shrinking material composed of organic polymers homogeneously embedded in an inorganic glass matrix.
  • the starting solution can be designed so that the material does not shrink in volume during the sol-gel transition or during curing, and 2) the glass content of the final composite can be controlled.
  • the method of the present invention involves forming a mixture of a precursor polymer, an alcohol, and a catalyst system.
  • the precursor polymer has an inorganic polymer backbone with the structure ##STR6## where M is Si or Ti, O is oxygen, and n is the number of repeating units.
  • M is Si or Ti
  • O oxygen
  • n is the number of repeating units.
  • the number of repeating units, n is sufficient to form a solid composite, initially at least about 20 to about 200 units.
  • At least some (preferably at least about 5%) of the side chain oxygen atoms are bound to pendant polymerizable alkoxide moieties (R) through alkoxide linkages.
  • R polymerizable alkoxide moieties
  • the catalytic system hydrolyzes at least a portion of the alkoxide linkages to release the alkoxide moieties to form alcohol monomers, and polymerizes the alcohol monomers to form organic polymers. Synchronously, the catalytic system hydrolyzes and condenses the inorganic polymer backbone to form a solid interwoven network with the organic polymer chains interpenetrating the network. Preferably, the network is at least about 20% of the total composite w/w.
  • Water is optionally but preferably present in the reaction mixture.
  • a stoichiometric amount of water When a stoichiometric amount of water is used, all components of the system are converted into either the organic or inorganic polymers, and no solvents or by-products remain which would require removal, e.g. by evaporation. Water is consumed during hydrolysis of alkoxide groups. Excess water requires evaporation, and a great excess of water would lead to shrinkage. Less than the optimum amount of water would lead to incomplete hydrolysis of the alkoxide groups, incomplete glass formation, and possibly weaken the resulting material. Suitably, the amount of water used may vary from stoichiometry by as much as 5% to 10% of the total volume of the starting solution.
  • the material can be made to be "non-shrinking", which renders it to be a particularly effective molding material.
  • the resulting composite material is composed primarily, and preferably essentially, of an inorganic silaceous network with organic polymer chains homogeneously embedded in, but not covalently bound to, the inorganic network.
  • a poly(silicic) acid ester PSAE
  • a poly(silicic) acid is first prepared by the method as described (Daubt, W. H. et al, U.S. Pat. No. 2,676,182; Dexter, J. F., U.S. Pat. No. 2,736,721; Kohama, S. et al 1980 J. Polym. Sci., Polym. Chem. Ed. 18, 2357).
  • the poly(silicic) acid formed in this hydrolysis process is a branched rather than a linear polymer. The number of branch points in these polymer chains may vary and all of the factors controlling branching are not completely understood. ##STR7##
  • the letters k, q, and n symbolize the number of repeating units, preferably between about 20 and 200 units.
  • the poly(silicic) acid polymers are then reacted with a polymerizable alcohol to form a PSAE.
  • the polymerizable alcohol is selected from the group in Table 1, although there are many other possible polymerizable alcohols which could be used in the practice of this invention.
  • the alcohol used in esterification is hydroxyethyl acrylate, which results in the PSAE shown below (PSAE I). ##STR17##
  • the degree of substitution (DS, alkoxide for hydroxide in the resulting PSAE is determined by the alkoxide used and reaction conditions.
  • the term "DS" is defined as the total number of substituted --OR moieties divided by the total number of --OH groups which were available for substitution on the starting silicic acid polymer.
  • DS values are about 1-100%, more preferably 25-75%, most preferably 45-70%.
  • the DS, together with the number of branch points in the poly(silicic) acid chain will determine the glass content of the final product.
  • the theoretical glass contents of the final composites for the polymerization of PSAE II are shown in Table 2.
  • the precursor polymer (PSAE) employed is soluble in its parent alcohol so that the alcohol can be used as a solvent for the reaction.
  • PSAE I and PSAE II are soluble in their parent alcohols, and solutions of these polymers can be used in nonshrinking sol-gel formulations.
  • other alcohols similar to the parent alcohol may also be used as the solvent so long as the precursor polymer is soluble in it.
  • the alkoxide groups are hydrolyzed from the silaceous polymer backbone to form alcohol monomers which are then polymerized to form organic polymers.
  • Some of the alkoxide groups may polymerize while still bound to the silaceous backbone, but thermodynamic forces in the reaction promote the subsequent hydrolysis and release of most or all of the alkoxide polymer from the backbone.
  • the silaceous backbone self-condenses in synchrony with the self-polymerization of the organic alcohols, thus forming a solid interwoven silaceous network with the organic polymer chains interpenetrating the network.
  • the hydrolysis, polymerization, and condensation reactions are promoted by a catalyst system.
  • the alkoxide or alcohol structure is characterized by alkene groups
  • free radical catalysis is employed.
  • an alcohol suitable for free radical polymerization is listed in Table 1 (I). It is understood that there may be many polymerizable alcohols that can be employed in practicing this invention with free radical catalysis.
  • the catalyst system is composed of ammonium persulfate, and N,N,N',N'-tetramethylethylenediamine. This free radical catalyst system may also promote the condensation of the inorganic polymer backbone, although not as efficiently as it promotes the organic monomer polymerization.
  • the ROMP catalyst for polymerization of the organic moieties is the ruthenium ion derived from K2RuC15 added to the starting solution.
  • the chloride ion derived from the same compound may promote the condensation of the inorganic backbone as well, however the inorganic condensation reaction catalyzed by chloride may proceed at a slower rate than the polymerization of organic moieties.
  • Other ruthenium salts which may be employed as ROMP catalysts include Ru(H 2 ) 6 (C 7 H 7 SO 3 ) 2 and RuCl 3 .nH 2 O.
  • an additional catalyst is preferably used, typically selected from the group consisting of acids, bases, chloride ions, and fluoride ions.
  • NaF is added as part of the catalyst system to produce fluoride ions which act to condense the inorganic backbone at a rate comparable to the polymerization of the organic moieties.
  • This synchronous polymerization of organic and inorganic groups produces a composite material with organic polymers homogeneously distributed within the glass network.
  • the precursor polymer PSAE is dissolved in its parent alcohol to form a solution to which the catalyst is added. Not all PSAE's are soluble in their parent alcohols. Certain non-parent alcohols may also be suitably used as solvents in practicing this invention. Suitably, the amount of free alcohol employed (e.g. about 1:1, w/w) is sufficient to substantially dissolve the PSAE. When the parent alcohol is used, the free alcohol solvent molecules participate in the organic polymerization, becoming part of the organic polymers, and thus are essentially consumed in the reaction.
  • the starting solution is composed of PSAE I, the parent alcohol tetraalkoxyorthosilicate and water.
  • the glass content of the resulting composite material is determined by the DS in the precursor polymer, the amount of free alcohol used as a solvent, and the number of branching points along the polymer chain (Table 2). In practicing this invention, the above values may be varied to achieve glass contents ranging from about 20% to about 70%. The percentage of glass considered desirable depends on the intended use of the composite material.
  • precursor polymer PSAE II is dissolved in its parent alcohol II with water.
  • the reaction proceeds to gelation within minutes, and within about one hour the material has a rubbery consistency.
  • the material may then be treated at about 100° C. for about 24 hours to yield a hard material.
  • the resulting material is a non-shrinking glass composite which contains approximately 19% to 70% glass.
  • the glass content can be determined by varying the above proportions and the DS of PSAE II (Table 2).
  • Poly(silicic acid) was prepared by the acid catalyzed hydrolysis of sodium metasilicate (Na 2 SiO 3 ) in water according to the method described (Daubt, H. et al suora: Dexter, J. F. suora; Kohama, S. et al supra). Once formed, the poly(silicic acid) was extracted into tetrahydrofuran (THF) by addition of NaCl to the aqueous layer. The poly(silicic) acid formed in this hydrolysis process is a branched rather than a linear polymer. The polysilicic acid was then esterified by slow addition of a polymerizable alcohol, selected from Table 1, to the THF and subsequent azeotropic distillation with an excess of the same alcohol to produce the corresponding soluble poly(silicic acid) ester.
  • a polymerizable alcohol selected from Table 1
  • PSAE II 1.0 g
  • poly(silicic) acid 1.0 g
  • THF 0.5 ml tetrahydrofuran
  • water 0.5 ml
  • NaF 100 umol
  • K 2 RuCl 5 0.005 g
  • the reaction proceeded to completion within one hour at 60° C. to form a brown glass composite which did not shrink in volume.
  • the percentage of glass in a composite synthesized by this type of protocol is typically about 40-60%.
  • This example demonstrates that poly(silicic) acid can co-condense with a PSAE to produce a monolithic glass composite.

Abstract

This invention relates to sol-gel methods for forming non-shrinking, high-glass composite materials and the products. Also taught is an inorganic-organic composite material having a solid interwoven network of an inorganic polymer matrix with interpenetrating polymerized alcohols. The inorganic matrix can be based on either Si or Ti atoms.

Description

TECHNICAL FIELD OF THE INVENTION
This invention relates to sol-gel methods for forming non-shrinking, high-glass composite materials and the products.
BACKGROUND OF THE INVENTION
A traditional method of forming inorganic oxide glass requires melting of glass forming compounds, such as SiO2, at high temperatures (e.g. greater than 1400° C.). A more recent method has been described for glass preparation which does not require such high temperatures. Using this method, known as the "sol-gel" method, the condensation of reactive metal oxide monomers can occur in the liquid phase at temperatures in the range of 25°-60° C. The sol-gel reaction is a two-step process during which metal alkoxides are hydrolyzed to form metal hydroxides, which in turn condense to form a three-dimensional network. The sol-gel products of inorganic components are generally sintered to produce hard and brittle glass. ##STR1##
The sol-gel method allows composite materials made of inorganic (glass) and organic components which would not survive the very high temperatures of traditional glass making methods. Such a composite material can provide advantages resulting from the combination of the tensile strength and impact resistance of the organic polymer and the compressive strength of the inorganic matrix. The introduction of organic groups into glass can thus provide variations in properties such as strength, toughness, stiffness, brittleness, hardness, homogeneity, density, free volume, and thermal stability. Secondary considerations include resistance to corrosion, creep, and moisture. Both the strength and stiffness of a composite can be derived from the properties of the reinforcing fiber. Toughness results from the interaction between the matrix and the fibers. Such composite materials may be used in the manufacture of piezoelectric, ferroelectric, electro-optic, and superconducting fibers and films (Schmidt, H. 1989 J. Non-Crys. Sol. 112, 419-423; Ulrich, D. R. 1990 J. Non-Crys. Sol. 121, 465-479).
U.S. Pat. No 4,584,365 is directed to formation of a polymer of metal alkoxide wherein polymerization occurs between the SiO2 groups. The alkoxide groups are not polymerized. Huang, H.H. et al (1987, Macromolecules 1987, 20, 1322-1330) reported the formation of a similar composite. ##STR2##
To further control and vary the properties of the composite, it is desired to incorporate polymerized organic groups within the glass network. Phillip, G. et al (1984 J. Non-Crys. Sol. 63, 283-292) reported the synthesis of a silaceous network cross-linked by chains of covalently bonded polymethacrylates. This method involved copolymerization of epoxysilane, methacryloxysilane, and a titanium tetralkoxide to form a flexible silaceous network suitable for use in contact lenses. This product was reported to have low shrinkage during curing (Schmidt, H. 1989 supra). ##STR3##
Wei, Y. et al (1990 Chemistry of Material 2, 337-339) reported the synthesis of composite materials by co-condensation of tetraethoxysilane with acrylate polymers containing triethoxysilyl groups. The resulting product was composed of covalently bonded organic and silicic groups. ##STR4##
Wilkes, G. L. et al (1990 J. Am. Chem. Soc.) reported the incorporation of poly(dimetheylsiloxane) (PDMS) oligomers into a covalently bonded network with tetraethyloxysilane. The resulting material was inhomogeneous, with localized phase separation of the PDMS component. ##STR5##
Polymer-modified glasses similar to the above structure based on silicon, titanium, and zirconium were synthesized by Mark, J. E. et al (1987 Polymer Bulletin 18, 259-264) and Glaser, R. H. et al. (1988 Polymer Bulletin 19, 51-57). In order to further control the properties of composites, is considered desirable to obtain composite materials in which the inorganic glass network and the organic polymer are interpenetrating, but not covalently bonded to each other. A silica gel-polymer composite was produced by impregnating a pre-prepared silica gel with methyl methacrylate monomer, then catalyzing the polymerization in situ of the methacrylate to polymethacrylate (Pope, E. J. A. et al 1989 J. Mater. Res. 4, 1018-1026). This method is limited by the necessity to preform the silica gel and by the requirement for homogeneous penetration of the monomeric species into the gel in order to produce a homogeneous composite.
SUMMARY OF THE INVENTION
This invention is directed to methods for forming an interwoven organic-inorganic solid composite material by forming a mixture of a precursor polymer, an alcohol, and a catalyst system. The precursor polymer has an inorganic polymer backbone of Si or Ti with linkages to polymerizable alkoxide groups. The catalyst system promotes the hydrolysis and polymerization of the alkoxide groups and the condensation of the inorganic backbone to form a solid interwoven network with the organic polymer chains interpenetrating the network.
It is a particular object of this invention to provide methods to produce a non-shrinking material composed of an inorganic silaceous matrix interpenetrated by organic polymers.
It is a further object of this invention to provide methods to control the glass content of a composite material consisting of a silaceous matrix interpenetrated by organic polymers.
DETAILED DESCRIPTION OF THE INVENTION Definitions
The term "network" refers to a glass composed of a three-dimensional array of interconnecting, covalently bonded oxides, usually silcaceous oxides.
The term "composite material" refers to a network containing organic polymers which occupy the spaces between glass components.
The term "interpenetrating polymers" refers to organic polymers which occupy the spaces in a network.
The term "substituted" refers to a poly(silicic) acid or a poly(titanic) acid in which an --OH group has been replaced by an --OR group, the R being a polymerizable alkoxide. Conversely, the term "unsubstituted" refers to a silaceous acid, a titanic acid, a poly(silicic) acid, or a poly(titanic) acid lacking any covalently bonded carbon atoms.
The term "degree of substitution" ("DS") is an expression for the percent of --OH groups on a poly(silicic) acid backbone which have been substituted by an --OR group. The degree of substitution is assessed by further substituting the residual --OH groups with trimethylsilane and measuring, using proton NMR, the ratio of --OR groups to trimethylsilane groups.
The term "non-shrinking" refers to a substance which maintains the same volume displacement from the start of synthesis to the final product.
The term "catalyst system" refers to one or more catalysts capable of catalyzing the recited reactions.
The term "free radical initiator" refers to a catalyst or a combination of catalysts which can promote the polymerization of organic monomers which have alkene groups, and which can also promote the condensation of inorganic polymers. Examples of free radical initiators include 1) UV light with or without azobisisobutyronitrile (AIBN); 2) temperatures over 60° C. under N2 atmosphere; 3) ammonium persulfate with sodium metabisulfite; and 4) ammonium persulfate with N,N,N',N'-tetramethylenediamine (TMEDA).
The term "ring-opening metathesis polymerizer" refers to a catalyst which can promote the polymerization of alcohol monomers which have a ring structure containing a double bond between two carbon atoms.
The term "condensing" refers to the combined hydrolysis and polymerization of an inorganic backbone.
This invention relates to a method for producing a non-shrinking material composed of organic polymers homogeneously embedded in an inorganic glass matrix.
According to the method of the present invention, 1) the starting solution can be designed so that the material does not shrink in volume during the sol-gel transition or during curing, and 2) the glass content of the final composite can be controlled.
The method of the present invention involves forming a mixture of a precursor polymer, an alcohol, and a catalyst system. The precursor polymer has an inorganic polymer backbone with the structure ##STR6## where M is Si or Ti, O is oxygen, and n is the number of repeating units. The number of repeating units, n, is sufficient to form a solid composite, initially at least about 20 to about 200 units. At least some (preferably at least about 5%) of the side chain oxygen atoms are bound to pendant polymerizable alkoxide moieties (R) through alkoxide linkages. For simplicity, the description will refer to Si as the specific M. The catalytic system hydrolyzes at least a portion of the alkoxide linkages to release the alkoxide moieties to form alcohol monomers, and polymerizes the alcohol monomers to form organic polymers. Synchronously, the catalytic system hydrolyzes and condenses the inorganic polymer backbone to form a solid interwoven network with the organic polymer chains interpenetrating the network. Preferably, the network is at least about 20% of the total composite w/w.
Water is optionally but preferably present in the reaction mixture. When a stoichiometric amount of water is used, all components of the system are converted into either the organic or inorganic polymers, and no solvents or by-products remain which would require removal, e.g. by evaporation. Water is consumed during hydrolysis of alkoxide groups. Excess water requires evaporation, and a great excess of water would lead to shrinkage. Less than the optimum amount of water would lead to incomplete hydrolysis of the alkoxide groups, incomplete glass formation, and possibly weaken the resulting material. Suitably, the amount of water used may vary from stoichiometry by as much as 5% to 10% of the total volume of the starting solution. When the proportions of reagents in the starting solution are appropriately balanced, there is sufficient water to complete the hydrolysis reaction without substantial excess water during the transition from starting solution to the final product. This prevents substantial shrinkage (e.g. less than about 30% by volume). By carefully controlling the proportion of water, the material can be made to be "non-shrinking", which renders it to be a particularly effective molding material. The resulting composite material is composed primarily, and preferably essentially, of an inorganic silaceous network with organic polymer chains homogeneously embedded in, but not covalently bound to, the inorganic network.
The practice of the method uses a new starting material, a precursor polymer in the form of a poly(silicic) acid ester (PSAE). To synthesize the PSAE, a poly(silicic) acid is first prepared by the method as described (Daubt, W. H. et al, U.S. Pat. No. 2,676,182; Dexter, J. F., U.S. Pat. No. 2,736,721; Kohama, S. et al 1980 J. Polym. Sci., Polym. Chem. Ed. 18, 2357). The poly(silicic) acid formed in this hydrolysis process is a branched rather than a linear polymer. The number of branch points in these polymer chains may vary and all of the factors controlling branching are not completely understood. ##STR7##
In the above structure, the letters k, q, and n symbolize the number of repeating units, preferably between about 20 and 200 units. The poly(silicic) acid polymers are then reacted with a polymerizable alcohol to form a PSAE. Suitably, the polymerizable alcohol is selected from the group in Table 1, although there are many other possible polymerizable alcohols which could be used in the practice of this invention.
              TABLE 1                                                     
______________________________________                                    
Polymerizable alcohols employed in the                                    
formation of poly(silicic) acid esters.                                   
                                Polymer-                                  
                                ization                                   
Monomer         Polymer         Method                                    
______________________________________                                    
     ##STR8##                                                             
                     ##STR9##       Free Radical                          
    hydroxyethylacrylate                                                  
II                                                                        
     ##STR10##                                                            
                     ##STR11##      ROMP                                  
oxabicyclo[2,2,1]hept-5-ene-2-methanol                                    
II                                                                        
     ##STR12##                                                            
                     ##STR13##      ROMP                                  
bicyclo[2,2,1]hept-5-ene-2-methanol                                       
IV                                                                        
     ##STR14##                                                            
                     ##STR15##      ROMP                                  
7-oxabicyclo[2,2,1]hept-5-ene 2,3-dicarbinol                              
______________________________________                                    
The esterification reaction of poly(silicic) acid with an alcohol, wherein an --OH group of the acid is replaced by an --OR group of the alcohol, results in a poly(silicic) acid ester (PSAE) which has the general formula ##STR16## wherein R is the polymerizable moiety resulting from the esterified alcohol (Table 1). The letters k and n represent the numbers of repeating units, preferably between about 20 and about 200. The esterification of poly(silicic acid) has been described (the exchange of the --OH groups on the silicon centers with --OR, alkoxide groups from simple alcohols such as benzyl alcohol) (Abe, Y. et al 1982 J. Polym. Sci. Polym. Chem. Ed. 20, 205; Abe, Y. et al 1983 J. Polym. Sci. Polym. Chem. Ed. 21, 41; Abe, Y. et al 1984 J. Polym. Sci. Polym. Chem. Ed. 22, 565; Abe, Y. et al 1984 J. Polym. Sci. Polym. Chem. Ed. 22, 761). However, this application contains the first description of a PSAE containing a polymerizable moiety.
Suitably, the alcohol used in esterification is hydroxyethyl acrylate, which results in the PSAE shown below (PSAE I). ##STR17##
Alternatively, the alcohol used in esterification is 7-oxabicycol[2.2.1]hept-5-ene-2-methanol, which results in the PSAE shown below (PSAE II). ##STR18##
The degree of substitution (DS, alkoxide for hydroxide in the resulting PSAE is determined by the alkoxide used and reaction conditions. The term "DS" is defined as the total number of substituted --OR moieties divided by the total number of --OH groups which were available for substitution on the starting silicic acid polymer. Preferably, DS values are about 1-100%, more preferably 25-75%, most preferably 45-70%. The DS, together with the number of branch points in the poly(silicic) acid chain will determine the glass content of the final product. The theoretical glass contents of the final composites for the polymerization of PSAE II are shown in Table 2.
                                  TABLE 2                                 
__________________________________________________________________________
               General Expression                                         
 Polymer                                                                  
                ##STR19##             % Glass                             
                                           Comments                       
__________________________________________________________________________
 ##STR20##                                                                
                ##STR21##            19   Fully Substituted Poly(silicic  
                                          acid)                           
 ##STR22##                                                                
                ##STR23##            19-32%                               
                                          Fully Substituted Poly(silicic  
                                          acid) but with Branch Points    
                                          (m)                             
 ##STR24##                                                                
                ##STR25##            19-100%                              
                                          Poly(silicic acid) with Varying 
                                          Degrees of Substitution and     
                                          Branch Points                   
__________________________________________________________________________
 ##STR26##                                                                
 Table 2, Legend                                                          
 The theoretical glass content of composites formed from precursor polymer
 PSEA II calculated as a function of both the degree of substitution (DS) 
 and the number of branch points in the polymer chain. MW = the molecular 
 weight of the alkoxide group; n = the number of siloxide groups having 2 
 OR moieties (note that this n refers to a different repeating unit than  
 that depicted for poly(silicic acid) supra); m = the number of siloxide  
 groups having 1 OR moiety; p = the number of siloxide groups having zero 
 alkoxide moieties; 60.09 is the molecular weight of SiO2. The factor 2   
 reflects the two R groups on n; the factor 1 reflects the one R group on 
 m. Glass content increases as a function of increasing numbers of siloxid
 groups having one or zero R moieties. Example: a theoretical glass conten
 of 100% would be achieved when there are zero total R moieties (n = 0, m 
 0, p = 1). The lowest theoretical glass content is achieved when every OH
 group is substituted by an OR group (n = 1, m = 0, p = 0).               
In the preferred embodiment of this invention, the precursor polymer (PSAE) employed is soluble in its parent alcohol so that the alcohol can be used as a solvent for the reaction. Both PSAE I and PSAE II are soluble in their parent alcohols, and solutions of these polymers can be used in nonshrinking sol-gel formulations. However, other alcohols similar to the parent alcohol may also be used as the solvent so long as the precursor polymer is soluble in it.
Suitably, the alkoxide groups are hydrolyzed from the silaceous polymer backbone to form alcohol monomers which are then polymerized to form organic polymers. Some of the alkoxide groups may polymerize while still bound to the silaceous backbone, but thermodynamic forces in the reaction promote the subsequent hydrolysis and release of most or all of the alkoxide polymer from the backbone. In the preferred embodiment of the invention, the silaceous backbone self-condenses in synchrony with the self-polymerization of the organic alcohols, thus forming a solid interwoven silaceous network with the organic polymer chains interpenetrating the network.
Suitably, the hydrolysis, polymerization, and condensation reactions are promoted by a catalyst system.
When the alkoxide or alcohol structure is characterized by alkene groups, free radical catalysis is employed. One example of an alcohol suitable for free radical polymerization is listed in Table 1 (I). It is understood that there may be many polymerizable alcohols that can be employed in practicing this invention with free radical catalysis. In a preferred embodiment of the invention, the catalyst system is composed of ammonium persulfate, and N,N,N',N'-tetramethylethylenediamine. This free radical catalyst system may also promote the condensation of the inorganic polymer backbone, although not as efficiently as it promotes the organic monomer polymerization.
When the alkoxide or alcohol structure has a ring formation with an ethylenically unsaturated carbon-carbon bond, ring-opening metathesis polymerization (ROMP) catalysis may be employed. Table 1 lists several alcohols suitable for practicing this invention through use of ROMP catalysis. In a preferred embodiment of the invention, the ROMP catalyst for polymerization of the organic moieties is the ruthenium ion derived from K2RuC15 added to the starting solution. The chloride ion derived from the same compound may promote the condensation of the inorganic backbone as well, however the inorganic condensation reaction catalyzed by chloride may proceed at a slower rate than the polymerization of organic moieties. Other ruthenium salts which may be employed as ROMP catalysts include Ru(H2)6 (C7 H7 SO3)2 and RuCl3.nH2 O.
In order to promote the hydrolysis condensation of inorganic backbone synchronously with polymerization of organic moieties an additional catalyst is preferably used, typically selected from the group consisting of acids, bases, chloride ions, and fluoride ions.
In a preferred embodiment of the invention, NaF is added as part of the catalyst system to produce fluoride ions which act to condense the inorganic backbone at a rate comparable to the polymerization of the organic moieties. This synchronous polymerization of organic and inorganic groups produces a composite material with organic polymers homogeneously distributed within the glass network.
Other catalyst systems could be used in practicing this invention, including those described above in the definition of the term "catalyst system".
Suitably, the precursor polymer PSAE is dissolved in its parent alcohol to form a solution to which the catalyst is added. Not all PSAE's are soluble in their parent alcohols. Certain non-parent alcohols may also be suitably used as solvents in practicing this invention. Suitably, the amount of free alcohol employed (e.g. about 1:1, w/w) is sufficient to substantially dissolve the PSAE. When the parent alcohol is used, the free alcohol solvent molecules participate in the organic polymerization, becoming part of the organic polymers, and thus are essentially consumed in the reaction.
In one preferred embodiment of the invention which employs free radical catalysis, the starting solution is composed of PSAE I, the parent alcohol tetraalkoxyorthosilicate and water. The glass content of the resulting composite material is determined by the DS in the precursor polymer, the amount of free alcohol used as a solvent, and the number of branching points along the polymer chain (Table 2). In practicing this invention, the above values may be varied to achieve glass contents ranging from about 20% to about 70%. The percentage of glass considered desirable depends on the intended use of the composite material.
In one preferred embodiment of the invention employing ROMP catalysis, precursor polymer PSAE II is dissolved in its parent alcohol II with water. The reaction proceeds to gelation within minutes, and within about one hour the material has a rubbery consistency. The material may then be treated at about 100° C. for about 24 hours to yield a hard material. The resulting material is a non-shrinking glass composite which contains approximately 19% to 70% glass. The glass content can be determined by varying the above proportions and the DS of PSAE II (Table 2).
Further control over the glass content can be achieved by mixing the PSAE with unsubstituted poly(silicic) acid. In a preferred embodiment of the invention, PSAE II and its parent alcohol II are combined with poly(silicic) acid in the proportions of one to one (g:g) and reacted with ROMP catalysis as above. The resulting composite has a glass content of about 50% depending on the branching of the poly(silicic) acid and on the DS of the PSAE. By systematically varying the ratios of poly(silicic) acid, PSAE, and the free alcohol used as co-solvent, non-shrinking composites with a glass content from 20% to greater than 90% can be obtained. It should be noted that the equations shown in Table 2 do not apply when free silicic acid is added to the reaction mixture.
EXAMPLE 1 Formation of polysilicic acid esters
Poly(silicic acid) was prepared by the acid catalyzed hydrolysis of sodium metasilicate (Na2 SiO3) in water according to the method described (Daubt, H. et al suora: Dexter, J. F. suora; Kohama, S. et al supra). Once formed, the poly(silicic acid) was extracted into tetrahydrofuran (THF) by addition of NaCl to the aqueous layer. The poly(silicic) acid formed in this hydrolysis process is a branched rather than a linear polymer. The polysilicic acid was then esterified by slow addition of a polymerizable alcohol, selected from Table 1, to the THF and subsequent azeotropic distillation with an excess of the same alcohol to produce the corresponding soluble poly(silicic acid) ester.
When the alcohol used was I (Table 1) poly(silicic) acid (3.0 g) was first dissolved in a mixture of THF (200 ml) and alcohol I (29 g, 0.25 mol) and the resulting solution was brought to reflux (about 85° C.). A THF/H2 O mixture (175 ml) was distilled off at this temperature and the substituted poly(silicic acid) ester was precipitated from the remaining solution by the addition of hexane. The resulting ester product, PSAE I, had a degree of substitution (DS) of 65%. ##STR27##
When the alcohol used was II (Table 1), the ester product was PSAE II, and the DS was 50%. ##STR28##
EXAMPLE 2
Formation of non-shrinking, high glass composite using free radical catalysis.
PSAE I (1.0 g, DS=65%) was dissolved in free alcohol I (1.0 ml) and water (0.25 ml). To this solution was added NaF (25 umol), ammonium persulfate (6.1 nM), and TMEDA (31 mM). The reaction proceeded to completion at room temperature within about one hour with no observable shrinkage. The resulting composite was transparent and contained approximately 30% glass as determined by elemental analysis.
EXAMPLE 3
Synthesis of non-shrinking, high glass composite material by ROMP catalysis.
PSAE II (1.0 g, DS =50%) was dissolved in a solution of free alcohol II (1.0 g) and water (0.25 ml). To this solution was added NaF (25 umol) and K2 RuCl5 (0.005 g). The mixture was reacted at 60° C. for one hour, to produce a brown (due to the color of the Ru), non-shrinking composite with a glass content of about 30%.
EXAMPLE 4
Increase in glass content by adding unsubstituted poly(silicic) acid.
PSAE II (1.0 g) and poly(silicic) acid (1.0 g) were combined in a mixture of alcohol II (1.0 g) and 0.5 ml tetrahydrofuran (THF, as co-solvent), water (0.5 ml), NaF (100 umol) and K2 RuCl5 (0.005 g). The reaction proceeded to completion within one hour at 60° C. to form a brown glass composite which did not shrink in volume. The percentage of glass in a composite synthesized by this type of protocol is typically about 40-60%.
This example demonstrates that poly(silicic) acid can co-condense with a PSAE to produce a monolithic glass composite.

Claims (17)

What is claimed is:
1. A method for forming an interwoven organic-inorganic solid composite material comprising
a) forming a mixture of a precursor polymer, a parent polymerizable alcohol, and a catalyst system, said precursor polymer comprising an inorganic polymer backbone chain with the structure ##STR29## wherein M is Si or Ti, O is oxygen, and n is the number of repeating units and wherein at least a plurality of the side chain oxygen atoms are each bound to a pendant polymerizable alkoxide moiety through an alkoxide linkage.
b) hydrolyzing at least a portion of said alkoxide linkages to release the linked alkoxide moieties from the remaining inorganic polymer backbone to form polymerizable alcohol monomers,
c) polymerizing at least a portion of said alcohol monomers into organic polymer chains, and
d) hydrolyzing and condensing said remaining inorganic polymer backbone to form a solid composite material comprising an interwoven network with the organic polymer chains interpenetrating said network, said catalyst system being capable of catalyzing hydrolysis of said alkoxide linkages, polymerization of said polymerizable alcohol monomers, and hydrolysis and condensation of said inorganic polymer backbone.
2. The method of claim 1 wherein said catalyst system includes a free radical initiator.
3. The method of claim 2 wherein said catalyst system includes ammonium persulphate and N,N,N',N'-tetramethylethylenediamine.
4. The method of claim 1 wherein said catalyst system includes a ring-opening metathesis polymerizer.
5. The method of claim 4 wherein said catalyst system includes K2 RuCl5.
6. The method of claim 1 in which the portion of the catalyst system which hydrolyzes and condenses the inorganic polymer backbone is selected from the group consisting of acids, bases, chloride ions, and fluoride ions.
7. The method of claim 1 wherein said catalyst component includes NaF.
8. The method of claim 1 in which said mixture of step (a) further comprises water.
9. The method of claim 1 in which at least about 5% of said side chain oxygen atoms are linked to polymerizable alkoxide moieties in said precursor polymer.
10. The method of claim 1 wherein said polymerizable alkoxide moieties are formed by removal of the alcohol proton from a polymerizable alkenol.
11. The method of claim 1 wherein the mixture of step (a) further includes unsubstituted poly(silicic) acid, said method further comprising co-condensing said acid with the backbone in step (d).
12. The method of claim 1 wherein the volume of said solid composite material is no less than about 70% of the volume of the mixture of step (a).
13. An inorganic-organic composite material having a solid interwoven network of an inorganic polymer matrix with interpenetrating polymerized alcohols, wherein said inorganic matrix includes the structure ##STR30## wherein M is Si or Ti, O is oxygen, nd n is the number of repeating units.
14. The composite material of claim 13 wherein M is Si.
15. A composite material having a three-dimensional silaceous network with interpenetrating organic polymers, said organic polymers having the structure ##STR31## wherein n is the number of repeating units.
16. A composite material having a three-dimensional silaceous network with interpenetrating organic polymers, said organic polymers having the structure ##STR32## wherein n is the number of repeating numbers.
17. The method of claim 10 in which said alkenol is a cyclic alkenol.
US07/674,849 1991-03-25 1991-03-25 Composite materials of interpenetrating inorganic and organic polymer networks Expired - Fee Related US5254638A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US07/674,849 US5254638A (en) 1991-03-25 1991-03-25 Composite materials of interpenetrating inorganic and organic polymer networks
EP92910358A EP0577748B1 (en) 1991-03-25 1992-03-24 Composite materials of interpenetrating inorganic and organic polymer networks
AU17909/92A AU1790992A (en) 1991-03-25 1992-03-24 Composite materials of interpenetrating inorganic and organic polymer networks
JP4510610A JPH06506499A (en) 1991-03-25 1992-03-24 Composites of interpenetrating inorganic and organic polymer networks
DE69213723T DE69213723T2 (en) 1991-03-25 1992-03-24 COMPOSED MATERIALS FROM INTERPENETRATING INORGANIC AND ORGANIC POLYMERS
AT92910358T ATE142657T1 (en) 1991-03-25 1992-03-24 COMPOSITE MATERIALS OF INTERPENETRATING INORGANIC AND ORGANIC POLYMER NETWORKS
PCT/US1992/002330 WO1992016571A1 (en) 1991-03-25 1992-03-24 Composite materials of interpenetrating inorganic and organic polymer networks
CA002106770A CA2106770A1 (en) 1991-03-25 1992-03-24 Composite materials of interpenetrating inorganic and organic polymer networks
US08/110,850 US5412043A (en) 1991-03-25 1993-08-24 Composite materials of interpenetrating inorganic and organic polymer networks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/674,849 US5254638A (en) 1991-03-25 1991-03-25 Composite materials of interpenetrating inorganic and organic polymer networks

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/110,850 Division US5412043A (en) 1991-03-25 1993-08-24 Composite materials of interpenetrating inorganic and organic polymer networks

Publications (1)

Publication Number Publication Date
US5254638A true US5254638A (en) 1993-10-19

Family

ID=24708132

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/674,849 Expired - Fee Related US5254638A (en) 1991-03-25 1991-03-25 Composite materials of interpenetrating inorganic and organic polymer networks
US08/110,850 Expired - Fee Related US5412043A (en) 1991-03-25 1993-08-24 Composite materials of interpenetrating inorganic and organic polymer networks

Family Applications After (1)

Application Number Title Priority Date Filing Date
US08/110,850 Expired - Fee Related US5412043A (en) 1991-03-25 1993-08-24 Composite materials of interpenetrating inorganic and organic polymer networks

Country Status (8)

Country Link
US (2) US5254638A (en)
EP (1) EP0577748B1 (en)
JP (1) JPH06506499A (en)
AT (1) ATE142657T1 (en)
AU (1) AU1790992A (en)
CA (1) CA2106770A1 (en)
DE (1) DE69213723T2 (en)
WO (1) WO1992016571A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412043A (en) * 1991-03-25 1995-05-02 The Regents Of The University Of California Composite materials of interpenetrating inorganic and organic polymer networks
US5456987A (en) * 1993-10-27 1995-10-10 Xerox Corporation Intermediate transfer component coatings of titamer and grafted titamer
US5500299A (en) * 1993-06-29 1996-03-19 Xerox Corporation Fusing components containing grafted titamer compositions
US5500298A (en) * 1993-06-29 1996-03-19 Xerox Corporation Fusing components containing titamer compositions
US5912257A (en) * 1995-09-06 1999-06-15 The Research Foundation Of State University Of New York Two-photon upconverting dyes and applications
WO2000052531A1 (en) * 1999-03-01 2000-09-08 Brewer Science, Inc. Highly plasma etch-resistant photoresist composition containing a photosensitive polymeric titania precursor
US6359153B1 (en) * 1998-10-28 2002-03-19 Hyundai Electronics Industries Co., Ltd. Photoresist monomers and preparation thereof
US20060281825A1 (en) * 2005-06-11 2006-12-14 Je Kyun Lee Microporous Polyisocyanate Based Hybrid Materials
US20070272902A1 (en) * 2006-05-25 2007-11-29 Aspen Aerogels, Inc. Aerogel compositions with enhanced performance
US20080139720A1 (en) * 2006-11-20 2008-06-12 Hong Li Organic-inorganic nanocomposite materials and methods of making and using the same
WO2009074567A1 (en) * 2007-12-10 2009-06-18 Epg (Engineered Nanoproducts Germany) Ag Inorganic-organic binder, method for the production thereof, and use thereof
US20100130714A1 (en) * 2008-11-26 2010-05-27 Nikita Sergeevich Shelekhov Sol-Gel-Polymer Nanocomposite and Methods Thereof
US20100234529A1 (en) * 2009-03-12 2010-09-16 Nikita Sergeevich Shelekhov Composites and methods of making and using the composites
WO2014049083A1 (en) * 2012-09-27 2014-04-03 Epg (Engineered Nanoproducts Germany) Ag Robust binder, which is independent from the influence of catalytically active substances, for use in the crude oil and natural gas industry
US8921436B2 (en) 2005-04-07 2014-12-30 Aspen Aerogels, Inc. Microporous polyolefin-based aerogels

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731075A (en) * 1990-11-21 1998-03-24 Mitsuboshi Belting Ltd. Colorant for a transparent substrate and method of making the colorant
DE69311680T2 (en) * 1992-08-20 1997-10-02 Mitsuboshi Belting Ltd Glassy material with ultrafine dispersed particles and process for its production
JP3622253B2 (en) * 1994-03-28 2005-02-23 大日本インキ化学工業株式会社 Method for producing high molecular weight polyorganosilyl silicate
CZ250097A3 (en) * 1995-02-09 1998-01-14 Icn Pharmaceuticals, Inc. Processes and compositions for regulation of cd28 expression
US6313219B1 (en) 1996-05-02 2001-11-06 Lucent Technologies, Inc. Method for hybrid inorganic/organic composite materials
US6268089B1 (en) 1998-02-23 2001-07-31 Agere Systems Guardian Corp. Photorecording medium and process for forming medium
US6482551B1 (en) 1998-03-24 2002-11-19 Inphase Technologies Optical article and process for forming article
US6103454A (en) * 1998-03-24 2000-08-15 Lucent Technologies Inc. Recording medium and process for forming medium
DE10016324A1 (en) * 2000-03-31 2001-10-11 Roehm Gmbh Ormocere, process for their manufacture and use
KR100582631B1 (en) * 2000-12-04 2006-05-23 신에쓰 가가꾸 고교 가부시끼가이샤 Polymer, Resist Composition and Patterning Process
US7433118B2 (en) * 2003-06-26 2008-10-07 Lucent Technologies Inc. Bridged polysesquioxane host matrices containing lanthanides chelated by organic guest ligands, and methods of making such matrices
US20070248890A1 (en) * 2006-04-20 2007-10-25 Inphase Technologies, Inc. Index Contrasting-Photoactive Polymerizable Materials, and Articles and Methods Using Same
DE102010020486A1 (en) * 2010-05-14 2011-11-17 Catena Additives Gmbh & Co. Kg Flame retardant halogenated polymers with improved thermal stability

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2676182A (en) * 1950-09-13 1954-04-20 Dow Corning Copolymeric siloxanes and methods of preparing them
US2736721A (en) * 1952-10-08 1956-02-28 Optionally
US3057822A (en) * 1959-06-30 1962-10-09 Hughes Aircraft Co Organo silicon-titanium copolymers and method of preparation thereof
US3661846A (en) * 1970-09-04 1972-05-09 Malcolm E Kenney Organo-inorgano polymers and their preparation
US4125703A (en) * 1977-10-17 1978-11-14 Blount David H Process for the production of phenol silicate compounds and their condensation products
US4346185A (en) * 1975-04-14 1982-08-24 Blount David H Process for the production of alkali metal unsaturated polyester silicate resinous products
US4468499A (en) * 1980-10-24 1984-08-28 Lehigh University Thermoplastic interpenetrating polymer network composition and process
US4584365A (en) * 1985-02-15 1986-04-22 Manville Sales Corporation Production of polymer from metal alkoxide and reaction mixture of carboxylic acid and hydroxy compound
US4830993A (en) * 1986-01-20 1989-05-16 Solvay & Cie (Societe Anonyme) Process for the manufacture of a metal oxide powder for ceramic materials and zirconia powder produced by this process
US5064877A (en) * 1988-07-18 1991-11-12 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Process for fixing inorganic species in an organic matrix

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3854796T2 (en) * 1987-04-02 1996-05-02 Tohru Yamamoto Composite material and method for its production
US5254638A (en) * 1991-03-25 1993-10-19 The Reagents Of The University Of California Composite materials of interpenetrating inorganic and organic polymer networks

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2676182A (en) * 1950-09-13 1954-04-20 Dow Corning Copolymeric siloxanes and methods of preparing them
US2736721A (en) * 1952-10-08 1956-02-28 Optionally
US3057822A (en) * 1959-06-30 1962-10-09 Hughes Aircraft Co Organo silicon-titanium copolymers and method of preparation thereof
US3661846A (en) * 1970-09-04 1972-05-09 Malcolm E Kenney Organo-inorgano polymers and their preparation
US4346185A (en) * 1975-04-14 1982-08-24 Blount David H Process for the production of alkali metal unsaturated polyester silicate resinous products
US4125703A (en) * 1977-10-17 1978-11-14 Blount David H Process for the production of phenol silicate compounds and their condensation products
US4468499A (en) * 1980-10-24 1984-08-28 Lehigh University Thermoplastic interpenetrating polymer network composition and process
US4584365A (en) * 1985-02-15 1986-04-22 Manville Sales Corporation Production of polymer from metal alkoxide and reaction mixture of carboxylic acid and hydroxy compound
US4830993A (en) * 1986-01-20 1989-05-16 Solvay & Cie (Societe Anonyme) Process for the manufacture of a metal oxide powder for ceramic materials and zirconia powder produced by this process
US5064877A (en) * 1988-07-18 1991-11-12 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Process for fixing inorganic species in an organic matrix

Non-Patent Citations (27)

* Cited by examiner, † Cited by third party
Title
Abe, Y. et al 1982 J. Polym. Sci., Polym. Chem. Ed. 20, 205 210. *
Abe, Y. et al 1982 J. Polym. Sci., Polym. Chem. Ed. 20, 205-210.
Abe, Y. et al 1984 J. Polym. Sci., Polym. Chem. Ed. 22, 565 567. *
Abe, Y. et al 1984 J. Polym. Sci., Polym. Chem. Ed. 22, 565-567.
Abe, Y. et al. 1983 J. Polym. Sci., Polym. Chem. Ed. 21, 41 53. *
Abe, Y. et al. 1983 J. Polym. Sci., Polym. Chem. Ed. 21, 41-53.
Abe, Y. et al. 1984 J. Polym. Sci., Polym. Chem. Ed. 22, 761 767. *
Abe, Y. et al. 1984 J. Polym. Sci., Polym. Chem. Ed. 22, 761-767.
Glaser, R. H. et al. 1988 Polymer Bulletin 19, 51 57. *
Glaser, R. H. et al. 1988 Polymer Bulletin 19, 51-57.
Huang, H. H. et al 1987 Macromolecules 20, 1322 1330. *
Huang, H. H. et al 1987 Macromolecules 20, 1322-1330.
Kohama, S. et al 1980 J. Polym. Sci., Polym. Chem. Ed. 18, 2357. *
Mark, J. E. et al 1987 Polymer Bulletin 18, 259 264. *
Mark, J. E. et al 1987 Polymer Bulletin 18, 259-264.
Phillip, G. et al. 1984 J. Non Crys. Sol. 63, 283, 292. *
Phillip, G. et al. 1984 J. Non-Crys. Sol. 63, 283,-292.
Pope, E. J. A. et al 1989 J. Mater. Res. 4, 1018 1026. *
Pope, E. J. A. et al 1989 J. Mater. Res. 4, 1018-1026.
Schmidt, H. 1989 J. Non Crys. Sol. 112, 419 423. *
Schmidt, H. 1989 J. Non-Crys. Sol. 112, 419-423.
Ulrich, D. R. 1990 J. Non Crys. Sol. 121, 465 479. *
Ulrich, D. R. 1990 J. Non-Crys. Sol. 121, 465-479.
Wei, Y. et al. 1990 Chemistry of Matrials 2, 337 339. *
Wei, Y. et al. 1990 Chemistry of Matrials 2, 337-339.
Wilkes, G. L. et al 1990 J. Am. Chem. Soc. 12, 207 226. *
Wilkes, G. L. et al 1990 J. Am. Chem. Soc. 12, 207-226.

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412043A (en) * 1991-03-25 1995-05-02 The Regents Of The University Of California Composite materials of interpenetrating inorganic and organic polymer networks
US5500299A (en) * 1993-06-29 1996-03-19 Xerox Corporation Fusing components containing grafted titamer compositions
US5500298A (en) * 1993-06-29 1996-03-19 Xerox Corporation Fusing components containing titamer compositions
US5456987A (en) * 1993-10-27 1995-10-10 Xerox Corporation Intermediate transfer component coatings of titamer and grafted titamer
US5912257A (en) * 1995-09-06 1999-06-15 The Research Foundation Of State University Of New York Two-photon upconverting dyes and applications
US6402037B1 (en) 1995-09-06 2002-06-11 The Research Foundation Of State University Of New York Two-photon upconverting dyes and applications
US6359153B1 (en) * 1998-10-28 2002-03-19 Hyundai Electronics Industries Co., Ltd. Photoresist monomers and preparation thereof
US6303270B1 (en) * 1999-03-01 2001-10-16 The Curators Of The University Of Missouri Highly plasma etch-resistant photoresist composition containing a photosensitive polymeric titania precursor
WO2000052531A1 (en) * 1999-03-01 2000-09-08 Brewer Science, Inc. Highly plasma etch-resistant photoresist composition containing a photosensitive polymeric titania precursor
US8921436B2 (en) 2005-04-07 2014-12-30 Aspen Aerogels, Inc. Microporous polyolefin-based aerogels
US20060281825A1 (en) * 2005-06-11 2006-12-14 Je Kyun Lee Microporous Polyisocyanate Based Hybrid Materials
US11549059B2 (en) 2006-05-25 2023-01-10 Aspen Aerogels, Inc. Aerogel compositions with enhanced performance
US11634641B2 (en) 2006-05-25 2023-04-25 Aspen Aerogels, Inc. Aerogel compositions for high temperature applications
US20070272902A1 (en) * 2006-05-25 2007-11-29 Aspen Aerogels, Inc. Aerogel compositions with enhanced performance
US11261380B2 (en) 2006-05-25 2022-03-01 Aspen Aerogels, Inc. Aerogel compositions for high temperature applications
US10487263B2 (en) 2006-05-25 2019-11-26 Aspen Aerogels, Inc. Aerogel compositions with enhanced performance
US9181486B2 (en) 2006-05-25 2015-11-10 Aspen Aerogels, Inc. Aerogel compositions with enhanced performance
US20080139720A1 (en) * 2006-11-20 2008-06-12 Hong Li Organic-inorganic nanocomposite materials and methods of making and using the same
US7989076B2 (en) 2006-11-20 2011-08-02 Ppg Industries Ohio, Inc. Organic-inorganic nanocomposite materials and methods of making and using the same
WO2009074567A1 (en) * 2007-12-10 2009-06-18 Epg (Engineered Nanoproducts Germany) Ag Inorganic-organic binder, method for the production thereof, and use thereof
US20100316447A1 (en) * 2007-12-10 2010-12-16 Epg (Engineered Nanoproducts Germany) Ag Inorganic-organic binder, method for the production thereof, and use thereof
US7939687B2 (en) 2008-11-26 2011-05-10 Corning Incorporated Sol-gel-polymer nanocomposite and methods thereof
US20100130714A1 (en) * 2008-11-26 2010-05-27 Nikita Sergeevich Shelekhov Sol-Gel-Polymer Nanocomposite and Methods Thereof
US8058347B2 (en) 2009-03-12 2011-11-15 Corning Incorporated Composites and methods of making and using the composites
US20100234529A1 (en) * 2009-03-12 2010-09-16 Nikita Sergeevich Shelekhov Composites and methods of making and using the composites
WO2014049083A1 (en) * 2012-09-27 2014-04-03 Epg (Engineered Nanoproducts Germany) Ag Robust binder, which is independent from the influence of catalytically active substances, for use in the crude oil and natural gas industry
US9920237B2 (en) 2012-09-27 2018-03-20 Epg (Engineered Nanoproducts Germany) Ag Robust binder, which is independent from the influence of catalytically active substances, for use in the crude oil and natural gas industry

Also Published As

Publication number Publication date
ATE142657T1 (en) 1996-09-15
JPH06506499A (en) 1994-07-21
DE69213723T2 (en) 1997-03-20
DE69213723D1 (en) 1996-10-17
WO1992016571A1 (en) 1992-10-01
CA2106770A1 (en) 1992-09-26
EP0577748B1 (en) 1996-09-11
AU1790992A (en) 1992-10-21
EP0577748A1 (en) 1994-01-12
US5412043A (en) 1995-05-02
EP0577748A4 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
US5254638A (en) Composite materials of interpenetrating inorganic and organic polymer networks
Huang et al. Ceramers: Hybrid materials incorporating polymeric/oligomeric species with inorganic glasses by a sol-gel process: 2. Effect of acid content on the final properties
Mark Ceramic‐reinforced polymers and polymer‐modified ceramics
CN1037851C (en) Preparation of polyesters from polyethers by an ester-insertion process
Wei et al. Synthesis of new organic-inorganic hybrid glasses
CN103193927B (en) The friendly polymkeric substance of bonding blood and method for making thereof and purposes
US5380901A (en) Multifunctional acrylates and the synthesis thereof
Huang et al. Preparation and thermal property of poly (methyl methacrylate)/silicate hybrid materials by the in-situ sol-gel process
Novak et al. “Inverse” organic-inorganic composite materials: high glass content non-shrinking sol-gel composites
Wojcik et al. Transparent inorganic/organic copolymers by the sol-gel process: thermal behavior of copolymers of tetraethyl orthosilicate (TEOS), vinyl triethoxysilane (VTES) and (meth) acrylate monomers
CN102292148B (en) Sol-gel-polymer nanocomposite and methods thereof
PT88159B (en) METHOD FOR PREPARING A LIQUID POLYMERIZABLE COMPOSITION WITH OBTAINING ORGANIC GLASSES WITH HIGH THERMAL STABILITY
Wojcik et al. Organic-inorganic gels based on silica and multifunctional acrylates: Code: B8
EP0351859B1 (en) Preparation process of block copolymers and resulting block copolymers
Bogdal et al. Application of diol dimethacrylates in dental composites and their influence on polymerization shrinkage
US3766145A (en) Preparation of unsaturated polyesters of isophthalic acid
JP2004519471A (en) Method for producing polymerizable dental composition
Ellsworth et al. High Glass Content Non-Shrinking Sol-Gel Composites via Silicic Acid Esters
Lenz et al. Anionic and coordination polymerization of 3‐butyrolactone
JPS5961816A (en) Silicon-containing contact lens material and contact lens made thereof
Yang et al. Organic‐inorganic hybrid sol‐gel materials, 1. Preparation and characterization
US6005028A (en) Organic-inorganic hybrid composites for dental restorative material
Gao et al. Preparation of styrene–maleic anhydride copolymer/Si O network nanocomposites by the sol–gel process
KR0121998B1 (en) Thermoplastic biodegrable resin and method for making thereof
JP2950812B1 (en) Liquid solvent-free silicone resin and its manufacturing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE,, CAL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:NOVAK, BRUCE M.;ELLSWORTH, MARK W.;REEL/FRAME:005720/0962

Effective date: 19910508

CC Certificate of correction
CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20011019