US5275822A - Defoaming composition - Google Patents

Defoaming composition Download PDF

Info

Publication number
US5275822A
US5275822A US07/806,581 US80658191A US5275822A US 5275822 A US5275822 A US 5275822A US 80658191 A US80658191 A US 80658191A US 5275822 A US5275822 A US 5275822A
Authority
US
United States
Prior art keywords
agglomerates
maltodextrin
composition
antifoaming
defoaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
US07/806,581
Inventor
William Valentine
William K. Valentine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Technology Pharmaceuticals Corp
Original Assignee
Valentine Enterprises Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/423,877 external-priority patent/US5073384A/en
Application filed by Valentine Enterprises Inc filed Critical Valentine Enterprises Inc
Priority to US07/806,581 priority Critical patent/US5275822A/en
Assigned to VALENTINE ENTERPRISES, INC. reassignment VALENTINE ENTERPRISES, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: VALENTINE, WILLIAM, VALENTINE, WILLIAM K.
Priority to PCT/US1992/010491 priority patent/WO1993011752A1/en
Priority to EP93900878A priority patent/EP0596049B1/en
Priority to AT93900878T priority patent/ATE319435T1/en
Priority to JP51098593A priority patent/JP3507490B2/en
Priority to DE69233605T priority patent/DE69233605D1/en
Priority to CA002101779A priority patent/CA2101779C/en
Publication of US5275822A publication Critical patent/US5275822A/en
Application granted granted Critical
Priority to US08/374,224 priority patent/USRE35893E/en
Assigned to ADVANCED TECHNOLOGY PHARMACEUTICALS CORP. reassignment ADVANCED TECHNOLOGY PHARMACEUTICALS CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VALENTINE ENTERPRISES, INC.
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/80Polymers containing hetero atoms not provided for in groups A61K31/755 - A61K31/795
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • A61K9/1623Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/02Foam dispersion or prevention
    • B01D19/04Foam dispersion or prevention by addition of chemical substances
    • B01D19/0404Foam dispersion or prevention by addition of chemical substances characterised by the nature of the chemical substance

Definitions

  • This invention relates to a composition whereby fluid, nonaqueous, defoaming or antifoaming compositions are prepared as relatively free flowing granular combinates by intermixing them with a low density, highly porous, generally spherical, water soluble carbohydrate-based agglomerate such as maltodextrin to form adjuvant agglomerate combinates suitable for addition to products or processes wherever a rapid dispersion of the antifoaming or defoaming compound in an aqueous medium is indicated or desired.
  • Fluid hydrocarbon oil-based antifoaming or defoaming compositions containing a hydrocarbon-silicon copolymer, a hydrophobic filler, an organo-silicone surfactant, a hydrocarbon carrier oil, and, optionally, a silicone oil are disclosed in Kulcarni et al U.S. Pat. No. 4,514,319.
  • Fluid antifoaming or defoaming compositions comprising mineral oil-containing dispersed hydrophobic solid particles are well known in the art.
  • hydrophobic silica in fluid hydrocarbon oil based antifoam or defoaming compositions is disclosed in U.S. Pat. Nos. 3,076,768; 3,207,698; 3,388,073; and 3,714,068.
  • Fluid antifoaming or de foaming compositions comprising polyoxyethylene-polypropylene copolymers containing dispersed hydrophobic silica are disclosed in U.S. Pat. Nos 3,912,652 and 3,959,176.
  • Fluid antifoaming or defoaming compositions in a non-silicone oil and containing activated insitu hydrophobic silica particles are disclosed in U.S. Pat. No. 3,304,266.
  • Fluid antifoaming or de foaming compositions comprising a non-silicone water insoluble polyalkylene containing an alkoxysilicon chloride as the hydrophobic agent are disclosed in G.B. Pat. No. 1,166,877.
  • Fluid antifoaming or defoaming compositions employing the use of other intrinsically hydrophobic fillers in organic liquids are also well known.
  • Canadian Pat. No. 508,856 discloses N,N'-distearyl ethylene-diamide in white spirits, while the use of finely divided polyolefin polymers or polyesters dispersed in organic liquids is disclosed in U.S. Pat. No. 3,705,859.
  • the use of fatty acid salts is disclosed in G.B. Pat. No. 1,267,482 and low molecular weight polyethylenes in combination with mineral oil and conventional organic nonionic emulsifiers is disclosed in U.S. Pat. No. 3,909,445.
  • Fluid antifoam or defoaming compositions comprising silicone oil-silica compounds containing organo silicone compounds to improve performance are disclosed in U.S. Pat. No. 3,691,091.
  • Fluid antifoam or defoaming compositions comprising the use of silicone-glycol copolymers in association with silicone oil and silica are disclosed in U.S. Pat. Nos. 3,746,653; 3,784,479; and 3,865,544.
  • Simethecone is a fluid antifoam or defoaming composition comprised of polydimethylsiloxane and silica suitably purified for its intended application.
  • the preparation of liquid methylsiloxane polymers is delineated in U.S. Pat. No. 2,441,098, the disclosure of which is hereby incorporated by reference.
  • the normal physical state of the simethicone is a water white to grey translucent, viscous, oil-like liquid with a density of 0.965-0.970 grams/cubic centimeter having demonstrable immiscibility with water and alcohol.
  • simethicone is as an ointment base ingredient, topical drug vehicle, skin protectant, but most particularly as an antigas and antiflatulent agent for human application as well as an antibloating agent for veterinary (animal) application.
  • a combinate of simethicone and calcium silicate useful for such latter applications is disclosed in Valentine et al. U.S. Pat. No. 4,906,478.
  • Non-pharmaceutical and non-medicinal antifoaming applications such as powdered cleaning agents, are disclosed in Farminer et al U.S. Pat. No. 3,843,558; Llenado U.S. Pat. No. 4,180,485; Abel U.S. Pat. No. 4,264,465; Matheson et al U.S. Pat. No. 4,102,823; and European Patent 213,953 to Iley et al.
  • the preferred pharmaceutical solid dose delivery system for simethicone is a chewable tablet
  • Such chewable tablets often contain antacid ingredients such as calcium carbonate, aluminum hydroxide, magnesium hydroxide and magnesium carbonate.
  • antacid ingredients such as calcium carbonate, aluminum hydroxide, magnesium hydroxide and magnesium carbonate.
  • the article by F. Maksond et al, "Simethicone use in Antacid Medications" as published in Manufacturing Chemist and Aerosol News, Vol. 47, No. 5, 1976, pp 36-36 discloses instability problems when simethicone is intermixed with aluminum or magnesium bases It is extremely troublesome to distribute the oil-like, viscous, water and alcohol immiscible simethicone expeditiously and uniformly throughout a tablet granulation prior to compression. It is equally difficult to be certain that the simethicone is in a sufficiently divided and dispersed state so that its action will be quick and effective when administered per os as a chewable or swallowable tablet or powder filled
  • the present invention achieves these objects and satisfies the long felt need to overcome the difficulties in expeditious utilization of antifoaming or defoaming compounds in an aqueous medium
  • a larger amount of antifoaming or defoaming compound can be incorporated with the carbohydrate-based agglomerate of this invention for dispersion than has previously been disclosed in the prior art.
  • the carbohydrate-based agglomerate portion of the combinate makes it possible to effect rapid and uniform distribution of the antifoaming/defoaming compound by simple mixing.
  • the present invention relates to fluid, nonaqueous, antifoaming or defoaming compositions prepared as a dry, solid, flowable granule by intermixing a fluid, nonaqueous, antifoaming or defoaming compound or composition and a low density, highly porous, generally spherical, water soluble, carbohydrate-based agglomerate such as a maltodextrin agglomerate, maltodextrin/dextrose co-agglomerate, dextrose agglomerate, maltodextrin/sucrose co-agglomerate, maltodextrin/fructose co-agglomerate, sucrose agglomerate, fructose agglomerate, mannitol agglomerate, sorbitol agglomerate, agglomerated hydrolyzed cereal solids, agglomerated corn syrup solids, and combinations thereof to form a functional combinate.
  • the preferred agglomerate is maltodextrin, a low conversion starch hydrolyzate having a D.E. (dextrose equivalent) less than 20.
  • the fluid, nonaqueous, antifoaming or defoaming compound or composition is added, in liquid form, to the water soluble carbohydrate agglomerate and blended to form a uniform, relatively free flowing combinate in which the base structure is water soluble.
  • the combinate may be readily added to conventional products and processes where a rapid dispersion of the fluid, nonaqueous, antifoaming or defoaming compound is indicated.
  • the fluid, nonaqueous, antifoaming or defoaming combinate have from about 10 to 50 weight percent antifoaming or defoaming composition or compound, and from about 90 to 50 weight percent carbohydrate agglomerate. It is more preferred that the fluid, nonaqueous, antifoaming or defoaming composition or compound represents 30 weight percent and the water soluble, highly porous, low density, generally spherical, carbohydrate agglomerate represents 70 weight percent of the admixture combinate. Unless otherwise specified, all references to percentages are in weight percent.
  • the terms "antifoaming" and “defoaming” are generally used interchangably throughout the specification.
  • the antifoaming compositions or compounds useful in this invention may be any of those discussed in the background section of the specification, particularly simethicone (for pharmaceutical and medicinal applications) and silicone, mineral or other oils containing silica.
  • the preferred fluid, nonaqueous, antifoaming or defoaming compound prepared as a flowable granule used herein is simethicone and, more specifically, simethicone U.S.P. as defined in the United States Pharmacopeia, incorporated herein by reference, which has the chemical structure:
  • Simethicone is a mixture of fully methylated linear siloxane polymers containing repeating units of the formula [-(CH 3 ) 2 SiO--] n , stablilized with trimethylsiloxy end-blocking units of the formula [(CH 3 ) 3 SiO--], and silicon dioxide. It is preferred to contain not less than 90.5 percent and not more than 99.0 percent of polydimethylsiloxane ([-(CH 3 ) 2 SiO--]n)), and not less than 4.0 percent and not more than 7.0 percent of silicon dioxide.
  • Maltodextrins are composed of water soluble glucose polymers obtained from the reaction of starch with acid and/or enzymes in the presence of water.
  • the starch is hydrolyzed to produce hydrolyzate products containing sugars.
  • the production of starch hydrolyzates, and, in particular, low conversion starch hydrolyzates, is described in U.S. Pat. Nos. 3,663,369; 3,849,194; 4,298,400; and U.S. Pat. No. Re. 30,880, the disclosures of which are hereby incorporated by reference.
  • the starch used for the preparation of maltodextrins can be any of a variety of commercially available starches such as maize, potato, or tapioca. Further, the U.S.
  • maltodextrins (C 6 H 12 O 5 ) n H 2 O, as nonsweet nutritive saccharide polymers that consist of D-glucose units linked primarily by alpha 1-4 bonds and having a D.E. (total reducing sugars expressed as dextrose equivalents) of less than 20.
  • Maltodextrin is usually produced as a fine, white powder and is generally recognized as safe (gras) as a direct human food ingredient at levels consistent with good manufacturing practices.
  • Agglomerated maltodextrin is available from a variety of commercial sources and in a larger, more porous, faster dissolving, and more free flowing form.
  • the preferred commercial source for low density, highly porous, generally spherical, water soluble maltodextrin agglomerates is the product family sold by Valentine Enterprises, Inc. of Lawrenceville, Georgia under the trademark VELite.
  • the preferred VELite is VELite 20/40 which is prepared from 9-12 D.E.
  • maltodextrin derived from corn starch, and having the following typical analysis: a particle size distribution of about 100 percent less than 850 microns and a majority (98 percent) greater than 420 microns; an apparent density of from about 10 to about 12 pounds per cubic foot; a maximum moisture content of 6 percent; and a total surface area of between about 9.5 ⁇ 1 and 10.5 ⁇ 1 square meters per gram as determined by a 3 point nitrogen B.E.T. analysis.
  • a preferred embodiment of the present invention is directed toward the admixture of simethicone and maltodextrin agglomerate to form a uniform, relatively free flowing, granular combinate containing 30 percent by weight of simethicone and 70 percent by weight maltodextrin for incorporation into tablets or for use "as is" for addition to an aqueous medium whenever antifoaming or defoaming is desired.
  • simethicone/70 percent by weight agglomerated maltodextrin combinate is readily formulated into, for example, antacid or antigas formulations by adding the 30% simethicone active granule combinate to a compressible granule base without sacrificing or compromising the compressibility of the base granule. It is a further feature of the present invention that the simethicone is contained in or on a water soluble agglomerated maltodextrin and, as such, is available and stable in the formulations
  • the process of the present invention may be practiced by obtaining desired quantities of agglomerated maltodextrin, such as VELite 20/40 available from Valentine Enterprises, Inc., and consumable simethicone, such as Sentry simethicone available from Union Carbide Corporation. These two starting materials are then mixed employing low shear mixing such as that encountered in a planetary, ribbon or plow mixer in order to effect a uniform combinate agglomerate suitable for use without further processing
  • the relative amounts of the simethicone and the maltodextrin agglomerate may range from about 10 to about 50 weight percent simethicone and from about 90 to about 50 percent by weight of agglomerated maltodextrin This range of the ingredients has been found to provide optimum performance of the final simethicone/agglomerated maltodextrin combinate. If more than about 50% by weight percent simethicone is used, the product tends to be too moist and exhibits poor flow. If more than 90% by weight of agglomerated maltodextrin is used the product tends to exhibit non-uniform distribution of the simethicone. Exceeding either extreme will tend to result in less than optimum product performance, most particularly in final tableting. A 30% by weight simethicone to 70% by weight agglomerated maltodextrin ratio represents the preferred product performance whether for tableting or for general purpose aqueous antifoaming or defoaming application.
  • the combinate maltodextrin and the antifoaming or defoaming composition preferably has a particle size in which essentially all of the particles are less than about 20 mesh (-20 mesh) and greater than 40 mesh (+40 mesh) and a total typical surface area of less than about 1 square meter per gram.
  • the antifoaming and/or defoaming containing adjuvant combinate granules of the present invention have been found to be equal in foam inhibition and foam breaking to an equivalent quantity of the starting simethicone. This means, for example, that 66.7 mg of the 30% simethicone combinate granule is equivalent in performance to 20 mg of simethicone The equivalent performance is demonstrable even after the simethicone/agglomerated maltodextrin combinates have been stored at 45.C for a period of two months.
  • Defoaming activity of the simethicone/agglomerated maltodextrin combinate or of the monadic simethicone or of the simethicone/agglomerated maltodextrin combinate contained as part of an antacid and/or antigas tablet i.e., foam breaking (defoaming) and/or foam inhibition (antifoaming)
  • foam breaking (defoaming) and/or foam inhibition may be defined and measured by the procedure given in the United States Pharmacopeia.
  • foaming solution and test preparation are prepared as follows:
  • Foaming solution--dissolve 1 g of octoxylnol 9 in 100 ml of distilled water.
  • the procedure for determining defoaming activity as follows: For each test, a clean, unused 250 ml glass jar fitted with a 50 mm cap should be employed. Add, dropwise, 0.5 ml of the test preparation (i.e., equivalent to 2.0 mg simethicone) to the 250 ml glass gar containing 100 ml of the foaming solution. Cap the jar and clamp it in an upright position on a wrist action shaker. Employing a radius of 13.3 ⁇ 0.4 cm (measured from the center of the shaft to the center of the bottle), shake for 10 seconds through an arc of 10° at a frequency of 300 ⁇ 30 strokes per minute. Record the time required for the foam to collapse.
  • the test preparation i.e., equivalent to 2.0 mg simethicone
  • the time, in seconds, for foam collapse is determined at the instant the first portion of foam-free liquid surface appears, measured from the end of the shaking period. This time is the defoaming activity time and should not exceed 15 seconds for acceptable simethicone activity.
  • a quantity of the combinate equivalent to 2.0 mg of simethicone i.e. 6.7 mg of a 30% simethicone/maltodextrin combinate is introduced directly into the test solution and the defoaming time is determined as described above.
  • simethicone supplied by the simethicone/maltodextrin combinate, which must be used to prepare an antacid/antigas preparation.
  • a typical formulation would contain:
  • simethicone/agglomerated maltodextrin adjuvant combinate demonstrates itself as a uniquely stable product capable of being combined with antacid ingredients such as aluminum and magnesium bases in a single layer tablet without compromising the acid neutralizing or the defoaming or antifoaming capacity of the dose form.
  • Standard excipients can be combined with the simethicone/agglomerated maltodextrin combinate granules in order to prepare pharmaceutical preparations in the form of tablets or capsules.
  • the simethicone/agglomerated maltodextrin combinate may be combined and blended with standard compression granules comprising, for example, calcium carbonate, dextrose, sucrose, mannitol, sorbitol, aluminum hydroxide dried gel, magnesium hydroxide, any compatible spray dried flavor, and magnesium stearate.
  • the blended preparation may be pressed by standard, well known techniques to form tablets of desired weight, potency, and hardness.
  • a single layer homogeneous unit dosage tablet or capsule may preferably contain from about 80 mg to about 280 mg of the simethicone/agglomerated maltodextrin combinate (i.e., from about 25 to about 80 mg of simethicone), but any desired amount outside this range may be used for specific applications.
  • mannitol agglomerate sorbitol agglomerate, agglomerated hydrolyzed cereal solids, and agglomerated corn syrup solids, i.e., those having a D.E. of 20 or greater
  • Any of these agglomerates, either alone or in combination, may be obtained, combined with simethicone, and utilized in the same manner as described above for the embodiment utilizing agglomerated maltodextrin alone.
  • the combinate will preferably comprise at least about 50 weight percent, and up to about 90 weight percent, of the carbohydrate-based agglomerate.
  • the particle size of substantially all of the carbohydrate- based agglomerate is preferably less than about 850 microns, with the majority (up to about 98 wt. %) greater than about 420 microns.
  • the maltodextrin/dextrose, maltodextrin/sucrose and maltodextrin/fructose co-agglomerates are preferably prepared by well known fluid bed agglomeration techniques in which maltodextrin in solution (e.g., a 10% aqueous solution or 5% povidone (K 29/32) U.S.P. solution) is combined with the dextrose, sucrose or fructose in an agglomerator bed.
  • the specific ratio of maltodextrin to dextrose, sucrose or fructose may vary according to use, and may be determined without undue experimentation.
  • the co-agglomerate is produced by standard spray granulation techniques.
  • the carbohydrate-based agglomerates will preferably have a particle size range of less than 20 mesh and greater than 60 mesh (U.S. Standard), more preferably less than 20 mesh and greater than 40 mesh.
  • compositions or compounds useful in this invention with maltodextrin or any of the other aforementioned carbohydrate-based agglomerates may be any of those organic liquid defoamers discussed in the background section of the specification, including hydrocarbon-based liquids, such as mineral oils and other hydrocarbon oil-based liquids, and silicone oils. These liquids may optionally contain silica
  • the carbohydrate-based agglomerate and liquid antifoaming composition may be mixed by low shear mixing techniques in a planetary, ribbon or plow mixer in order to effect a uniform combinate agglomerate suitable for use without further processing.
  • the combinate will preferably comprise at least about 10 weight percent, and no greater than about 50 weight percent, of the liquid antifoaming composition.
  • liquid antifoaming composition may be employed, although there tends to be non-uniform distribution of the antifoaming agent in amounts less than about 10 wt. %.
  • the particle size range of the combinate is not substantially different from the particle size range of the carbohydrate-based agglomerate prior to mixing with the liquid antifoaming composition.
  • the combinate of carbohydrate-based agglomerate and antifoaming or defoaming composition of the present invention may be used by contacting the aqueous medium in which defoaming is desired with the combinate.
  • the carbohydrate-based agglomerate/simethicone combinate would be ingested by the user in tablet, capsule, granule or other unit dose form to provide antigas and/or antiflatulent treatment.
  • the combinate may be prepared as granules in bulk filled packages or in unit dose forms such as compressed tablets or water soluble pouches for application to the aqueous medium.
  • Acid neutralizing capacity may be measured by the procedure set forth in the United States Pharmacopeia.
  • the analytical procedure, to be conducted at 37° C. ⁇ 3° C., is as follows:
  • test preparations are prepared as follows: powders--transfer the accurately weighed portion of the substance to be tested to a 250 ml beaker, add 70 ml of water, and mix in the magnetic stirrer for one minute. Tablets--weigh not less than 20 tablets and determine the average tablet weight Grind the tablets to a powder that passes through a no. 20 sieve and is retained on a 100 sieve. Mix the material on the no. 100 sieve to obtain a uniform mixture, transfer an accurately weighed quantity of it, equivalent to the minimum dosage, to a 250 ml beaker. If wetting is desired, add not more than 5 ml of alcohol (neutralized to an apparent pH of 3.5), and mix to wet the specimen thoroughly. Add 70 ml of water, and mix on the magnetic stirrer for one minute.
  • test procedure is as follows: Pipet 30.0 ml of 1.0N hydrochloric acid vs into the test preparation prepared earlier while continuing to stir with the magnetic stirrer. Magnetic stirring should continue for 15 minutes (accurately timed) after the addition of the acid. Thereafter, begin to titrate immediately, in a period not to exceed 5 minutes, the excess hydrochloric acid with 0.5N sodium hydroxide vs to attain a stable pH of 3.5 for not less than 15 seconds. Calculate the number of mEq of acid consumed per gram of the substance tested. Each ml of 1.0N hydrochloric acid is equal to 1 mEq of acid consumed.
  • the VELite 20/40 was charged into a 1000 cc stainless steel beaker and the simethicone was added. The total materials were blended with a spatula until uniform. The resulting granular combinate was lump free, less than 850 microns (20 mesh) in size, and contained 20% simethicone.
  • the VELite 20/40 was charged into a 5000 ml stainless steel beaker and the simethicone was added. The total materials were blended with a spatula until uniform. The resulting granular combinate was lump free, less than 850 microns (20 mesh) in size and contained 30% simethicone.
  • VELite 20/40 was charged into a 5000 ml stainless steel beaker and the simethicone was added. The total materials were blended with a spatula until uniform. The resulting granular combinate was lump free, less than 850 microns (20 mesh) in size and contained 40% simethicone.
  • VELite 20/40 was charged into a 5 gallon stainless steel Hobart mixer and the simethicone was added. The mixer was energized and mixing was effected for a period of 10 minutes. The resulting granular combinate was found to be lump free, less than 850 microns (20 mesh) in size, and contained 30% simethicone.
  • VELite 20/40 was charged into a 20 cubic foot capacity ribbon blender and the simethicone was added. The mixer was energized and mixing was effected for a period of 10 minutes. The resulting granular combinate was discharged into drums and found to be lump free, less than 850 microns (20 mesh) in size, and contained 30% simethicone.
  • VELite 20/40 was charged into a 3 cubic foot capacity stainless steel Lodige blender and the simethicone was added. The plow blades of the mixer were energized and mixing effected for a period of 10 minutes. The resulting granular combinate was discharged into a drum and found to be lump free, less than 850 microns (20 mesh) in size, and contained 30% simethicone.
  • VELite 20/40 was charged into a 1200 1 stainless steel Lodige blender and the simethicone added.
  • the plow blades of the mixer were energized and mixing was effected for a period of 10 minutes.
  • the resulting granular combinate was discharged into drums and found to be lump free, less than 850 microns (20 mesh) in size, and contained 30% simethicone.
  • simethicone/maltodextrin combinates produced in Examples 1-7 were evaluated in the following manner:
  • simethicone/agglomerated maltodextrin combinates were evaluated in the standard U.S.P. defoaming test at a level equivalent to 2 mg of simethicone.
  • simethicone/agglomerated maltodextrin combinates produced in Examples 1-7 were evaluated in a typical chewable antacid tablet formulation as follows (all values in mg):
  • Each of the formulations were produced as single layer 9/16 inch, flat-faced, beveled edge chewable tablets, compressed at a weight of 1200 mg and a hardness of 7-9 Kp. Tablets without simethicone were also produced under the same conditions to serve as a control.
  • Calcium carbonate-based antacid tablets were prepared with and without simethicone/agglomerated maltodextrin combinate as follows (all values in mg):
  • Each of the formulations were processed into single layered 9/16 inch, flat faced, beveled edge chewable tablets compressed at a weight of 1200 mg and a hardness of 7-9 Kp.
  • Each of the chewable tablet formulations produced for the trials satisfied the criteria for chewable tablets with respect to taste acceptance, mouth feel, hardness, friability, and acid neutralization.
  • Magaldrate (aluminum magnesium hydrate with magnesium sulfate) based antacid tablets were prepared with and without simethicone/agglomerated maltodextrin combinate as follows (all values in mg):
  • Both of the formulations were processed into single layered 9/16 inch, flat-faced, beveled edge chewable antacid tablets at a weight of 1200 mg and a hardness of 7-9 Kp.
  • the chewable antacid tablets produced for the trials i.e., with and without the simethicone/agglomerated maltodextrin combinate, satisfied the criteria for taste acceptance, mouth feel, hardness, friability, and acid neutralization.
  • An antigas chewable tablet formulation was prepared to demonstrate the utility of simethicone/agglomerated maltodextrin combinate in such an application as follows (all values in mg):
  • the formulation was produced as a single layered 9/16 inch, flat-faced, beveled edged chewable tablet compressed at a weight of 1200 mg and a hardness of 7-9 Kp.
  • the tablets produced satisfied the criteria for taste acceptance, mouth feel, hardness, friability, and foam suppression.
  • the VELite 20/40 was charged into a 5 gallon stainless steel Hobart mixer and the fluid silicone oil containing silica added. The mixer was energized and mixing was effected for a period of 10 minutes. The resulting granular combinate was lump free, less than 850 microns (20 mesh) in size and contained 30% of the fluid silicone oil containing silica defoaming compound.
  • the VELite 20/40 was charged into a 5 gallon stainless steel Hobart mixer and the fluid mineral oil containing silica added. The mixer was energized and mixing was effected for a period of 10 minutes. The resulting granular combinate was lump free, less than 850 microns (20 mesh) in size and contained 30% of the fluid silicone oil containing silica defoaming compound.
  • a granular or agglomerated product comprised of dextrose monohydrate 95% and maltodextrin (10 D.E.) 5% was obtained from Corn Products Corporation under the trademark Unidex 2034.
  • the Unidex product had a particle size range of -20/+60 mesh and an apparent bulk density of 0.58 g/cc.
  • Sample products were prepared by adding simethicone U.S.P. to the Unidex dextrose monohydrate/maltodextrin mixture in the following amounts, followed by 10 minute mixing to produce relatively free flowing Unidex product/simethicone combinates:
  • the Unidex product/simethicone U.S.P. combinates evidenced rapid defoaming characteristics, i.e., 2 seconds by the U.S.P. test.
  • Dextrose monohydrate-maltodextrin agglomerates were prepared by fluid bed agglomeration as follows:
  • the dextrose monohydrate-maltodextrin co-agglomerate was processed by standard spray granulation techniques to produce an agglomerate for sorption trials. After processing, the agglomerated dextrose-maltodextrin particles had a particle size range of about -20/+60 mesh and an apparent density of 0.42 g/cc.:
  • Sample products were prepared by adding the simethicone U.S.P. to the agglomerated dextrose-maltodextrin in the following amounts (percentages by weight):
  • the samples were mixed for 10 minutes to produce relatively free flowing simethicone/dextrose-maltodextrin agglomerate combinates.
  • the agglomerated dextrose-maltodextrin/simethicone combinates evidenced rapid defoaming characteristics, i.e., 2 seconds by the U.S.P. defoaming test.
  • Sucrose-maltodextrin co-agglomerates were prepared by fluid bed agglomeration as follows:
  • sucrose-maltodextrin co-agglomerate was effected by standard spray granulation techniques to produce an agglomerate for sorption trials. After processing, the sucrose-maltodextrin particles had a particle size range of about -20/+60 mesh and an apparent density of 0.45 g/cc.
  • Sample products were prepared by adding simethicone U.S.P. to the sucrose-maltodextrin co-agglomerates in the following amounts:
  • the samples were mixed for 10 minutes to produce relatively free flowing simethicone/sucrose-maltodextrin agglomerate combinates.
  • sucrose-maltodextrin/simethicone combinates evidenced rapid defoaming characteristics, i.e., 2 seconds by the U.S.P. defoaming test.
  • Standard single layer chewable antacid tablets containing 200 mg aluminum hydroxide, 200 mg magnesium hydroxide, and 25 mg of simethicone in the form of the sucrose-maltodextrin co-agglomerate/simethicone combinate also evidenced satisfactory defoaming characteristics when tested by the U.S.P. defoaming method, i.e., 6-8 seconds.
  • Sucrose 10x-maltodextrin co-agglomerates were prepared by fluid bed agglomeration as follows.
  • Sucrose 10X is a widely available finely milled sucrose which contains 2% corn starch to assure free-flow:
  • sucrose 10X-maltodextrin co-agglomerate was effected by standard spray granulation techniques to produce an agglomerate for sorption trials. After processing, the agglomerated sucrose 10X-maltodextrin particles had a particle size range of about -20/+60 mesh and an apparent density of 0.40 g/cc.
  • Sample products were prepared by adding the simethicone U.S.P. to the sucrose 10X-maltodextrin co-agglomerate in the following amounts:
  • the samples were produced by mixing for 10 minutes to produce relatively free flowing simethicone/sucrose 10X-maltodextrin agglomerate combinates.
  • sucrose 10X-maltodextrin/simethicone U.S.P. combinates evidenced rapid defoaming characteristics, i.e. 2 seconds by the U.S.P. defoaming test.
  • Dextrose monohydrate-maltodextrin co-agglomerates were prepared by fluid bed agglomeration as follows:
  • the dextrose monohydrate-maltodextrin co-agglomerate was effected by standard spray granulation techniques to produce an agglomerate for sorption trials. After processing, the dextrose-maltodextrin co-agglomerate particles had a particle size range of about -20/+60 mesh and an apparent density of 0.30 g/cc.
  • Sample products were prepared by adding the simethicone U.S.P. to the dextrose-maltodextrin co-agglomerate in the following amounts:
  • the samples were produced by mixing for 10 minutes to produce relatively free flowing simethicone/dextrose-maltodextrin co-agglomerate combinates.
  • the agglomerated dextrose-maltodextrin/simethicone U.S.P. combinates evidenced rapid defoaming characteristics, i.e. 2 seconds by the U.S.P. defoaming test.
  • Sucrose-maltodextrin co-agglomerates were prepared by fluid bed agglomeration as follows:
  • sucrose-maltodextrin co-agglomerate was effected by standard spray granulation techniques to produce an agglomerate for sorption trials. After processing, the sucrose-maltodextrin co-agglomerate particles had a particle size range of about -20/+60 mesh and an apparent density of 0.32 g/cc.
  • Sample products were prepared by adding simethicone U.S.P. to the sucrose-maltodextrin co-agglomerates in the following amounts:
  • the samples were produced by mixing for 10 minutes to produce relatively free flowing simethicone/sucrose-maltodextrin co-agglomerate combinates.
  • sucrose-maltodextrin co-agglomerate/simethicone combinates evidenced rapid defoaming characteristics, i.e. 2 seconds by the U.S.P. defoaming test.
  • Dextrose monohydrate-maltodextrin co-agglomerates were prepared as in Example 19 except that the pump solution was 5% povidone (K 29/32) U.S.P.
  • Sucrose-maltodextrin co-agglomerates were prepared as in example 20 except that the pump solution was 5% povidone (K 29/32) U.S.P.
  • Fructose-maltodextrin co-agglomerates were prepared by fluid bed agglomeration as follows:
  • a fructose-maltodextrin co-agglomerate was effected by standard spray granulation techniques to produce an agglomerate for sorption trials. After processing, the fructose-maltodextrin co-agglomerate particles had a particle size range of about -20+60 mesh and an apparent density of 0.42 g/cc.
  • Sample products were prepared by adding simethicone U.S.P. to the fructose-maltodextrin agglomerates in the following amounts:
  • the samples were produced by mixing for 10 minutes to produce relatively free flowing simethicone/fructose-maltodextrin co-agglomerate combinates.
  • the co-agglomerated fructose-maltodextrin/simethicone combinates evidenced rapid defoaming characteristics, i.e. 2 seconds by the U.S.P. defoaming test.

Abstract

A defoaming or antifoaming composition comprises a free flowing granular combinate of 50 to 90 weight percent of a water soluble carbohydrate-based agglomerate selected from the group consisting of maltodextrin agglomerates, maltodextrin/dextrose co-agglomerates, dextrose agglomerates, maltodextrin/sucrose co-agglomerates, maltodextrin/fructose co-agglomerates, sucrose agglomerates, fructose agglomerates, mannitol agglomerates, sorbitol agglomerates, agglomerates of hydrolyzed cereal solids, and agglomerates of corn syrup solids and about 10 to 50 weight percent of a liquid, nonaqueous, defoaming or antifoaming composition such as simethicone, hydrocarbon-based oils or silicone oils. The composition may be combined with one or more suitable excipients and prepared as a unit dosage in the form of a compressed tablet, filled capsule, packet, or granule for various defoaming applications.

Description

This is a continuation-in-part of co-pending application Ser. No. 423,877, filed Oct. 19, 1989, U.S. Pat. No. 5,073,384.
BACKGROUND OF THE INVENTION
This invention relates to a composition whereby fluid, nonaqueous, defoaming or antifoaming compositions are prepared as relatively free flowing granular combinates by intermixing them with a low density, highly porous, generally spherical, water soluble carbohydrate-based agglomerate such as maltodextrin to form adjuvant agglomerate combinates suitable for addition to products or processes wherever a rapid dispersion of the antifoaming or defoaming compound in an aqueous medium is indicated or desired.
The following listing and characterization of fluid, nonaqueous, antifoaming or defoaming compositions or compounds used in the practice of this invention is given to more precisely and particularly illustrate applicable compositions and compounds. The listing is not meant to limit or to specifically define the category of fluid, nonaqueous antifoaming or defoaming compositions, but rather to illustrate the scope of compositions applicable to the formation of the adjuvant agglomerate combinates.
Fluid hydrocarbon oil-based antifoaming or defoaming compositions containing a hydrocarbon-silicon copolymer, a hydrophobic filler, an organo-silicone surfactant, a hydrocarbon carrier oil, and, optionally, a silicone oil are disclosed in Kulcarni et al U.S. Pat. No. 4,514,319.
Fluid antifoaming or defoaming compositions comprising mineral oil-containing dispersed hydrophobic solid particles are well known in the art. The use of hydrophobic silica in fluid hydrocarbon oil based antifoam or defoaming compositions is disclosed in U.S. Pat. Nos. 3,076,768; 3,207,698; 3,388,073; and 3,714,068.
Fluid antifoaming or de foaming compositions comprising polyoxyethylene-polypropylene copolymers containing dispersed hydrophobic silica are disclosed in U.S. Pat. Nos 3,912,652 and 3,959,176.
Fluid antifoaming or defoaming compositions in a non-silicone oil and containing activated insitu hydrophobic silica particles are disclosed in U.S. Pat. No. 3,304,266.
Fluid antifoaming or de foaming compositions comprising a non-silicone water insoluble polyalkylene containing an alkoxysilicon chloride as the hydrophobic agent are disclosed in G.B. Pat. No. 1,166,877.
Fluid antifoaming or defoaming compositions employing the use of other intrinsically hydrophobic fillers in organic liquids are also well known. For example, Canadian Pat. No. 508,856 discloses N,N'-distearyl ethylene-diamide in white spirits, while the use of finely divided polyolefin polymers or polyesters dispersed in organic liquids is disclosed in U.S. Pat. No. 3,705,859. The use of fatty acid salts is disclosed in G.B. Pat. No. 1,267,482 and low molecular weight polyethylenes in combination with mineral oil and conventional organic nonionic emulsifiers is disclosed in U.S. Pat. No. 3,909,445.
Fluid antifoam or defoaming compositions comprising silicone oil-silica compounds containing organo silicone compounds to improve performance are disclosed in U.S. Pat. No. 3,691,091.
Fluid antifoam or defoaming compositions comprising the use of silicone-glycol copolymers in association with silicone oil and silica are disclosed in U.S. Pat. Nos. 3,746,653; 3,784,479; and 3,865,544.
Simethecone is a fluid antifoam or defoaming composition comprised of polydimethylsiloxane and silica suitably purified for its intended application. The preparation of liquid methylsiloxane polymers is delineated in U.S. Pat. No. 2,441,098, the disclosure of which is hereby incorporated by reference. The normal physical state of the simethicone is a water white to grey translucent, viscous, oil-like liquid with a density of 0.965-0.970 grams/cubic centimeter having demonstrable immiscibility with water and alcohol.
The medically established therapeutic use for simethicone is as an ointment base ingredient, topical drug vehicle, skin protectant, but most particularly as an antigas and antiflatulent agent for human application as well as an antibloating agent for veterinary (animal) application. A combinate of simethicone and calcium silicate useful for such latter applications is disclosed in Valentine et al. U.S. Pat. No. 4,906,478.
Various antigas or antifoam formulations, some containing simethicone, are disclosed in the prior art. The pharmaceutical and medicinal applications include Buehler et al U.S. Pat. No. 4,605,551; Prussin et al U.S. Pat. No. 3,326,754; Thompson et al U.S. Pat. No. 2,774,710; Rubino et al U.S. Pat. No. 4,115,553; Mitra U.S. Pat. No. 4,396,604; McVean et al U.S. Pat. No. 3,767,794; and Morris et al. U.S. Pat. No. 4,581,381. Non-pharmaceutical and non-medicinal antifoaming applications, such as powdered cleaning agents, are disclosed in Farminer et al U.S. Pat. No. 3,843,558; Llenado U.S. Pat. No. 4,180,485; Abel U.S. Pat. No. 4,264,465; Matheson et al U.S. Pat. No. 4,102,823; and European Patent 213,953 to Iley et al.
The preferred pharmaceutical solid dose delivery system for simethicone is a chewable tablet Such chewable tablets often contain antacid ingredients such as calcium carbonate, aluminum hydroxide, magnesium hydroxide and magnesium carbonate. The article by F. Maksond et al, "Simethicone use in Antacid Medications" as published in Manufacturing Chemist and Aerosol News, Vol. 47, No. 5, 1976, pp 36-36 discloses instability problems when simethicone is intermixed with aluminum or magnesium bases It is extremely troublesome to distribute the oil-like, viscous, water and alcohol immiscible simethicone expeditiously and uniformly throughout a tablet granulation prior to compression. It is equally difficult to be certain that the simethicone is in a sufficiently divided and dispersed state so that its action will be quick and effective when administered per os as a chewable or swallowable tablet or powder filled capsule.
Similar problems are encountered in distributing the other anitfoaming compositions in an expeditious and uniform manner in their liquid form.
Bearing in mind the problems and deficiencies of the prior art, it is therefore an object of the present invention to provide an improved dry, granular combinate for dispersing liquid antifoaming or defoaming compounds in an aqueous medium.
It is another object of the present invention to provide an effective simethicone containing granule for use in gastric antacid, antigas, and/or antiflatulent formulations.
It is a further object of the present invention to provide granules to be added to aqueous based products or processes wherever antifoaming or defoaming is indicated or desired.
It is yet another object of the present invention to provide a facile method of producing an effective simethicone-containing foam controlling granule utilizing conventional equipment at relatively low cost.
It is a further object of the present invention to provide a free flowing simethicone containing granule for use in conventional formulations which, after processing, retains acceptable defoaming activity.
It is yet another object of the present invention to provide an antifoaming or defoaming compound combinate which retains its properties and activity after extended storage and at elevated temperatures.
The present invention achieves these objects and satisfies the long felt need to overcome the difficulties in expeditious utilization of antifoaming or defoaming compounds in an aqueous medium A larger amount of antifoaming or defoaming compound can be incorporated with the carbohydrate-based agglomerate of this invention for dispersion than has previously been disclosed in the prior art. The carbohydrate-based agglomerate portion of the combinate makes it possible to effect rapid and uniform distribution of the antifoaming/defoaming compound by simple mixing.
SUMMARY OF THE INVENTION
The present invention relates to fluid, nonaqueous, antifoaming or defoaming compositions prepared as a dry, solid, flowable granule by intermixing a fluid, nonaqueous, antifoaming or defoaming compound or composition and a low density, highly porous, generally spherical, water soluble, carbohydrate-based agglomerate such as a maltodextrin agglomerate, maltodextrin/dextrose co-agglomerate, dextrose agglomerate, maltodextrin/sucrose co-agglomerate, maltodextrin/fructose co-agglomerate, sucrose agglomerate, fructose agglomerate, mannitol agglomerate, sorbitol agglomerate, agglomerated hydrolyzed cereal solids, agglomerated corn syrup solids, and combinations thereof to form a functional combinate. The preferred agglomerate is maltodextrin, a low conversion starch hydrolyzate having a D.E. (dextrose equivalent) less than 20. The fluid, nonaqueous, antifoaming or defoaming compound or composition is added, in liquid form, to the water soluble carbohydrate agglomerate and blended to form a uniform, relatively free flowing combinate in which the base structure is water soluble. The combinate may be readily added to conventional products and processes where a rapid dispersion of the fluid, nonaqueous, antifoaming or defoaming compound is indicated. It is preferred that the fluid, nonaqueous, antifoaming or defoaming combinate have from about 10 to 50 weight percent antifoaming or defoaming composition or compound, and from about 90 to 50 weight percent carbohydrate agglomerate. It is more preferred that the fluid, nonaqueous, antifoaming or defoaming composition or compound represents 30 weight percent and the water soluble, highly porous, low density, generally spherical, carbohydrate agglomerate represents 70 weight percent of the admixture combinate. Unless otherwise specified, all references to percentages are in weight percent. The terms "antifoaming" and "defoaming" are generally used interchangably throughout the specification. The antifoaming compositions or compounds useful in this invention may be any of those discussed in the background section of the specification, particularly simethicone (for pharmaceutical and medicinal applications) and silicone, mineral or other oils containing silica.
DETAILED DESCRIPTION OF THE INVENTION
The preferred fluid, nonaqueous, antifoaming or defoaming compound prepared as a flowable granule used herein is simethicone and, more specifically, simethicone U.S.P. as defined in the United States Pharmacopeia, incorporated herein by reference, which has the chemical structure:
(CH.sub.3).sub.3 Si [OSi(CH.sub.3).sub.2 ].sub.n CH.sub.c +SiO.sub.2
and the chemical formula:
Alpha(trimethylsilyl)-omega-methylpoly[oxy (dimethylsilylene)] in mixture with silicon dioxide.
Simethicone is a mixture of fully methylated linear siloxane polymers containing repeating units of the formula [-(CH3)2 SiO--]n, stablilized with trimethylsiloxy end-blocking units of the formula [(CH3)3 SiO--], and silicon dioxide. It is preferred to contain not less than 90.5 percent and not more than 99.0 percent of polydimethylsiloxane ([-(CH3)2 SiO--]n)), and not less than 4.0 percent and not more than 7.0 percent of silicon dioxide.
Maltodextrins are composed of water soluble glucose polymers obtained from the reaction of starch with acid and/or enzymes in the presence of water. The starch is hydrolyzed to produce hydrolyzate products containing sugars. The production of starch hydrolyzates, and, in particular, low conversion starch hydrolyzates, is described in U.S. Pat. Nos. 3,663,369; 3,849,194; 4,298,400; and U.S. Pat. No. Re. 30,880, the disclosures of which are hereby incorporated by reference. The starch used for the preparation of maltodextrins can be any of a variety of commercially available starches such as maize, potato, or tapioca. Further, the U.S. Food and Drug Administration defines maltodextrins, (C6 H12 O5)n H2 O, as nonsweet nutritive saccharide polymers that consist of D-glucose units linked primarily by alpha 1-4 bonds and having a D.E. (total reducing sugars expressed as dextrose equivalents) of less than 20.
Maltodextrin is usually produced as a fine, white powder and is generally recognized as safe (gras) as a direct human food ingredient at levels consistent with good manufacturing practices. Agglomerated maltodextrin is available from a variety of commercial sources and in a larger, more porous, faster dissolving, and more free flowing form.
The preferred commercial source for low density, highly porous, generally spherical, water soluble maltodextrin agglomerates is the product family sold by Valentine Enterprises, Inc. of Lawrenceville, Georgia under the trademark VELite. The preferred VELite is VELite 20/40 which is prepared from 9-12 D.E. maltodextrin, derived from corn starch, and having the following typical analysis: a particle size distribution of about 100 percent less than 850 microns and a majority (98 percent) greater than 420 microns; an apparent density of from about 10 to about 12 pounds per cubic foot; a maximum moisture content of 6 percent; and a total surface area of between about 9.5±1 and 10.5±1 square meters per gram as determined by a 3 point nitrogen B.E.T. analysis.
A preferred embodiment of the present invention is directed toward the admixture of simethicone and maltodextrin agglomerate to form a uniform, relatively free flowing, granular combinate containing 30 percent by weight of simethicone and 70 percent by weight maltodextrin for incorporation into tablets or for use "as is" for addition to an aqueous medium whenever antifoaming or defoaming is desired.
The 30 percent by weight simethicone/70 percent by weight agglomerated maltodextrin combinate is readily formulated into, for example, antacid or antigas formulations by adding the 30% simethicone active granule combinate to a compressible granule base without sacrificing or compromising the compressibility of the base granule. It is a further feature of the present invention that the simethicone is contained in or on a water soluble agglomerated maltodextrin and, as such, is available and stable in the formulations
The process of the present invention may be practiced by obtaining desired quantities of agglomerated maltodextrin, such as VELite 20/40 available from Valentine Enterprises, Inc., and consumable simethicone, such as Sentry simethicone available from Union Carbide Corporation. These two starting materials are then mixed employing low shear mixing such as that encountered in a planetary, ribbon or plow mixer in order to effect a uniform combinate agglomerate suitable for use without further processing
The relative amounts of the simethicone and the maltodextrin agglomerate may range from about 10 to about 50 weight percent simethicone and from about 90 to about 50 percent by weight of agglomerated maltodextrin This range of the ingredients has been found to provide optimum performance of the final simethicone/agglomerated maltodextrin combinate. If more than about 50% by weight percent simethicone is used, the product tends to be too moist and exhibits poor flow. If more than 90% by weight of agglomerated maltodextrin is used the product tends to exhibit non-uniform distribution of the simethicone. Exceeding either extreme will tend to result in less than optimum product performance, most particularly in final tableting. A 30% by weight simethicone to 70% by weight agglomerated maltodextrin ratio represents the preferred product performance whether for tableting or for general purpose aqueous antifoaming or defoaming application.
The combinate maltodextrin and the antifoaming or defoaming composition preferably has a particle size in which essentially all of the particles are less than about 20 mesh (-20 mesh) and greater than 40 mesh (+40 mesh) and a total typical surface area of less than about 1 square meter per gram.
While not wishing to be limited to a particular combinate formation theory, it is believed that sorption, i.e., absorption or adsorption, takes place during the blending whereupon the liquid simethicone or other defoaming compound or composition (the sorbate) is taken up by the agglomerated maltodextrin or other carbohydrate (the sorbent) It is further theorized that the rapid water solubility of the carbohydrate moiety of the combinate helps to explain the speed of action of the product since the simethicone or other defoaming compound is liberated in dispersed particles.
The antifoaming and/or defoaming containing adjuvant combinate granules of the present invention have been found to be equal in foam inhibition and foam breaking to an equivalent quantity of the starting simethicone. This means, for example, that 66.7 mg of the 30% simethicone combinate granule is equivalent in performance to 20 mg of simethicone The equivalent performance is demonstrable even after the simethicone/agglomerated maltodextrin combinates have been stored at 45.C for a period of two months.
Defoaming activity of the simethicone/agglomerated maltodextrin combinate or of the monadic simethicone or of the simethicone/agglomerated maltodextrin combinate contained as part of an antacid and/or antigas tablet, i.e., foam breaking (defoaming) and/or foam inhibition (antifoaming), may be defined and measured by the procedure given in the United States Pharmacopeia. First, a foaming solution and test preparation are prepared as follows:
Foaming solution--dissolve 1 g of octoxylnol 9 in 100 ml of distilled water.
Test preparation--transfer 200 mg of simethicone to a 60 ml bottle, add 50 ml of tertiary butyl alcohol, cap the bottle, and shake vigorously. The preparation may be warmed slightly, if necessary, to effect the solution.
The procedure for determining defoaming activity as follows: For each test, a clean, unused 250 ml glass jar fitted with a 50 mm cap should be employed. Add, dropwise, 0.5 ml of the test preparation (i.e., equivalent to 2.0 mg simethicone) to the 250 ml glass gar containing 100 ml of the foaming solution. Cap the jar and clamp it in an upright position on a wrist action shaker. Employing a radius of 13.3±0.4 cm (measured from the center of the shaft to the center of the bottle), shake for 10 seconds through an arc of 10° at a frequency of 300±30 strokes per minute. Record the time required for the foam to collapse. The time, in seconds, for foam collapse is determined at the instant the first portion of foam-free liquid surface appears, measured from the end of the shaking period. This time is the defoaming activity time and should not exceed 15 seconds for acceptable simethicone activity. To evaluate the simethicone/maltodextrin agglomerate combinate activity, a quantity of the combinate equivalent to 2.0 mg of simethicone (i.e. 6.7 mg of a 30% simethicone/maltodextrin combinate) is introduced directly into the test solution and the defoaming time is determined as described above.
There is no fixed quantity of simethicone, supplied by the simethicone/maltodextrin combinate, which must be used to prepare an antacid/antigas preparation. A typical formulation would contain:
Aluminum hydroxide dried gel 200 mg
Magnesium hydroxide, dried 200 mg
Simethicone/maltodextrin combinate 85 mg
Not only will the simethicone/maltodextrin agglomerate release the simethicone by virtue of the water solubility of the maltodextrin moiety, but, when the combinate is added to tablet granulations, no deleterious compression effects are evidenced. Whether or not the foam inhibition attributes of the simethicone/maltodextrin agglomerate combinates are measured from the combinate alone or combined with standard antacid ingredients, in tablet or granule form, defoaming results are obtained which are equivalent to simethicone alone. Significantly, the same defoaming test results are evidenced even after accelerated storage stability at 37° C., and 60° C., for periods up to 2 months.
Therefore, the simethicone/agglomerated maltodextrin adjuvant combinate demonstrates itself as a uniquely stable product capable of being combined with antacid ingredients such as aluminum and magnesium bases in a single layer tablet without compromising the acid neutralizing or the defoaming or antifoaming capacity of the dose form.
Standard excipients can be combined with the simethicone/agglomerated maltodextrin combinate granules in order to prepare pharmaceutical preparations in the form of tablets or capsules. In order to prepare tablets, the simethicone/agglomerated maltodextrin combinate may be combined and blended with standard compression granules comprising, for example, calcium carbonate, dextrose, sucrose, mannitol, sorbitol, aluminum hydroxide dried gel, magnesium hydroxide, any compatible spray dried flavor, and magnesium stearate. The blended preparation may be pressed by standard, well known techniques to form tablets of desired weight, potency, and hardness. A single layer homogeneous unit dosage tablet or capsule may preferably contain from about 80 mg to about 280 mg of the simethicone/agglomerated maltodextrin combinate (i.e., from about 25 to about 80 mg of simethicone), but any desired amount outside this range may be used for specific applications.
A general ranking order of the water soluble carbohydrate agglomerate/simethicone U.S.P. combinates, beginning with the most satisfactory, is as follows:
maltodextrin agglomerate
maltodextrin/dextrose co-agglomerate
dextrose agglomerate
maltodextrin/sucrose co-agglomerate
maltodextrin/fructose co-agglomerate
sucrose agglomerate
fructose agglomerate
Additionally, mannitol agglomerate, sorbitol agglomerate, agglomerated hydrolyzed cereal solids, and agglomerated corn syrup solids, i.e., those having a D.E. of 20 or greater, may be employed. Any of these agglomerates, either alone or in combination, may be obtained, combined with simethicone, and utilized in the same manner as described above for the embodiment utilizing agglomerated maltodextrin alone. The combinate will preferably comprise at least about 50 weight percent, and up to about 90 weight percent, of the carbohydrate-based agglomerate. The particle size of substantially all of the carbohydrate- based agglomerate is preferably less than about 850 microns, with the majority (up to about 98 wt. %) greater than about 420 microns.
The maltodextrin/dextrose, maltodextrin/sucrose and maltodextrin/fructose co-agglomerates are preferably prepared by well known fluid bed agglomeration techniques in which maltodextrin in solution (e.g., a 10% aqueous solution or 5% povidone (K 29/32) U.S.P. solution) is combined with the dextrose, sucrose or fructose in an agglomerator bed. The specific ratio of maltodextrin to dextrose, sucrose or fructose may vary according to use, and may be determined without undue experimentation. The co-agglomerate is produced by standard spray granulation techniques. The carbohydrate-based agglomerates will preferably have a particle size range of less than 20 mesh and greater than 60 mesh (U.S. Standard), more preferably less than 20 mesh and greater than 40 mesh.
Other antifoaming compositions or compounds useful in this invention with maltodextrin or any of the other aforementioned carbohydrate-based agglomerates may be any of those organic liquid defoamers discussed in the background section of the specification, including hydrocarbon-based liquids, such as mineral oils and other hydrocarbon oil-based liquids, and silicone oils. These liquids may optionally contain silica The carbohydrate-based agglomerate and liquid antifoaming composition may be mixed by low shear mixing techniques in a planetary, ribbon or plow mixer in order to effect a uniform combinate agglomerate suitable for use without further processing. The combinate will preferably comprise at least about 10 weight percent, and no greater than about 50 weight percent, of the liquid antifoaming composition. Lower amounts of liquid antifoaming composition may be employed, although there tends to be non-uniform distribution of the antifoaming agent in amounts less than about 10 wt. %. The particle size range of the combinate is not substantially different from the particle size range of the carbohydrate-based agglomerate prior to mixing with the liquid antifoaming composition.
The combinate of carbohydrate-based agglomerate and antifoaming or defoaming composition of the present invention may be used by contacting the aqueous medium in which defoaming is desired with the combinate. In the case of simethicone for use in pharmaceutical or medicinal applications, the carbohydrate-based agglomerate/simethicone combinate would be ingested by the user in tablet, capsule, granule or other unit dose form to provide antigas and/or antiflatulent treatment. In the case of other defoaming compositions or compounds, the combinate may be prepared as granules in bulk filled packages or in unit dose forms such as compressed tablets or water soluble pouches for application to the aqueous medium.
Acid neutralizing capacity may be measured by the procedure set forth in the United States Pharmacopeia. The analytical procedure, to be conducted at 37° C.±3° C., is as follows:
First, standardize a pH meter using 0.05M potassium biphthalate and 0.05M potassium tetraoxalate standardizing buffers Next, transfer 100 ml of water to a 250 ml beaker containing a 40×10 mm magnetic stirring bar that is coated with solid perfluorocarbon and has a spin ring at its center. The power setting of the magnetic stirrer should be adjusted to produce a stirring rate of 300 rpm when the stirring bar is centered in the beaker, as determined by a suitable optical tachometer.
The test preparations are prepared as follows: powders--transfer the accurately weighed portion of the substance to be tested to a 250 ml beaker, add 70 ml of water, and mix in the magnetic stirrer for one minute. Tablets--weigh not less than 20 tablets and determine the average tablet weight Grind the tablets to a powder that passes through a no. 20 sieve and is retained on a 100 sieve. Mix the material on the no. 100 sieve to obtain a uniform mixture, transfer an accurately weighed quantity of it, equivalent to the minimum dosage, to a 250 ml beaker. If wetting is desired, add not more than 5 ml of alcohol (neutralized to an apparent pH of 3.5), and mix to wet the specimen thoroughly. Add 70 ml of water, and mix on the magnetic stirrer for one minute.
The test procedure is as follows: Pipet 30.0 ml of 1.0N hydrochloric acid vs into the test preparation prepared earlier while continuing to stir with the magnetic stirrer. Magnetic stirring should continue for 15 minutes (accurately timed) after the addition of the acid. Thereafter, begin to titrate immediately, in a period not to exceed 5 minutes, the excess hydrochloric acid with 0.5N sodium hydroxide vs to attain a stable pH of 3.5 for not less than 15 seconds. Calculate the number of mEq of acid consumed per gram of the substance tested. Each ml of 1.0N hydrochloric acid is equal to 1 mEq of acid consumed.
EXAMPLES
The following illustrative examples are given to more precisely and particularly illustrate the specific details of the present invention. Equivalent procedures and quantities will occur to those skilled in the art and therefore, the following examples are not meant to define the limits of the present invention, these being defined by the scope of the appended claims.
EXAMPLE 1
Starting Materials
Simethicone U.S.P.
(Sentry simethicone) 40 g
Agglomerated Maltodextrin
(VELite 20/40) 160 g
The VELite 20/40 was charged into a 1000 cc stainless steel beaker and the simethicone was added. The total materials were blended with a spatula until uniform. The resulting granular combinate was lump free, less than 850 microns (20 mesh) in size, and contained 20% simethicone.
A portion of the sample was used to prepare chewable antacid tablets containing 125 mg of the simethicone/agglomerated maltodextrin combinate per tablet (equivalent to 25 mg of simethicone per tablet).
EXAMPLE 2
Starting materials:
Simethicone U.S.P.
(Sentry simethicone) 300 g
Agglomerated maltodextrin
(VELite 20/40) 700 g
The VELite 20/40 was charged into a 5000 ml stainless steel beaker and the simethicone was added. The total materials were blended with a spatula until uniform. The resulting granular combinate was lump free, less than 850 microns (20 mesh) in size and contained 30% simethicone.
A portion of the sample was used to prepare chewable antacid tablets containing 84 mg of the simethicone/ag-glomerated maltodextrin combinate per tablet (equivalent to 25 mg simethicone per tablet).
EXAMPLE 3
Starting materials:
Simethicone U.S.P.
(Sentry simethicone) 400 g
Agglomerated maltodextrin
(VELite 20/40) 600 g
VELite 20/40 was charged into a 5000 ml stainless steel beaker and the simethicone was added. The total materials were blended with a spatula until uniform. The resulting granular combinate was lump free, less than 850 microns (20 mesh) in size and contained 40% simethicone.
A portion of the sample was used to prepare chewable antacid tablets containing 63 mg of the simethicone/agglomerated maltodextrin combinate per tablet (equivalent to 25 mg of simethicone per tablet).
EXAMPLE 4
Starting materials:
Simethicone U.S.P.
(Sentry simethicone) 1.5 kg
Agglomerated maltodextrin
(VELite 20/40) 3.5 kg
VELite 20/40 was charged into a 5 gallon stainless steel Hobart mixer and the simethicone was added. The mixer was energized and mixing was effected for a period of 10 minutes. The resulting granular combinate was found to be lump free, less than 850 microns (20 mesh) in size, and contained 30% simethicone.
A portion of the product was used to prepare chewable antacid tablets containing 84 mg of the simethicone/agglomerated maltodextrin combinate per tablet (equivalent to 25 mg of simethicone per tablet).
EXAMPLE 5
Starting materials:
Simethicone U.S.P.
(Sentry simethicone) 30 kg
Agglomerated maltodextrin
(VELite 20/40) 70 kg
VELite 20/40 was charged into a 20 cubic foot capacity ribbon blender and the simethicone was added. The mixer was energized and mixing was effected for a period of 10 minutes. The resulting granular combinate was discharged into drums and found to be lump free, less than 850 microns (20 mesh) in size, and contained 30% simethicone.
A portion of the product was used to prepare chewable antacid tablets containing 84 mg of the simethicone/agglomerated maltodextrin combinate per tablet (equivalent to 25 mg of simethicone per tablet).
EXAMPLE 6
Starting materials:
Simethicone U.S.P.
(Sentry simethicone) 3.0 kg
Agglomerated maltodextrin
(VELite 20/40) 7.0 kg
VELite 20/40 was charged into a 3 cubic foot capacity stainless steel Lodige blender and the simethicone was added. The plow blades of the mixer were energized and mixing effected for a period of 10 minutes. The resulting granular combinate was discharged into a drum and found to be lump free, less than 850 microns (20 mesh) in size, and contained 30% simethicone.
A portion of the product was used to prepare chewable antacid tablets containing 84 mg of the simethicone/agglomerated maltodextrin combinate per tablet (equivalent to 25 mg of simethicone per tablet).
EXAMPLE 7
Starting materials:
Simethicone U.S.P.
(Sentry simethicone) 90 kg
Agglomerated maltodextrin
(VELite 20/40) 210 kg
VELite 20/40 was charged into a 1200 1 stainless steel Lodige blender and the simethicone added. The plow blades of the mixer were energized and mixing was effected for a period of 10 minutes. The resulting granular combinate was discharged into drums and found to be lump free, less than 850 microns (20 mesh) in size, and contained 30% simethicone.
A portion of the product was used to prepare chewable antacid tablets containing 84 mg of the simethicone/agglomerated maltodextrin combinate per tablet (equivalent to 25 mg of simethicone per tablet).
EXAMPLE 8
Each of the simethicone/maltodextrin combinates produced in Examples 1-7 were evaluated in the following manner:
A quantity of the simethicone/agglomerated maltodextrin combinates were evaluated in the standard U.S.P. defoaming test at a level equivalent to 2 mg of simethicone.
______________________________________                                    
            Quantity of the                                               
                         Simethicone                                      
                                    Time to                               
Example     Combinate Used                                                
                         Equivalent Defoam                                
No.         (mg)         (mg)       (sec.)                                
______________________________________                                    
 1          10.0         2          3-4                                   
 2          6.7          2          3-4                                   
 3          5.0          2          3-4                                   
 4          6.7          2          3-4                                   
 5          6.7          2          3-4                                   
 6          6.7          2          3-4                                   
 7          6.7          2          3-4                                   
Controls-                                                                 
Simethicone U.S.P                                                         
            2.0          2          3-4                                   
Simethicone U.S.P                                                         
            6.7          2          3-4                                   
(as 30% emulsion)                                                         
______________________________________                                    
The data suggests that equivalent quantities of simethicone derived from either the simethicone/maltodextrin combinates or from the simethicone U.S.P. or from the commercial 30% silicone emulsion demonstrate equivalent defoaming action
Stability samples stored for periods up to 2 months at 37° C. and 45° C. evidence no change in defoaming times and are unchanged in physical appearance.
It is observed that when the simethicone/agglomerated maltodextrin combinates (Examples 1-7) are added to water at a level calculated to liberate 100 mg of simethicone, the maltodextrin moiety dissolves in the water and the silicone forms a surface oil layer.
EXAMPLE 9
Each of the simethicone/agglomerated maltodextrin combinates produced in Examples 1-7 were evaluated in a typical chewable antacid tablet formulation as follows (all values in mg):
______________________________________                                    
       EX.  EX.    EX.     EX.  EX.   EX.  EX.                            
       1    2      3       4    5     6    7                              
______________________________________                                    
Compression                                                               
         661    702    723   702  702   702  702                          
Dextrose                                                                  
Aluminum 200    200    200   200  200   200  200                          
Hydroxide                                                                 
Dried Gel                                                                 
Magnesium                                                                 
         200    200    200   200  200   200  200                          
Hydroxide                                                                 
Powder                                                                    
Simethicone/                                                              
         125     84     63    84   84    84   84                          
Maltodextrin                                                              
Combinate                                                                 
Equivalent to                                                             
25 mg of                                                                  
Simethicone                                                               
Spray Dried                                                               
          5      5      5     5    5     5    5                           
Flavor                                                                    
Magnesium                                                                 
          9      9      9     9    9     9    9                           
Stearate                                                                  
______________________________________                                    
Each of the formulations were produced as single layer 9/16 inch, flat-faced, beveled edge chewable tablets, compressed at a weight of 1200 mg and a hardness of 7-9 Kp. Tablets without simethicone were also produced under the same conditions to serve as a control.
All of the tablets produced for the trials satisfied the criteria for taste acceptance, mouth feel, hardness, friability, and acid neutralization.
Each of the tablet formulations were evaluated for defoaming in accordance with the U.S.P. method for antacid tablets with the following results:
______________________________________                                    
Test Storage Condition:                                                   
               Initial      45° for 2 Months                       
Tablets produced with                                                     
Simethicone/Malto-                                                        
               Time to Defoam                                             
                            Time to Defoam                                
dextrin Combinate From:                                                   
               (In Seconds) (In Seconds)                                  
______________________________________                                    
EX. 1          5-7          5-7                                           
EX. 2          5-7          5-7                                           
EX. 3          5-7          5-7                                           
EX. 4          5-7          5-7                                           
EX. 5          5-7          5-7                                           
EX. 6          5-7          5-7                                           
EX. 7          5-7          5-7                                           
Control        No Defoaming No Defoaming                                  
______________________________________                                    
After storage at 45° C. for a period of two months all of the tablets still satisfied the acid neutralization criteria for extra strength antacid tablets.
EXAMPLE 10
Calcium carbonate-based antacid tablets were prepared with and without simethicone/agglomerated maltodextrin combinate as follows (all values in mg):
______________________________________                                    
                   With      Without                                      
Formula:           Combinate Combinate                                    
______________________________________                                    
Calcium Carbonate  1000      1000                                         
Compression Granules                                                      
(53% Calcium Carbonate                                                    
47% Dextrose)                                                             
Compression Dextrose                                                      
                   104       188                                          
Simethicone/Agglomerated                                                  
                    84       --                                           
Maltodextrin Combinate                                                    
From Example #7                                                           
Spray Dried Flavor  3         3                                           
Magnesium Stearate  9         9                                           
______________________________________                                    
Each of the formulations were processed into single layered 9/16 inch, flat faced, beveled edge chewable tablets compressed at a weight of 1200 mg and a hardness of 7-9 Kp.
Each of the chewable tablet formulations produced for the trials satisfied the criteria for chewable tablets with respect to taste acceptance, mouth feel, hardness, friability, and acid neutralization.
Each of the chewable tablet formulations were evaluated for defoaming in accordance with the U.S.P. method for antacid tablets with the following results:
______________________________________                                    
                    Defoaming Time                                        
______________________________________                                    
Formulation With Combinate                                                
                      4-6 sec.                                            
Formulation Without Combinate                                             
                      No Defoaming                                        
______________________________________                                    
EXAMPLE 11
Magaldrate (aluminum magnesium hydrate with magnesium sulfate) based antacid tablets were prepared with and without simethicone/agglomerated maltodextrin combinate as follows (all values in mg):
______________________________________                                    
                   With      Without                                      
Formula            Combinate Combinate                                    
______________________________________                                    
Dextrose Compression                                                      
                   702       786                                          
Granules                                                                  
Magaldrate         400       400                                          
Simethicone/Agglomerated                                                  
                    84       --                                           
Maltodextrin Combinate                                                    
From Example 7                                                            
Spray Dried Flavor  5         5                                           
Magnesium Stearate  9          9,                                         
______________________________________                                    
Both of the formulations were processed into single layered 9/16 inch, flat-faced, beveled edge chewable antacid tablets at a weight of 1200 mg and a hardness of 7-9 Kp.
The chewable antacid tablets produced for the trials, i.e., with and without the simethicone/agglomerated maltodextrin combinate, satisfied the criteria for taste acceptance, mouth feel, hardness, friability, and acid neutralization.
Each of the formulations were evaluated for defoaming in accordance with the U.S.P. method for antacid tablets with the following results:
______________________________________                                    
                  Defoaming Time                                          
______________________________________                                    
Formulation With Combinate                                                
                    4-6 sec.                                              
Formulation Without Combinate                                             
                    No Defoaming                                          
______________________________________                                    
Example 12
An antigas chewable tablet formulation was prepared to demonstrate the utility of simethicone/agglomerated maltodextrin combinate in such an application as follows (all values in mg):
Compression Dextrose 946
Simethicone/Agglomerated
Maltodextrin Combinate
From Example 7 240
Spray Dried Flavor 5
Magnesium Stearate 9,
The formulation was produced as a single layered 9/16 inch, flat-faced, beveled edged chewable tablet compressed at a weight of 1200 mg and a hardness of 7-9 Kp.
The tablets produced satisfied the criteria for taste acceptance, mouth feel, hardness, friability, and foam suppression.
EXAMPLE 13
To further illustrate the utility of the invention, a general standard fluid silicone oil defoamer/agglomerated maltodextrin combinate was prepared
Starting Materials Used
Fluid Silicone Oil
Containing Silica 1 05 kg
Agglomerated Maltodextrin
(VELite 20/40) 2.45 kg
The VELite 20/40 was charged into a 5 gallon stainless steel Hobart mixer and the fluid silicone oil containing silica added. The mixer was energized and mixing was effected for a period of 10 minutes. The resulting granular combinate was lump free, less than 850 microns (20 mesh) in size and contained 30% of the fluid silicone oil containing silica defoaming compound.
The above described combinate demonstrated satisfactory antifoaming/defoaming properties when subjected to the standard U.S.P. defoaming test.
EXAMPLE 14
To further illustrate the utility of the invention, a general standard fluid mineral oil defoamer/agglomerated maltodextrin combinate was prepared as follows:
Starting Materials Used:
Fluid Mineral Oil
Containing Silica 1.05 kg
Agglomerated Maltodextrin
(VELite 20/40) 2.45 kg
The VELite 20/40 was charged into a 5 gallon stainless steel Hobart mixer and the fluid mineral oil containing silica added. The mixer was energized and mixing was effected for a period of 10 minutes. The resulting granular combinate was lump free, less than 850 microns (20 mesh) in size and contained 30% of the fluid silicone oil containing silica defoaming compound.
The above described combinate demonstrated satisfactory antifoaming/defoaming properties when subjected to the stardard U.S.P. defoaming test.
The following Examples illustrate the use of other water soluble carbohydrate-based agglomerates in combination with simethicone.
EXAMPLE 15
A granular or agglomerated product comprised of dextrose monohydrate 95% and maltodextrin (10 D.E.) 5% was obtained from Corn Products Corporation under the trademark Unidex 2034. The Unidex product had a particle size range of -20/+60 mesh and an apparent bulk density of 0.58 g/cc.
Sample products were prepared by adding simethicone U.S.P. to the Unidex dextrose monohydrate/maltodextrin mixture in the following amounts, followed by 10 minute mixing to produce relatively free flowing Unidex product/simethicone combinates:
______________________________________                                    
             1       2         3                                          
______________________________________                                    
Unidex 2034    80% w/w   70% w/w   60% w/w                                
(-20/+60 Mesh)                                                            
Sentry Simethicone U.S.P.                                                 
               20% w/w   30% w/w   40% w/w                                
(Union Carbide)                                                           
______________________________________                                    
The Unidex product/simethicone U.S.P. combinates evidenced rapid defoaming characteristics, i.e., 2 seconds by the U.S.P. test.
Standard antacid tables containing 200 mg of aluminum hydroxide, 200 mg of magnesium hydroxide, and 25 mg of simethicone, in the form of the Unidex product/simethicone combinate, also evidenced satisfactory defoaming characteristics when tested by the U.S.P. defoaming method, i.e. 6-8 seconds.
EXAMPLE 16
Dextrose monohydrate-maltodextrin agglomerates were prepared by fluid bed agglomeration as follows:
In the fluid bed agglomerator bed:
Dextrose Monohydrate 95%
(Clintose `F` Granulation,
Archer Daniels Midland)
In aqueous solution:
Maltodextrin, 10 D.E. 5%
(Maltrin M-100,
Grain Processing Corporation)
The dextrose monohydrate-maltodextrin co-agglomerate was processed by standard spray granulation techniques to produce an agglomerate for sorption trials. After processing, the agglomerated dextrose-maltodextrin particles had a particle size range of about -20/+60 mesh and an apparent density of 0.42 g/cc.:
Sample products were prepared by adding the simethicone U.S.P. to the agglomerated dextrose-maltodextrin in the following amounts (percentages by weight):
______________________________________                                    
                  1     2        3                                        
______________________________________                                    
Dextrose/maltodextrin                                                     
                    80%     70%      60%                                  
Co-agglomerate (-20/+60 Mesh)                                             
Sentry Simethicone U.S.P.                                                 
                    20%     30%      40%                                  
(Union Carbide)                                                           
______________________________________                                    
The samples were mixed for 10 minutes to produce relatively free flowing simethicone/dextrose-maltodextrin agglomerate combinates.
The agglomerated dextrose-maltodextrin/simethicone combinates evidenced rapid defoaming characteristics, i.e., 2 seconds by the U.S.P. defoaming test.
Standard single layer antacid tablets containing 200 mg of aluminum hydroxide, 200 mg of magnesium hydroxide, and 25 mg of simethicone, in the form of the dextrose agglomerate/simethicone U.S.P. combinate, evidenced rapid defoaming characteristics, i.e. 6-8 seconds by the U.S.P. defoaming test.
EXAMPLE 17
Sucrose-maltodextrin co-agglomerates were prepared by fluid bed agglomeration as follows:
In fluid bed agglomerator bed:
Milled sucrose (-50 Mesh) 95%
In pump solution:
Maltodextrin, 10 D.E.
(as 10% aqueous solution) 5%
The sucrose-maltodextrin co-agglomerate was effected by standard spray granulation techniques to produce an agglomerate for sorption trials. After processing, the sucrose-maltodextrin particles had a particle size range of about -20/+60 mesh and an apparent density of 0.45 g/cc.
Sample products were prepared by adding simethicone U.S.P. to the sucrose-maltodextrin co-agglomerates in the following amounts:
______________________________________                                    
               1        2      3                                          
______________________________________                                    
Sucrose-maltodextrin                                                      
                 80%        70%    60%                                    
co-agglomerate                                                            
(-20/+60 Mesh)                                                            
Sentry Simethicone U.S.P.                                                 
                 20%        30%    40%                                    
(Union Carbide)                                                           
______________________________________                                    
The samples were mixed for 10 minutes to produce relatively free flowing simethicone/sucrose-maltodextrin agglomerate combinates.
The agglomerated sucrose-maltodextrin/simethicone combinates evidenced rapid defoaming characteristics, i.e., 2 seconds by the U.S.P. defoaming test.
Standard single layer chewable antacid tablets containing 200 mg aluminum hydroxide, 200 mg magnesium hydroxide, and 25 mg of simethicone in the form of the sucrose-maltodextrin co-agglomerate/simethicone combinate, also evidenced satisfactory defoaming characteristics when tested by the U.S.P. defoaming method, i.e., 6-8 seconds.
EXAMPLE 18
Sucrose 10x-maltodextrin co-agglomerates were prepared by fluid bed agglomeration as follows. Sucrose 10X is a widely available finely milled sucrose which contains 2% corn starch to assure free-flow:
In fluid bed agglomerator bed:
Sucrose 10x 95%
In pump solution:
Maltodextrin, 10 D.E. 5%
(as aqueous solution)
The sucrose 10X-maltodextrin co-agglomerate was effected by standard spray granulation techniques to produce an agglomerate for sorption trials. After processing, the agglomerated sucrose 10X-maltodextrin particles had a particle size range of about -20/+60 mesh and an apparent density of 0.40 g/cc.
Sample products were prepared by adding the simethicone U.S.P. to the sucrose 10X-maltodextrin co-agglomerate in the following amounts:
______________________________________                                    
                  1     2        3                                        
______________________________________                                    
Sucrose 10X-maltodextrin                                                  
                    80%     70%      60%                                  
Co-agglomerate (-20/+60 Mesh)                                             
Sentry Simethicone U.S.P.                                                 
                    20%     30%      40%                                  
(Union Carbide)                                                           
______________________________________                                    
The samples were produced by mixing for 10 minutes to produce relatively free flowing simethicone/sucrose 10X-maltodextrin agglomerate combinates.
The agglomerated sucrose 10X-maltodextrin/simethicone U.S.P. combinates evidenced rapid defoaming characteristics, i.e. 2 seconds by the U.S.P. defoaming test.
EXAMPLE 19
Dextrose monohydrate-maltodextrin co-agglomerates were prepared by fluid bed agglomeration as follows:
In fluid bed agglomerator bed:
Dextrose monohydrate 42.5%
Maltodextrin, 10 D.E. 42.5%
In pump solution:
Maltodextrin, 10 D.E. 5.0%
(in aqueous solution)
The dextrose monohydrate-maltodextrin co-agglomerate was effected by standard spray granulation techniques to produce an agglomerate for sorption trials. After processing, the dextrose-maltodextrin co-agglomerate particles had a particle size range of about -20/+60 mesh and an apparent density of 0.30 g/cc.
Sample products were prepared by adding the simethicone U.S.P. to the dextrose-maltodextrin co-agglomerate in the following amounts:
______________________________________                                    
                  1     2        3                                        
______________________________________                                    
Dextrose-maltodextrin                                                     
                    80%     70%      60%                                  
Co-agglomerate (-20/+60 Mesh)                                             
Sentry simethicone U.S.P.                                                 
                    20%     30%      40%                                  
(Union Carbide)                                                           
______________________________________                                    
The samples were produced by mixing for 10 minutes to produce relatively free flowing simethicone/dextrose-maltodextrin co-agglomerate combinates.
The agglomerated dextrose-maltodextrin/simethicone U.S.P. combinates evidenced rapid defoaming characteristics, i.e. 2 seconds by the U.S.P. defoaming test.
Standard single layer chewable antacid tablets containing 200 mg of aluminum hydroxide, 200 mg of magnesium hydroxide and 25 mg of simethicone, in the form of agglomerated dextrose-maltodextrin/simethicone U.S.P. combinates, evidenced rapid defoaming characteristics, i.e. 6-8 seconds by the U.S.P. defoaming test.
EXAMPLE 20
Sucrose-maltodextrin co-agglomerates were prepared by fluid bed agglomeration as follows:
In fluid bed agglomerator bed:
Sucrose 10X 42.5%
Maltodextrin, 10 D.E. 42.5%
In pump solution:
Maltodextrin, 10 D.E. 5.0%
(in aqueous solution)
The sucrose-maltodextrin co-agglomerate was effected by standard spray granulation techniques to produce an agglomerate for sorption trials. After processing, the sucrose-maltodextrin co-agglomerate particles had a particle size range of about -20/+60 mesh and an apparent density of 0.32 g/cc.
Sample products were prepared by adding simethicone U.S.P. to the sucrose-maltodextrin co-agglomerates in the following amounts:
______________________________________                                    
             1         2      3                                           
______________________________________                                    
Sucrose-maltodextrin                                                      
               80%         70%    60%                                     
co-agglomerate                                                            
(-20/+60 Mesh)                                                            
Sentry Simethicone                                                        
               20%         30%    40%                                     
(Union Carbide)                                                           
______________________________________                                    
The samples were produced by mixing for 10 minutes to produce relatively free flowing simethicone/sucrose-maltodextrin co-agglomerate combinates.
The sucrose-maltodextrin co-agglomerate/simethicone combinates evidenced rapid defoaming characteristics, i.e. 2 seconds by the U.S.P. defoaming test.
Standard single layer chewable antacid tablets containing 200 mg of aluminum hydroxide, 200 mg of magnesium hydroxide and 25 mg of simethicone, in the form of the sucrose 10X-maltodextrin/simethicone combinate, evidenced rapid defoaming characteristics, i.e. 6-8 seconds by the U.S.P. defoaming test.
EXAMPLE 21
Dextrose monohydrate-maltodextrin co-agglomerates were prepared as in Example 19 except that the pump solution was 5% povidone (K 29/32) U.S.P.
Similar trial products were prepared and similar results were observed as in Example 19.
EXAMPLE 22
Sucrose-maltodextrin co-agglomerates were prepared as in example 20 except that the pump solution was 5% povidone (K 29/32) U.S.P.
Similar trial products were prepared and similar results were observed as in example 20.
EXAMPLE 23
Fructose-maltodextrin co-agglomerates were prepared by fluid bed agglomeration as follows:
In fluid bed agglomerator bowl:
Fructose (powder) 50%
Maltodextrin, 10 D.E. 47.5%
In pump solution:
Maltodextrin, 10 D.E.
(as 10% water solution) 2.5%
A fructose-maltodextrin co-agglomerate was effected by standard spray granulation techniques to produce an agglomerate for sorption trials. After processing, the fructose-maltodextrin co-agglomerate particles had a particle size range of about -20+60 mesh and an apparent density of 0.42 g/cc.
Sample products were prepared by adding simethicone U.S.P. to the fructose-maltodextrin agglomerates in the following amounts:
______________________________________                                    
               1       2      3                                           
______________________________________                                    
Fructose/maltodextrin                                                     
                 80%       70%    60%                                     
co-agglomerate                                                            
(-20/+60 Mesh)                                                            
Sentry Simethicone U.S.P.                                                 
                 20%       30%    40%                                     
(Union Carbide)                                                           
______________________________________                                    
The samples were produced by mixing for 10 minutes to produce relatively free flowing simethicone/fructose-maltodextrin co-agglomerate combinates.
The co-agglomerated fructose-maltodextrin/simethicone combinates evidenced rapid defoaming characteristics, i.e. 2 seconds by the U.S.P. defoaming test.
Single layer chewable antacid tablets containing 200 mg of aluminum hydroxide, 200 mg of magnesium hydroxide and 25 mg of simethicone, in the form of the fructose-maltodextrin/simethicone U.S.P. combinate, evidenced rapid defoaming characteristics, i.e. 6-8 seconds by the U.S.P. defoaming test.
While the invention has been described with reference to specific embodiments, it will be recognized by those skilled in the art that variations are possible without departing from the spirit and scope of the invention, and that it is intended to cover all changes and modifications of the invention disclosed herein for the purposes of illustration which do not constitute departure from the spirit and scope of the invention.

Claims (61)

Having thus described the invention, what is claimed is:
1. An antifoaming or defoaming composition consisting essentially of a dry, uniform, free flowing granular combinate of a water soluble carbohydrate-based agglomerate and a liquid, nonaqueous, antifoaming or defoaming composition selected from the group consisting of hydrocarbon-based oils containing silica, mineral oils containing silica and silicone oils containing silica.
2. The composition of claim 1 wherein said carbohydrate- based agglomerate is selected from the group consisting of maltodextrin agglomerates, maltodextrin/dextrose co-agglomerates, dextrose agglomerates, maltodextrin/sucrose co-agglomerates, maltodextrin/fructose co-agglomerates, sucrose agglomerates, fructose agglomerates, mannitol agglomerates, sorbitol agglomerates, agglomerates of hydrolyzed cereal solids, and agglomerates of corn syrup solids having a D.E of at least 20.
3. The composition of claim 1 wherein said liquid antifoaming or defoaming composition is taken up by the agglomerated carbohydrate particles by sorption.
4. The composition of claim 1 wherein said combinate is comprised of one or more carbohydrate-based agglomerates having a particle size of less than about 850 microns with a majority greater than about 420 microns.
5. The composition of claim 1 wherein said combinate further includes one or more excipients.
6. The composition of claim 1 comprising about 50 to 90 weight percent carbohydrate-based agglomerate and about 10 to 50 weight percent liquid antifoaming or defoaming composition.
7. The composition of claim 1 wherein said liquid antifoaming or defoaming composition is a hydrocarbon-based oil containing silica.
8. The composition of claim 1 wherein said liquid antifoaming or defoaming composition is a mineral oil containing silica.
9. The composition of claim 1 wherein said liquid antifoaming or defoaming composition is a silicone oil containing silica.
10. An antifoaming or defoaming composition consisting essentially of a dry, uniform, free flowing granular combinate of at least about 50 weight percent water soluble carbohydrate-based agglomerate selected from the group consisting of maltodextrin/dextrose co-agglomerates, dextrose agglomerates, maltodextrin/sucrose co-agglomerates, maltodextrin/fructose co-agglomerates, sucrose agglomerates, fructose agglomerates, mannitol agglomerates, sorbitol agglomerates, agglomerates of hydrolyzed cereal solids, and agglomerates of corn syrup solids having a D.E. of least 20, substantially having a particle size of less than about 850 microns and simethicone in an amount up to about 50 weight percent.
11. The composition of claim 10 wherein said simethicone is taken up by the agglomerated carbohydrate-based particles by sorption.
12. The composition of claim 10 comprising about 50 to 90 weight percent carbohydrate-based agglomerate and about 10 to 50 weight percent simethicone.
13. The composition of claim 10 wherein said combinate further includes one or more excipients.
14. The composition of claim 10 wherein said combinate is prepared as a unit dose compressed tablet, capsule, or granule.
15. The composition of claim 10 wherein said water soluble carbohydrate-based agglomerate is selected from the group consisting of maltodextrin/dextrose co-agglomerates, maltodextrin/sucrose co-agglomerates, and maltodextrin/fructose co-agglomerates.
16. The composition of claim 10 wherein said water soluble carbohydrate-based agglomerate is selected from the group consisting of dextrose agglomerates, sucrose agglomerates, fructose agglomerates, mannitol agglomerates, sorbitol agglomerates, agglomerates of hydrolyzed cereal solids, and agglomerates of corn syrup solids having a D.E of at least 20.
17. A process for producing an antifoaming or defoaming combinate consisting essentially of mixing a water soluble carbohydrate-based agglomerate with a liquid, nonaqueous, antifoaming or defoaming composition selected from the group consisting of hydrocarbon-based oils containing silica, mineral oils containing silica and silicone oils containing silica to form a dry, uniform, free flowing granular combinate.
18. The process of claim 17 wherein said carbohydrate-based agglomerate is selected from the group consisting of maltodextrin agglomerates, maltodextrin/dextrose co-agglomerates, dextrose agglomerates, maltodextrin/sucrose co-agglomerates, maltodextrin/fructose co-agglomerates, sucrose agglomerates, fructose agglomerates, mannitol agglomerates, sorbitol agglomerates, agglomerates of hydrolyzed cereal solids, and agglomerates of corn syrup solids having a D.E of at least 20.
19. The process of claim 17 wherein said liquid antifoaming or defoaming composition is taken up by the carbohydrate-based agglomerate particles by sorption.
20. The process of claim 17 wherein said combinate is comprised of one or more carbohydrate-based agglomerates having a particle size of less than about 850 microns with a majority greater than about 420 microns.
21. The process of claim 17 further including the step of blending one or more excipients with said combinate.
22. The process of claim 17 comprising mixing about 50 to 90 weight percent carbohydrate-based agglomerate and about 10 to 50 weight percent liquid antifoaming or defoaming composition.
23. The process of claim 17 wherein said liquid antifoaming or defoaming composition is a hydrocarbon-based oil containing silica.
24. The process of claim 17 wherein said liquid antifoaming or defoaming composition is a mineral oil containing silica.
25. The process of claim 17 wherein said liquid antifoaming or defoaming composition is a silicone oil containing silica.
26. A process for producing an antifoaming or defoaming combinate consisting essentially of mixing at least about 50 weight percent of a water soluble carbohydrate-based agglomerate selected from the group consisting of maltodextrin/dextrose co-agglomerates, dextrose agglomerates, maltodextrin/sucrose co-agglomerates, maltodextrin/fructose co-agglomerates, sucrose agglomerates, fructose agglomerates, mannitol agglomerates, sorbitol agglomerates, agglomerates of hydrolyzed cereal solids, and agglomerates of corn syrup solids having a D.E. of at least 20, substantially having a particle size of less than 850 microns with simethicone in an amount up to about 50 weight percent to form a dry, uniform, free flowing granular combinate.
27. The process of claim 26 wherein said simethicone is taken up by the carbohydrate-based agglomerate particles by sorption.
28. The process of claim 26 further including the step of blending one or more excipients with said combinate.
29. The process of claim 26 comprising mixing about 50 to 90 weight percent carbohydrate-based agglomerate and about 10 to 50 weight percent simethicone.
30. The process of claim 26 further including the step of preparing said combinate as a unit dose compressed tablet, capsule, or granule.
31. The process of claim 26 wherein said water soluble carbohydrate-based agglomerate is selected from the group consisting of maltodextrin/dextrose co-agglomerates, maltodextrin/sucrose co-agglomerates, and maltodextrin/fructose co-agglomerates.
32. The process of claim 26 wherein said water soluble carbohydrate-based agglomerate is selected from the group consisting of dextrose agglomerates, sucrose agglomerates, fructose agglomerates, mannitol agglomerates, sorbitol agglomerates, agglomerates of hydrolyzed cereal solids, and agglomerates of corn syrup solids having a D.E of at least 20.
33. A method of defoaming an aqueous medium consisting essentially of contacting said aqueous medium with an antifoaming or defoaming composition comprising a dry, uniform, free flowing granular combinate of a water soluble carbohydrate-based agglomerate and a liquid, nonaqueous, antifoaming or defoaming composition selected from the group consisting of hydrocarbon-based oils and silicone oils in an amount up to about 50 weight percent of the composition.
34. The method of claim 33 wherein said carbohydrate-based agglomerate is selected from the group consisting of maltodextrin agglomerates, maltodextrin/dextrose co-agglomerates, dextrose agglomerates, maltodextrin/sucrose co-agglomerates, maltodextrin/fructose co-agglomerates, sucrose agglomerates, fructose agglomerates, mannitol agglomerates, sorbitol agglomerates, agglomerates of hydrolyzed cereal solids, and agglomerates of corn syrup solids having a D.E of at least 20.
35. A method of defoaming an aqueous medium consisting essentially of contacting said aqueous medium with an antifoaming or defoaming composition comprising a dry, uniform, free flowing granular combinate of at least about 50 weight percent water soluble carbohydrate-based agglomerate selected from the group consisting of maltodextrin/dextrose co-agglomerates, dextrose agglomerates, maltodextrin/sucrose co-agglomerates, maltodextrin/fructose co-agglomerates, sucrose agglomerates, fructose agglomerates, mannitol agglomerates, sorbitol agglomerates, agglomerates of hydrolyzed cereal solids, and agglomerates of corn syrup solids having a D.E. of at least 20, substantially having a particle size of less than about 850 microns and simethicone in an amount up to about 50 weight percent.
36. The method of claim 35 wherein said combinate further includes one or more excipients.
37. The method of claim 35 wherein said combinate is in the form of a unit dose compressed tablet, capsule, or free flowing granules.
38. An antigas or antiflatulent treatment method consisting essentially of ingesting a unit dose of an antifoaming or defoaming composition comprising a dry, uniform, free flowing granular combinate of at least about 50 weight percent water soluble carbohydrate-based agglomerate selected from the group consisting of maltodextrin/dextrose co-agglomerates, dextrose agglomerates, maltodextrin/sucrose co-agglomerates, maltodextrin/fructose co-agglomerates, sucrose agglomerates, fructose agglomerates, mannitol agglomerates, sorbitol agglomerates, agglomerates of hydrolyzed cereal solids, and agglomerates of corn syrup solids having a D.E of at least 20, substantially having a particle size of less than about 850 microns and simethicone in an amount up to about 50 weight percent.
39. The composition of claim 1 wherein said liquid, nonaqueous, antifoaming or defoaming composition is a silicone oil containing silica in an amount up to about 50 weight percent of the composition.
40. The composition of claim 1 wherein said liquid, nonaqueous, antifoaming or defoaming composition is a hydrocarbon-based oil containing silica in an amount up to about 50 weight percent of the composition.
41. The process of claim 17 wherein said liquid, nonaqueous, antifoaming or defoaming composition is a silicone oil containing silica in an amount up to about 50 weight percent of the composition.
42. The process of claim 17 wherein said liquid, nonaqueous, antifoaming or defoaming composition is a hydrocarbon-based oil containing silica in an amount up to about 50 weight percent of the composition.
43. The method of claim 33 wherein said liquid, nonaqueous, antifoaming or defoaming composition is selected from the group consisting of hydrocarbon-based oils containing silica and silicone oils containing silica.
44. The method of claim 43 wherein said liquid, nonaqueous, antifoaming or defoaming composition is a silicone oil containing silica.
45. The method of claim 43 wherein said liquid, nonaqueous, antifoaming or defoaming composition is a hydrocarbon-based oil, containing silica.
46. An antifoaming or defoaming composition consisting essentially of a dry, uniform, free flowing granular combinate of: 1) a water soluble carbohydrate-based agglomerate selected from the group consisting of maltodextrin and combinations of maltodextrin with dextrose, sucrose or fructose, and 2) a liquid, nonaqueous, antifoaming or defoaming composition selected from the group consisting of hydrocarbon-based oils containing silica and silicone oils containing silica in an amount up to about 50 weight percent of the composition.
47. The composition of claim 46 wherein said combinate is comprised of one or more carbohydrate-based agglomerates having a particle size of less than about 850 microns with a majority greater than about 450 microns.
48. The composition of claim 46 comprising about 50 to 90 weight percent carbohydrate-based agglomerate and about 10 to 50 weight percent liquid antifoaming or defoaming composition.
49. An antifoaming or defoaming composition consisting essentially of a dry, uniform, free flowing granular combinate of at least about 50 weight percent water soluble carbohydrate-based agglomerate selected from the group consisting of maltodextrin/dextrose co-agglomerates, maltodextrin/sucrose co-agglomerates, and maltodextrin/fructose co-agglomerates, substantially having a particle size of less than about 850 microns and simethicone in an amount up to about 50 weight percent.
50. A process for producing an antifoaming or defoaming combinate consisting essentially of mixing a water soluble carbohydrate-based agglomerate selected from the group consisting of maltodextrin an combinations of maltodextrin with dextrose, sucrose or fructose, with a liquid, nonaqueous, antifoaming or defoaming composition selected from the group consisting of hydrocarbon-based oils containing silica and silicone oils containing silica in an amount up to about 50 weight percent of the composition to form a dry, uniform, free flowing granular combinate.
51. The process of claim 50 wherein said combinate is comprised of one or more carbohydrate-based agglomerates having a particle size of less than about 850 microns with a majority greater than about 420 microns.
52. The process of claim 51 comprising about 50 to 90 weight percent carbohydrate-based agglomerate and about 10 to 50 weight percent liquid antifoaming or defoaming composition.
53. A process for producing an antifoaming or defoaming combinate consisting essentially of mixing at least about 50 weight percent of a water soluble carbohydrate-based agglomerate selected from the group consisting of maltodextrin/dextrose co-agglomerates, maltodextrin/sucrose co-agglomerates, and maltodextrin/fructose co-agglomerates, substantially having a particle size of less than 850 microns with simethicone in an amount up to about 50 weight percent to form a dry, uniform, free flowing granular combinate.
54. An antifoaming or defoaming composition consisting essentially of: 1) a dry, uniform, free flowing granular combinate of a water soluble carbohydrate-based agglomerate selected from the group consisting of maltodextrin agglomerates, maltodextrin/dextrose co-agglomerates, dextrose agglomerates, maltodextrin/sucrose co-agglomerates, maltodextrin/fructose co-agglomerates, sucrose agglomerates, fructose agglomerates, mannitol agglomerates, sorbitol agglomerates of hydrolyzed cereal solids, and agglomerates of corn syrup solids having a D.E of a least 20; and 2) an antifoaming or defoaming composition comprising silicone oil.
55. The composition of claim 54 wherein said antifoaming or defoaming composition comprises silicone oil containing silica.
56. The composition of claim 54 wherein said combinate is comprised of one or more carbohydrate-based agglomerates having a particle size of less than about 850 microns with a majority greater than about 420 microns.
57. The composition of claim 54 comprising about 50 to 90 weight percent carbohydrate-based agglomerate and about 10 to 50 weight percent liquid antifoaming or defoaming composition.
58. A process for producing an antifoaming or defoaming combinate consisting essentially of mixing a water soluble carbohydrate-based agglomerate selected from the group consisting of maltodextrin agglomerates, maltodextrin/dextrose co-agglomerates, dextrose agglomerates, maltodextrin-sucrose co-agglomerates, maltodextrin/fructose co-agglomerates, sucrose agglomerates, fructose agglomerates, mannitol agglomerates, sorbitol agglomerates, agglomerates of hydrolyzed cereal solids, and agglomerates of corn syrup solids having a D.E of at least 20 with a liquid, nonaqueous, antifoaming or defoaming composition comprising silicone oil to form a dry, uniform, free flowing granular combinate.
59. The process of claim 58 wherein said antifoaming or defoaming composition comprises silicone oil containing silica.
60. The process of claim 58 wherein said combinate is comprised of one or more carbohydrate=based agglomerates having a particle size of less than about 850 microns with a majority greater than about 420 microns.
61. The process of claim 58 comprising about 50 to 90 weight percent carbohydrate-based agglomerate and about 10 to 50 weight percent liquid antifoaming or defoaming composition.
US07/806,581 1989-10-19 1991-12-12 Defoaming composition Ceased US5275822A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US07/806,581 US5275822A (en) 1989-10-19 1991-12-12 Defoaming composition
CA002101779A CA2101779C (en) 1991-12-12 1992-12-04 Defoaming composition
DE69233605T DE69233605D1 (en) 1991-12-12 1992-12-04 DEFENSE COMPOSITION
EP93900878A EP0596049B1 (en) 1991-12-12 1992-12-04 Defoaming composition
AT93900878T ATE319435T1 (en) 1991-12-12 1992-12-04 DEFOAMING COMPOSITION
JP51098593A JP3507490B2 (en) 1991-12-12 1992-12-04 Defoaming composition
PCT/US1992/010491 WO1993011752A1 (en) 1991-12-12 1992-12-04 Defoaming composition
US08/374,224 USRE35893E (en) 1989-10-19 1995-01-18 Defoaming composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/423,877 US5073384A (en) 1989-10-19 1989-10-19 Maltodextrin/defoaming composition combinate
US07/806,581 US5275822A (en) 1989-10-19 1991-12-12 Defoaming composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/423,877 Continuation-In-Part US5073384A (en) 1989-10-19 1989-10-19 Maltodextrin/defoaming composition combinate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/374,224 Reissue USRE35893E (en) 1989-10-19 1995-01-18 Defoaming composition

Publications (1)

Publication Number Publication Date
US5275822A true US5275822A (en) 1994-01-04

Family

ID=25194363

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/806,581 Ceased US5275822A (en) 1989-10-19 1991-12-12 Defoaming composition

Country Status (7)

Country Link
US (1) US5275822A (en)
EP (1) EP0596049B1 (en)
JP (1) JP3507490B2 (en)
AT (1) ATE319435T1 (en)
CA (1) CA2101779C (en)
DE (1) DE69233605D1 (en)
WO (1) WO1993011752A1 (en)

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609883A (en) * 1994-09-16 1997-03-11 Advanced Technology Pharmaceuticals Corporation Compressed tablet transitory lubricant system
US5665782A (en) * 1993-08-13 1997-09-09 Miles Inc. Hydrolyzed gelatin as a flavor enhancer in a chewable table
US5709876A (en) 1991-10-25 1998-01-20 Fuisz Technologies Ltd. Saccharide-based matrix
US5908636A (en) * 1996-06-28 1999-06-01 Mcneil-Ppc, Inc. Fill material for soft gelatin pharmaceutical dosage form containing an antiflatulent
US5928668A (en) * 1993-12-21 1999-07-27 Applied Analytical Industries, Inc. Method for dry blend compression of medicaments
US5976570A (en) * 1993-12-21 1999-11-02 Applied Analytical Industries, Inc. Method for preparing low dose pharmaceutical products
US6103260A (en) * 1997-07-17 2000-08-15 Mcneil-Ppc, Inc. Simethicone/anhydrous calcium phosphate compositions
US6129906A (en) * 1995-11-11 2000-10-10 The Procter & Gamble Company Silicone containing powders
US6296868B1 (en) 1998-11-19 2001-10-02 Advanced Technology Pharmaceuticals Corporation Chewable tablets containing mannitol and aspartame
US20030091624A1 (en) * 2001-09-28 2003-05-15 Szymczak Christopher E. Simethicone solid oral dosage form
US20030229158A1 (en) * 2001-09-28 2003-12-11 Chen Jen Chi Polymer composition and dosage forms comprising the same
US20030232083A1 (en) * 2001-09-28 2003-12-18 David Wynn Modified release dosage form
WO2004028508A1 (en) 2002-09-28 2004-04-08 Mcneil-Ppc, Inc. Modified release dosage forms with two cores and an opening
US20040081695A1 (en) * 2002-09-28 2004-04-29 Sowden Harry S Dosage forms having an inner core and an outer shell
US6753009B2 (en) 2002-03-13 2004-06-22 Mcneil-Ppc, Inc. Soft tablet containing high molecular weight polyethylene oxide
US20040146559A1 (en) * 2002-09-28 2004-07-29 Sowden Harry S. Dosage forms having an inner core and outer shell with different shapes
US20040156902A1 (en) * 2002-09-28 2004-08-12 Der-Yang Lee Composite dosage forms having an inlaid portion
US20040185093A1 (en) * 2003-03-18 2004-09-23 Szymczak Christopher E. Compositions containing sucralose
US20040265373A1 (en) * 2003-06-27 2004-12-30 David Wynn Soft tablet containing high molecular weight cellulosics
US20050008696A1 (en) * 2001-09-28 2005-01-13 Sowden Harry S. Systems, methods and apparatuses for manufacturing dosage forms
US20050019376A1 (en) * 2001-09-28 2005-01-27 Mcnally Gerard P. Dosage form containing a confectionery composition
US20050069590A1 (en) * 2003-09-30 2005-03-31 Buehler Gail K. Stable suspensions for medicinal dosages
US20050074514A1 (en) * 2003-10-02 2005-04-07 Anderson Oliver B. Zero cycle molding systems, methods and apparatuses for manufacturing dosage forms
US20050095300A1 (en) * 2003-10-30 2005-05-05 Wynn David W. Controlled release analgesic suspensions
US20050095299A1 (en) * 2003-10-30 2005-05-05 Wynn David W. Controlled release analgesic suspensions
US20050152970A1 (en) * 2004-01-13 2005-07-14 Rinker Roger A. Rapidly disintegrating gelatinous coated tablets
US20050196448A1 (en) * 2004-03-05 2005-09-08 Hai Yong Huang Polymeric compositions and dosage forms comprising the same
US20050196442A1 (en) * 2004-03-05 2005-09-08 Huang Hai Y. Polymeric compositions and dosage forms comprising the same
US20050196446A1 (en) * 2004-03-05 2005-09-08 Huang Hai Y. Polymeric compositions and dosage forms comprising the same
US20050196447A1 (en) * 2004-03-05 2005-09-08 Huang Hai Y. Polymeric compositions and dosage forms comprising the same
US6949499B2 (en) 2001-01-18 2005-09-27 General Electric Company Anti-foam composition
EP1602363A1 (en) 2004-06-04 2005-12-07 McNeil-PPC, Inc. Immediate release dosage form comprising shell having openings therein
US20060062811A1 (en) * 2004-09-21 2006-03-23 Szymczak Christopher E Medicinal cooling emulsions
US20060088593A1 (en) * 2004-10-27 2006-04-27 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US20060087051A1 (en) * 2004-10-27 2006-04-27 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US20060088586A1 (en) * 2004-10-27 2006-04-27 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US20060088587A1 (en) * 2004-10-27 2006-04-27 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US20060088585A1 (en) * 2004-10-27 2006-04-27 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US20060233881A1 (en) * 2005-04-15 2006-10-19 Sowden Harry S Modified release dosage form
US20070190133A1 (en) * 2004-10-27 2007-08-16 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US20070281022A1 (en) * 2004-10-27 2007-12-06 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US20080069880A1 (en) * 2002-05-15 2008-03-20 Bunick Frank J Enrobed core
US20080103206A1 (en) * 2006-10-20 2008-05-01 Jim Swann Acetaminophen / ibuprofen combinations and method for their use
US20080113021A1 (en) * 2006-10-25 2008-05-15 Robert Shen Ibuprofen composition
US20080311201A1 (en) * 2007-06-12 2008-12-18 Lee Der-Yang Modified release solid or semi-solid dosage forms
US20090004248A1 (en) * 2007-06-29 2009-01-01 Frank Bunick Dual portion dosage lozenge form
US20090060983A1 (en) * 2007-08-30 2009-03-05 Bunick Frank J Method And Composition For Making An Orally Disintegrating Dosage Form
US20090074866A1 (en) * 2007-09-17 2009-03-19 Jen-Chi Chen Dip coated compositions containing copolymer of polyvinyl alcohol and polyethylene glycol and a gum
US20090110716A1 (en) * 2007-10-31 2009-04-30 Frank Bunick Orally disintegrative dosage form
US20090162435A1 (en) * 2007-12-21 2009-06-25 Bunick Frank J Manufacture of tablet
US20090191267A1 (en) * 2005-09-30 2009-07-30 Wynn David W Oral Compositions Containing a Salivation Inducing Agent
US20090196908A1 (en) * 2008-01-31 2009-08-06 Der-Yang Lee Edible film-strips with modified release active ingredients
US20090196907A1 (en) * 2008-01-31 2009-08-06 Bunick Frank J Edible film-strips for immediate release of active ingredients
US20090208574A1 (en) * 2008-02-19 2009-08-20 Jen-Chi Chen Dip coated compositions containing a starch having a high amylose content
EP2098224A1 (en) 2004-07-23 2009-09-09 Mcneil-PPC, Inc Rapidly disintegrating gelatinous coated tablets
US20090258039A1 (en) * 2002-12-04 2009-10-15 Bunick Frank J Method of administering a pharmaceutical active ingredient
US20090324716A1 (en) * 2008-06-26 2009-12-31 Robert Shen Coated Particles Containing Pharmaceutically Active Agents
WO2010006029A2 (en) 2008-07-08 2010-01-14 Hyperbranch Medical Technology, Inc. Self-contained medical applicators for multiple component formulations, and methods of use thereof
US20100092555A1 (en) * 2003-06-27 2010-04-15 David Wynn Soft tablet containing high molecular weight cellulosics
US20100112052A1 (en) * 2008-10-31 2010-05-06 Vincent Chen Osmotic tablet with a compressed outer coating
US20100247586A1 (en) * 2009-03-27 2010-09-30 Andreas Hugerth Multi-Portion Intra-Oral Dosage Form With Organoleptic Properties
US20100249237A1 (en) * 2003-03-21 2010-09-30 Gelotte Cathy K Non-Steroidal Anti-Inflammatory Drug Dosing Regimen
US7838026B2 (en) 2001-09-28 2010-11-23 Mcneil-Ppc, Inc. Burst-release polymer composition and dosage forms comprising the same
US20100330169A1 (en) * 2009-06-29 2010-12-30 Frank Bunick Pharmaceutical Tablet Containing A Liquid Filled Capsule
US20110071185A1 (en) * 2009-09-24 2011-03-24 Bunick Frank J Manufacture of tablet in a die utilizing powder blend containing water-containing material
US20110070286A1 (en) * 2009-09-24 2011-03-24 Andreas Hugerth Process for the manufacture of nicotine-comprising chewing gum and nicotine-comprising chewing gum manufactured according to said process
WO2012039788A1 (en) 2010-09-22 2012-03-29 Mcneil-Ppc, Inc. Multi-layered orally disintegrating tablet and the manufacture thereof
WO2012039790A1 (en) 2010-09-22 2012-03-29 Mcneil-Ppc, Inc. Manufacture of tablets from energy-applied powder blend
US8313768B2 (en) 2009-09-24 2012-11-20 Mcneil-Ppc, Inc. Manufacture of tablet having immediate release region and sustained release region
US8394415B2 (en) 2006-11-21 2013-03-12 Mcneil-Ppc, Inc Modified release analgesic suspensions
KR101242771B1 (en) * 2011-02-17 2013-03-12 한국남부발전 주식회사 Defoamer composition for sea water
WO2013119466A1 (en) 2012-02-07 2013-08-15 Mcneil-Ppc, Inc. Rapidly disintegrating coated tablets
WO2013166144A1 (en) 2012-05-01 2013-11-07 Mcneil-Ppc, Inc. Method of manufacturing solid dosage form
WO2013166131A2 (en) 2012-05-01 2013-11-07 Mcneil-Ppc, Inc. Orally disintegrating tablet
WO2013166136A1 (en) 2012-05-01 2013-11-07 Mcneil-Ppc, Inc. Tablet comprising a first and second region
WO2013166138A1 (en) 2012-05-01 2013-11-07 Mcneil-Ppc, Inc. Machine for production of solid dosage forms
US8858210B2 (en) 2009-09-24 2014-10-14 Mcneil-Ppc, Inc. Manufacture of variable density dosage forms utilizing radiofrequency energy
WO2015105992A1 (en) 2014-01-10 2015-07-16 Mcneil-Ppc, Inc. Process for making tablet using radiofrequency and lossy coated particles
WO2018017553A2 (en) 2016-07-19 2018-01-25 Johnson & Johnson Consumer Inc. Tablets having discontinuous coated regions
WO2018098434A1 (en) 2016-11-28 2018-05-31 Johnson & Johnson Consumer Inc. Process for making a coated dosage form
WO2018098470A1 (en) 2016-11-28 2018-05-31 Johnson & Johnson Consumer Inc. Liquid compositions comprising a mucoadhesive agent
WO2018175105A1 (en) 2017-03-20 2018-09-27 Johnson & Johnson Consumer Inc. Process for making tablet using radiofrequency and lossy coated particles
WO2018217241A1 (en) 2017-05-22 2018-11-29 Johnson & Johnson Consumer Inc. Lozenge dosage form
WO2019142063A1 (en) 2018-01-22 2019-07-25 Johnson & Johnson Consumer Inc. Perforated capsules
US10583089B2 (en) 2016-07-19 2020-03-10 Johnson & Johnson Consumer Inc. Tablets having discontinuous coated regions
CN114099434A (en) * 2021-11-19 2022-03-01 海南鑫开源医药科技有限公司 Preparation process of dimeticone emulsion
WO2023089432A1 (en) 2021-11-16 2023-05-25 Johnson & Johnson Consumer Inc. Customizable dosage forms containing simethicone

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3122141B2 (en) * 1994-01-31 2001-01-09 山之内製薬株式会社 Oral dissolution type compression molded product and method for producing the same
ATE286422T1 (en) 1999-08-13 2005-01-15 Dow Corning Sa SILICONE-BASED FOAM REGULATOR
EP1075863B8 (en) 1999-08-13 2008-10-08 Dow Corning Europe Sa Silicone foam control agent
ITVA20130040A1 (en) * 2013-07-16 2015-01-17 Lamberti Spa ANTISCHIUMA IN POWDER
CN107583313B (en) * 2017-08-31 2020-06-12 杭州撒拉弗科技有限公司 Preparation method of defoaming agent required in sintering process of porcelain blank
CN112791453A (en) * 2020-11-30 2021-05-14 宁夏顺邦达新材料有限公司 Preparation process of defoaming agent

Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2441098A (en) * 1946-09-09 1948-05-04 Corning Glass Works Methyl siloxane polymers and method of preparation
CA508856A (en) * 1955-01-04 Shell Development Company Non-foaming detergents
US2774710A (en) * 1952-12-15 1956-12-18 Organon Pharmaceutical preparation for the treatment of hyperacidity
US3076768A (en) * 1959-07-20 1963-02-05 Hercules Powder Co Ltd Defoamer
US3207698A (en) * 1963-02-13 1965-09-21 Nopco Chem Co Composition and method for defoaming aqueous systems
US3304266A (en) * 1963-05-06 1967-02-14 Dow Corning Foam control agents
US3326754A (en) * 1965-06-10 1967-06-20 Rexall Drug Chemical Method of relieving gastrointestinal distress with tributyl phosphate
US3388073A (en) * 1963-12-16 1968-06-11 Nalco Chemical Co Process of defoaming and inhibiting foam formation in aqueous systems
GB1166877A (en) * 1967-05-24 1969-10-15 Buckman Labor Inc A Defoaming, Deaerating and Drainage Aid Composition and Process For The Preparation Thereof
US3501571A (en) * 1965-12-06 1970-03-17 Smithkline Corp Novel silicone compositions and method of preparing same
GB1267482A (en) * 1969-07-16 1972-03-22 Bayer Ag Defoaming agents
US3663369A (en) * 1968-02-23 1972-05-16 Grain Processing Corp Hydrolysis of starch
US3691091A (en) * 1969-03-22 1972-09-12 Goldschmidt Ag Th Defoaming emulsion
US3705859A (en) * 1970-12-30 1972-12-12 Hercules Inc Method of abating foam formation in aqueous systems
US3714068A (en) * 1970-12-28 1973-01-30 Philadelphia Quartz Co Silica
US3746653A (en) * 1972-05-15 1973-07-17 Dow Corning Jet dyeing foam control
US3767794A (en) * 1969-11-21 1973-10-23 Richardson Merrell Inc Antifoam preparations and method of preparing same
US3784479A (en) * 1972-05-15 1974-01-08 Dow Corning Foam control composition
US3843558A (en) * 1971-07-01 1974-10-22 Dow Corning Ltd Foam control substance
US3849194A (en) * 1966-12-19 1974-11-19 Cpc International Inc Low d.e. starch conversion products
US3909445A (en) * 1970-03-18 1975-09-30 Mobil Oil Corp Method for reducing foam in water containing systems
US3912652A (en) * 1973-12-17 1975-10-14 Dow Corning Defoaming composition useful in jet dyeing
US3959176A (en) * 1974-09-09 1976-05-25 Drew Chemical Corporation Non-foaming dispersing composition
US4102823A (en) * 1972-12-08 1978-07-25 The Procter & Gamble Company Low and non-phosphate detergent compositions
US4115553A (en) * 1973-12-10 1978-09-19 Armour Pharmaceutical Company Antacid tablets
US4127650A (en) * 1975-03-31 1978-11-28 William H. Rorer, Inc. Medicinal simethicone containing composition and its method of production
US4180485A (en) * 1977-11-02 1979-12-25 The Procter & Gamble Company Spray-dried detergent compositions
US4230693A (en) * 1975-04-21 1980-10-28 Armour-Dial, Inc. Antacid tablets and processes for their preparation
US4264465A (en) * 1978-06-07 1981-04-28 Ciba-Geigy Corporation Process for the preparation of foam-controlled detergents
USRE30880E (en) * 1967-03-24 1982-03-09 Grain Processing Corporation Low D.E. starch conversion products
US4386106A (en) * 1981-12-01 1983-05-31 Borden, Inc. Process for preparing a time delayed release flavorant and an improved flavored chewing gum composition
US4396604A (en) * 1982-05-17 1983-08-02 Norcliff Thayer, Inc. Simethicone antacid lozenge
US4497832A (en) * 1983-04-18 1985-02-05 Warner-Lambert Company Chewing gum composition having enhanced flavor-sweetness
US4514319A (en) * 1983-03-25 1985-04-30 Union Carbide Corporation Antifoam composition containing hydrocarbon-silicon copolymer, hydrophobic filler and hydrocarbon oil
US4581381A (en) * 1983-11-14 1986-04-08 Nabisco Brands, Inc. Soft homogeneous antacid tablet
US4590075A (en) * 1984-08-27 1986-05-20 Warner-Lambert Company Elastomer encapsulation of flavors and sweeteners, long lasting flavored chewing gum compositions based thereon and process of preparation
US4605551A (en) * 1984-11-30 1986-08-12 William H. Rorer, Inc. Dry oil coated antacid process
EP0213953A2 (en) * 1985-09-04 1987-03-11 Unilever Plc Antifoam ingredient for detergent compositions
US4684534A (en) * 1985-02-19 1987-08-04 Dynagram Corporation Of America Quick-liquifying, chewable tablet
US4698264A (en) * 1982-08-02 1987-10-06 Durkee Industrial Foods, Corp. Particulate composition and process for making same
US4804543A (en) * 1987-07-14 1989-02-14 Warner-Lambert Company Novel hydrophilic plasticizing system and chewing gum containing same
US4906478A (en) * 1988-12-12 1990-03-06 Valentine Enterprises, Inc. Simethicone/calcium silicate composition
US5004595A (en) * 1986-12-23 1991-04-02 Warner-Lambert Company Multiple encapsulated flavor delivery system and method of preparation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073384A (en) * 1989-10-19 1991-12-17 Valentine Enterprises, Inc. Maltodextrin/defoaming composition combinate

Patent Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA508856A (en) * 1955-01-04 Shell Development Company Non-foaming detergents
US2441098A (en) * 1946-09-09 1948-05-04 Corning Glass Works Methyl siloxane polymers and method of preparation
US2774710A (en) * 1952-12-15 1956-12-18 Organon Pharmaceutical preparation for the treatment of hyperacidity
US3076768A (en) * 1959-07-20 1963-02-05 Hercules Powder Co Ltd Defoamer
US3207698A (en) * 1963-02-13 1965-09-21 Nopco Chem Co Composition and method for defoaming aqueous systems
US3304266A (en) * 1963-05-06 1967-02-14 Dow Corning Foam control agents
US3388073A (en) * 1963-12-16 1968-06-11 Nalco Chemical Co Process of defoaming and inhibiting foam formation in aqueous systems
US3326754A (en) * 1965-06-10 1967-06-20 Rexall Drug Chemical Method of relieving gastrointestinal distress with tributyl phosphate
US3501571A (en) * 1965-12-06 1970-03-17 Smithkline Corp Novel silicone compositions and method of preparing same
US3849194A (en) * 1966-12-19 1974-11-19 Cpc International Inc Low d.e. starch conversion products
USRE30880E (en) * 1967-03-24 1982-03-09 Grain Processing Corporation Low D.E. starch conversion products
GB1166877A (en) * 1967-05-24 1969-10-15 Buckman Labor Inc A Defoaming, Deaerating and Drainage Aid Composition and Process For The Preparation Thereof
US3663369A (en) * 1968-02-23 1972-05-16 Grain Processing Corp Hydrolysis of starch
US3691091A (en) * 1969-03-22 1972-09-12 Goldschmidt Ag Th Defoaming emulsion
GB1267482A (en) * 1969-07-16 1972-03-22 Bayer Ag Defoaming agents
US3767794A (en) * 1969-11-21 1973-10-23 Richardson Merrell Inc Antifoam preparations and method of preparing same
US3909445A (en) * 1970-03-18 1975-09-30 Mobil Oil Corp Method for reducing foam in water containing systems
US3714068A (en) * 1970-12-28 1973-01-30 Philadelphia Quartz Co Silica
US3705859A (en) * 1970-12-30 1972-12-12 Hercules Inc Method of abating foam formation in aqueous systems
US3843558A (en) * 1971-07-01 1974-10-22 Dow Corning Ltd Foam control substance
US3746653A (en) * 1972-05-15 1973-07-17 Dow Corning Jet dyeing foam control
US3784479A (en) * 1972-05-15 1974-01-08 Dow Corning Foam control composition
US3865544A (en) * 1972-05-15 1975-02-11 Dow Chemical Co Dyeing with foam control composition of silica, polyoxypropylenes and polydimethylsiloxane
US4102823A (en) * 1972-12-08 1978-07-25 The Procter & Gamble Company Low and non-phosphate detergent compositions
US4115553A (en) * 1973-12-10 1978-09-19 Armour Pharmaceutical Company Antacid tablets
US3912652A (en) * 1973-12-17 1975-10-14 Dow Corning Defoaming composition useful in jet dyeing
US3959176A (en) * 1974-09-09 1976-05-25 Drew Chemical Corporation Non-foaming dispersing composition
US4127650A (en) * 1975-03-31 1978-11-28 William H. Rorer, Inc. Medicinal simethicone containing composition and its method of production
US4230693A (en) * 1975-04-21 1980-10-28 Armour-Dial, Inc. Antacid tablets and processes for their preparation
US4180485A (en) * 1977-11-02 1979-12-25 The Procter & Gamble Company Spray-dried detergent compositions
US4264465A (en) * 1978-06-07 1981-04-28 Ciba-Geigy Corporation Process for the preparation of foam-controlled detergents
US4386106A (en) * 1981-12-01 1983-05-31 Borden, Inc. Process for preparing a time delayed release flavorant and an improved flavored chewing gum composition
US4396604A (en) * 1982-05-17 1983-08-02 Norcliff Thayer, Inc. Simethicone antacid lozenge
US4698264A (en) * 1982-08-02 1987-10-06 Durkee Industrial Foods, Corp. Particulate composition and process for making same
US4514319A (en) * 1983-03-25 1985-04-30 Union Carbide Corporation Antifoam composition containing hydrocarbon-silicon copolymer, hydrophobic filler and hydrocarbon oil
US4497832A (en) * 1983-04-18 1985-02-05 Warner-Lambert Company Chewing gum composition having enhanced flavor-sweetness
US4581381A (en) * 1983-11-14 1986-04-08 Nabisco Brands, Inc. Soft homogeneous antacid tablet
US4590075A (en) * 1984-08-27 1986-05-20 Warner-Lambert Company Elastomer encapsulation of flavors and sweeteners, long lasting flavored chewing gum compositions based thereon and process of preparation
US4605551A (en) * 1984-11-30 1986-08-12 William H. Rorer, Inc. Dry oil coated antacid process
US4684534A (en) * 1985-02-19 1987-08-04 Dynagram Corporation Of America Quick-liquifying, chewable tablet
EP0213953A2 (en) * 1985-09-04 1987-03-11 Unilever Plc Antifoam ingredient for detergent compositions
US5004595A (en) * 1986-12-23 1991-04-02 Warner-Lambert Company Multiple encapsulated flavor delivery system and method of preparation
US4804543A (en) * 1987-07-14 1989-02-14 Warner-Lambert Company Novel hydrophilic plasticizing system and chewing gum containing same
US4906478A (en) * 1988-12-12 1990-03-06 Valentine Enterprises, Inc. Simethicone/calcium silicate composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, vol. 1, No. 199, Jul. 11, 1986; p. 105, C 359. *

Cited By (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5709876A (en) 1991-10-25 1998-01-20 Fuisz Technologies Ltd. Saccharide-based matrix
US5665782A (en) * 1993-08-13 1997-09-09 Miles Inc. Hydrolyzed gelatin as a flavor enhancer in a chewable table
US5760094A (en) * 1993-08-13 1998-06-02 Bayer Corporation Hydrolyzed gelatin as a flavor enhancer in a chewable tablet
US5928668A (en) * 1993-12-21 1999-07-27 Applied Analytical Industries, Inc. Method for dry blend compression of medicaments
US5976570A (en) * 1993-12-21 1999-11-02 Applied Analytical Industries, Inc. Method for preparing low dose pharmaceutical products
US5609883A (en) * 1994-09-16 1997-03-11 Advanced Technology Pharmaceuticals Corporation Compressed tablet transitory lubricant system
US6129906A (en) * 1995-11-11 2000-10-10 The Procter & Gamble Company Silicone containing powders
US5908636A (en) * 1996-06-28 1999-06-01 Mcneil-Ppc, Inc. Fill material for soft gelatin pharmaceutical dosage form containing an antiflatulent
US6103260A (en) * 1997-07-17 2000-08-15 Mcneil-Ppc, Inc. Simethicone/anhydrous calcium phosphate compositions
US6296868B1 (en) 1998-11-19 2001-10-02 Advanced Technology Pharmaceuticals Corporation Chewable tablets containing mannitol and aspartame
US6579535B2 (en) 1998-11-19 2003-06-17 Advanced Technology Pharmaceuticals Corporation Chewable tablets containing mannitol and Aspartame
US6949499B2 (en) 2001-01-18 2005-09-27 General Electric Company Anti-foam composition
US7972624B2 (en) 2001-09-28 2011-07-05 Shun-Por Li Method of manufacturing modified release dosage forms
US20040241236A1 (en) * 2001-09-28 2004-12-02 Shun-Por Li Modified release dosage forms
US20030235616A1 (en) * 2001-09-28 2003-12-25 Sowden Harry S. Modified release dosage form
US20040018327A1 (en) * 2001-09-28 2004-01-29 David Wynn Delayed release dosage forms
US20040062804A1 (en) * 2001-09-28 2004-04-01 Der-Yang Lee Modified release dosage forms
US8545887B2 (en) 2001-09-28 2013-10-01 Mcneil-Ppc, Inc. Modified release dosage forms
US8114328B2 (en) 2001-09-28 2012-02-14 Mcneil-Ppc, Inc. Method of coating a dosage form comprising a first medicant
US20050266084A1 (en) * 2001-09-28 2005-12-01 Shun-Por Li Modified release dosage forms
US7101573B2 (en) 2001-09-28 2006-09-05 Mcneil-Pcc, Inc. Simethicone solid oral dosage form
US7968120B2 (en) 2001-09-28 2011-06-28 Mcneil-Ppc, Inc. Modified release dosage forms
US20040170750A1 (en) * 2001-09-28 2004-09-02 Bunick Frank J. Edible composition and dosage form comprising an edible shell
US20030091624A1 (en) * 2001-09-28 2003-05-15 Szymczak Christopher E. Simethicone solid oral dosage form
US20040213849A1 (en) * 2001-09-28 2004-10-28 Sowden Harry S. Modified release dosage forms
US20040213848A1 (en) * 2001-09-28 2004-10-28 Shun-Por Li Modified release dosage forms
US20040241208A1 (en) * 2001-09-28 2004-12-02 Sowden Harry S. Fondant-based pharmaceutical composition
US20030232083A1 (en) * 2001-09-28 2003-12-18 David Wynn Modified release dosage form
US8673190B2 (en) 2001-09-28 2014-03-18 Mcneil-Ppc, Inc. Method for manufacturing dosage forms
US20050008696A1 (en) * 2001-09-28 2005-01-13 Sowden Harry S. Systems, methods and apparatuses for manufacturing dosage forms
US20050019407A1 (en) * 2001-09-28 2005-01-27 Sowden Harry S. Composite dosage forms
US20050019376A1 (en) * 2001-09-28 2005-01-27 Mcnally Gerard P. Dosage form containing a confectionery composition
US7838026B2 (en) 2001-09-28 2010-11-23 Mcneil-Ppc, Inc. Burst-release polymer composition and dosage forms comprising the same
US20100135982A1 (en) * 2001-09-28 2010-06-03 Szymczak Christopher E Simethicone solid oral dosage form
US20030229158A1 (en) * 2001-09-28 2003-12-11 Chen Jen Chi Polymer composition and dosage forms comprising the same
US7691409B2 (en) 2001-09-28 2010-04-06 Mcneil-Ppc, Inc. Simethicone solid oral dosage form
US20090186082A1 (en) * 2001-09-28 2009-07-23 Shun-Por Li Method of manufacturing modified release dosage forms
US20090155372A1 (en) * 2001-09-28 2009-06-18 Shun-Por Li Method of manufacturing modified release dosage forms
US7416738B2 (en) 2001-09-28 2008-08-26 Mcneil-Ppc, Inc. Modified release dosage form
US20070196468A1 (en) * 2001-09-28 2007-08-23 Szymczak Christopher E Simethicone solid oral dosage form
US6753009B2 (en) 2002-03-13 2004-06-22 Mcneil-Ppc, Inc. Soft tablet containing high molecular weight polyethylene oxide
US20080069880A1 (en) * 2002-05-15 2008-03-20 Bunick Frank J Enrobed core
US7955652B2 (en) 2002-05-15 2011-06-07 Mcneil-Ppc, Inc. Enrobed core
US7807197B2 (en) 2002-09-28 2010-10-05 Mcneil-Ppc, Inc. Composite dosage forms having an inlaid portion
EP2255795A1 (en) 2002-09-28 2010-12-01 McNeil-PPC, Inc. Immediate release dosage form comprising shell having openings therein
US20040081695A1 (en) * 2002-09-28 2004-04-29 Sowden Harry S Dosage forms having an inner core and an outer shell
US20040156902A1 (en) * 2002-09-28 2004-08-12 Der-Yang Lee Composite dosage forms having an inlaid portion
WO2004028508A1 (en) 2002-09-28 2004-04-08 Mcneil-Ppc, Inc. Modified release dosage forms with two cores and an opening
US20040146559A1 (en) * 2002-09-28 2004-07-29 Sowden Harry S. Dosage forms having an inner core and outer shell with different shapes
US20090258039A1 (en) * 2002-12-04 2009-10-15 Bunick Frank J Method of administering a pharmaceutical active ingredient
US8173161B2 (en) 2002-12-04 2012-05-08 Mcneil-Ppc, Inc. Method of administering a pharmaceutical active ingredient
US20040185093A1 (en) * 2003-03-18 2004-09-23 Szymczak Christopher E. Compositions containing sucralose
US20100249237A1 (en) * 2003-03-21 2010-09-30 Gelotte Cathy K Non-Steroidal Anti-Inflammatory Drug Dosing Regimen
US9668993B2 (en) 2003-03-21 2017-06-06 Johnson & Johnson Consumer Inc. Non-steroidal anti-inflammatory drug dosing regimen
US8496969B2 (en) 2003-06-27 2013-07-30 Mcneil-Ppc, Inc. Soft tablet containing high molecular weight cellulosics
US20040265373A1 (en) * 2003-06-27 2004-12-30 David Wynn Soft tablet containing high molecular weight cellulosics
US20100092555A1 (en) * 2003-06-27 2010-04-15 David Wynn Soft tablet containing high molecular weight cellulosics
US20090104267A1 (en) * 2003-06-27 2009-04-23 David Wynn Soft tablet containing high molecular weight cellulosics
US20050069590A1 (en) * 2003-09-30 2005-03-31 Buehler Gail K. Stable suspensions for medicinal dosages
US20050074514A1 (en) * 2003-10-02 2005-04-07 Anderson Oliver B. Zero cycle molding systems, methods and apparatuses for manufacturing dosage forms
US20050095300A1 (en) * 2003-10-30 2005-05-05 Wynn David W. Controlled release analgesic suspensions
US20050095299A1 (en) * 2003-10-30 2005-05-05 Wynn David W. Controlled release analgesic suspensions
US10092521B2 (en) 2004-01-13 2018-10-09 Johnson & Johnson Consumer Inc. Rapidly disintegrating gelatinous coated tablets
US7879354B2 (en) 2004-01-13 2011-02-01 Mcneil-Ppc, Inc. Rapidly disintegrating gelatinous coated tablets
US11298324B2 (en) 2004-01-13 2022-04-12 Johnson & Johnson Consumer Inc. Rapidly disintegrating gelatinous coated tablets
US10632078B2 (en) 2004-01-13 2020-04-28 Johnson & Johnson Consumer Inc. Rapidly disintegrating gelatinous coated tablets
US8067029B2 (en) 2004-01-13 2011-11-29 Mcneil-Ppc, Inc. Rapidly disintegrating gelatinous coated tablets
US9149438B2 (en) 2004-01-13 2015-10-06 Johnson & Johnson Consumer Inc. Rapidly disintegrating gelatinous coated tablets
US8815290B2 (en) 2004-01-13 2014-08-26 Mcneil-Ppc, Inc. Rapidly disintegrating gelatinous coated tablets
US20050152970A1 (en) * 2004-01-13 2005-07-14 Rinker Roger A. Rapidly disintegrating gelatinous coated tablets
US20110086098A1 (en) * 2004-01-13 2011-04-14 Rinker Roger A Rapidly disintegrating gelatinous coated tablets
US20080206337A1 (en) * 2004-03-05 2008-08-28 Hai Yong Huang Method of making dosage forms comprising polymeric compositions
US20050196448A1 (en) * 2004-03-05 2005-09-08 Hai Yong Huang Polymeric compositions and dosage forms comprising the same
US20050196447A1 (en) * 2004-03-05 2005-09-08 Huang Hai Y. Polymeric compositions and dosage forms comprising the same
US20050196446A1 (en) * 2004-03-05 2005-09-08 Huang Hai Y. Polymeric compositions and dosage forms comprising the same
US20050196442A1 (en) * 2004-03-05 2005-09-08 Huang Hai Y. Polymeric compositions and dosage forms comprising the same
EP1602363A1 (en) 2004-06-04 2005-12-07 McNeil-PPC, Inc. Immediate release dosage form comprising shell having openings therein
EP2098224A1 (en) 2004-07-23 2009-09-09 Mcneil-PPC, Inc Rapidly disintegrating gelatinous coated tablets
EP2075009A1 (en) 2004-09-21 2009-07-01 McNeil-PPC, Inc. Medicinal cooling emulsions
US20060062811A1 (en) * 2004-09-21 2006-03-23 Szymczak Christopher E Medicinal cooling emulsions
US20060088587A1 (en) * 2004-10-27 2006-04-27 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US8383159B2 (en) 2004-10-27 2013-02-26 Mcneil-Ppc, Inc. Dosage forms having a microreliefed surface and methods and apparatus for their production
US20060087051A1 (en) * 2004-10-27 2006-04-27 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US20060088586A1 (en) * 2004-10-27 2006-04-27 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US20060088585A1 (en) * 2004-10-27 2006-04-27 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US20070281022A1 (en) * 2004-10-27 2007-12-06 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US20060088593A1 (en) * 2004-10-27 2006-04-27 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US20070190133A1 (en) * 2004-10-27 2007-08-16 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US20060233881A1 (en) * 2005-04-15 2006-10-19 Sowden Harry S Modified release dosage form
US8673352B2 (en) 2005-04-15 2014-03-18 Mcneil-Ppc, Inc. Modified release dosage form
US8007825B2 (en) 2005-09-30 2011-08-30 Mcneil-Ppc, Inc. Oral compositions containing a salivation inducing agent
US20090191267A1 (en) * 2005-09-30 2009-07-30 Wynn David W Oral Compositions Containing a Salivation Inducing Agent
US20080103206A1 (en) * 2006-10-20 2008-05-01 Jim Swann Acetaminophen / ibuprofen combinations and method for their use
EP3292866A1 (en) 2006-10-20 2018-03-14 Johnson & Johnson Consumer Inc. Acetaminophen / ibuprofen combinations
US8580856B2 (en) 2006-10-20 2013-11-12 Ncneil-Ppc, Inc. Acetaminophen/ibuprofen combinations and method for their use
US8580855B2 (en) 2006-10-20 2013-11-12 Mcneil-Ppc, Inc. Acetaminophen / ibuprofen combinations and method for their use
US20080113021A1 (en) * 2006-10-25 2008-05-15 Robert Shen Ibuprofen composition
US8394415B2 (en) 2006-11-21 2013-03-12 Mcneil-Ppc, Inc Modified release analgesic suspensions
US8771716B2 (en) 2006-11-21 2014-07-08 Mcneil-Ppc, Inc. Modified release analgesic suspensions
US9833510B2 (en) 2007-06-12 2017-12-05 Johnson & Johnson Consumer Inc. Modified release solid or semi-solid dosage forms
US20080311201A1 (en) * 2007-06-12 2008-12-18 Lee Der-Yang Modified release solid or semi-solid dosage forms
US20090004248A1 (en) * 2007-06-29 2009-01-01 Frank Bunick Dual portion dosage lozenge form
US20090060983A1 (en) * 2007-08-30 2009-03-05 Bunick Frank J Method And Composition For Making An Orally Disintegrating Dosage Form
US20100021507A1 (en) * 2007-08-30 2010-01-28 Bunick Frank J Method and Composition for Making an Orally Disintegrating Dosage Form
US20090074866A1 (en) * 2007-09-17 2009-03-19 Jen-Chi Chen Dip coated compositions containing copolymer of polyvinyl alcohol and polyethylene glycol and a gum
US8968769B2 (en) 2007-10-31 2015-03-03 Mcneil-Ppc, Inc. Orally disintegrative dosage form
US20100016348A1 (en) * 2007-10-31 2010-01-21 Frank Bunick Orally disintegrative dosage form
US20100016451A1 (en) * 2007-10-31 2010-01-21 Frank Bunick Orally Disintegrative Dosage Form
US20090110716A1 (en) * 2007-10-31 2009-04-30 Frank Bunick Orally disintegrative dosage form
US20090162435A1 (en) * 2007-12-21 2009-06-25 Bunick Frank J Manufacture of tablet
US8357395B2 (en) 2007-12-21 2013-01-22 Mcneil-Ppc, Inc. Manufacture of tablet
US20090196908A1 (en) * 2008-01-31 2009-08-06 Der-Yang Lee Edible film-strips with modified release active ingredients
US20090196907A1 (en) * 2008-01-31 2009-08-06 Bunick Frank J Edible film-strips for immediate release of active ingredients
US8722089B2 (en) 2008-02-19 2014-05-13 Mcneil-Ppc, Inc. Dip coated compositions containing a starch having a high amylose content
US20090208574A1 (en) * 2008-02-19 2009-08-20 Jen-Chi Chen Dip coated compositions containing a starch having a high amylose content
US8282957B2 (en) 2008-06-26 2012-10-09 Mcneil-Ppc, Inc. Coated particles containing pharmaceutically active agents
US20090324716A1 (en) * 2008-06-26 2009-12-31 Robert Shen Coated Particles Containing Pharmaceutically Active Agents
WO2010006029A2 (en) 2008-07-08 2010-01-14 Hyperbranch Medical Technology, Inc. Self-contained medical applicators for multiple component formulations, and methods of use thereof
US20100112052A1 (en) * 2008-10-31 2010-05-06 Vincent Chen Osmotic tablet with a compressed outer coating
US20100247586A1 (en) * 2009-03-27 2010-09-30 Andreas Hugerth Multi-Portion Intra-Oral Dosage Form With Organoleptic Properties
WO2011002702A1 (en) 2009-06-29 2011-01-06 Mcneil-Ppc, Inc. Pharmaceutical tablet containing a liquid filled capsule
US20100330169A1 (en) * 2009-06-29 2010-12-30 Frank Bunick Pharmaceutical Tablet Containing A Liquid Filled Capsule
US20110071184A1 (en) * 2009-09-24 2011-03-24 Bunick Frank J Manufacture of tablet in a die utilizing radiofrequency energy and meltable binder
US8313768B2 (en) 2009-09-24 2012-11-20 Mcneil-Ppc, Inc. Manufacture of tablet having immediate release region and sustained release region
US8343533B2 (en) 2009-09-24 2013-01-01 Mcneil-Ppc, Inc. Manufacture of lozenge product with radiofrequency
US20110071185A1 (en) * 2009-09-24 2011-03-24 Bunick Frank J Manufacture of tablet in a die utilizing powder blend containing water-containing material
US20110071183A1 (en) * 2009-09-24 2011-03-24 Jen-Chi Chen Manufacture of lozenge product with radiofrequency
US20110070286A1 (en) * 2009-09-24 2011-03-24 Andreas Hugerth Process for the manufacture of nicotine-comprising chewing gum and nicotine-comprising chewing gum manufactured according to said process
US9610224B2 (en) 2009-09-24 2017-04-04 Johnson & Johnson Consumer Inc. Manufacture of tablet in a die utilizing powder blend containing water-containing material
US8858210B2 (en) 2009-09-24 2014-10-14 Mcneil-Ppc, Inc. Manufacture of variable density dosage forms utilizing radiofrequency energy
WO2011049706A1 (en) 2009-09-24 2011-04-28 Mcneil-Ppc, Inc. Orally transformable tablets
WO2011038064A2 (en) 2009-09-24 2011-03-31 Mcneil-Ppc, Inc. Manufacture of tablet in a die utilizing powder blend containing water-containing material
WO2011038094A1 (en) 2009-09-24 2011-03-31 Mcnell-Ppc, Inc. Manufacture of lozenge product with radiofrequency
US8784781B2 (en) 2009-09-24 2014-07-22 Mcneil-Ppc, Inc. Manufacture of chewing gum product with radiofrequency
US8807979B2 (en) 2009-09-24 2014-08-19 Mcneil-Ppc, Inc. Machine for the manufacture of dosage forms utilizing radiofrequency energy
WO2011038101A1 (en) 2009-09-24 2011-03-31 Mcneil-Ppc, Inc. Manufacture of chewing gum product with radiofrequency
US9107807B2 (en) 2009-09-24 2015-08-18 Mcneil-Ppc, Inc. Machine for the manufacture of dosage forms utilizing radiofrequency energy
US8865204B2 (en) 2009-09-24 2014-10-21 Mcneil-Ppc, Inc. Manufacture of lozenge product with radiofrequency
US8871263B2 (en) 2009-09-24 2014-10-28 Mcneil-Ppc, Inc. Manufacture of tablet in a die utilizing radiofrequency energy and meltable binder
WO2011038077A1 (en) 2009-09-24 2011-03-31 Mcneil-Ppc, Inc. Machine for the manufacture of dosage forms utilizing radiofrequency energy
WO2012039789A1 (en) 2010-09-22 2012-03-29 Mcneil-Ppc, Inc. Manufacture of variable density dosage forms utilizing radiofrequency energy
WO2012039788A1 (en) 2010-09-22 2012-03-29 Mcneil-Ppc, Inc. Multi-layered orally disintegrating tablet and the manufacture thereof
WO2012039790A1 (en) 2010-09-22 2012-03-29 Mcneil-Ppc, Inc. Manufacture of tablets from energy-applied powder blend
KR101242771B1 (en) * 2011-02-17 2013-03-12 한국남부발전 주식회사 Defoamer composition for sea water
US8900632B2 (en) 2012-02-07 2014-12-02 Mcneil-Ppc, Inc. Rapidly disintegrating coated tablets
WO2013119466A1 (en) 2012-02-07 2013-08-15 Mcneil-Ppc, Inc. Rapidly disintegrating coated tablets
US9445971B2 (en) 2012-05-01 2016-09-20 Johnson & Johnson Consumer Inc. Method of manufacturing solid dosage form
WO2013166131A2 (en) 2012-05-01 2013-11-07 Mcneil-Ppc, Inc. Orally disintegrating tablet
US9233491B2 (en) 2012-05-01 2016-01-12 Johnson & Johnson Consumer Inc. Machine for production of solid dosage forms
WO2013166138A1 (en) 2012-05-01 2013-11-07 Mcneil-Ppc, Inc. Machine for production of solid dosage forms
US9511028B2 (en) 2012-05-01 2016-12-06 Johnson & Johnson Consumer Inc. Orally disintegrating tablet
WO2013166136A1 (en) 2012-05-01 2013-11-07 Mcneil-Ppc, Inc. Tablet comprising a first and second region
WO2013166144A1 (en) 2012-05-01 2013-11-07 Mcneil-Ppc, Inc. Method of manufacturing solid dosage form
US9789066B2 (en) 2014-01-10 2017-10-17 Johnson & Johnson Consumer Inc. Process for making tablet using radiofrequency and lossy coated particles
WO2015105992A1 (en) 2014-01-10 2015-07-16 Mcneil-Ppc, Inc. Process for making tablet using radiofrequency and lossy coated particles
US10583089B2 (en) 2016-07-19 2020-03-10 Johnson & Johnson Consumer Inc. Tablets having discontinuous coated regions
WO2018017553A2 (en) 2016-07-19 2018-01-25 Johnson & Johnson Consumer Inc. Tablets having discontinuous coated regions
US11576867B2 (en) 2016-07-19 2023-02-14 Johnson & Johnson Consumer Inc. Tablets having discontinuous coated regions
WO2018098434A1 (en) 2016-11-28 2018-05-31 Johnson & Johnson Consumer Inc. Process for making a coated dosage form
US11911478B2 (en) 2016-11-28 2024-02-27 Johnson & Johnson Consumer Inc. Liquid compositions
WO2018098470A1 (en) 2016-11-28 2018-05-31 Johnson & Johnson Consumer Inc. Liquid compositions comprising a mucoadhesive agent
US10888620B2 (en) 2016-11-28 2021-01-12 Johnson & Johnson Consumer Inc. Liquid compositions for treating cough or cold symptoms
US10493026B2 (en) 2017-03-20 2019-12-03 Johnson & Johnson Consumer Inc. Process for making tablet using radiofrequency and lossy coated particles
WO2018175105A1 (en) 2017-03-20 2018-09-27 Johnson & Johnson Consumer Inc. Process for making tablet using radiofrequency and lossy coated particles
US10500155B2 (en) 2017-05-22 2019-12-10 Johnson & Johnson Consumer Inc. Lozenge dosage form having a disintegrative tablet portion and a candy glass shell portion
WO2018217241A1 (en) 2017-05-22 2018-11-29 Johnson & Johnson Consumer Inc. Lozenge dosage form
WO2019142063A1 (en) 2018-01-22 2019-07-25 Johnson & Johnson Consumer Inc. Perforated capsules
WO2023089432A1 (en) 2021-11-16 2023-05-25 Johnson & Johnson Consumer Inc. Customizable dosage forms containing simethicone
CN114099434A (en) * 2021-11-19 2022-03-01 海南鑫开源医药科技有限公司 Preparation process of dimeticone emulsion
CN114099434B (en) * 2021-11-19 2022-12-16 海南鑫开源医药科技有限公司 Preparation process of simethicone emulsion

Also Published As

Publication number Publication date
EP0596049A4 (en) 1995-12-20
DE69233605D1 (en) 2006-05-04
ATE319435T1 (en) 2006-03-15
JP3507490B2 (en) 2004-03-15
JPH06505511A (en) 1994-06-23
CA2101779A1 (en) 1993-06-13
WO1993011752A1 (en) 1993-06-24
CA2101779C (en) 2004-05-11
EP0596049A1 (en) 1994-05-11
EP0596049B1 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
US5275822A (en) Defoaming composition
US5073384A (en) Maltodextrin/defoaming composition combinate
US4906478A (en) Simethicone/calcium silicate composition
US5167965A (en) Palatable cholestyramine granules, tablets and methods for preparation thereof
CA1313135C (en) Cholestyramine composition and process for its preparation
CA1083964A (en) Pharmaceutical composition containing sodium alginate
US3950508A (en) Process for obtaining pharmaceutical sustained releases
US3946110A (en) Medicinal compositions and methods of preparing the same
CA2734847C (en) Novel excipient for mannitol tableting
EP0104167A1 (en) Psyllium compositions.
GB2318511A (en) Process for the preparation of a pharmaceutical composition for rapid suspension in water
EP0891776A1 (en) Simethicone/anhydrous calcium phosphate compositions
JPH0129764B2 (en)
US5458886A (en) Antifoam compositions
USRE35893E (en) Defoaming composition
US2951011A (en) Silicone composition for the relief of gastro-intestinal distress and method of using same
US6716885B1 (en) Storage-stable aerated gel composition and a process for producing it
EP0119479B1 (en) Dry mix cellulose ether compositions as bulk laxatives
US5633005A (en) Dimeticon pastilles
US4837029A (en) Low foaming, aqueously homogenizable rifampin composition
CN1127469A (en) Sustained release excipient
JP2005255619A (en) Solid pharmaceutical preparation composition comprising sublimable active ingredient and porous cellulose particle
KR100442174B1 (en) The novel composition of defoaming agent
AU737464B2 (en) Pharmaceutical excipient having improved compressibility
JPH07173068A (en) Laxative composition containing lactobacillus

Legal Events

Date Code Title Description
AS Assignment

Owner name: VALENTINE ENTERPRISES, INC., GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:VALENTINE, WILLIAM;VALENTINE, WILLIAM K.;REEL/FRAME:005988/0980

Effective date: 19920115

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
RF Reissue application filed

Effective date: 19950118

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: ADVANCED TECHNOLOGY PHARMACEUTICALS CORP., GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VALENTINE ENTERPRISES, INC.;REEL/FRAME:008723/0236

Effective date: 19970915

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY