US5352029A - Positively driven elastomeric tracked work vehicle - Google Patents

Positively driven elastomeric tracked work vehicle Download PDF

Info

Publication number
US5352029A
US5352029A US07/854,593 US85459392A US5352029A US 5352029 A US5352029 A US 5352029A US 85459392 A US85459392 A US 85459392A US 5352029 A US5352029 A US 5352029A
Authority
US
United States
Prior art keywords
drive
track
extending
rim
drive assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/854,593
Inventor
James A. Nagorcka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Warane Pty Ltd
Original Assignee
Warane Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Warane Pty Ltd filed Critical Warane Pty Ltd
Assigned to WARANE PTY. LTD. (TRADING AS WALTANNA TRACTORS) reassignment WARANE PTY. LTD. (TRADING AS WALTANNA TRACTORS) ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: NAGORCKA, JAMES ARTHUR
Application granted granted Critical
Publication of US5352029A publication Critical patent/US5352029A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/12Arrangement, location, or adaptation of driving sprockets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/104Suspension devices for wheels, rollers, bogies or frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/20Tracks of articulated type, e.g. chains
    • B62D55/202Wheel engaging parts; Wheel guides on links
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/24Tracks of continuously flexible type, e.g. rubber belts

Definitions

  • This invention relates generally to a track laying vehicle and to apparatus and devices suitable for use in such a vehicle.
  • the track laying vehicle may be of the type comprising a main body having a longitudinal axis extending between its forward and rearward ends, a pair of track assemblies each disposed on opposite sides of the main body with each assembly comprising first and second wheels which are spaced apart in the direction of the longitudinal axis with at least one of the wheels defining a drive wheel.
  • a work vehicle using tracks converts more efficiently the engine power to pulling power than tires when worked on soft and/or loose surfaces. There is also less slippage and less compaction when comparing a tracked work vehicle and a rubber tired vehicle with the same weight to power ratio working on the same surface.
  • steel tracks have been the accepted form of tracks for a pulling and/or work vehicle, because they utilize a positive and mechanical drive between the drive wheel and the ground engaging track.
  • steel tracks are generally limited to much lower maximum speeds because of their weight and wear characteristics.
  • Steel tracks also have a relatively high noise level, higher initial cost and cannot be used on improved road surfaces without causing unacceptable damage. The high cost of repair to the joints of the steel track make them unacceptable for high speed applications.
  • Previous inventions generally fall into two categories, positively driven belts and frictionally driven belts.
  • Still other positive drive tracks have used rubber belts with multiple rows of segments running longitudinally and protruding inwardly on the belt with opposite segments of each row being joined by an inflexible cross member to provide positive drive, and lateral engagement to the driving wheel and idler.
  • a more recent patent has been a frictional drive using flat lateral driving surfaces of the drive wheel and belt with a "dual wheel” drive and tensioning idler to accommodate guiding lugs extending inwardly on the belt which limits lateral movement between the wheels and the belt.
  • This system relies heavily on a highly tensioned belt, which is at least eight hundred and fifty Newtons per lateral centimeter of belt, to maintain frictional drive.
  • Breaking force and reverse thrust of the vehicle by means of the drive wheel is limited to, and directly related to the tensioning force of the idler wheel. Any braking force by means of the drive wheel higher than the tensioning force will cause the belt to "free wheel" around the outer surface of the drive wheel, creating a possible dangerous situation for the operator.
  • Frictional engagement between the drive wheel and the belt can be lost through the ingestion of a lubricating medium such as water, mud, and/or other friction reducing material. Any amount of this material will cause relative movement or slip between the drive wheel and the inner surface of the belt until a sufficient part of the inner belt's surface and the outer drive wheel surface have been cleaned or "wiped" to re-establish frictional contact. A continued ingestion of friction reducing material such as water and/or mud will cause continued slippage between the belt and the drive wheel resulting in lost drive and excessive wear of the contact surfaces.
  • a lubricating medium such as water, mud, and/or other friction reducing material.
  • a track assembly for a track laying vehicle including a vehicle body having a longitudinal axis extending between forward and rearward ends of the vehicle, the vehicle comprising two of the track assemblies which are disposed on opposite sides of the vehicle body and each track assembly comprising; at least first and second wheels which, in use, are spaced apart in the direction of the longitudinal axis with at least one of the wheels defining a drive wheel; a continuous elastomeric track or belt having a ground engaging surface, an opposite wheel engaging surface and a plurality of power transmission elements projecting from the wheel engaging surface, the track assembly being characterized by; the drive wheel comprising a hub, a plurality of rim supports operatively connected to the hub, the rim supports being circumferentially spaced apart and radially extending from the hub and having an outer support portion and opposed side portions at least one pair of circumferential side rim sections operatively connected to the outer support portion of the rim supports in spaced apart relation to one another so as to form a
  • the power transmission elements in use engage the drive members on the drive wheel to cause rotation thereof.
  • the power transmission elements may also act as guides for locating the elastomeric track or belt on the wheels.
  • the power transmission elements may be arranged so as to inhibit lateral movement of the belt relative to the wheels to try and ensure that the belt does not slip off the wheels.
  • the hub may comprise a disc-like member and each rim support may include a plate like body which extends generally transversely of the disc-like member with an outer edge defining the outer support portion.
  • the side portions of each rim support plate may be inclined inwardly from the outer edge towards a region which is operatively connected to the hub.
  • the facing edges of the rims are inclined inwardly from the outer face.
  • the power transmission elements may be arranged in two or more generally parallel lines extending in the direction of the longitudinal axis and, as such, more than two rims may be provided so that there are sets of rims with drive members therebetween for each of the lines of power transmission elements.
  • the drive members may comprise cross members extending between the rims.
  • the cross members may be in the form of rods, tubes or bars.
  • a continuous track or belt for use in a track assembly as described above, the track or belt comprising a main body of elastomeric material having a ground engaging surface and an opposite wheel engaging surface and a plurality of power transmission elements formed unitarily with the main body and projecting from the wheel engaging surface thereof, each power transmission element including at least one drive side, a plurality of generally parallel reinforcing filaments extending in the longitudinal direction of the main body and a plurality of spaced apart laterally extending mounting members within the main body of the elastomeric track in a region adjacent the power transmission elements, the longitudinal extending reinforcing filaments being arranged to pass through the reinforcing members, additional reinforcing filaments which are operatively connected to the lateral reinforcing members and which extend into the region of each of the power transmission and guiding elements.
  • the track or belt according to this aspect of the invention may be used with machines or track assemblies of the type described above.
  • the track or belt may further include laterally extending reinforcing filaments within the belt.
  • the power transmission elements comprise a series of lugs arranged in at least one line and in spaced apart relation in the direction of the longitudinal axis of the main body, the lugs projecting from the wheel engaging surface and tapering inwardly towards the free end thereof.
  • the lugs may be centrally disposed on the wheel engaging surface although, as mentioned earlier, they can be arranged in two or more lines.
  • the additional reinforcing elements may each comprise at least one loop of filament having its free ends secured to respective ones of said mounting members with at least one loop extending into a respective lug with which it is associated.
  • the or each loop may be disposed in or adjacent the region of the drive side and in a plane generally parallel thereto.
  • the track or belt may have more than one drive side. For example, where the belt is to be used with a vehicle which can travel in both forward and reverse directions the two opposite forward and rearward facing sides define drive sides.
  • the sides of the or each loop of the reinforcing element may be disposed in forwardly or rearwardly inclined plane.
  • a suspension assembly for use in a track laying vehicle, the vehicle comprising a vehicle body having a longitudinal axis extending between forward and rearward ends of the vehicle, a pair of track assemblies disposed on opposite sides of the main body, each track assembly comprising first and second wheels, which are spaced apart in the direction of the longitudinal axis with at least one of the wheels defining a drive wheel, and a continuous elastomeric belt entrained around the wheels and driven by the drive wheel, the suspension assembly comprising a pair of axles each being associated with a respective one wheel of each of the pair of track assemblies, each axle being arranged so that the axis of each axle can pivot about a lateral axis which is generally parallel to the axle axis and extends at right angles to the longitudinal axis so that the wheel carried by each axle can move forwardly and rearwardly along a line parallel to the longitudinal axis.
  • the suspension system may be applicable to vehicles other than the type described above.
  • the assembly may further include a sub-frame operatively mounted to the vehicle body for pivotal movement about a first axis which extends generally parallel to the longitudinal axis.
  • the lateral axis passes through the first axis. Furthermore, the lateral axis and first axis are disposed below the axes of said axles. It will be appreciated however, that it could be disposed above.
  • Means may be provided for urging said axles in a direction which causes the elastomeric belts to be tensioned.
  • One end portion of the sub-frame may be operatively supported by a laterally extending suspension arm adapted for generally vertical movement relative to the vehicle frame one end of said suspension arm being connected to the vehicle frame by variable force spring means, the other end being pivotally connected to the vehicle frame.
  • load sharing wheels adapted to run on the wheel engaging surface of the elastomeric track or belt, the load sharing wheels being mounted to respective bogies each of which is operatively connected to a track frame member for pivotal movement relative thereto the track frame member being pivotally connected to a suspension arm one end of which is pivotally connected to the vehicle body and the other end mounted for spring biased movement relative to the vehicle body. It will be appreciated that this unique arrangement of the load sharing wheels could be used on vehicles other than that described above.
  • FIG. 1 is a side elevation view of the work vehicle
  • FIG. 2 is a front elevation view of the work vehicle as illustrated in FIG. 1;
  • FIG. 3 is a plan view taken along line A--A of FIG. 1;
  • FIG. 4 is a cross sectional view of an elastomeric track construction in accordance with the invention.
  • FIG. 5 is a side cross sectional view of an elastomeric track construction in accordance with the invention.
  • FIG. 6 is a side view of a drive wheel construction and track showing interlocking sections for positive drive
  • FIG. 7 is a cross-sectional view of the drive wheel and shows how lateral location is achieved between the drive wheel and track;
  • FIG. 8 is a cross-sectional view taken along line B--B of FIG. 2 depicting front idler construction, track tensioning and idler suspension;
  • FIG. 9 is a view taken along line C--C of FIG. 8;
  • FIGS. 10A and 10B are diagrammatic representations of the relative lateral movement of the wheel center with two differing axle pivot location.
  • FIG. 11 is a perspective view of the drive wheel of the invention.
  • FIG. 1 illustrates the heavy duty elastomeric track laying vehicle 1 having a chassis and frame 3 with a longitudinal axis 33, an operators cabin 4 and an engine 2. Connected to frame 3 is a drawbar 17 which is used to attach draft loads.
  • the vehicle illustrated would be used in the main for heavy-duty draft work, the principles inherent in this invention would also apply to a vehicle for pushing, hauling and carrying large loads.
  • the vehicle is propelled by an elastomeric track 9 along each longitudinal side of chassis 3 in which is entrained a drive wheel 5, an idler wheel 32 and load sharing track wheels 19, 20.
  • Ground engagement of the track 9 is made by lugs 10 being part of track 9.
  • Each track is supported by laterally spaced surfaces 16 of the wheel 5 and idler wheel 32.
  • Each track 9 has direct drive engagement with the drive wheel 5 by means of an interlock between the cross members 7 of the drive wheel 5 and the drive lugs 11 which are part of the track 9. See FIG. 6.
  • This drive system can be likened to a roller chain and sprocket drive but the roller forms part of the sprocket while the teeth form part of the chain.
  • FIGS. 3, 4, 5, 6 & 7 should be examined in conjunction with the following.
  • the drive wheel 5 of FIG. 7 rotates around axis 18 and is attached to the transmission drive flange 67 by means of a wheel knave 66 to which is attached lateral plates or spokes 8. These spokes 8 support two laterally spaced rims 65 to which may be bonded a firm elastomeric cushion 6.
  • the elastomeric cushion 6 consists preferably of but not limited to a polyurethane elastomer with a hardness of approximately 85 to 90 duro.
  • the surface 16 of the cushion 6 supports the surface 44 of the track 9.
  • round drive cross members 7 are attached laterally to form the driving means of drive wheel 5.
  • the outer surface of the cross members 7 are flush with the outer surface 16 of the cushion 6.
  • Drive lugs 11 of track 9 also have inwardly sloping angles 13 along the longitudinal facing sides to allow positioning of the cross drive member 7 before being fully engaged with the drive lug 11.
  • the angle 13 is the same as the "entry” and “exit” angle 63 of cross drive member 7.
  • the idler wheels 32 which rotate around axis 40, 41 are of similar construction to that of the drive wheel 5, but without cross member 7.
  • Each idler wheel consists mainly of a knave 66 attached to an axle 72 or 73 (FIG. 8).
  • Knave 66 is also attached to lateral plates or spokes 15 placed radially around the axis of rotation 40 and 41 of the idler axles 72 and 73.
  • the spokes 15 are attached to laterally spaced rims 65 to which may be bonded an elastomeric cushion 14 which has a surface 16 to support surface 44 of track 9.
  • the spokes 15 have been cut away to make an open area 37 which allows random entry of the drive lugs 11 to any point around the circumference of idler wheel 32.
  • the drive lugs 11 of track 9 are guided into lateral registry with the idler wheel 32 in the same way as the drive wheel 5 but without the assistance of the cross members 7.
  • the track 9 and drive lugs 11 maintain lateral registry with the load sharing wheels 19 and 20 because these wheels form a channel in a longitudinal line between the drive wheel 5 and idler wheel 32. As with the drive wheel 5 and idler wheel 32, lateral movement of the track 9 is restricted to lateral movement of the drive lugs 11 within the angled guiding surfaces 34 of each pair of load sharing wheels 19 and 20. See FIG. 3.
  • the elastomeric track 9 has no joint(s) and is therefore continuous and has an endless characteristic.
  • the elastomeric track 9 can be manufactured from a range of elastomers, the preferred track 9 would be a fully molded track manufactured from polyurethane having a hardness of approximately 85 DURO. This material has the properties to allow "rolling-out” of flowable debris ingested between the track 9, surface 44 and the support surfaces 16 of the drive wheel 5, idler wheel 32 and load sharing wheels 19 and 20. Non-flowable material between these surfaces will do little or no damage because of the characteristics of polyurethane. Because the track 9 is directly driven by the drive wheel 5 there is no relative movement between the wheel 5 and track 9 to cause an abrasive action by non flowable material or debris.
  • Flowable debris ingested into the track drive area and idler wheel area is returned to the environment by a "squeezing" action of the tensioned track 9 surface 44 against the support surfaces 16 of the drive wheel 5, idler wheel 32 and load sharing wheels 19 and 20.
  • Flowable debris when being “squeezed” or “rolled” will be returned to the environment either at each lateral side of the track 9 or through the open area 37 of either the drive wheel 5 or idler wheel 32. There is therefore a continued cleaning action of the track-drive system without loss of engagement between track 9 and drive wheel 5.
  • the preferred elastomeric track 9 would be of continuous construction and fully molded from a polyurethane elastomer.
  • the track 9 has longitudinal filaments 55 wound and molded within the track 9 in one length spaced approximately 20 mm apart and extending from one side of the track 9 to the other side of track 9, being disposed centrally 59 within the track 9 thickness 53 on the lateral plane.
  • Lateral reinforcing filaments 56 are molded in the track 9 adjacent to the longitudinal filaments 55 and spaced approximately 25 mm apart and placed at 90 degrees to the longitudinal filaments 55.
  • the lateral filaments 55 are the same length as the track 9 width.
  • An optional track 9 may also include two broader ply reinforcing filaments adjacent to the longitudinal filaments 55.
  • the first breaker ply would be molded so that the strands of ply are laid at 45 degrees and adjacent to filament 55 with the second, breaker ply strands laid 90 degrees adjacent to the first ply strands.
  • the track 9 also incorporates the driving lugs 11 which are centrally located and evenly spaced along the longitudinal line of the track 9 and extend away from the supporting surface 44. Each lug 11 has sloped inwardly angled laterally facing surfaces 35 which are 100 degrees angle 36 from the surface 44 of track 9.
  • the base of the drive lug 11 has a lateral width 48 of not less than 150 mm and has a radius 45 of not less than 20 mm. This radius 45 adds lateral strength to the drive lug 11.
  • each drive lug 11 is determined mostly by the diameter of the drive wheel 5 (See FIG. 6) so that each drive lug 11 is partially laterally located in the drive wheel 5 before the previous and adjacent lug is fully located. A height of the lug 11 of 100 mm for a drive wheel 5 diameter of 1000 mm is satisfactory.
  • the top or innermost lateral width 47 of lug 11 is determined by the base width 48, the angle 36 and height 50 and having a radius 46 (See FIG. 4).
  • the longitudinal facing sides of the drive lugs 11 are sloped inwardly at an angle 13 which will accept entry and exit of the drive cross member 7 to the base of and between drive lugs 11.
  • the area between and at the base of the drive lugs 11 has a radius 12 adjacent to surface 44 which is greater than the radius 61 of the cross member 7 when that section of track 9 forms a relatively straight line.
  • the radius 12 decreases to a closed radius 64 with the base of the opposing sides of each drive lug 11 fitting firmly around the cross member 7.
  • the radius 12 is dependent on radius 61 of the cross member 7 and the diameter of drive wheel 5.
  • the longitudinal spacing of the drive lugs 11 along track 9 must be identical to the spacing of the cross member 7 on the outer circumference of the drive wheel 5.
  • the top or innermost longitudinal length 62 of lug 11 is determined by the spacing distance between each lug 11, the radius 12, height 50 and angle 13, and having radius 46.
  • Each drive lug 11 is supported and reinforced to the track 9 by means of a reinforcing filament 58 which loops into the drive lug 11 from a round anchor filament 57 disposed laterally within track 9 and having centrally located holes through which pass the longitudinal filaments 55.
  • the longitudinal filaments 55 not only provides the track 9 with its longitudinal inextensible yet flexible character which is necessary to resist undesired stretching, but the filaments 55 act as a broad base in which is placed the anchor filament 57 so that each drive lug 11 is mechanically coupled to each other drive lug 11 and the whole of the track 9. Molded into and extending externally from track 9 are the grousers or ground engaging lugs 10. These ground engaging lugs 10 are arranged in a "V" pattern which is common for an agricultural tractor tire but other patterns for different vehicle applications could be used.
  • the track 9 tensioning mechanism and front axle suspension system allows each track 9 to be individually tensioned on a sub frame which has a suspension and oscillation mount on the chassis.
  • each idler wheel 32 is mounted to separate axles 72 and 73 which rotate around the axes 40 and 41. Each is connected to a bearing or sleeve 82 which allows rotation of the axles 72 and 73 on shafts 81 and 83 around the axis 43 of sub-frame 69.
  • the sub frame 69 oscillates around the longitudinal axis 42 and is fixed to the frame 3 by means of a spherical bearing 79 and a second spherical bearing 77 which is connected to a lateral cross member 78 fixed to frame 3 by means of spherical bearing 80 and suspended by cylinder 76 which is attached to frame 3 by means of spherical bearing 75.
  • Each idler wheel 32 independently tensions their respective tracks 9 by means of hydraulic cylinders 31 which are fixed at one end to the respective axles 72 and 73 by means of spherical bearing 70 and the other end of cylinder 31 are fixed to the frame 3 by means of spherical bearings 71 (See FIGS. 8 & 9).
  • each axle 72 and 73 is able to move longitudinally 84 and 85 parallel to the longitudinal axis.
  • the hydraulic cylinders 31 when being supplied with a constant hydraulic pressure maintain a constant tension on axles 72 and 73 and idler wheels 32 through the full parallel longitudinal movement 84 and 85.
  • FIG. 10A and 10B are diagrammatic comparisons of relative lateral movement of the idler wheels with the same degree of oscillation but different positioning of the longitudinal axis 42.
  • FIG. 10A depicts a greater lateral movement 86 and 87 than the lateral movement 88 and 89 of FIG. 10B.
  • This reduction of lateral movement 88 and 89 is important in assisting the retention of lateral registry of the drive lugs 11 of track 9 in the guiding surfaces 68 of the idler wheels 32 and the guiding surfaces 34 of the load sharing wheels 19 and 20 when the sub frame 69 is oscillating.
  • Suspension of the sub frame 69 and axles 72 and 73 is by way of vertical movement 91 relative to the chris 3. This movement 91 is necessary to stop shock loads encountered by idler wheels 32 being transmitted to frame 3.
  • a hydraulic cylinder 76 when connected to an accumulator applies a variable spring force to the cross arm 78 which is also attached to frame 3.
  • Cross arm 78 restricts lateral movement of sub frame 69 relative to chassis 3.
  • the tracked work vehicle 1 has load sharing wheels 19 and 20 on either side of the vehicle which run on the weight support surface 44 of tracks 9.
  • Each set of load sharing wheels 19 and 20 is mounted on minor track frame bogie 21 and 22 which are mounted to a rigid track frame 25 at pivot points 23 and 24.
  • the rigid track frame 25 pivots around an axle 26 which is fixed to suspension arm 28.
  • Arm 28 at one end pivots around an axle 27 affixed to frame 3 and at the other end is mounted an air spring which is also affixed to frame 3 (See FIG. 1).
  • This assembly allows the independent vertical movement of the load sharing wheels 19 and 20 while equalizing the pressure on the load support surface 44 of track 9.
  • the rigid track frame 25 controls reciprocal "bounce" when the track 9 and surface 44 are placed on regular high-low ground surfaces such as corrugated road surfaces.
  • the invention in its various aspects and preferred embodiments can provide a more workable solution to the prior art problems by way of an elastomeric positively driven tracked work vehicle that is able to work in a greater range of conditions while maintaining the following advantages.
  • a tracked vehicle that will:

Abstract

A drive assembly for a track laying vehicle including a vehicle body (2), at least one track (9) mounted on and driven by wheels (5) rotatably mounted and driven on the vehicle body. At least one of the wheels is a drive wheel and the continuous elastometric track includes a main body having a ground engaging surface with lugs (10) and an opposite wheel engaging surface having a plurality of power transmission elements (11) integrally molded with the main body and projecting from the wheel engaging surface. The drive wheel includes a hub portion (66, 67), a plurality of circumferentially spaced rim supports (8) connected to the hub member, at least one pair of circumferential rim sections (65) connected to the rim supports (8) in laterally spaced relationship to form a gap (37) therebetween with open side zones between the rim sections and side portions of adjacent rim supports, and a plurality of circumferentially spaced drive members (7) extending between the rim sections and dividing the gap into a plurality of circumferentially spaced radially outer zones adapted to receive power transmission elements therein engagable with the drive members with the radially outer zones communicating with the open side zones. The track includes a plurality of substantially parallel reinforcing longitudinal filaments (55) and spaced laterally extending anchor members (57) and additional reinforcing filaments (58) extending into the power transmission elements (11). The open construction of the drive wheel facilitates self-exuding of debris, such as dirt, rocks, water, etc., which may enter between the track and the drive wheel.

Description

BACKGROUND OF THE INVENTION
This invention relates generally to a track laying vehicle and to apparatus and devices suitable for use in such a vehicle.
The track laying vehicle may be of the type comprising a main body having a longitudinal axis extending between its forward and rearward ends, a pair of track assemblies each disposed on opposite sides of the main body with each assembly comprising first and second wheels which are spaced apart in the direction of the longitudinal axis with at least one of the wheels defining a drive wheel.
There have been many attempts over the years to combine the advantages of tracks with the mobility and speed of pneumatic tires. A work vehicle using tracks converts more efficiently the engine power to pulling power than tires when worked on soft and/or loose surfaces. There is also less slippage and less compaction when comparing a tracked work vehicle and a rubber tired vehicle with the same weight to power ratio working on the same surface.
For many years, steel tracks have been the accepted form of tracks for a pulling and/or work vehicle, because they utilize a positive and mechanical drive between the drive wheel and the ground engaging track. However, steel tracks are generally limited to much lower maximum speeds because of their weight and wear characteristics. Steel tracks also have a relatively high noise level, higher initial cost and cannot be used on improved road surfaces without causing unacceptable damage. The high cost of repair to the joints of the steel track make them unacceptable for high speed applications. There have been many attempts to successfully use an elastomeric or rubber belt entrained around a driven wheel and an idler wheel to enable a tracked vehicle to work at higher speeds and retain the traction and flotation of steel tracks.
Previous inventions generally fall into two categories, positively driven belts and frictionally driven belts.
Many previous designs of positively driven elastomeric or rubber tracks have used two continuous belts joined laterally by inflexible ground engaging cross bars to provide a "chain and sprocket" type drive and to give lateral stiffness to the rubber track.
Still other positive drive tracks have used rubber belts with multiple rows of segments running longitudinally and protruding inwardly on the belt with opposite segments of each row being joined by an inflexible cross member to provide positive drive, and lateral engagement to the driving wheel and idler.
While many of these positive drive tracks achieve a certain amount of success, they are costly and complicated to manufacture, and have low levels of tolerance to debris ingestion and would tend to "clog up" when used in many farming applications.
Other attempts to use elastomeric or rubber tracks have been made by way of a frictional drive between the drive wheel and the belt by tensioning the idler wheel away from the drive wheel. Many of the friction drive systems have a dual purpose driving/guiding structure in the form of a "V" and running longitudinally on the inside of the belt to provide a guiding and driving means similar to a V-belt drive. The driving and guide grooves of the drive wheels, for this type of frictional drive, tend to accumulate a high level of debris and lose frictional drive through a lack of engagement on the side surfaces.
A more recent patent has been a frictional drive using flat lateral driving surfaces of the drive wheel and belt with a "dual wheel" drive and tensioning idler to accommodate guiding lugs extending inwardly on the belt which limits lateral movement between the wheels and the belt. This system relies heavily on a highly tensioned belt, which is at least eight hundred and fifty Newtons per lateral centimeter of belt, to maintain frictional drive.
There are a number of disadvantages with this type of frictional drive.
Firstly there is a significant level of parasitic power loss caused by the highly tensioned belt.
Breaking force and reverse thrust of the vehicle by means of the drive wheel is limited to, and directly related to the tensioning force of the idler wheel. Any braking force by means of the drive wheel higher than the tensioning force will cause the belt to "free wheel" around the outer surface of the drive wheel, creating a possible dangerous situation for the operator.
Frictional engagement between the drive wheel and the belt can be lost through the ingestion of a lubricating medium such as water, mud, and/or other friction reducing material. Any amount of this material will cause relative movement or slip between the drive wheel and the inner surface of the belt until a sufficient part of the inner belt's surface and the outer drive wheel surface have been cleaned or "wiped" to re-establish frictional contact. A continued ingestion of friction reducing material such as water and/or mud will cause continued slippage between the belt and the drive wheel resulting in lost drive and excessive wear of the contact surfaces.
While this type of frictionally driven work vehicle is commercially available it is generally limited to dry conditions to sustain maximum pull and intermittent ingestion of friction reducing material.
BRIEF SUMMARY OF THE INVENTION
It is an object of the present invention to provide apparatus which is suitable for use in a vehicle of the type referred to which alleviates one or more of the aforementioned disadvantages.
According to one aspect of the present invention there is provided a track assembly for a track laying vehicle including a vehicle body having a longitudinal axis extending between forward and rearward ends of the vehicle, the vehicle comprising two of the track assemblies which are disposed on opposite sides of the vehicle body and each track assembly comprising; at least first and second wheels which, in use, are spaced apart in the direction of the longitudinal axis with at least one of the wheels defining a drive wheel; a continuous elastomeric track or belt having a ground engaging surface, an opposite wheel engaging surface and a plurality of power transmission elements projecting from the wheel engaging surface, the track assembly being characterized by; the drive wheel comprising a hub, a plurality of rim supports operatively connected to the hub, the rim supports being circumferentially spaced apart and radially extending from the hub and having an outer support portion and opposed side portions at least one pair of circumferential side rim sections operatively connected to the outer support portion of the rim supports in spaced apart relation to one another so as to form a gap therebetween, with open side zones between each rim section and the side portions of adjacent rim supports, and a plurality of circumferential spaced apart drive members extending between the rim sections so as to separate the gap into a plurality of circumferentially spaced radially outer zones each being adapted to receive therein one of the power transmission elements on the continuous track or belt, the outer zones communicating with the open side zones.
The power transmission elements in use engage the drive members on the drive wheel to cause rotation thereof. The power transmission elements may also act as guides for locating the elastomeric track or belt on the wheels. For example, the power transmission elements may be arranged so as to inhibit lateral movement of the belt relative to the wheels to try and ensure that the belt does not slip off the wheels.
The hub may comprise a disc-like member and each rim support may include a plate like body which extends generally transversely of the disc-like member with an outer edge defining the outer support portion. The side portions of each rim support plate may be inclined inwardly from the outer edge towards a region which is operatively connected to the hub.
Advantageously the facing edges of the rims are inclined inwardly from the outer face.
In one advantageous form, two rims are provided; however in certain applications it may be desirable to have more than two rims. For example, the power transmission elements may be arranged in two or more generally parallel lines extending in the direction of the longitudinal axis and, as such, more than two rims may be provided so that there are sets of rims with drive members therebetween for each of the lines of power transmission elements.
The drive members may comprise cross members extending between the rims. The cross members may be in the form of rods, tubes or bars.
According to another aspect of the present invention there is provided a continuous track or belt for use in a track assembly as described above, the track or belt comprising a main body of elastomeric material having a ground engaging surface and an opposite wheel engaging surface and a plurality of power transmission elements formed unitarily with the main body and projecting from the wheel engaging surface thereof, each power transmission element including at least one drive side, a plurality of generally parallel reinforcing filaments extending in the longitudinal direction of the main body and a plurality of spaced apart laterally extending mounting members within the main body of the elastomeric track in a region adjacent the power transmission elements, the longitudinal extending reinforcing filaments being arranged to pass through the reinforcing members, additional reinforcing filaments which are operatively connected to the lateral reinforcing members and which extend into the region of each of the power transmission and guiding elements. It will be appreciated that the track or belt according to this aspect of the invention may be used with machines or track assemblies of the type described above.
The track or belt may further include laterally extending reinforcing filaments within the belt. The power transmission elements comprise a series of lugs arranged in at least one line and in spaced apart relation in the direction of the longitudinal axis of the main body, the lugs projecting from the wheel engaging surface and tapering inwardly towards the free end thereof. The lugs may be centrally disposed on the wheel engaging surface although, as mentioned earlier, they can be arranged in two or more lines.
The additional reinforcing elements may each comprise at least one loop of filament having its free ends secured to respective ones of said mounting members with at least one loop extending into a respective lug with which it is associated. The or each loop may be disposed in or adjacent the region of the drive side and in a plane generally parallel thereto. The track or belt may have more than one drive side. For example, where the belt is to be used with a vehicle which can travel in both forward and reverse directions the two opposite forward and rearward facing sides define drive sides. The sides of the or each loop of the reinforcing element may be disposed in forwardly or rearwardly inclined plane.
According to another aspect of the present invention there is provided a suspension assembly for use in a track laying vehicle, the vehicle comprising a vehicle body having a longitudinal axis extending between forward and rearward ends of the vehicle, a pair of track assemblies disposed on opposite sides of the main body, each track assembly comprising first and second wheels, which are spaced apart in the direction of the longitudinal axis with at least one of the wheels defining a drive wheel, and a continuous elastomeric belt entrained around the wheels and driven by the drive wheel, the suspension assembly comprising a pair of axles each being associated with a respective one wheel of each of the pair of track assemblies, each axle being arranged so that the axis of each axle can pivot about a lateral axis which is generally parallel to the axle axis and extends at right angles to the longitudinal axis so that the wheel carried by each axle can move forwardly and rearwardly along a line parallel to the longitudinal axis. It will be appreciated that the suspension system may be applicable to vehicles other than the type described above.
The assembly may further include a sub-frame operatively mounted to the vehicle body for pivotal movement about a first axis which extends generally parallel to the longitudinal axis.
Advantageously the lateral axis passes through the first axis. Furthermore, the lateral axis and first axis are disposed below the axes of said axles. It will be appreciated however, that it could be disposed above.
Means may be provided for urging said axles in a direction which causes the elastomeric belts to be tensioned. One end portion of the sub-frame may be operatively supported by a laterally extending suspension arm adapted for generally vertical movement relative to the vehicle frame one end of said suspension arm being connected to the vehicle frame by variable force spring means, the other end being pivotally connected to the vehicle frame. There may further be provided a plurality of load sharing wheels adapted to run on the wheel engaging surface of the elastomeric track or belt, the load sharing wheels being mounted to respective bogies each of which is operatively connected to a track frame member for pivotal movement relative thereto the track frame member being pivotally connected to a suspension arm one end of which is pivotally connected to the vehicle body and the other end mounted for spring biased movement relative to the vehicle body. It will be appreciated that this unique arrangement of the load sharing wheels could be used on vehicles other than that described above.
BRIEF DESCRIPTIONS OF THE DRAWINGS
The advantages of the various aspects of the invention will become apparent from the following description of preferred embodiments with reference to the accompanying drawings wherein:
FIG. 1 is a side elevation view of the work vehicle;
FIG. 2 is a front elevation view of the work vehicle as illustrated in FIG. 1;
FIG. 3 is a plan view taken along line A--A of FIG. 1;
FIG. 4 is a cross sectional view of an elastomeric track construction in accordance with the invention;
FIG. 5 is a side cross sectional view of an elastomeric track construction in accordance with the invention;
FIG. 6 is a side view of a drive wheel construction and track showing interlocking sections for positive drive;
FIG. 7 is a cross-sectional view of the drive wheel and shows how lateral location is achieved between the drive wheel and track;
FIG. 8 is a cross-sectional view taken along line B--B of FIG. 2 depicting front idler construction, track tensioning and idler suspension;
FIG. 9 is a view taken along line C--C of FIG. 8;
FIGS. 10A and 10B are diagrammatic representations of the relative lateral movement of the wheel center with two differing axle pivot location; and
FIG. 11 is a perspective view of the drive wheel of the invention.
DETAILED DESCRIPTION
The greatest problems associated with an elastomeric track-over-wheel propulsion system for heavy duty vehicles has been:
(1) Maintaining lateral positioning between each track and its entrained drive, idler and load carrying wheels when the track is subject to high lateral forces.
(2) Maintaining a positive drive between each track and drive wheel when accommodating continued debris and friction reducing material.
(3) Maintaining braking ability.
(4) The need for a highly tensioned track for friction engagement.
(5) Maintaining the idler wheel movement in parallel lateral plane.
(6) Having a front idler axle with no shock absorbing suspension.
(7) Having load sharing track rollers on suspension system without causing reciprocal bounce between the spring supports.
The preferred embodiments of the invention described hereinafter have been found to alleviate one or more of the aforementioned problems.
FIG. 1 illustrates the heavy duty elastomeric track laying vehicle 1 having a chassis and frame 3 with a longitudinal axis 33, an operators cabin 4 and an engine 2. Connected to frame 3 is a drawbar 17 which is used to attach draft loads. Although the vehicle illustrated would be used in the main for heavy-duty draft work, the principles inherent in this invention would also apply to a vehicle for pushing, hauling and carrying large loads. The vehicle is propelled by an elastomeric track 9 along each longitudinal side of chassis 3 in which is entrained a drive wheel 5, an idler wheel 32 and load sharing track wheels 19, 20. Ground engagement of the track 9 is made by lugs 10 being part of track 9. Each track is supported by laterally spaced surfaces 16 of the wheel 5 and idler wheel 32.
Each track 9 has direct drive engagement with the drive wheel 5 by means of an interlock between the cross members 7 of the drive wheel 5 and the drive lugs 11 which are part of the track 9. See FIG. 6.
The interlock between cross members 7 and drive lugs 11 is maintained by the hydraulic cylinder 31 tensioning the idler wheel 32 away from the drive wheel 5.
This drive system can be likened to a roller chain and sprocket drive but the roller forms part of the sprocket while the teeth form part of the chain. For a more detailed examination of the drive system, FIGS. 3, 4, 5, 6 & 7 should be examined in conjunction with the following.
The drive wheel 5 of FIG. 7 rotates around axis 18 and is attached to the transmission drive flange 67 by means of a wheel knave 66 to which is attached lateral plates or spokes 8. These spokes 8 support two laterally spaced rims 65 to which may be bonded a firm elastomeric cushion 6. The elastomeric cushion 6 consists preferably of but not limited to a polyurethane elastomer with a hardness of approximately 85 to 90 duro. The surface 16 of the cushion 6 supports the surface 44 of the track 9. Between the two rims 65, round drive cross members 7 are attached laterally to form the driving means of drive wheel 5. The outer surface of the cross members 7 are flush with the outer surface 16 of the cushion 6. For the wheel 5 to accept the drive lugs 11 of track 9 there is an opening 37 bounded laterally by two cross members 7 and longitudinally by the two rims 65 and cushion 6 which form the guiding surface 68. The drive lugs 11of the track 9 are guided into lateral registry with the drive wheel 5 by the cushion 6 and rims 65 having inwardly angled sides 68 that interface with the inwardly angled guiding surface 35 of lugs 11. Lateral registry is also assisted by the cross member 7 pulling in a "chain-like" action on drive lug 11 of track 9. The open area 37 is laterally wider than the inner lateral width 47 (FIG. 4) of drive lug 11. The angle 36 (FIG. 4) along the lateral facing side 35 of lug 11 should be approximately 100 degrees from surface 44 to allow a sliding movement with guiding surface 68 when high lateral forces are applied to track 9.
Drive lugs 11 of track 9 also have inwardly sloping angles 13 along the longitudinal facing sides to allow positioning of the cross drive member 7 before being fully engaged with the drive lug 11. The angle 13 is the same as the "entry" and "exit" angle 63 of cross drive member 7.
The idler wheels 32 which rotate around axis 40, 41 are of similar construction to that of the drive wheel 5, but without cross member 7. Each idler wheel consists mainly of a knave 66 attached to an axle 72 or 73 (FIG. 8). Knave 66 is also attached to lateral plates or spokes 15 placed radially around the axis of rotation 40 and 41 of the idler axles 72 and 73. The spokes 15 are attached to laterally spaced rims 65 to which may be bonded an elastomeric cushion 14 which has a surface 16 to support surface 44 of track 9. The spokes 15 have been cut away to make an open area 37 which allows random entry of the drive lugs 11 to any point around the circumference of idler wheel 32.
The drive lugs 11 of track 9 are guided into lateral registry with the idler wheel 32 in the same way as the drive wheel 5 but without the assistance of the cross members 7.
The track 9 and drive lugs 11 maintain lateral registry with the load sharing wheels 19 and 20 because these wheels form a channel in a longitudinal line between the drive wheel 5 and idler wheel 32. As with the drive wheel 5 and idler wheel 32, lateral movement of the track 9 is restricted to lateral movement of the drive lugs 11 within the angled guiding surfaces 34 of each pair of load sharing wheels 19 and 20. See FIG. 3.
The elastomeric track 9 has no joint(s) and is therefore continuous and has an endless characteristic.
While the elastomeric track 9 can be manufactured from a range of elastomers, the preferred track 9 would be a fully molded track manufactured from polyurethane having a hardness of approximately 85 DURO. This material has the properties to allow "rolling-out" of flowable debris ingested between the track 9, surface 44 and the support surfaces 16 of the drive wheel 5, idler wheel 32 and load sharing wheels 19 and 20. Non-flowable material between these surfaces will do little or no damage because of the characteristics of polyurethane. Because the track 9 is directly driven by the drive wheel 5 there is no relative movement between the wheel 5 and track 9 to cause an abrasive action by non flowable material or debris.
Flowable debris ingested into the track drive area and idler wheel area is returned to the environment by a "squeezing" action of the tensioned track 9 surface 44 against the support surfaces 16 of the drive wheel 5, idler wheel 32 and load sharing wheels 19 and 20. Flowable debris when being "squeezed" or "rolled" will be returned to the environment either at each lateral side of the track 9 or through the open area 37 of either the drive wheel 5 or idler wheel 32. There is therefore a continued cleaning action of the track-drive system without loss of engagement between track 9 and drive wheel 5.
As mentioned previously the preferred elastomeric track 9 would be of continuous construction and fully molded from a polyurethane elastomer. The track 9 has longitudinal filaments 55 wound and molded within the track 9 in one length spaced approximately 20 mm apart and extending from one side of the track 9 to the other side of track 9, being disposed centrally 59 within the track 9 thickness 53 on the lateral plane. Lateral reinforcing filaments 56 are molded in the track 9 adjacent to the longitudinal filaments 55 and spaced approximately 25 mm apart and placed at 90 degrees to the longitudinal filaments 55. The lateral filaments 55 are the same length as the track 9 width. An optional track 9 may also include two broader ply reinforcing filaments adjacent to the longitudinal filaments 55. The first breaker ply would be molded so that the strands of ply are laid at 45 degrees and adjacent to filament 55 with the second, breaker ply strands laid 90 degrees adjacent to the first ply strands. The track 9 also incorporates the driving lugs 11 which are centrally located and evenly spaced along the longitudinal line of the track 9 and extend away from the supporting surface 44. Each lug 11 has sloped inwardly angled laterally facing surfaces 35 which are 100 degrees angle 36 from the surface 44 of track 9. The base of the drive lug 11 has a lateral width 48 of not less than 150 mm and has a radius 45 of not less than 20 mm. This radius 45 adds lateral strength to the drive lug 11. The height 50 of each drive lug is determined mostly by the diameter of the drive wheel 5 (See FIG. 6) so that each drive lug 11 is partially laterally located in the drive wheel 5 before the previous and adjacent lug is fully located. A height of the lug 11 of 100 mm for a drive wheel 5 diameter of 1000 mm is satisfactory. The top or innermost lateral width 47 of lug 11 is determined by the base width 48, the angle 36 and height 50 and having a radius 46 (See FIG. 4).
The longitudinal facing sides of the drive lugs 11 are sloped inwardly at an angle 13 which will accept entry and exit of the drive cross member 7 to the base of and between drive lugs 11. The area between and at the base of the drive lugs 11 has a radius 12 adjacent to surface 44 which is greater than the radius 61 of the cross member 7 when that section of track 9 forms a relatively straight line. As the track 9 and drive lugs 11 become entrained around the drive wheel 5 the radius 12 decreases to a closed radius 64 with the base of the opposing sides of each drive lug 11 fitting firmly around the cross member 7.
The radius 12 is dependent on radius 61 of the cross member 7 and the diameter of drive wheel 5.
The longitudinal spacing of the drive lugs 11 along track 9 must be identical to the spacing of the cross member 7 on the outer circumference of the drive wheel 5. The top or innermost longitudinal length 62 of lug 11 is determined by the spacing distance between each lug 11, the radius 12, height 50 and angle 13, and having radius 46. Each drive lug 11 is supported and reinforced to the track 9 by means of a reinforcing filament 58 which loops into the drive lug 11 from a round anchor filament 57 disposed laterally within track 9 and having centrally located holes through which pass the longitudinal filaments 55.
The longitudinal filaments 55 not only provides the track 9 with its longitudinal inextensible yet flexible character which is necessary to resist undesired stretching, but the filaments 55 act as a broad base in which is placed the anchor filament 57 so that each drive lug 11 is mechanically coupled to each other drive lug 11 and the whole of the track 9. Molded into and extending externally from track 9 are the grousers or ground engaging lugs 10. These ground engaging lugs 10 are arranged in a "V" pattern which is common for an agricultural tractor tire but other patterns for different vehicle applications could be used.
The track 9 tensioning mechanism and front axle suspension system allows each track 9 to be individually tensioned on a sub frame which has a suspension and oscillation mount on the chassis.
To explain further each idler wheel 32 is mounted to separate axles 72 and 73 which rotate around the axes 40 and 41. Each is connected to a bearing or sleeve 82 which allows rotation of the axles 72 and 73 on shafts 81 and 83 around the axis 43 of sub-frame 69. The sub frame 69 oscillates around the longitudinal axis 42 and is fixed to the frame 3 by means of a spherical bearing 79 and a second spherical bearing 77 which is connected to a lateral cross member 78 fixed to frame 3 by means of spherical bearing 80 and suspended by cylinder 76 which is attached to frame 3 by means of spherical bearing 75.
Each idler wheel 32 independently tensions their respective tracks 9 by means of hydraulic cylinders 31 which are fixed at one end to the respective axles 72 and 73 by means of spherical bearing 70 and the other end of cylinder 31 are fixed to the frame 3 by means of spherical bearings 71 (See FIGS. 8 & 9). By having the two idler wheels 32 on separate axles 72 and 73 which can rotate around axis 43 each axle 72 and 73 is able to move longitudinally 84 and 85 parallel to the longitudinal axis. The hydraulic cylinders 31 when being supplied with a constant hydraulic pressure maintain a constant tension on axles 72 and 73 and idler wheels 32 through the full parallel longitudinal movement 84 and 85.
Oscillation of the sub frame 69 is around the longitudinal axis 42 which is vertically lower than lateral axis 40 and intersects with lateral axis 43. This positioning of axis 42 to distance 90 lower than lateral axis 40 reduces the lateral movement 88 and 89 to the center of the idler wheels 32. FIG. 10A and 10B are diagrammatic comparisons of relative lateral movement of the idler wheels with the same degree of oscillation but different positioning of the longitudinal axis 42. FIG. 10A depicts a greater lateral movement 86 and 87 than the lateral movement 88 and 89 of FIG. 10B. This reduction of lateral movement 88 and 89 is important in assisting the retention of lateral registry of the drive lugs 11 of track 9 in the guiding surfaces 68 of the idler wheels 32 and the guiding surfaces 34 of the load sharing wheels 19 and 20 when the sub frame 69 is oscillating.
Suspension of the sub frame 69 and axles 72 and 73 is by way of vertical movement 91 relative to the chris 3. This movement 91 is necessary to stop shock loads encountered by idler wheels 32 being transmitted to frame 3. A hydraulic cylinder 76 when connected to an accumulator applies a variable spring force to the cross arm 78 which is also attached to frame 3. Cross arm 78 restricts lateral movement of sub frame 69 relative to chassis 3.
The tracked work vehicle 1 has load sharing wheels 19 and 20 on either side of the vehicle which run on the weight support surface 44 of tracks 9. Each set of load sharing wheels 19 and 20 is mounted on minor track frame bogie 21 and 22 which are mounted to a rigid track frame 25 at pivot points 23 and 24. The rigid track frame 25 pivots around an axle 26 which is fixed to suspension arm 28. Arm 28 at one end pivots around an axle 27 affixed to frame 3 and at the other end is mounted an air spring which is also affixed to frame 3 (See FIG. 1). This assembly allows the independent vertical movement of the load sharing wheels 19 and 20 while equalizing the pressure on the load support surface 44 of track 9.
The rigid track frame 25 controls reciprocal "bounce" when the track 9 and surface 44 are placed on regular high-low ground surfaces such as corrugated road surfaces.
The invention in its various aspects and preferred embodiments can provide a more workable solution to the prior art problems by way of an elastomeric positively driven tracked work vehicle that is able to work in a greater range of conditions while maintaining the following advantages. A tracked vehicle that will:
(1) Maintain a positive drive even in wet conditions.
(2) Maintain a positive drive with continued ingestion of foreign material.
(3) Provide a high level of tractive effort.
(4) Provide a minimal ground compression.
(5) That is roadable without damage to the road surface.
(6) Not have excessive parasitic power loss due to a high level of track tension.
(7) Maintain relatively high speed without excessive noise levels and costly track wear.
(8) Provide a smooth ride for the operator.
(9) Operate in a heavy-duty work mode without breaking the tracks losing positive drive between the track and drive wheel or disengaging the tracks from the drive and idler wheels.
(10) Accommodate a high braking force without slippage between the track and the braking wheel.
Finally, it is to be understood that various alterations, modifications and/or additions may be incorporated into the various constructions and arrangements of parts without departing from the spirit and ambit of the invention.

Claims (29)

I claim:
1. A drive assembly for a track laying vehicle having a vehicle body, a longitudinal axis extending between forward and rearward ends of the vehicle, and at least one track mounted for movement on the vehicle body, the drive assembly comprising:
at least first and second rotatable wheels relatively spaced in the direction of said longitudinal axis with at least one of said wheels being a drive wheel; and
a continuous elastomeric track comprising a main body having a ground engaging surface, an opposite wheel engaging surface and a plurality of power transmission elements integrally molded with said main body and projecting from said wheel engaging surface;
said drive wheel comprising a hub member, a peripheral edge on said hub member, a plurality of circumferentially spaced rim supports connected to said hub member, each of said rim supports extending from said hub member and comprising at least one plate-like body having at least one laterally extending side portion, a radially outer support portion and a radially inner portion, at least one pair of circumferential rim sections operatively connected to said outer support portions of said rim supports in laterally spaced apart relation with respect to each other to form a gap therebetween, open side zones between said rim sections and said side portions of adjacent rim supports, and a plurality of circumferentially spaced drive members extending between said rim sections and separating said gap into a plurality of circumferentially spaced radially outer zones each being adapted to receive therein at least one of said power transmission elements on said continuous track so that said power transmission elements are engageable with said drive members with said radially outer zones communicating with said open side zones.
2. The drive assembly as claimed in claim 1, wherein said track further comprises:
at least one drive side on each power transmission element, a plurality of substantially parallel reinforcing filaments extending in said longitudinal direction of said main body, and a plurality of spaced apart laterally extending anchor members within said main body of said track in regions adjacent said power transmission elements and connected to said longitudinally extending reinforcing filaments.
3. The drive assembly as claimed in claim 2 and further comprising:
additional reinforcing filaments in said main body of said track operatively connected to said anchor members and extending into said power transmission elements.
4. The drive assembly as claimed in claim 3 wherein:
said additional reinforcing elements each comprises at least one loop of filament having free ends connected to respective anchor members and extending into a respective transmission element.
5. The drive assembly as claimed in claim 4 wherein:
said at least one loop of filament is adjacent to and extends substantially parallel to said at least one drive side.
6. The drive assembly as claimed in claim 4 wherein:
said at least one loop of filament having free ends comprises sides extending substantially parallel to said at least one drive side.
7. The drive assembly as claimed in claim 1 wherein:
said radially outer zones of said drive wheel are in communication with said open side zones on both sides of said drive wheel.
8. The drive assembly as claimed in claim 1 wherein:
said rim sections have edges facing each other and an outer face on each rim section; and
at least a portion of each of said facing edges is inclined inwardly from a respective outer face.
9. The drive assembly as claimed in claim 1 wherein:
said drive members comprise rods.
10. The drive assembly as claimed in claim 1 wherein:
said drive members comprise tubes.
11. The drive assembly as claimed in claim 1 wherein:
said drive members comprise bars.
12. The drive assembly as claimed in claim 1 wherein:
at least some of said drive members are secured to at least some of said rim supports.
13. The drive assembly as claimed in claim 12 wherein:
at least some of said drive members are connected to said rim sections.
14. The drive assembly as claimed in claim 1 wherein:
at least some of said drive members are connected to said rim sections.
15. The drive assembly as claimed in claim 1 wherein:
at least some of adjacent laterally extending side portions of said plate-like bodies of said rim supports taper inwardly towards each other between said outer support portions and inner portions thereof.
16. A track for a track laying vehicle having a vehicle body, a longitudinal axis extending between forward and rearward ends of the vehicle, and at least one track mounted for movement on the vehicle body, the track comprising:
a continuous elastomeric track comprising a main body having a ground engaging surface, an opposite wheel engaging surface and a plurality of power transmission elements integrally molded with said main body and projecting from said wheel engaging surface;
at least one drive side on each power transmission element;
a plurality of substantially parallel reinforcing filaments extending in the longitudinal direction of said main body;
a plurality of spaced apart laterally extending anchor members within said main body of said track in regions adjacent said power transmission elements and connected to said longitudinally extending reinforcing filaments; and
additionally reinforcing filaments operatively connected to said anchor members and extending into said power transmission elements.
17. The track as claimed in claim 16 wherein:
said additional reinforcing elements each comprises at least one loop of filament having free ends connected to respective anchor members and extending into a respective transmission element.
18. The track as claimed in claim 17 wherein:
said at least one loop of filament is adjacent to and extends substantially parallel to said at least one drive side.
19. The track as claimed in claim 17 wherein:
said at least one loop of filament having free ends comprises sides extending substantially parallel to said at least one drive side.
20. A drive wheel for a track laying vehicle having a vehicle body, a longitudinal axis extending between forward and rearward ends of the vehicle, and at least one track mounted for movement on the vehicle body, the drive wheel comprising:
a hub member, a peripheral edge on said hub member, a plurality of circumferentially spaced rim supports connected to said hub member, each of said rim supports extending from said hub member and comprising at least one plate-like body having at least one laterally extending side portion, a radially outer support portion and a radially inner portion, at least one pair of circumferential rim sections operatively connected to said outer support portions of said rim supports in laterally spaced apart relation with respect to each other to form a gap therebetween, open side zones between said rim sections and said side portions of adjacent rim supports, and a plurality of circumferentially spaced drive members extending between said rim sections and separating said gap into a plurality of circumferentially spaced radially outer zones each being adapted to receive therein at least one of said power transmission elements on said continuous track so that said power transmission elements are engageable with said drive members with said radially outer zones communicating with said open side zones.
21. The drive assembly as claimed in claim 20 wherein:
said radially outer zones of said drive wheel are in communication with said open side zones on both sides of said drive wheel.
22. The drive assembly as claimed in claim 20 wherein:
said rim sections have edges facing each other and an outer face on each rim section; and
at least a portion of each of said facing edges is inclined inwardly from a respective outer face.
23. The drive assembly as claimed in claim 20 wherein:
said drive members comprise rods.
24. The drive assembly as claimed in claim 20 wherein:
said drive members comprise tubes.
25. The drive assembly as claimed in claim 20 wherein:
said drive members comprise bars.
26. The drive assembly as claimed in claim 20 wherein:
at least some of said drive members are secured to at least some of said rim supports.
27. The drive assembly as claimed in claim 26 wherein:
at least some of said drive members are connected to said rim sections.
28. The drive assembly as claimed in claim 20 wherein:
at least some of said drive members are connected to said rim sections.
29. The drive assembly as claimed in claim 20 wherein:
at least some adjacent laterally extending side portions of said plate-like bodies of said rim supports taper inwardly towards each other between said outer support portions and inner portions thereof.
US07/854,593 1989-11-13 1990-11-12 Positively driven elastomeric tracked work vehicle Expired - Lifetime US5352029A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPJ736589 1989-11-13
AUPJ7365 1989-11-13
PCT/AU1990/000542 WO1991007306A1 (en) 1989-11-13 1990-11-12 Positively driven elastomeric tracked work vehicle

Publications (1)

Publication Number Publication Date
US5352029A true US5352029A (en) 1994-10-04

Family

ID=3774351

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/854,593 Expired - Lifetime US5352029A (en) 1989-11-13 1990-11-12 Positively driven elastomeric tracked work vehicle

Country Status (8)

Country Link
US (1) US5352029A (en)
EP (1) EP0500614B1 (en)
JP (1) JPH05501529A (en)
AT (1) ATE142575T1 (en)
CA (1) CA2068534C (en)
DE (1) DE69028548T2 (en)
ES (1) ES2093033T3 (en)
WO (1) WO1991007306A1 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607210A (en) * 1994-12-21 1997-03-04 Brazier; Glen Wheel mount track conversion assembly
US5707123A (en) * 1995-09-21 1998-01-13 Caterpillar Inc. Positive drive rubber belted track system
US5899541A (en) * 1997-02-10 1999-05-04 Central Power Products, Inc. Low profile rubber tracked snow vehicle with snow-clearing drive wheels
US5938301A (en) * 1997-06-05 1999-08-17 Hostetler; Dewey Track assembly for track laying vehicle or implement
US6030058A (en) * 1998-04-02 2000-02-29 Blaw-Knox Construction Equipment Corporation Mobile construction vehicle driven by track assemblies using continuous elastomeric belts
US6047785A (en) * 1998-04-02 2000-04-11 Blaw-Knox Construction Equip. Corp. Mobile construction vehicle driven by track assemblies using continuous elastomeric belts
US6120405A (en) * 1998-01-06 2000-09-19 Caterpillar Inc. Drive sprocket which has rotating members which are engaged by drive lugs of a track
US6123399A (en) * 1998-04-02 2000-09-26 Blaw-Knox Construction Equipment Corp. Mobile construction vehicle driven by track assemblies using continuous elastomeric belts
US6139121A (en) * 1995-05-10 2000-10-31 Bridgestone/Firestone, Inc. Positive drive rubber track
US6220378B1 (en) 1998-01-06 2001-04-24 Caterpillar Inc. Drive mechanism for a track type work machine having enhanced durability
USRE37174E1 (en) * 1983-12-20 2001-05-15 Caterpillar Inc. Frictionally driven belted work vehicle
US6241327B1 (en) * 1999-11-05 2001-06-05 Torvec, Inc. Endless track for high speed multi-terrain vehicles
US6247547B1 (en) 1998-04-21 2001-06-19 A.S.V., Inc. Suspension and drive mechanism for a multi-surface vehicle
US6322172B2 (en) * 1998-12-03 2001-11-27 Camoplast, Inc. Endless belt for use with heavy duty track vehicles
US6390564B1 (en) 2000-11-03 2002-05-21 The Goodyear Tire & Rubber Company Pneumatic tire wheel assembly for tracked vehicle
EP1273504A1 (en) * 2001-07-03 2003-01-08 The Ohtsu Tire & Rubber Co., Ltd. Elastic crawler traveling apparatus and sprocket for crawler belt used in the same
US20030019133A1 (en) * 2001-07-24 2003-01-30 Kazutoshi Hori Elastic-bodied crawler
US20030034189A1 (en) * 2001-06-07 2003-02-20 Gary Lemke Slick track
US6543862B1 (en) * 2000-07-28 2003-04-08 Agtracks, Inc. Drive wheel for track apparatus
US20040070273A1 (en) * 2002-06-28 2004-04-15 Cary Safe Track and drive mechanism for a vehicle
US20040081502A1 (en) * 2002-10-23 2004-04-29 Williams Martin R. Compliant belt attach
US6810975B2 (en) 2002-05-23 2004-11-02 Westerngaco A.S. Suspension system for a tracked vehicle
US20050104450A1 (en) * 2002-11-20 2005-05-19 Lucie Gagne Endless track for industrial or agricultural vehicles
US6932442B2 (en) * 2001-07-23 2005-08-23 Komatsu Ltd. Elastic-bodied crawler
USRE38858E1 (en) * 1983-12-20 2005-11-01 Caterpillar Inc. Frictionally driven belted work machine
US20060284484A1 (en) * 2005-06-15 2006-12-21 Torvec, Inc. Endless track for high speed multi-terrain vehicles
US20070126286A1 (en) * 2005-12-02 2007-06-07 Feldmann Thomas B Endless track belt
US20070181351A1 (en) * 2006-02-09 2007-08-09 Glen Brazier Swivel mounted track frame
US20080136255A1 (en) * 2006-12-12 2008-06-12 Veyance Technologies, Inc. Endless track belt and method of making same
US20090072617A1 (en) * 2007-09-14 2009-03-19 Arto Alfthan Automatic Track Tensioning System
US20110074210A1 (en) * 2006-09-22 2011-03-31 Michel Paradis Noiseless Elastomeric Tracks For Tracked Vehicles
US20140001829A1 (en) * 2011-02-15 2014-01-02 Bridgestone Corporation Rubber crawler
US20150042152A1 (en) * 2010-12-14 2015-02-12 Alain Lussier Endless track for traction of a vehicle
US20150060242A1 (en) * 2013-08-27 2015-03-05 System Plast S.r.I. Conveyor system devices with contaminant removal features
US9004618B1 (en) 2010-05-20 2015-04-14 Camoplast Solideal, Inc. Endless track for propelling a vehicle, with lug replacement capability
US9033431B1 (en) 2010-06-30 2015-05-19 Camoplast Solideal Inc Track assembly for an off-road vehicle
RU2580594C1 (en) * 2015-01-12 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Курганский государственный университет" Caterpillar with flexible hinges
US9334001B2 (en) 2010-12-14 2016-05-10 Camso Inc. Drive sprocket, drive lug configuration and track drive arrangement for an endless track vehicle
US9511805B2 (en) 2009-12-11 2016-12-06 Camso Inc. Endless track for propelling a vehicle, with edge-cutting resistance
US10589809B2 (en) 2016-11-01 2020-03-17 Contitech Transportbandsysteme Gmbh Urethane hybrid agricultural vehicle track
US10783723B2 (en) 2015-06-29 2020-09-22 Camso Inc. Systems and methods for monitoring a track system for traction of a vehicle
US10933877B2 (en) 2010-12-14 2021-03-02 Camso Inc. Track drive mode management system and methods
US20210107576A1 (en) * 2017-09-05 2021-04-15 Soucy International Inc. Track system for vehicle
US11046377B2 (en) 2015-03-04 2021-06-29 Camso Inc. Track system for traction of a vehicle
US11180204B2 (en) 2016-04-27 2021-11-23 Positec Power Tools (Suzhou) Co., Ltd. Autonomous track-type moving device
US11738813B2 (en) 2016-11-01 2023-08-29 Loc Performance Products, Llc Urethane hybrid agricultural vehicle track
US11835955B2 (en) 2017-12-08 2023-12-05 Camso Inc. Systems and methods for monitoring off-road vehicles

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614430A4 (en) * 1991-12-06 1995-05-24 Deere & Co Track laying vehicles.
US5409305A (en) * 1992-08-17 1995-04-25 Deere & Company Undercarriage for a track laying vehicle
US5293948A (en) * 1992-09-25 1994-03-15 Caterpillar Inc. Undercarriage assembly for a vehicle
FR2711959B1 (en) * 1993-11-05 1996-01-26 Otico Track drive device for all terrain vehicles.
US5622234A (en) * 1993-12-22 1997-04-22 Deere & Company Track suspension system and track gauge adjustment assembly
DE4421001A1 (en) * 1994-06-17 1995-12-21 Diehl Remscheid Gmbh & Co Drive system for a track chain
DE29604108U1 (en) * 1996-03-06 1996-05-09 Claas Ohg Self-propelled implement
AU2007200163B2 (en) * 2006-02-03 2009-10-01 Trackmac Pty Ltd Idler for Crawler Track
US8567876B2 (en) * 2009-11-25 2013-10-29 Veyance Technologies, Inc. Vehicle track
SE539473C2 (en) * 2013-05-08 2017-09-26 BAE Systems Hägglunds AB Suspension device for tracked vehicles
RU2618607C1 (en) * 2016-04-05 2017-05-04 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Приамурский Государственный Университет Имени Шолом-Алейхема" Universal swamp power unit
US9975590B2 (en) 2016-04-27 2018-05-22 ContiTech Trasportbandsysteme GmbH Vehicle track

Citations (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1539582A (en) * 1924-04-19 1925-05-26 Landry Joseph Adalbert Traction device
US1542149A (en) * 1923-12-24 1925-06-16 Landry Joseph Adalbert Traction device
US1673541A (en) * 1924-12-17 1928-06-12 Thew Shovel Co Endless track-propelled vehicle
US1852197A (en) * 1924-12-17 1932-04-05 Thew Shovel Co Traction mechanism
GB403808A (en) * 1931-12-26 1934-01-04 Adolphe Kegresse Improvements in driving pulleys for positively driven flexible tracks of endless track vehicles
US1968043A (en) * 1930-09-24 1934-07-31 Harry A Knox Vehicle
US2025999A (en) * 1932-01-25 1935-12-31 Edward C Myers Rubber covered flexible track
AU16437A (en) * 1937-01-14 1938-01-27 Standard Telephones and Cables (australasia ) Limited Thermionic valve amplifiers
FR854807A (en) * 1938-11-12 1940-04-25 Outil Mec Usinage Artillerie Drive pulley or return pulley for vehicle tracks intended to travel in sandy, soft or stony terrain
US2302658A (en) * 1939-01-14 1942-11-24 Joseph W Artz Crawler tractor driving means
US2461849A (en) * 1946-05-15 1949-02-15 Goodrich Co B F Vehicle track
US2535254A (en) * 1947-07-21 1950-12-26 Windolph Tractor Company Garden tractor
FR1117612A (en) * 1954-12-29 1956-05-24 Improvements to tracked vehicle tracks
US2793150A (en) * 1951-12-06 1957-05-21 British Tyre & Rubber Company Conveyor belts
US2854294A (en) * 1955-02-02 1958-09-30 Schield Bantam Company Crawler tumbler and track shoe
US3017942A (en) * 1958-08-25 1962-01-23 Roger L Gamaunt Track laying vehicle
US3072443A (en) * 1960-08-03 1963-01-08 Goodyear Tire & Rubber Pneumatic tracks
US3451728A (en) * 1966-12-27 1969-06-24 Cady Ind Ltd Track and drive assembly for tracklaying vehicles
US3472563A (en) * 1967-11-22 1969-10-14 Outboard Marine Corp Vehicle track
US3510174A (en) * 1968-01-24 1970-05-05 Robert M Lamb Endless track vehicle
US3582154A (en) * 1968-06-03 1971-06-01 Gates Rubber Co Endless track for multiterrain vehicles
US3597017A (en) * 1968-05-14 1971-08-03 Yamaka Hatsudoki Kk Device for tensioning an endless track belt
US3722962A (en) * 1971-02-10 1973-03-27 Dayco Corp Drive sprocket
US3734576A (en) * 1971-07-06 1973-05-22 Westinghouse Air Brake Co Track for vehicles
US3758169A (en) * 1971-11-22 1973-09-11 Deere & Co Snowmobile idler wheel mounting
US3900231A (en) * 1973-10-23 1975-08-19 Goodrich Co B F Molded track for a track-laying vehicle
US4093318A (en) * 1975-06-27 1978-06-06 Edwards John W Endless drive system
AU2040076A (en) * 1976-01-05 1978-06-15 The Goodyear Tire & Rubber Company Traction element for removable track
US4145092A (en) * 1976-02-18 1979-03-20 Gravbergskovens Aktieselskab Flexible track for vehicles
AU4387579A (en) * 1978-10-13 1980-04-17 James Julian McGuire Endless track vehicles
US4218932A (en) * 1977-04-29 1980-08-26 The Gates Rubber Company Belt sprocket wheel
US4221272A (en) * 1978-09-21 1980-09-09 The Goodyear Tire & Rubber Company Tracked vehicle suspension
FR2471905A1 (en) * 1979-12-21 1981-06-26 Colmant Et Cuvelier Sarl Ets Flexible vehicle chain track - is moulded with interior reinforcement of plastics and is endless or in joinable sections
US4281882A (en) * 1977-04-15 1981-08-04 Lely Cornelis V D Vehicle track with I-shaped ground engaging profiles
JPS56167568A (en) * 1980-05-28 1981-12-23 Yokohama Rubber Co Ltd:The Endless crawler belt for snowmobile and its manufacturing method
WO1982004021A1 (en) * 1981-05-22 1982-11-25 Hans Hellmut Ernst Winding device for the strap of a safety belt,particularly for motor vehicles
GB2104015A (en) * 1981-08-06 1983-03-02 Bell Graham Endless flexible tracks for vehicles
US4469379A (en) * 1983-02-08 1984-09-04 Kotyuk Jr Bernard Flexible belt with tread to aid turning
US4519654A (en) * 1983-12-20 1985-05-28 Caterpillar Tractor Co. Roller suspension apparatus for a belted vehicle
WO1985002824A1 (en) * 1983-12-20 1985-07-04 Caterpillar Tractor Co. Frictionally driven belted work vehicle
US4537267A (en) * 1983-12-20 1985-08-27 Caterpillar Tractor Co. Belt tensioning mechanism
JPS616079A (en) * 1984-06-19 1986-01-11 Fukuyama Gomme Kogyo Kk Elastic crawler
US4569561A (en) * 1983-07-25 1986-02-11 Edwards, Harper, Mcnew And Company Endless drive system
GB2164616A (en) * 1984-09-26 1986-03-26 Dunlop Ltd Tracks for track-laying vehicles
SU1245488A1 (en) * 1985-02-19 1986-07-23 Мордовский Ордена Дружбы Народов Государственный Университет Им.Н.П.Огарева Flexible rubber-fabric reinforced track
US4616883A (en) * 1984-05-04 1986-10-14 Edwards, Harper, Mcnew And Company Endless drive system
AU4907985A (en) * 1985-10-25 1987-04-30 Jan Hendrik Barnard Vehicle endless track
WO1987002955A1 (en) * 1985-11-12 1987-05-21 Caterpillar Inc. Method and apparatus for tensioning endless track
WO1987003551A1 (en) * 1985-12-09 1987-06-18 Caterpillar Inc. Method and apparatus for tensioning frictionally driven, ground engaging belts
USRE32442E (en) * 1983-12-20 1987-06-23 Caterpillar Inc. Belt tensioning mechanism
WO1987004987A1 (en) * 1986-02-25 1987-08-27 Allan Lloyd Hamblin Adjusting and recoil mechanism
WO1987005888A1 (en) * 1986-04-02 1987-10-08 Phb Weserhütte Ag Wheel or crawler truck
AU5963686A (en) * 1986-04-14 1987-11-09 Caterpillar Inc. Endless elastomeric drive blet
AU7475887A (en) * 1986-06-27 1988-01-07 Jan Hendrik Barnard Vehicle traction
WO1989005740A1 (en) * 1987-12-23 1989-06-29 Caterpillar Inc. Multiple mode vehicle suspension system
US4844560A (en) * 1987-10-28 1989-07-04 Edwards, Harper, Mcnew & Company Endless drive track joint assembly
US4861120A (en) * 1987-05-14 1989-08-29 Edwards, Harper, Mcnew & Company Modular endless track drive system and methods of making, installing and repairing same
WO1989008042A1 (en) * 1988-03-02 1989-09-08 Caterpillar Inc. Belt tension control system
US4884852A (en) * 1987-05-14 1989-12-05 Edwards, Harper, Mcnew & Company Double V-shaped endless track drive system
JPH0248280A (en) * 1988-08-08 1990-02-19 Iseki & Co Ltd Crawler device
US4906054A (en) * 1987-05-14 1990-03-06 Edwards, Harper, Mcnew & Company Endless track drive system
US5058963A (en) * 1989-07-27 1991-10-22 Diehl Gmbh & Co. Belt-type caterpillar for track-laying vehicles and snowmobiles
US5145242A (en) * 1989-02-23 1992-09-08 Bridgestone Corporation Elastic endless crawler

Patent Citations (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1542149A (en) * 1923-12-24 1925-06-16 Landry Joseph Adalbert Traction device
US1539582A (en) * 1924-04-19 1925-05-26 Landry Joseph Adalbert Traction device
US1673541A (en) * 1924-12-17 1928-06-12 Thew Shovel Co Endless track-propelled vehicle
US1852197A (en) * 1924-12-17 1932-04-05 Thew Shovel Co Traction mechanism
US1968043A (en) * 1930-09-24 1934-07-31 Harry A Knox Vehicle
GB403808A (en) * 1931-12-26 1934-01-04 Adolphe Kegresse Improvements in driving pulleys for positively driven flexible tracks of endless track vehicles
US2025999A (en) * 1932-01-25 1935-12-31 Edward C Myers Rubber covered flexible track
AU16437A (en) * 1937-01-14 1938-01-27 Standard Telephones and Cables (australasia ) Limited Thermionic valve amplifiers
FR854807A (en) * 1938-11-12 1940-04-25 Outil Mec Usinage Artillerie Drive pulley or return pulley for vehicle tracks intended to travel in sandy, soft or stony terrain
US2302658A (en) * 1939-01-14 1942-11-24 Joseph W Artz Crawler tractor driving means
AU16140A (en) * 1940-01-15 1940-08-29 Locomotive Firebox Company Improvements in thermic siphons
US2461849A (en) * 1946-05-15 1949-02-15 Goodrich Co B F Vehicle track
US2535254A (en) * 1947-07-21 1950-12-26 Windolph Tractor Company Garden tractor
US2793150A (en) * 1951-12-06 1957-05-21 British Tyre & Rubber Company Conveyor belts
FR1117612A (en) * 1954-12-29 1956-05-24 Improvements to tracked vehicle tracks
US2854294A (en) * 1955-02-02 1958-09-30 Schield Bantam Company Crawler tumbler and track shoe
US3017942A (en) * 1958-08-25 1962-01-23 Roger L Gamaunt Track laying vehicle
US3072443A (en) * 1960-08-03 1963-01-08 Goodyear Tire & Rubber Pneumatic tracks
US3451728A (en) * 1966-12-27 1969-06-24 Cady Ind Ltd Track and drive assembly for tracklaying vehicles
US3472563A (en) * 1967-11-22 1969-10-14 Outboard Marine Corp Vehicle track
US3510174A (en) * 1968-01-24 1970-05-05 Robert M Lamb Endless track vehicle
US3597017A (en) * 1968-05-14 1971-08-03 Yamaka Hatsudoki Kk Device for tensioning an endless track belt
US3582154A (en) * 1968-06-03 1971-06-01 Gates Rubber Co Endless track for multiterrain vehicles
US3722962A (en) * 1971-02-10 1973-03-27 Dayco Corp Drive sprocket
US3734576A (en) * 1971-07-06 1973-05-22 Westinghouse Air Brake Co Track for vehicles
US3758169A (en) * 1971-11-22 1973-09-11 Deere & Co Snowmobile idler wheel mounting
US3900231A (en) * 1973-10-23 1975-08-19 Goodrich Co B F Molded track for a track-laying vehicle
US4093318A (en) * 1975-06-27 1978-06-06 Edwards John W Endless drive system
AU2040076A (en) * 1976-01-05 1978-06-15 The Goodyear Tire & Rubber Company Traction element for removable track
US4145092A (en) * 1976-02-18 1979-03-20 Gravbergskovens Aktieselskab Flexible track for vehicles
US4281882A (en) * 1977-04-15 1981-08-04 Lely Cornelis V D Vehicle track with I-shaped ground engaging profiles
US4218932A (en) * 1977-04-29 1980-08-26 The Gates Rubber Company Belt sprocket wheel
US4221272A (en) * 1978-09-21 1980-09-09 The Goodyear Tire & Rubber Company Tracked vehicle suspension
AU4387579A (en) * 1978-10-13 1980-04-17 James Julian McGuire Endless track vehicles
FR2471905A1 (en) * 1979-12-21 1981-06-26 Colmant Et Cuvelier Sarl Ets Flexible vehicle chain track - is moulded with interior reinforcement of plastics and is endless or in joinable sections
JPS56167568A (en) * 1980-05-28 1981-12-23 Yokohama Rubber Co Ltd:The Endless crawler belt for snowmobile and its manufacturing method
WO1982004021A1 (en) * 1981-05-22 1982-11-25 Hans Hellmut Ernst Winding device for the strap of a safety belt,particularly for motor vehicles
GB2104015A (en) * 1981-08-06 1983-03-02 Bell Graham Endless flexible tracks for vehicles
US4469379A (en) * 1983-02-08 1984-09-04 Kotyuk Jr Bernard Flexible belt with tread to aid turning
US4569561A (en) * 1983-07-25 1986-02-11 Edwards, Harper, Mcnew And Company Endless drive system
US4537267A (en) * 1983-12-20 1985-08-27 Caterpillar Tractor Co. Belt tensioning mechanism
USRE32442E (en) * 1983-12-20 1987-06-23 Caterpillar Inc. Belt tensioning mechanism
WO1985002824A1 (en) * 1983-12-20 1985-07-04 Caterpillar Tractor Co. Frictionally driven belted work vehicle
US4519654A (en) * 1983-12-20 1985-05-28 Caterpillar Tractor Co. Roller suspension apparatus for a belted vehicle
US4616883A (en) * 1984-05-04 1986-10-14 Edwards, Harper, Mcnew And Company Endless drive system
JPS616079A (en) * 1984-06-19 1986-01-11 Fukuyama Gomme Kogyo Kk Elastic crawler
GB2164616A (en) * 1984-09-26 1986-03-26 Dunlop Ltd Tracks for track-laying vehicles
SU1245488A1 (en) * 1985-02-19 1986-07-23 Мордовский Ордена Дружбы Народов Государственный Университет Им.Н.П.Огарева Flexible rubber-fabric reinforced track
AU4907985A (en) * 1985-10-25 1987-04-30 Jan Hendrik Barnard Vehicle endless track
WO1987002955A1 (en) * 1985-11-12 1987-05-21 Caterpillar Inc. Method and apparatus for tensioning endless track
WO1987003551A1 (en) * 1985-12-09 1987-06-18 Caterpillar Inc. Method and apparatus for tensioning frictionally driven, ground engaging belts
US4681177A (en) * 1985-12-09 1987-07-21 Caterpillar Inc. Method and apparatus for tensioning frictionally driven, ground engaging belts
WO1987004987A1 (en) * 1986-02-25 1987-08-27 Allan Lloyd Hamblin Adjusting and recoil mechanism
WO1987005888A1 (en) * 1986-04-02 1987-10-08 Phb Weserhütte Ag Wheel or crawler truck
AU5963686A (en) * 1986-04-14 1987-11-09 Caterpillar Inc. Endless elastomeric drive blet
AU7475887A (en) * 1986-06-27 1988-01-07 Jan Hendrik Barnard Vehicle traction
US4884852A (en) * 1987-05-14 1989-12-05 Edwards, Harper, Mcnew & Company Double V-shaped endless track drive system
US4861120A (en) * 1987-05-14 1989-08-29 Edwards, Harper, Mcnew & Company Modular endless track drive system and methods of making, installing and repairing same
US4906054A (en) * 1987-05-14 1990-03-06 Edwards, Harper, Mcnew & Company Endless track drive system
US4844560A (en) * 1987-10-28 1989-07-04 Edwards, Harper, Mcnew & Company Endless drive track joint assembly
WO1989005740A1 (en) * 1987-12-23 1989-06-29 Caterpillar Inc. Multiple mode vehicle suspension system
WO1989008042A1 (en) * 1988-03-02 1989-09-08 Caterpillar Inc. Belt tension control system
JPH0248280A (en) * 1988-08-08 1990-02-19 Iseki & Co Ltd Crawler device
US5145242A (en) * 1989-02-23 1992-09-08 Bridgestone Corporation Elastic endless crawler
US5058963A (en) * 1989-07-27 1991-10-22 Diehl Gmbh & Co. Belt-type caterpillar for track-laying vehicles and snowmobiles

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE38858E1 (en) * 1983-12-20 2005-11-01 Caterpillar Inc. Frictionally driven belted work machine
USRE37174E1 (en) * 1983-12-20 2001-05-15 Caterpillar Inc. Frictionally driven belted work vehicle
US5607210A (en) * 1994-12-21 1997-03-04 Brazier; Glen Wheel mount track conversion assembly
US6139121A (en) * 1995-05-10 2000-10-31 Bridgestone/Firestone, Inc. Positive drive rubber track
US5707123A (en) * 1995-09-21 1998-01-13 Caterpillar Inc. Positive drive rubber belted track system
US5899541A (en) * 1997-02-10 1999-05-04 Central Power Products, Inc. Low profile rubber tracked snow vehicle with snow-clearing drive wheels
US5938301A (en) * 1997-06-05 1999-08-17 Hostetler; Dewey Track assembly for track laying vehicle or implement
US6120405A (en) * 1998-01-06 2000-09-19 Caterpillar Inc. Drive sprocket which has rotating members which are engaged by drive lugs of a track
US6220378B1 (en) 1998-01-06 2001-04-24 Caterpillar Inc. Drive mechanism for a track type work machine having enhanced durability
US6322473B1 (en) 1998-01-06 2001-11-27 Caterpillar Inc. Drive sprocket which has rotating members which are engaged by drive lugs of a track
US6123399A (en) * 1998-04-02 2000-09-26 Blaw-Knox Construction Equipment Corp. Mobile construction vehicle driven by track assemblies using continuous elastomeric belts
US6047785A (en) * 1998-04-02 2000-04-11 Blaw-Knox Construction Equip. Corp. Mobile construction vehicle driven by track assemblies using continuous elastomeric belts
US6030058A (en) * 1998-04-02 2000-02-29 Blaw-Knox Construction Equipment Corporation Mobile construction vehicle driven by track assemblies using continuous elastomeric belts
US6497460B2 (en) 1998-04-21 2002-12-24 A. S. V., Inc. Suspension and drive mechanism for a multi-surface vehicle
US6435291B2 (en) 1998-04-21 2002-08-20 A.S.V., Inc. Suspension and drive mechanism for multi-surface vehicle
US6435292B2 (en) 1998-04-21 2002-08-20 A.S.V., Inc. Suspension and drive mechanism for a multi-surface vehicle
US6247547B1 (en) 1998-04-21 2001-06-19 A.S.V., Inc. Suspension and drive mechanism for a multi-surface vehicle
US7188915B2 (en) 1998-04-21 2007-03-13 A.S.V., Inc. Suspension and drive mechanism for a multi-surface vehicle
US6322172B2 (en) * 1998-12-03 2001-11-27 Camoplast, Inc. Endless belt for use with heavy duty track vehicles
US6241327B1 (en) * 1999-11-05 2001-06-05 Torvec, Inc. Endless track for high speed multi-terrain vehicles
US6543862B1 (en) * 2000-07-28 2003-04-08 Agtracks, Inc. Drive wheel for track apparatus
US6390564B1 (en) 2000-11-03 2002-05-21 The Goodyear Tire & Rubber Company Pneumatic tire wheel assembly for tracked vehicle
US20030034189A1 (en) * 2001-06-07 2003-02-20 Gary Lemke Slick track
US6698850B2 (en) 2001-07-03 2004-03-02 Sumitomo Rubber Industries, Ltd. Elastic crawler traveling apparatus and sprocket for crawler belt used in the same
US6848757B2 (en) 2001-07-03 2005-02-01 Sumitomo Rubber Industries, Ltd. Elastic crawler traveling apparatus and sprocket for crawler belt used in the same
EP1273504A1 (en) * 2001-07-03 2003-01-08 The Ohtsu Tire & Rubber Co., Ltd. Elastic crawler traveling apparatus and sprocket for crawler belt used in the same
US6932442B2 (en) * 2001-07-23 2005-08-23 Komatsu Ltd. Elastic-bodied crawler
US20030019133A1 (en) * 2001-07-24 2003-01-30 Kazutoshi Hori Elastic-bodied crawler
US6810975B2 (en) 2002-05-23 2004-11-02 Westerngaco A.S. Suspension system for a tracked vehicle
US20040070273A1 (en) * 2002-06-28 2004-04-15 Cary Safe Track and drive mechanism for a vehicle
US7156474B2 (en) * 2002-06-28 2007-01-02 A.S.V., Inc. Track and drive mechanism for a vehicle
US6896430B2 (en) * 2002-10-23 2005-05-24 Hewlett-Packard Development Company, L.P. Compliant belt attach
US20040081502A1 (en) * 2002-10-23 2004-04-29 Williams Martin R. Compliant belt attach
US20050104450A1 (en) * 2002-11-20 2005-05-19 Lucie Gagne Endless track for industrial or agricultural vehicles
US6974196B2 (en) * 2002-11-20 2005-12-13 Camoplast Inc. Endless track for industrial or agricultural vehicles
US20060284484A1 (en) * 2005-06-15 2006-12-21 Torvec, Inc. Endless track for high speed multi-terrain vehicles
US7367637B2 (en) 2005-06-15 2008-05-06 Torvec, Inc. Endless track for high speed multi-terrain vehicles
US20070126286A1 (en) * 2005-12-02 2007-06-07 Feldmann Thomas B Endless track belt
US7533741B2 (en) * 2006-02-09 2009-05-19 Glen Brazier Swivel mounted track frame
US20070181351A1 (en) * 2006-02-09 2007-08-09 Glen Brazier Swivel mounted track frame
US20110074210A1 (en) * 2006-09-22 2011-03-31 Michel Paradis Noiseless Elastomeric Tracks For Tracked Vehicles
US20080136255A1 (en) * 2006-12-12 2008-06-12 Veyance Technologies, Inc. Endless track belt and method of making same
US20090072617A1 (en) * 2007-09-14 2009-03-19 Arto Alfthan Automatic Track Tensioning System
US7914087B2 (en) 2007-09-14 2011-03-29 Deere & Company Automatic track tensioning system
US9511805B2 (en) 2009-12-11 2016-12-06 Camso Inc. Endless track for propelling a vehicle, with edge-cutting resistance
US9004618B1 (en) 2010-05-20 2015-04-14 Camoplast Solideal, Inc. Endless track for propelling a vehicle, with lug replacement capability
US11186330B2 (en) 2010-06-30 2021-11-30 Camso Inc. Track assembly for an off-road vehicle
US10272959B2 (en) 2010-06-30 2019-04-30 Camso Inc. Track assembly for an off-road vehicle
US9033431B1 (en) 2010-06-30 2015-05-19 Camoplast Solideal Inc Track assembly for an off-road vehicle
US9878750B2 (en) 2010-12-14 2018-01-30 Camso Inc. Endless track for traction of a vehicle
US9162718B2 (en) * 2010-12-14 2015-10-20 Camso Inc. Endless track for traction of a vehicle
US10933877B2 (en) 2010-12-14 2021-03-02 Camso Inc. Track drive mode management system and methods
US10843750B2 (en) 2010-12-14 2020-11-24 Camso Inc. Endless track for traction of a vehicle
US9334001B2 (en) 2010-12-14 2016-05-10 Camso Inc. Drive sprocket, drive lug configuration and track drive arrangement for an endless track vehicle
US10730572B1 (en) 2010-12-14 2020-08-04 Camso Inc. Endless track for traction of a vehicle
US9067631B1 (en) 2010-12-14 2015-06-30 Camoplast Solideal Inc. Endless track for traction of a vehicle
US10328982B2 (en) 2010-12-14 2019-06-25 Camso Inc. Drive sprocket, drive lug configuration and track drive arrangement for an endless track vehicle
US10077089B1 (en) 2010-12-14 2018-09-18 Camso Inc. Endless track for traction of a vehicle
US20150042152A1 (en) * 2010-12-14 2015-02-12 Alain Lussier Endless track for traction of a vehicle
US9211923B2 (en) * 2011-02-15 2015-12-15 Bridgestone Corporation Rubber crawler
US20140001829A1 (en) * 2011-02-15 2014-01-02 Bridgestone Corporation Rubber crawler
US20150060242A1 (en) * 2013-08-27 2015-03-05 System Plast S.r.I. Conveyor system devices with contaminant removal features
US9415943B2 (en) * 2013-08-27 2016-08-16 System Plast S.R.L. Conveyor system devices with contaminant removal features
RU2580594C1 (en) * 2015-01-12 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Курганский государственный университет" Caterpillar with flexible hinges
US11897558B2 (en) 2015-03-04 2024-02-13 Camso Inc. Track system for traction of a vehicle
US11167810B2 (en) 2015-03-04 2021-11-09 Camso Inc. Track system for traction of a vehicle
US11046377B2 (en) 2015-03-04 2021-06-29 Camso Inc. Track system for traction of a vehicle
US10783723B2 (en) 2015-06-29 2020-09-22 Camso Inc. Systems and methods for monitoring a track system for traction of a vehicle
US11180204B2 (en) 2016-04-27 2021-11-23 Positec Power Tools (Suzhou) Co., Ltd. Autonomous track-type moving device
US11738813B2 (en) 2016-11-01 2023-08-29 Loc Performance Products, Llc Urethane hybrid agricultural vehicle track
US10589809B2 (en) 2016-11-01 2020-03-17 Contitech Transportbandsysteme Gmbh Urethane hybrid agricultural vehicle track
US20210107576A1 (en) * 2017-09-05 2021-04-15 Soucy International Inc. Track system for vehicle
US11731714B2 (en) * 2017-09-05 2023-08-22 Soucy International Inc. Track system for vehicle
US11835955B2 (en) 2017-12-08 2023-12-05 Camso Inc. Systems and methods for monitoring off-road vehicles

Also Published As

Publication number Publication date
ATE142575T1 (en) 1996-09-15
EP0500614A1 (en) 1992-09-02
JPH05501529A (en) 1993-03-25
ES2093033T3 (en) 1996-12-16
CA2068534C (en) 2001-01-02
WO1991007306A1 (en) 1991-05-30
EP0500614B1 (en) 1996-09-11
DE69028548T2 (en) 1997-02-27
EP0500614A4 (en) 1993-06-09
CA2068534A1 (en) 1991-05-14
DE69028548D1 (en) 1996-10-17

Similar Documents

Publication Publication Date Title
US5352029A (en) Positively driven elastomeric tracked work vehicle
US5279378A (en) Frictionally driven belted work vehicle
CA2482189C (en) Endless track and guide wheels for high speed multi-terrain vehicles
US4953921A (en) Ground engaging surface for endless tracks, wheels and tires
US5072800A (en) Support beam for a vehicle
US20080258550A1 (en) Hybrid Combination of Rubber Track with Road Wheels for a Vehicle
US20060125318A1 (en) Endless track for high speed multi-terrain vehicles
US5363936A (en) Frictionally driven belted work vehicle
EP0614430A4 (en) Track laying vehicles.
USRE38858E1 (en) Frictionally driven belted work machine
AU653502B2 (en) Positively driven elastomeric tracked work vehicle
US5462345A (en) Resilient wheels with reinforcing rings
GB2311971A (en) Drive wheel for endless ground engaging drive belts
AU586902B2 (en) Ground engaging surface for endless tracks, wheels and tyres
JPH11510762A (en) Tracked vehicle
US20020190575A1 (en) Endless track constructed from vehicle tire
CA1222271A (en) Frictionally driven belted work vehicle
AU3077992A (en) Track laying vehicles

Legal Events

Date Code Title Description
AS Assignment

Owner name: WARANE PTY. LTD. (TRADING AS WALTANNA TRACTORS), A

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:NAGORCKA, JAMES ARTHUR;REEL/FRAME:006332/0888

Effective date: 19920504

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12