US5428643A - Method of, and transmitter for, transmitting a digital signal - Google Patents

Method of, and transmitter for, transmitting a digital signal Download PDF

Info

Publication number
US5428643A
US5428643A US08/098,694 US9869493A US5428643A US 5428643 A US5428643 A US 5428643A US 9869493 A US9869493 A US 9869493A US 5428643 A US5428643 A US 5428643A
Authority
US
United States
Prior art keywords
constellation
filter response
response sequences
symbols
quadrature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/098,694
Inventor
Charles J. H. Razzell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Philips Corp
Original Assignee
US Philips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Philips Corp filed Critical US Philips Corp
Assigned to U.S. PHILIPS CORPORATION reassignment U.S. PHILIPS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RAZZELL, CHARLES J.H.
Application granted granted Critical
Publication of US5428643A publication Critical patent/US5428643A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/206Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
    • H04L27/2067Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states
    • H04L27/2071Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states in which the data are represented by the carrier phase, e.g. systems with differential coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0042Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03834Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping
    • H04L25/03859Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping shaping using look up tables for partial waveforms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2003Modulator circuits; Transmitter circuits for continuous phase modulation
    • H04L27/2021Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change per symbol period is not constrained
    • H04L27/2028Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change per symbol period is not constrained in which the phase changes are non-linear

Definitions

  • the present invention relates to a method of, and transmitter for, transmitting a digital signal.
  • An analogue filter for doing this task can be problematic and implementing the desired filtering characteristic using a digital filter is relatively costly and has limits on its operational speed due to the number of multiplications involved.
  • European Patent Specification EP 0 132 988 B1 discloses an implementation of a digital synthesis technique for a precisely controlled waveform having predetermined time and frequency characteristics in response to a binary input data stream. More particularly a truncated impulse response is stored and each transmission symbol provides a weighting for its component of the impulse response. Collectively each currently transmitted symbol is a function of the weighting assigned to its impulse function plus the weighting assigned to each neighbouring impulse function by the value of their respective transmission symbol states. Finally, the amount contributed from an impulse response of a neighbouring transmission symbol must take into account its temporal relationship, or time displacement, from the current transmission symbol.
  • This patent specification discloses a number of embodiments of which a first, FIG.
  • FIG. 1 relates to a 16 quadrature amplitude modulation signal using 4-level signals and a truncated sequence of 9 impulse responses which requires 4 9 (or 262144) addressable memory locations.
  • FIG. 8 reduces this number of addressable memory locations by means of partial summations where each term is made up of the sum of three corresponding terms in some equations given. As a result each partial sum requires fewer addresses (hence less memory). In the example given six ROMs, each requiring 64 memory locations, accomplish the same memory function as two ROMs each requiring 2 9 memory locations.
  • An object of the present invention is to reduce the number of memory locations.
  • a method of transmitting data signals comprising differentially encoding the data signals, mapping differentially encoded symbols on to filtering means using truth table means comprising columns representing each point on the differential encoding constellation and rows representing respective component values of the constellation vectors, each constellation point being represented by a binary value at the respective intersection of a column and row, storing the binary values corresponding to successive constellation points in shift register means, using the binary values relating to a succession of constellation points to obtain quadrature related weighted filter response sequences, providing analogue signals corresponding to the succession of weighted filter response sequences and frequency up converting the analogue signals.
  • successive bits are encoded as symbols, the symbols are modulated and applied to digital filtering means having a desired characteristic for producing a filter response sequence in a form suitable for transmission, and the filter response sequences are converted to analogue signals for frequency up conversion for transmission, wherein the symbols are assigned to respective points of a modulation constellation using a truth table, the points of a modulation constellation being stored as in-phase and quadrature components of a vector defining each point, each column of the truth table relating to a respective point of the constellation and each row of the truth table representing one of a plurality of possible in-phase and quadrature component values, the component values of each constellation point being indicated by a binary value at the respective intersections of a particular column with the rows, wherein the digital filtering is effected in a digital filtering means comprising a plurality of shift register means corresponding in number to the number of rows in the truth table, each shift register means having a predetermined plurality of stages corresponding to the number of symbols, N, required by the filter spectrum,
  • a transmitter comprising means for differentially encoding the data signals, means for mapping differentially encoded symbols on to filtering means using truth table means comprising columns representing each point on the differential encoding constellation and rows representing respective component values of the constellation vectors, each constellation point being represented by a binary value at the respective intersection of a column and row, shift register means for storing the binary values corresponding to successive constellation points, means for using the binary values relating to a succession of constellation points to obtain quadrature related weighted filter response sequences, means for providing analogue signals corresponding to the succession of weighted filter response sequences and means for frequency up converting the analogue signals.
  • An embodiment of the transmitter comprises means for receiving a digital signal, means for encoding bits of the digital signal as symbols, modulation means comprising means for forming a truth table representing the components of vectors of a modulation constellation, the truth table comprising a plurality of columns, one for each constellation point, and a plurality of rows, each row being assigned a respective one of a plurality of possible in-phase and quadrature component values, the component values of each constellation point being indicated by a binary value at the respective intersection of a particular column with the rows, filtering means comprising a plurality of shift register means corresponding in number to the number of rows in the truth table, each shift register means having N stages for storing an output from a corresponding row of the truth table in response to the receipt of a symbol, at least one look-up table storing the filter response sequences for all combinations of N bits, outputs of each of the stages of each shift register means forming an address input to the look-up table, means for forming the sum of the weighted filter response sequences of all the in
  • the size of the look-up table is reduced significantly. Also any multiplications required in order to obtain the sums of the weighted in-phase and quadrature components involve binary "1"s and "0"s and can therefore be implemented easily.
  • FIG. 1 is a block schematic diagram of a transmitter
  • FIG. 2 is a vector diagram showing the constellation of points in a ⁇ /4 DPQSK modulation scheme
  • FIG. 3 is a truth table
  • FIG. 4 is a diagram of part of the impulse response of a raised cosine filter
  • FIG. 5 is a block schematic diagram of one embodiment of the present invention.
  • FIG. 6 is a block schematic diagram of another embodiment of the present invention.
  • a data signal comprising a succession of binary bits is produced by a source 10.
  • the bits are suitably encoded as 2 bit symbols in an encoder 11.
  • the symbols are applied to a differential encoder 12 in which they are encoded as ⁇ /4 DQPSK signals with suitable Gray code mapping in a stage 13.
  • the operation of the encoder 12 will be described later.
  • Quadrature related differentially encoded symbols I and Q are applied to raised cosine filters 14,15 which produce filter sequences which are applied to respective digital to analogue converters (DAC) 16,17 which may include reconstruction filters (not shown).
  • Analogue outputs of the DACs 16,17 are applied to mixers 18,20 in which they are frequency up-converted using a local oscillator 22 and a ⁇ /2 phase shifter 24.
  • the outputs of the mixers 18,20 are summed in a summation stage 26 and applied to an antenna 28 for transmission.
  • the vector diagram shown in FIG. 2 indicates the 8 points of a ⁇ /4 DQPSK modulation scheme.
  • the points are referenced “0" to "7".
  • the Gray code mapping is in accordance with the form A in the above table. Starting at point “0" if the two bit symbol is equal to 00 then one adds -3 which means that you proceed 3 points in the clockwise direction to the point "5". If the two bit symbol is 01 then one adds +3 which means you proceed anticlockwise around the constellation by 3 points to point "3", taking "0” as a reference. Similarly, symbols 10 and 11 are differentially encoded by adding -1 and +1, respectively, which means you proceed to point "7” or “1", taking "0” as a reference. The modulation is indicated by the transition between two symbols.
  • FIG. 3 is a truth table in which the columns 0 to 7 refer to the constellation points "0" to "7" and the rows R1 to R8 relate to the relative value or weighting of I and Q. As an example if one refers to column 3 the I value is -0.7071 and the Q value is 0.7071.
  • This truth table expressed in binary is and Os can be used to simplify the filters 14,15.
  • FIG. 4 shows part of the impulse response of a raised cosine filter which is frequently used to transmit digital data signals in analogue form.
  • the illustrated waveform extends over 10 symbol periods but the number of periods could be fewer or greater.
  • One effect of it extending over 10 symbol periods is that the actual analogue values of the I and Q signals from the filter 16 are influenced by the preceding and following symbols.
  • the transmitter in accordance with the present invention reduces the required storage by making use of the truth table shown in FIG. 3 and in so doing the histories can be stored as filter response sequences to all combinations of N bits or binary values, as opposed to N symbols.
  • the number of memory locations is 2 10 , that is 1024.
  • the filter response sequence has to reflect the weighting applied to that row, see the right hand column in FIG. 3.
  • the weighting may be taken into account in at least two ways, firstly to multiply the filter response sequence by the weighting as shown in FIG. 5 or to have eight ROMs in which the filter response sequences read-out have already been weighted as shown in FIG. 6.
  • the mapping stage 13 comprises the truth table shown in FIG. 3.
  • Each row R1 to R8 of the mapping stage 13 has an output coupled to a respective shift register SR1 to SR8, each of which stores a history of bits or binary values associated with that row.
  • the number of stages in each shift register SR1 to SR8 corresponds to the value of N and for ease of illustration, 10 stages S1 to S10 are shown.
  • Stage S1 holds the oldest entry and the stage S10 the newest.
  • the 10 bit outputs of each shift register SR1 to SR8 are sequentially applied during one symbol period to the ROM look-up table 30 which stores the filter response sequences to all the combinations of 10 bits.
  • Each filter response sequence comprises M-values, where M is an integer and has for example a value of 4. All M values of the addressed filter response sequences are read-out during a symbol period.
  • the selected one of the M-values of the filter response sequences is determined by appending additional address bits to those constituted by the outputs of the shift registers SR1 to SR8. These additional bits, for example 00,01,10 and 11 are produced by a clock 50 connected to the ROM look-up table 30.
  • the additional address bits say 00, are appended to the respective addresses and the first of the M-values is read-out and stored in a timing buffer 52.
  • each shift register SR1 to SR8 is considered in turn in a succession of sweeps.
  • the 10 bit outputs of the 8 shift registers SR1 to SR8 are applied sequentially during one symbol period as addresses to the look-up table 30 which in turn gives one value of filter response sequence on the appropriate output data path.
  • the shift register SR4 contains binary values 0100010000 and these (together with the appended address bits) constitute the input address to the look-up table 30.
  • the preselected value of the filter response sequence corresponding that address is read out and supplied to the timing buffer 52 from where the value is read out on data path 34.
  • the values of the filter response sequences obtained on the data paths 31 to 38 have to be weighted in accordance with the values applied respectively to the rows R1 to R8 of the truth table. This is done in respective multipliers 40,42 for the I and Q values.
  • Each multiplier 40,42 comprises 4 stages 41A to 41D and 43A to 43D, respectively.
  • the stages 41A,43A which receive filter response sequences on data paths 31,35 may comprise buffer stages as the sequences are multiplied by 1.
  • the stages 41B,43B may comprise ones or twos complement circuits as they multiply the filter response sequences on the data paths 32,36 by -1.
  • the stages 41C,43C multiply the filter response sequences on the data paths 33,37 by 0.7071 whilst the stages 41D,43D multiply the filter response sequences on the data paths 34,38 by -0.7071.
  • Outputs from the respective stages of each of the multipliers are summed in respective adders 44,46.
  • the outputs of the adders 44,46 are applied to the DACs 16,17 and the analogue outputs are frequency up-converted and summed before the result is applied to the antenna 28.
  • FIG. 6 illustrates another embodiment in which eight, or more specifically two groups of four, look-up tables 301 to 308 are connected in parallel to the stages of the shift registers SR1 to SR8.
  • each shift register SR1 to SR8 is shown to have 8 outputs instead of 10 as shown in FIG. 5.
  • the filter response sequences in each of the look-up tables 301 to 308 have already been weighted as required so that there is no requirement for the timing buffer and the multipliers 40,42 as shown in FIG. 5.
  • the respective values of the I and Q filter response sequences are read out in parallel, summed in the adders 44,46,converted to analogue signals and the result applied to the mixers 18,20, respectively, for frequency up-conversion as described previously.
  • the present invention has been described with has been described with reference to ⁇ /4 DQPSK modulation but it can be applied to other modulation schemes.

Abstract

A digital modulator in which symbols representing bits are encoded and assigned to respective points of constellation of points representing the modulation scheme. The quadrature components of a vector representing each of the constellation points are contained in a truth table (14) in which the columns comprise the respective constellation points and the rows comprise the relative in-phase and quadrature component values. In response to the assignment of a symbol to a constellation point the appropriate column in the truth table is read out in parallel as a binary word and the bits of the word are applied to respective first stages (S10) of a plurality of shift registers (SR1 to SR8) which store the histories of the respective component values for the previous (N-1) symbols. Outputs of each of the stages (S1 to S10) of each shift register are applied as an address to a look-up table (16) storing the filter response sequences to all combinations of N bits to obtain weighted filter response sequences representative of the particular combination of bits currently stored in the stages (S1 to S 10) of each shift register (SR1 to SR8). The in-phase and quadrature phase weighted filter response sequences are combined and converted to analogue signals which are applied to a respective frequency up-conversion stage (18,20).

Description

DESCRIPTION
The present invention relates to a method of, and transmitter for, transmitting a digital signal.
BACKGROUND OF THE INVENTION
When digitally synthesising a waveform various digital values are read out from a memory and are filtered to produce an analogue waveform which is transmitted through an air interface or through a landline, such as a co-axial cable or optical fibre.
An analogue filter for doing this task can be problematic and implementing the desired filtering characteristic using a digital filter is relatively costly and has limits on its operational speed due to the number of multiplications involved.
European Patent Specification EP 0 132 988 B1 discloses an implementation of a digital synthesis technique for a precisely controlled waveform having predetermined time and frequency characteristics in response to a binary input data stream. More particularly a truncated impulse response is stored and each transmission symbol provides a weighting for its component of the impulse response. Collectively each currently transmitted symbol is a function of the weighting assigned to its impulse function plus the weighting assigned to each neighbouring impulse function by the value of their respective transmission symbol states. Finally, the amount contributed from an impulse response of a neighbouring transmission symbol must take into account its temporal relationship, or time displacement, from the current transmission symbol. This patent specification discloses a number of embodiments of which a first, FIG. 1, relates to a 16 quadrature amplitude modulation signal using 4-level signals and a truncated sequence of 9 impulse responses which requires 49 (or 262144) addressable memory locations. Another embodiment, FIG. 8, reduces this number of addressable memory locations by means of partial summations where each term is made up of the sum of three corresponding terms in some equations given. As a result each partial sum requires fewer addresses (hence less memory). In the example given six ROMs, each requiring 64 memory locations, accomplish the same memory function as two ROMs each requiring 29 memory locations.
SUMMARY OF THE INVENTION
An object of the present invention is to reduce the number of memory locations.
According to one aspect of the present invention there is provided a method of transmitting data signals, comprising differentially encoding the data signals, mapping differentially encoded symbols on to filtering means using truth table means comprising columns representing each point on the differential encoding constellation and rows representing respective component values of the constellation vectors, each constellation point being represented by a binary value at the respective intersection of a column and row, storing the binary values corresponding to successive constellation points in shift register means, using the binary values relating to a succession of constellation points to obtain quadrature related weighted filter response sequences, providing analogue signals corresponding to the succession of weighted filter response sequences and frequency up converting the analogue signals.
In one embodiment of the method successive bits are encoded as symbols, the symbols are modulated and applied to digital filtering means having a desired characteristic for producing a filter response sequence in a form suitable for transmission, and the filter response sequences are converted to analogue signals for frequency up conversion for transmission, wherein the symbols are assigned to respective points of a modulation constellation using a truth table, the points of a modulation constellation being stored as in-phase and quadrature components of a vector defining each point, each column of the truth table relating to a respective point of the constellation and each row of the truth table representing one of a plurality of possible in-phase and quadrature component values, the component values of each constellation point being indicated by a binary value at the respective intersections of a particular column with the rows, wherein the digital filtering is effected in a digital filtering means comprising a plurality of shift register means corresponding in number to the number of rows in the truth table, each shift register means having a predetermined plurality of stages corresponding to the number of symbols, N, required by the filter spectrum, an input to each shift register means being connected to receive the binary value in a respective row of the truth table, outputs of the stages of each shift register forming the input address to a look-up table storing the filter response sequences for all combinations of N bits, wherein the sum of the weighted filter response sequences for all the in-phase components and for all the quadrature phase components are obtained, and wherein analogue values corresponding to the respective sums are applied to quadrature related frequency up conversion means.
According to a second aspect of the present invention there is provided a transmitter comprising means for differentially encoding the data signals, means for mapping differentially encoded symbols on to filtering means using truth table means comprising columns representing each point on the differential encoding constellation and rows representing respective component values of the constellation vectors, each constellation point being represented by a binary value at the respective intersection of a column and row, shift register means for storing the binary values corresponding to successive constellation points, means for using the binary values relating to a succession of constellation points to obtain quadrature related weighted filter response sequences, means for providing analogue signals corresponding to the succession of weighted filter response sequences and means for frequency up converting the analogue signals.
An embodiment of the transmitter comprises means for receiving a digital signal, means for encoding bits of the digital signal as symbols, modulation means comprising means for forming a truth table representing the components of vectors of a modulation constellation, the truth table comprising a plurality of columns, one for each constellation point, and a plurality of rows, each row being assigned a respective one of a plurality of possible in-phase and quadrature component values, the component values of each constellation point being indicated by a binary value at the respective intersection of a particular column with the rows, filtering means comprising a plurality of shift register means corresponding in number to the number of rows in the truth table, each shift register means having N stages for storing an output from a corresponding row of the truth table in response to the receipt of a symbol, at least one look-up table storing the filter response sequences for all combinations of N bits, outputs of each of the stages of each shift register means forming an address input to the look-up table, means for forming the sum of the weighted filter response sequences of all the in-phase components and of all the quadrature phase components, digital to analogue conversion means for converting the respective sums of the filtered weighted response signals to analogue signals and quadrature frequency up converting means for frequency up converting the analogue signals.
By means of the present invention the size of the look-up table is reduced significantly. Also any multiplications required in order to obtain the sums of the weighted in-phase and quadrature components involve binary "1"s and "0"s and can therefore be implemented easily.
The present invention will now be described, by way of example, with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is a block schematic diagram of a transmitter,
FIG. 2 is a vector diagram showing the constellation of points in a π/4 DPQSK modulation scheme,
FIG. 3 is a truth table,
FIG. 4 is a diagram of part of the impulse response of a raised cosine filter,
FIG. 5 is a block schematic diagram of one embodiment of the present invention, and
FIG. 6 is a block schematic diagram of another embodiment of the present invention.
In the drawings the same reference numerals have been used to indicate corresponding features.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to FIG. 1 a data signal comprising a succession of binary bits is produced by a source 10. The bits are suitably encoded as 2 bit symbols in an encoder 11. The symbols are applied to a differential encoder 12 in which they are encoded as π/4 DQPSK signals with suitable Gray code mapping in a stage 13. The operation of the encoder 12 will be described later. Quadrature related differentially encoded symbols I and Q are applied to raised cosine filters 14,15 which produce filter sequences which are applied to respective digital to analogue converters (DAC) 16,17 which may include reconstruction filters (not shown). Analogue outputs of the DACs 16,17 are applied to mixers 18,20 in which they are frequency up-converted using a local oscillator 22 and a π/2 phase shifter 24. The outputs of the mixers 18,20 are summed in a summation stage 26 and applied to an antenna 28 for transmission.
The operation of the differential encoder 12 and the mapping stage 13 will now be described with reference to FIG. 2. In the interests of clarity reference will be made to one form of Gray code mapping, however the invention can be implemented with other forms of Gray code mapping shown in the following table:
______________________________________                                    
Form   A      B      C    D     E    F    G    H                          
______________________________________                                    
00     -3     +3     -1   +1    -3   +3   -1   +1                         
01     +3     -3     +1   -1    -1   +1   -3   +3                         
10     -1     +1     -3   -3    +3   -3   +1   -1                         
11     +1     -1     +3   +3    +1   -1   +3   -3                         
______________________________________                                    
The vector diagram shown in FIG. 2 indicates the 8 points of a π/4 DQPSK modulation scheme. The points are referenced "0" to "7". The Gray code mapping is in accordance with the form A in the above table. Starting at point "0" if the two bit symbol is equal to 00 then one adds -3 which means that you proceed 3 points in the clockwise direction to the point "5". If the two bit symbol is 01 then one adds +3 which means you proceed anticlockwise around the constellation by 3 points to point "3", taking "0" as a reference. Similarly, symbols 10 and 11 are differentially encoded by adding -1 and +1, respectively, which means you proceed to point "7" or "1", taking "0" as a reference. The modulation is indicated by the transition between two symbols.
Another point to note about the vector diagram is that by superimposing quadrature related axes I and Q on the diagram with the points "0" and "4" lying on the I-axis equidistant from the origin, the points "2" and "6" lying on the Q-axis equidistant from the origin and the distance from the origin in each case being unitary, the coordinates of each point of the constellation are as follows:
______________________________________                                    
Point     I            Q                                                  
______________________________________                                    
"0"       1            0                                                  
"1"                                                                       
           ##STR1##                                                       
                        ##STR2##                                          
"2"       0            1                                                  
"3"       -0.7071      0.7071                                             
"4"       -1           0                                                  
"5"       -0.7071      -0.7071                                            
"6"       0            -1                                                 
"7"       0.7071       -0.7071                                            
______________________________________                                    
FIG. 3 is a truth table in which the columns 0 to 7 refer to the constellation points "0" to "7" and the rows R1 to R8 relate to the relative value or weighting of I and Q. As an example if one refers to column 3 the I value is -0.7071 and the Q value is 0.7071. This truth table expressed in binary is and Os can be used to simplify the filters 14,15.
As is well known if one transmits a rectangular pulse, a wide frequency band is required because of the harmonics necessary to make up a rectangular pulse. In reality this is impractical because of the need to co-exist with neighbouring channels. To avoid adjacent channel interference a data signal is effectively filtered so that it can be transmitted and received without excessive interference to adjacent channels. FIG. 4 shows part of the impulse response of a raised cosine filter which is frequently used to transmit digital data signals in analogue form. The illustrated waveform extends over 10 symbol periods but the number of periods could be fewer or greater. One effect of it extending over 10 symbol periods is that the actual analogue values of the I and Q signals from the filter 16 are influenced by the preceding and following symbols. As a result when implementing such a filter as a look-up table, it has been necessary to store as analogue values, the histories of all combinations of N symbols, where N is the number of symbols used in the waveform of FIG. 4. For simplicity assume that N=10 and that each of the eight states (or points) of the constellation is represented by 3 bits. Therefore in order to store all the possible histories of 10 symbols will require (23)10 bits (or 810 bits) of storage.
The transmitter in accordance with the present invention reduces the required storage by making use of the truth table shown in FIG. 3 and in so doing the histories can be stored as filter response sequences to all combinations of N bits or binary values, as opposed to N symbols. As a result the number of memory locations is 210, that is 1024. Depending on the implementation of the transmitter, the filter response sequence has to reflect the weighting applied to that row, see the right hand column in FIG. 3. The weighting may be taken into account in at least two ways, firstly to multiply the filter response sequence by the weighting as shown in FIG. 5 or to have eight ROMs in which the filter response sequences read-out have already been weighted as shown in FIG. 6.
In either case the contemporaneous weighted filtered response sequences for the I and Q components are summed, respectively, the sums are converted into analogue values in DACs 16,17 (FIG. 1) and are applied to the mixers 18,20.
Referring to FIG. 5, the mapping stage 13 comprises the truth table shown in FIG. 3. Each row R1 to R8 of the mapping stage 13 has an output coupled to a respective shift register SR1 to SR8, each of which stores a history of bits or binary values associated with that row. The number of stages in each shift register SR1 to SR8 corresponds to the value of N and for ease of illustration, 10 stages S1 to S10 are shown. Stage S1 holds the oldest entry and the stage S10 the newest. When the shift registers are indexed after each symbol period the oldest entry is dropped as the stages shift their contents to make room for the newest entry. The 10 bit outputs of each shift register SR1 to SR8 are sequentially applied during one symbol period to the ROM look-up table 30 which stores the filter response sequences to all the combinations of 10 bits.
Each filter response sequence comprises M-values, where M is an integer and has for example a value of 4. All M values of the addressed filter response sequences are read-out during a symbol period. The selected one of the M-values of the filter response sequences is determined by appending additional address bits to those constituted by the outputs of the shift registers SR1 to SR8. These additional bits, for example 00,01,10 and 11 are produced by a clock 50 connected to the ROM look-up table 30. Thus during a first sweep of the shift registers SR1 to SR8, the additional address bits, say 00, are appended to the respective addresses and the first of the M-values is read-out and stored in a timing buffer 52. At the end of the sweep, all the values are read-out simultaneously on respective output data paths 31 to 38. The outputs of the shift registers SR1 to SR8 are again swept and the additional address bits, say 01, are appended to each ROM address so that the second values of the filter response sequences are read out and held in the time buffer 52 prior to being read-out simultaneously on respective output data paths 31 to 38. The cycle is repeated for each of the other values.
For the purposes of illustration it has been assumed that the differentially encoded symbols correspond to the constellation points 0,5,6,1,0,3,4,7,2,1. Thus the first stage, S1, of the shift registers SR1 to SR8 store the binary values in the truth table for the constellation point "0", as shown. The binary values for the subsequent constellation points are stored in the respective stages S2 to S10 of the shift registers SR1 to SR8. During the subsequent symbol period and before a new symbol is clocked into the shift registers, each shift register SR1 to SR8 is considered in turn in a succession of sweeps. The 10 bit outputs of the 8 shift registers SR1 to SR8 are applied sequentially during one symbol period as addresses to the look-up table 30 which in turn gives one value of filter response sequence on the appropriate output data path. As an example the shift register SR4 contains binary values 0100010000 and these (together with the appended address bits) constitute the input address to the look-up table 30. The preselected value of the filter response sequence corresponding that address is read out and supplied to the timing buffer 52 from where the value is read out on data path 34.
The values of the filter response sequences obtained on the data paths 31 to 38 have to be weighted in accordance with the values applied respectively to the rows R1 to R8 of the truth table. This is done in respective multipliers 40,42 for the I and Q values. Each multiplier 40,42 comprises 4 stages 41A to 41D and 43A to 43D, respectively. The stages 41A,43A which receive filter response sequences on data paths 31,35 may comprise buffer stages as the sequences are multiplied by 1. The stages 41B,43B may comprise ones or twos complement circuits as they multiply the filter response sequences on the data paths 32,36 by -1. The stages 41C,43C multiply the filter response sequences on the data paths 33,37 by 0.7071 whilst the stages 41D,43D multiply the filter response sequences on the data paths 34,38 by -0.7071. Outputs from the respective stages of each of the multipliers are summed in respective adders 44,46. The outputs of the adders 44,46 are applied to the DACs 16,17 and the analogue outputs are frequency up-converted and summed before the result is applied to the antenna 28.
FIG. 6 illustrates another embodiment in which eight, or more specifically two groups of four, look-up tables 301 to 308 are connected in parallel to the stages of the shift registers SR1 to SR8. For convenience of illustration each shift register SR1 to SR8 is shown to have 8 outputs instead of 10 as shown in FIG. 5. The filter response sequences in each of the look-up tables 301 to 308 have already been weighted as required so that there is no requirement for the timing buffer and the multipliers 40,42 as shown in FIG. 5. During a symbol period the respective values of the I and Q filter response sequences are read out in parallel, summed in the adders 44,46,converted to analogue signals and the result applied to the mixers 18,20, respectively, for frequency up-conversion as described previously.
The present invention has been described with has been described with reference to π/4 DQPSK modulation but it can be applied to other modulation schemes.
From reading the present disclosure, other modifications will be apparent to persons skilled in the art. Such modifications may involve other features which are already known in the design, manufacture and use of transmitters, modulators and component parts thereof and which may be used instead of or in addition to features already described herein. Although claims have been formulated in this application to particular combinations of features, it should be understood that the scope of the disclosure of tile present application also includes any novel feature or any novel combination of features disclosed herein either explicitly or implicitly or any generalisation thereof, whether or not it relates to the same invention as presently claimed in any claim and whether or not it mitigates any or all of the same technical problems as does the present invention. The applicants hereby give notice that new claims may be formulated to such features and/or combinations of such features during the prosecution of the present application or of any further application derived therefrom.

Claims (15)

I claim:
1. A method of transmitting data signals, comprising:
differentially encoding the data signals to produce symbols corresponding to respective points of a differential encoding constellation,
mapping said symbols as successive constellation points on a filter according to a truth table having columns representing each point on the differential encoding constellation, and having rows representing respective component values of constellation vectors, each constellation point being represented by a binary value at the respective intersection of a column and row,
storing the binary values corresponding to the successive constellation points in a shift register,
determining quadrature related weighted filter response sequences from the binary values corresponding to the successive constellation points,
producing analog signals corresponding to the succession of weighted filter response sequences, and
frequency up-converting the analog signals.
2. A method as claimed in claim 1, characterized in that the method includes π/4 DQPSK modulation.
3. A method of transmitting a digital signal, comprising:
encoding successive bits as symbols,
modulating said symbols,
digitally filtering the modulated symbols according to a characteristic which produces a filter response sequence suitable for transmission,
converting the filter response sequence to analog signals,
frequency up-converting the analog signals, and
transmitting the frequency up-converted analog signals,
wherein the modulating step comprises:
assigning the symbols to respective points of a modulation constellation using a truth table, each column of the truth table relating to a respective point of the constellation and each row of the truth table representing one of a plurality of possible in-phase and quadrature component values, the component values of each constellation point being indicated by a binary value at the respective intersections of a particular column with the rows, and
storing the points of the modulation constellation as the in-phase and quadrature components of a vector defining each point, and
wherein the digitally filtering step comprises:
inputting the binary value of each row of the truth table into a respective shift register which has a predetermined plurality of stages corresponding to the number N of symbols,
storing the filter response sequences for all combinations of N bits in a look-up table,
using the outputs of the stages of the registers to form the input address to the look-up table,
weighting the filter response sequences for all the in-phase components and for all the quadrature phase components, and obtaining the respective sums of the weighted filter response sequences, and
applying analog signals corresponding to the respective sums of the weighted filter response sequences to a quadrature related frequency up-converter.
4. A method as claimed in claim 3, characterised in that the filter response sequences are weighted by having at least two look-up tables, the values stored in at least one of the look-up tables being the product of the filter response sequence and its weighting factor.
5. A method as claimed in claim 3, characterised in that the filter response sequences are weighted by applying the respective in-phase and quadrature filter response sequences to multiplying means for multiplication by a respective weighting factor.
6. A method as claimed in claim 5, characterized in that the method includes π/4 DQPSK modulation.
7. A method as claimed in claim 4, characterized in that the method includes π/4 DQPSK modulation.
8. A method as claimed in claim 3, characterized in that the method includes π/4 DQPSK modulation.
9. A transmitter for data signals, comprising:
means for differentially encoding the data signals to produce symbols corresponding to respective points of a differential encoding constellation,
a modulator comprising:
a filter,
means for mapping said symbols as successive constellation points on the filter according to a truth table having columns representing each point on the differential encoding constellation, and rows representing respective component values of constellation vectors, each constellation point being represented by a binary value at the respective intersection of a column and row,
at least one shift register for storing the binary values corresponding to successive constellation points, and
weighting means for determining quadrature related weighted filter response sequences from the binary values corresponding to the successive constellation points,
means for producing analog signals corresponding to the succession of weighted filter response sequences, and
a frequency up-converter receiving the analog signals.
10. A transmitter as claimed in claim 9, characterized in that the modulator is a π/4 DQPSK modulator.
11. A transmitter for a digital signal, comprising:
an encoder for encoding successive bits of the digital signal as symbols,
a modulator for modulating said symbols, comprising means for forming a truth table representing the components of vectors of a modulation constellation, the truth table having a respective column for each point of the constellation, and having a plurality of rows, each row being assigned a respective one of a plurality of possible in-phase and quadrature component values, the component values of each constellation point being indicated by a binary value at the respective intersections of a particular column with the rows,
a filter comprising:
a plurality of shift registers, equal in number to the number of rows in the truth table, for storing the points of the modulation constellation as the in-phase and quadrature components of a vector defining each point, each shift register having a predetermined plurality N of stages,
means, responsive to receipt of a symbol, for storing an output from a corresponding row of the truth table into a respective shift register,
at least one look-up table storing the filter response sequences for all combinations of N bits,
means for using the outputs of each of the stages of the registers to form a respective input address to the look-up table,
means for weighting the filter response sequences for all the in-phase components and for all the quadrature phase components, to form weighted filter response sequences, and
means for forming the sum of the weighted filter response sequences for all the in-phase components, and forming the sum for all the quadrature components,
a digital to analog converter for converting the respective sums of the weighted filter response sequences to respective analog signals, and
a quadrature related frequency up-converter receiving the respective analog signals.
12. A transmitter as claimed in claim 11, comprising a plurality of the look-up tables, the filter response sequences in each table being weighted by the means for weighting by a respective weighting factor.
13. A transmitter as claimed in claim 11, characterized in that the modulator is a π/4 DQPSK modulator.
14. A transmitter as claimed in claim 11, characterized in that said means for weighting includes means for multiplying an output of the truth table by a weighting factor.
15. A transmitter as claimed in claim 14, characterized in that the modulator is a π/4 DQPSK modulator.
US08/098,694 1992-08-25 1993-07-28 Method of, and transmitter for, transmitting a digital signal Expired - Fee Related US5428643A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9218009 1992-08-25
GB929218009A GB9218009D0 (en) 1992-08-25 1992-08-25 A method of,and transmitter for,transmitting a digital signal

Publications (1)

Publication Number Publication Date
US5428643A true US5428643A (en) 1995-06-27

Family

ID=10720890

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/098,694 Expired - Fee Related US5428643A (en) 1992-08-25 1993-07-28 Method of, and transmitter for, transmitting a digital signal

Country Status (6)

Country Link
US (1) US5428643A (en)
EP (1) EP0584872B1 (en)
JP (1) JPH06188927A (en)
KR (1) KR100313981B1 (en)
DE (1) DE69323252T2 (en)
GB (1) GB9218009D0 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604770A (en) * 1994-10-13 1997-02-18 Hewlett-Packard Company PI/4 DQPSK modulation with coarse mapper precession and fine filter precession
US6044482A (en) * 1994-12-12 2000-03-28 British Telecommunications Public Limited Company Digital transmission system for encoding and decoding attribute data into error checking symbols of main data
US6061821A (en) * 1998-01-09 2000-05-09 The United States Of America As Represented By The Secretary Of The Navy Context based error detection and correction for binary encoded text messages
US6115415A (en) * 1997-02-14 2000-09-05 General Data Comminc. Mapper for high data rate signalling
US6194977B1 (en) * 1998-05-05 2001-02-27 Lucent Technologies Inc. State variable-based table-driven modulation signal generation
US6288619B1 (en) * 1999-05-28 2001-09-11 Mitsumi Electric Co., Ltd. Bias circuit for use in quadrature modulator
US20020167693A1 (en) * 2000-12-21 2002-11-14 Quellan, Inc. Increasing data throughput in optical fiber transmission systems
WO2002091600A2 (en) * 2001-05-09 2002-11-14 Quellan, Inc. High-speed adjustable multilevel light modulation
US6549153B2 (en) * 2000-10-25 2003-04-15 Telefonaktiebolaget Lm Ericsson (Publ) Digital to analog conversion method and apparatus
US20030169195A1 (en) * 2002-03-08 2003-09-11 Quellan, Inc. High-speed analog-to-digital converter using a unique gray code
US6633614B1 (en) * 1999-09-15 2003-10-14 Telcordia Technologies, Inc. Multicarrier personal access communication system
US20030198478A1 (en) * 2002-04-23 2003-10-23 Quellan, Inc. Method and system for generating and decoding a bandwidth efficient multi-level signal
US20030226886A1 (en) * 2002-06-10 2003-12-11 Takashi Kakinuma Business card information management system
US20040012433A1 (en) * 2002-07-15 2004-01-22 Quellan, Inc. Adaptive noise filtering and equalization for optimal high speed multilevel signal decoding
US6700926B1 (en) * 1999-12-10 2004-03-02 Nokia Corporation Method and apparatus providing bit-to-symbol mapping for space-time codes
US20040221219A1 (en) * 2001-11-16 2004-11-04 Matsushita Electric Industrial Co., Ltd. ARQ retransmission with reordering scheme employing multiple redundancy versions and receiver/transmitter therefor
US20040218684A1 (en) * 2001-11-16 2004-11-04 Matsushita Electric Industrial Co., Ltd. Method for modifying a bit sequence in an ARQ retransmission, receiver and transmitter therefor
US20050030884A1 (en) * 2003-08-07 2005-02-10 Quellan, Inc. Method and system for crosstalk cancellation
US20050097425A1 (en) * 2002-11-29 2005-05-05 Matsushita Electric Industrial Co., Ltd. Data transmission apparatus using a constellation rearrangement
US6917559B2 (en) 2002-10-10 2005-07-12 Electronics And Telecommunications Research Institute Constellation mapping apparatus and method
US20060068724A1 (en) * 2000-12-27 2006-03-30 Matsushita Electric Industrial Co., Ltd. Radio transmitting apparatus, radio receiving apparatus, and M-ary modulation communication system
US7046738B1 (en) * 2000-02-08 2006-05-16 Ericsson Inc. 8-PSK transmit filtering using reduced look up tables
US7111219B2 (en) 2001-02-21 2006-09-19 Matsushita Electric Industrial Co., Ltd. Data transmission apparatus using a constellation rearrangement
US7123676B2 (en) 2003-11-17 2006-10-17 Quellan, Inc. Method and system for antenna interference cancellation
US7149256B2 (en) 2001-03-29 2006-12-12 Quellan, Inc. Multilevel pulse position modulation for efficient fiber optic communication
US7212580B2 (en) 2002-02-15 2007-05-01 Quellan, Inc. Multi-level signal clock recovery technique
US7215721B2 (en) 2001-04-04 2007-05-08 Quellan, Inc. Method and system for decoding multilevel signals
US7307569B2 (en) 2001-03-29 2007-12-11 Quellan, Inc. Increasing data throughput in optical fiber transmission systems
US7522883B2 (en) 2004-12-14 2009-04-21 Quellan, Inc. Method and system for reducing signal interference
US7616700B2 (en) 2003-12-22 2009-11-10 Quellan, Inc. Method and system for slicing a communication signal
US7725079B2 (en) 2004-12-14 2010-05-25 Quellan, Inc. Method and system for automatic control in an interference cancellation device
US7804760B2 (en) 2003-08-07 2010-09-28 Quellan, Inc. Method and system for signal emulation
US7934144B2 (en) 2002-11-12 2011-04-26 Quellan, Inc. High-speed analog-to-digital conversion with improved robustness to timing uncertainty
US20140254728A1 (en) * 2013-03-07 2014-09-11 Astrapi Corporation Method for gray coding a symbol alphabet
US9252983B2 (en) 2006-04-26 2016-02-02 Intersil Americas LLC Method and system for reducing radiated emissions from a communications channel

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631398B1 (en) * 1993-06-25 2004-11-17 Matsushita Electric Industrial Co., Ltd. Method and apparatus for waveform shaping of packet data
US5764693A (en) * 1994-11-14 1998-06-09 Research In Motion Limited Wireless radio modem with minimal inter-device RF interference
US5619531A (en) * 1994-11-14 1997-04-08 Research In Motion Limited Wireless radio modem with minimal interdevice RF interference
KR100239169B1 (en) * 1996-04-04 2000-01-15 윤종용 Pi/4 shifted n differential phase shift keying modulation signal generator
US6865170B1 (en) 1997-06-19 2005-03-08 Idt Corporation Metropolitan wide area network
BR9810696A (en) 1997-07-09 2000-09-05 Winstar Communications Inc Subscriber radio unit for multiple services, communication system, and circuit card for a personal computer
US6757268B1 (en) 1997-07-21 2004-06-29 Winstar Corporation Metropolitan wide area network
FR2777145B1 (en) * 1998-04-02 2000-04-28 Alsthom Cge Alcatel BROADBAND MULTI-CARRIER MODULATOR AND CORRESPONDING PROGRAMMING METHOD
EP1324624A4 (en) * 2000-08-31 2007-11-07 Huawei Tech Co Ltd Method and apparatuses of 8psk modulation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358853A (en) * 1981-01-22 1982-11-09 Codex Corporation Digital modem transmitter
EP0132988A2 (en) * 1983-07-27 1985-02-13 AT&T Corp. Digital synthesis technique for pulses having predetermined time and frequency domain characteristics
US4686688A (en) * 1984-07-23 1987-08-11 U.S. Philips Corporation Arrangement for generating an angle-modulated carrier signal of a constant amplitude in response to data signals
US4962510A (en) * 1986-04-15 1990-10-09 Terra Marine Engineering, Inc. Phase modulated system with phase domain filtering
US5140613A (en) * 1990-05-25 1992-08-18 Hewlett-Packard Company Baseband modulation system with improved ROM-based digital filter
US5175514A (en) * 1991-01-29 1992-12-29 Sanyo Electric Co., Ltd. Digital modulator and baseband signal generator for digital modulator
US5311553A (en) * 1992-06-15 1994-05-10 General Electric Company Trellis coding technique to increase adjacent channel interference protection ratio in land mobile radio systems under peak power constraints

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358853A (en) * 1981-01-22 1982-11-09 Codex Corporation Digital modem transmitter
EP0132988A2 (en) * 1983-07-27 1985-02-13 AT&T Corp. Digital synthesis technique for pulses having predetermined time and frequency domain characteristics
US4686688A (en) * 1984-07-23 1987-08-11 U.S. Philips Corporation Arrangement for generating an angle-modulated carrier signal of a constant amplitude in response to data signals
US4962510A (en) * 1986-04-15 1990-10-09 Terra Marine Engineering, Inc. Phase modulated system with phase domain filtering
US5140613A (en) * 1990-05-25 1992-08-18 Hewlett-Packard Company Baseband modulation system with improved ROM-based digital filter
US5175514A (en) * 1991-01-29 1992-12-29 Sanyo Electric Co., Ltd. Digital modulator and baseband signal generator for digital modulator
US5311553A (en) * 1992-06-15 1994-05-10 General Electric Company Trellis coding technique to increase adjacent channel interference protection ratio in land mobile radio systems under peak power constraints

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604770A (en) * 1994-10-13 1997-02-18 Hewlett-Packard Company PI/4 DQPSK modulation with coarse mapper precession and fine filter precession
US6044482A (en) * 1994-12-12 2000-03-28 British Telecommunications Public Limited Company Digital transmission system for encoding and decoding attribute data into error checking symbols of main data
US6115415A (en) * 1997-02-14 2000-09-05 General Data Comminc. Mapper for high data rate signalling
US6061821A (en) * 1998-01-09 2000-05-09 The United States Of America As Represented By The Secretary Of The Navy Context based error detection and correction for binary encoded text messages
US6194977B1 (en) * 1998-05-05 2001-02-27 Lucent Technologies Inc. State variable-based table-driven modulation signal generation
US6288619B1 (en) * 1999-05-28 2001-09-11 Mitsumi Electric Co., Ltd. Bias circuit for use in quadrature modulator
US6633614B1 (en) * 1999-09-15 2003-10-14 Telcordia Technologies, Inc. Multicarrier personal access communication system
US6654431B1 (en) 1999-09-15 2003-11-25 Telcordia Technologies, Inc. Multicarrier personal access communication system
US6700926B1 (en) * 1999-12-10 2004-03-02 Nokia Corporation Method and apparatus providing bit-to-symbol mapping for space-time codes
US7046738B1 (en) * 2000-02-08 2006-05-16 Ericsson Inc. 8-PSK transmit filtering using reduced look up tables
US6549153B2 (en) * 2000-10-25 2003-04-15 Telefonaktiebolaget Lm Ericsson (Publ) Digital to analog conversion method and apparatus
US7173551B2 (en) 2000-12-21 2007-02-06 Quellan, Inc. Increasing data throughput in optical fiber transmission systems
US20020167693A1 (en) * 2000-12-21 2002-11-14 Quellan, Inc. Increasing data throughput in optical fiber transmission systems
US7688913B2 (en) 2000-12-27 2010-03-30 Panasonic Corporation Radio transmitting apparatus, radio receiving apparatus, and M-ary modulation communication system
US20060068724A1 (en) * 2000-12-27 2006-03-30 Matsushita Electric Industrial Co., Ltd. Radio transmitting apparatus, radio receiving apparatus, and M-ary modulation communication system
US7400689B2 (en) 2000-12-27 2008-07-15 Matsushita Electric Industrial Co., Ltd. Data reception method and apparatus including reception of data in a first transmission and a retransmission
US7697565B2 (en) 2001-02-21 2010-04-13 Panasonic Corporation Data transmission apparatus and communication system using a constellation rearrangement
US7111219B2 (en) 2001-02-21 2006-09-19 Matsushita Electric Industrial Co., Ltd. Data transmission apparatus using a constellation rearrangement
US20070230613A1 (en) * 2001-02-21 2007-10-04 Matsushita Electric Industrial Co., Ltd. Data transmission apparatus and communication system using a constellation rearrangement
US7149256B2 (en) 2001-03-29 2006-12-12 Quellan, Inc. Multilevel pulse position modulation for efficient fiber optic communication
US7352824B2 (en) 2001-03-29 2008-04-01 Quellan, Inc. Multilevel pulse position modulation for efficient fiber optic communication
US7307569B2 (en) 2001-03-29 2007-12-11 Quellan, Inc. Increasing data throughput in optical fiber transmission systems
US7215721B2 (en) 2001-04-04 2007-05-08 Quellan, Inc. Method and system for decoding multilevel signals
US7602860B2 (en) 2001-04-04 2009-10-13 Quellan, Inc. Method and system for decoding multilevel signals
WO2002091600A3 (en) * 2001-05-09 2003-01-09 Quellan Inc High-speed adjustable multilevel light modulation
US20030030873A1 (en) * 2001-05-09 2003-02-13 Quellan, Inc. High-speed adjustable multilevel light modulation
WO2002091600A2 (en) * 2001-05-09 2002-11-14 Quellan, Inc. High-speed adjustable multilevel light modulation
US20040221219A1 (en) * 2001-11-16 2004-11-04 Matsushita Electric Industrial Co., Ltd. ARQ retransmission with reordering scheme employing multiple redundancy versions and receiver/transmitter therefor
US7787561B2 (en) 2001-11-16 2010-08-31 Panasonic Corporation Hybrid ARQ retransmission with reordering scheme employing multiple redundancy versions and receiver/transmitter therefor
US7471740B2 (en) * 2001-11-16 2008-12-30 Panasonic Corporation ARQ retransmission with reordering scheme employing multiple redundancy versions and receiver/transmitter therefor
US7110470B2 (en) * 2001-11-16 2006-09-19 Matsushita Electric Industrial Co., Ltd. ARQ retransmission with reordering scheme employing multiple redundancy versions and receiver/transmitter therefor
US20040218684A1 (en) * 2001-11-16 2004-11-04 Matsushita Electric Industrial Co., Ltd. Method for modifying a bit sequence in an ARQ retransmission, receiver and transmitter therefor
US20060251185A1 (en) * 2001-11-16 2006-11-09 Matsushita Electric Industrial Co., Ltd. ARQ retransmission with reordering scheme employing multiple redundancy versions and receiver/transmitter therefor
US7227904B2 (en) 2001-11-16 2007-06-05 Matsushita Electric Industrial Co., Ltd. Method for modifying a bit sequence in an ARQ retransmission, receiver and transmitter therefor
US7212580B2 (en) 2002-02-15 2007-05-01 Quellan, Inc. Multi-level signal clock recovery technique
US20030169195A1 (en) * 2002-03-08 2003-09-11 Quellan, Inc. High-speed analog-to-digital converter using a unique gray code
US6816101B2 (en) 2002-03-08 2004-11-09 Quelian, Inc. High-speed analog-to-digital converter using a unique gray code
US20030198478A1 (en) * 2002-04-23 2003-10-23 Quellan, Inc. Method and system for generating and decoding a bandwidth efficient multi-level signal
US20030226886A1 (en) * 2002-06-10 2003-12-11 Takashi Kakinuma Business card information management system
US7573966B2 (en) 2002-07-15 2009-08-11 Quellan, Inc. Adaptive noise filtering and equalization for optimal high speed multilevel signal decoding
US8311168B2 (en) 2002-07-15 2012-11-13 Quellan, Inc. Adaptive noise filtering and equalization for optimal high speed multilevel signal decoding
US20040012433A1 (en) * 2002-07-15 2004-01-22 Quellan, Inc. Adaptive noise filtering and equalization for optimal high speed multilevel signal decoding
US7035361B2 (en) 2002-07-15 2006-04-25 Quellan, Inc. Adaptive noise filtering and equalization for optimal high speed multilevel signal decoding
US6917559B2 (en) 2002-10-10 2005-07-12 Electronics And Telecommunications Research Institute Constellation mapping apparatus and method
US20050220205A1 (en) * 2002-10-10 2005-10-06 Kang Hun-Sik Constellation mapping apparatus and method
US7480338B2 (en) 2002-10-10 2009-01-20 Electronics And Telecommunications Research Institute Constellation mapping apparatus and method
US7934144B2 (en) 2002-11-12 2011-04-26 Quellan, Inc. High-speed analog-to-digital conversion with improved robustness to timing uncertainty
US7693179B2 (en) * 2002-11-29 2010-04-06 Panasonic Corporation Data transmission apparatus using a constellation rearrangement
US20050097425A1 (en) * 2002-11-29 2005-05-05 Matsushita Electric Industrial Co., Ltd. Data transmission apparatus using a constellation rearrangement
US7804760B2 (en) 2003-08-07 2010-09-28 Quellan, Inc. Method and system for signal emulation
US7050388B2 (en) 2003-08-07 2006-05-23 Quellan, Inc. Method and system for crosstalk cancellation
US8605566B2 (en) 2003-08-07 2013-12-10 Quellan, Inc. Method and system for signal emulation
US7626916B2 (en) 2003-08-07 2009-12-01 Quellan, Inc. Method and system for crosstalk cancellation
US20050030884A1 (en) * 2003-08-07 2005-02-10 Quellan, Inc. Method and system for crosstalk cancellation
US8068406B2 (en) 2003-08-07 2011-11-29 Quellan, Inc. Method and system for crosstalk cancellation
US7123676B2 (en) 2003-11-17 2006-10-17 Quellan, Inc. Method and system for antenna interference cancellation
US20080146183A1 (en) * 2003-11-17 2008-06-19 Quellan, Inc. Method and system for antenna interference cancellation
US7729431B2 (en) 2003-11-17 2010-06-01 Quellan, Inc. Method and system for antenna interference cancellation
US7366244B2 (en) 2003-11-17 2008-04-29 Quellan, Inc. Method and system for antenna interference cancellation
US7616700B2 (en) 2003-12-22 2009-11-10 Quellan, Inc. Method and system for slicing a communication signal
US8576939B2 (en) 2003-12-22 2013-11-05 Quellan, Inc. Method and system for slicing a communication signal
US7522883B2 (en) 2004-12-14 2009-04-21 Quellan, Inc. Method and system for reducing signal interference
US8005430B2 (en) 2004-12-14 2011-08-23 Quellan Inc. Method and system for reducing signal interference
US7725079B2 (en) 2004-12-14 2010-05-25 Quellan, Inc. Method and system for automatic control in an interference cancellation device
US8135350B2 (en) 2004-12-14 2012-03-13 Quellan, Inc. System for reducing signal interference
US8503940B2 (en) 2004-12-14 2013-08-06 Quellan, Inc. Reducing signal interference
US9252983B2 (en) 2006-04-26 2016-02-02 Intersil Americas LLC Method and system for reducing radiated emissions from a communications channel
US20140254728A1 (en) * 2013-03-07 2014-09-11 Astrapi Corporation Method for gray coding a symbol alphabet

Also Published As

Publication number Publication date
AU4486393A (en) 1994-03-03
DE69323252T2 (en) 1999-07-29
AU664639B2 (en) 1995-11-23
DE69323252D1 (en) 1999-03-11
EP0584872A1 (en) 1994-03-02
KR940005013A (en) 1994-03-16
GB9218009D0 (en) 1992-10-14
EP0584872B1 (en) 1999-01-27
KR100313981B1 (en) 2001-12-28
JPH06188927A (en) 1994-07-08

Similar Documents

Publication Publication Date Title
US5428643A (en) Method of, and transmitter for, transmitting a digital signal
US5140613A (en) Baseband modulation system with improved ROM-based digital filter
EP0776110B1 (en) Quadrature modulation circuit
EP0440187B1 (en) Arrangement for converting binary input signal into corresponding in-phase and quadrature phase signals
US5369378A (en) Digital DQPSK modulator
US5200978A (en) Process for actuation of multi-level digital modulation by a digital signal processor
US5590155A (en) Equipment for generating a transmit signal from first and second digital signals
US4843613A (en) Digitally implemented modulators
EP0531100B1 (en) Baseband pulse shaper for GMSK modulators
US5745527A (en) Encoding method for constellation symbols of an RF transmitter
US4812786A (en) Method and system for providing precise multi-function modulation
US4680556A (en) Digital modulation apparatus
US4646327A (en) Waveform shaping apparatus
EP0132988B1 (en) Digital synthesis technique for pulses having predetermined time and frequency domain characteristics
US4100369A (en) Device for numerically generating a wave which is phase modulated and which is free from unwanted modulation products
US4442530A (en) Digital transmitter with vector component addressing
JPH0472425B2 (en)
US4873500A (en) Phase accumulation continuous phase modulator
EP1223716B1 (en) Waveform generator
US4511862A (en) Programmable multitone DPSK modulator
KR930012023B1 (en) Bpsk modulator with smoothe envelope
EP0620667A1 (en) Pi/4 shift QPSK modulator
EP0220705B1 (en) Quadriphase phase modulation system
JPH07106855A (en) Ssb modulator
JP2002319988A (en) Digitized quadrature phase modulator

Legal Events

Date Code Title Description
AS Assignment

Owner name: U.S. PHILIPS CORPORATION, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RAZZELL, CHARLES J.H.;REEL/FRAME:006645/0239

Effective date: 19930713

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20070627