US5530278A - Semiconductor chip having a dam to prevent contamination of photosensitive structures thereon - Google Patents

Semiconductor chip having a dam to prevent contamination of photosensitive structures thereon Download PDF

Info

Publication number
US5530278A
US5530278A US08/427,518 US42751895A US5530278A US 5530278 A US5530278 A US 5530278A US 42751895 A US42751895 A US 42751895A US 5530278 A US5530278 A US 5530278A
Authority
US
United States
Prior art keywords
chip
chips
dam
bonding pads
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/427,518
Inventor
Josef E. Jedicka
Brian T. Ormond
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to US08/427,518 priority Critical patent/US5530278A/en
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JEDLICKA, JOSEF E., ORMOND, BRIAN T.
Priority to JP09384696A priority patent/JP3884100B2/en
Application granted granted Critical
Publication of US5530278A publication Critical patent/US5530278A/en
Assigned to BANK ONE, NA, AS ADMINISTRATIVE AGENT reassignment BANK ONE, NA, AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XEROX CORPORATION
Assigned to JPMORGAN CHASE BANK, AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: XEROX CORPORATION
Anticipated expiration legal-status Critical
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A. AS SUCCESSOR-IN-INTEREST ADMINISTRATIVE AGENT AND COLLATERAL AGENT TO JPMORGAN CHASE BANK
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Definitions

  • the present invention relates generally to semiconductor chips which are diced from a wafer and mounted on a substrate.
  • Image sensors for scanning document images typically have a row or linear array of photosites together with suitable supporting circuitry integrated onto a silicon chip.
  • a sensor is used to scan line by line across the width of a document with the document being moved or stepped lengthwise in synchronism therewith.
  • a typical architecture for such a sensor array is given, for example, in U.S. Pat. No. 5,153,421.
  • a linear array of small photosensors which extends the full width of an original document, such as 11 inches. These photosensors may be spaced as finely as 600 to the inch on each chip.
  • each of the photosensors converts reflected light from the original image into electrical signals.
  • the motion of the original image perpendicular to the linear array causes a sequence of signals to be output from each photosensor, which can be converted into digital data.
  • a currently-preferred design for creating such a long linear array of photosensors is to provide a set of relatively small semiconductor chips, each semiconductor chip defining thereon a linear array of photosensors along with ancillary circuit devices. These chips are typically approximately 3/4 inches in length; in order to create a practical full-page-width array, as many as twenty or more of these chips can be abutted end-to-end to form a single linear array of photosensors.
  • the abutted chips are typically mounted on a support platform.
  • This support platform also includes circuitry, such as on a printed wire board, which accesses the circuit devices on the individual chips for a practical system.
  • the interconnections between the relatively large-scale conductors on the printed wire board and the relatively small contact pads on the semiconductor chips are preferably created by wire bonds which are ultrasonically welded to both the printed wire board conductors and to contact pads on the chips.
  • U.S. Pat. No. 4,737,208 discloses a method for laminating multilayer structures with nonplanar surfaces, such as cavities, formed thereon. Special conformal and release material are provided over the structure prior to lamination bonding. The materials fill the cavity during the bonding operation to prevent flow of adhesive from between the layers into the cavity.
  • U.S. Pat. No. 5,026,667 discloses wire-bonded chips which are coated with polyimide or acrylic and cured to a hardened state. The coating is applied over portions of the circuitry which are stress-sensitive, but spaced away from the wire-bond regions of the chip.
  • U.S. Pat. No. 5,037,779 discloses a capillary fill encapsulation technique, wherein a selected region of a semiconductor device is encapsulated while other regions of the device are left uncovered.
  • the patent discloses, at FIG. 7 thereof, spacers 15 which are used as posts to prevent structures overlaying the chip to prevent bonding wires from being forced into contact with the chip by the overlaying structure.
  • U.S. Pat. No. 5,106,784 discloses producing a cavity pack around an assembled semiconductor device.
  • the chip includes a chip attach pad having a plurality of straps, each strap extending outwardly from the chip attach pad, so that the chip may be suspended within the package.
  • U.S. Pat. No. 5,300,815 discloses a technique for increasing the density of bond pads on a chip, wherein non-square bond pads are shaped, sized, and oriented such that each bond pad closely conforms to the shape of the contact footprint made therewith by a bonding wire.
  • U.S. Pat. No. 5,328,870 discloses an integrated circuit package including a heat sink.
  • the package incorporates a locking ring located around the heat sink to provide a better seal between the encapsulant and heat sink.
  • a semiconductor chip comprising an imaging structure and a bonding pad, each disposed on a first surface of the chip.
  • a dam is disposed on the first surface of the chip between the imaging structure and the bonding pad, adapted to prevent flow of fluid encapsulant from the bonding pad to the imaging structure.
  • a semiconductor wafer is made defining at least one chip area on a main surface of the wafer.
  • the chip area includes a bonding pad.
  • the wafer further includes a probe pad disposed outside of the chip area, electrically connected to the bonding pad. A portion of the wafer defined by the chip area is separated from the wafer, thereby creating a chip.
  • imaging structure shall be defined as including any structure which is physically related to the creation or recording of a portion of an image.
  • the definition includes, by way of example and not of limitation, photosites for the recording of an image; ejectors or portions of ejectors for ink-jet printing apparatus; or light-emitting diodes for the selective imagewise charging or discharging of a charge-retentive surface. All of these above-mentioned types of imaging structure can be formed in linear arrays on silicon semiconductor chips.
  • FIG. 1 is a perspective view showing a typical chip for use with the present invention, in isolation;
  • FIG. 2 is a perspective view showing a silicon wafer relevant to the present invention
  • FIG. 3 is a plan view of a portion of the main surface of a silicon wafer.
  • FIG. 4 is a cross-sectional view through line 4--4 in FIG. 1, with the addition of elements specific to the present invention.
  • FIG. 1 is a perspective view showing, in isolation, one photosensitive chip 10 relevant to the claimed invention.
  • the chip 10 is generally made of a silicon substrate, as is known in the art, in which circuitry and other elements are formed, such as by photolithographic etching.
  • the most relevant structures are a linear array of photosites 12, each of which forms the photosensitive surface of photosensor circuitry within the chip, and a set of bonding pads 14.
  • the photosites 12 are typically arranged in a linear array along one main dimension of the chip.
  • a plurality of such chips 10 are aligned so that the linear arrays of photosites 12 from the plurality of chips are arranged to form a single linear array of photosites which may extend, for example, over as many as 20 aligned chips to form a chip array.
  • the bonding pads 14 are distinct clear surfaces on the main surface of the chip 10, and are intended to accept wire bonds attached thereto. The bonding pads 14 thus serve as the electronic interface between the chip 10 and any external circuitry.
  • the circuitry for obtaining signals related to light directed to the photosites 12, and unloading image data from the chip 10 is generally indicated as 16, and is, in the illustrated embodiment, generally disposed between the linear array of photosites 12 and a substantially linear array of bonding pads 14.
  • Chips such as 10 are typically formed in batches on silicon wafers, which are subsequently cleaved, or "diced,” to create individual chips. Thus, all of the photosites, bonding pads and circuitry for relatively large number of chips are etched simultaneously onto a single wafer. A typical silicon wafer which is five inches in diameter may be capable of yielding as many as three hundred chips.
  • FIG. 2 shows a typical silicon wafer, in isolation, wherein a relatively large number of chips 10 are created in the wafer 20 prior to dicing thereof. It will thus be seen that each individual chip 10 in the main surface of a wafer 20 comprehends a distinct chip area within the main surface of the wafer 20.
  • chip area will refer to a defined area within the main surface of a wafer which is intended to comprise a discrete chip 10 after the dicing step, when individual chips 10 are separated from the rest of the wafer 20.
  • FIG. 3 is a detailed plan view of the main surface of a wafer such as 20, generally near the intersection of four chip areas corresponding to chips which are indicated as 10a, 10b, 10c, and 10d. Because the chip areas are arrayed on the main surface of wafer 20 much like city blocks, the border sections between adjacent chip areas, which belong to no chip, are conveniently described as "street regions," such as indicated by 22.
  • the dicing process by which individual chips are separated from a wafer is typically performed by a rotating circular diamond blade which is caused to cut between the adjacent chips through the street region 22. Because the diamond blade will have a significant thickness associated therewith, it is typically expected that the street region 22 between adjacent chip areas on a wafer 20 will be essentially obliterated in the dicing process.
  • testing of the circuitry on individual chips 10 is preferably performed before the dicing process.
  • probe pins (not shown) are touched or urged against the bonding pads 14 of a particular chip 10 being tested, and suitable test signals are then sent through the probe pin to one or more bonding pads 14, and the responses of chip circuitry are tested.
  • the probe pins which are typically used to connect with the bonding pads of the pre-diced chip are known to scuff or otherwise scratch or damage the bonding pads 14. The scratching of the bonding pads 14 by the probe pin may result in a less satisfactory bond from a wire bond when the chip is installed in a larger apparatus.
  • the present invention proposes providing bonding pads 14 with a "probe pad,” here indicated as 24, which is electrically connected to an individual bonding pad 14, but which provides a contact area within the street region 22.
  • the probe pad 24 may be connected to its associated bonding pad 14 by a conductor such as 26.
  • the conductor 26 may be formed on the top surface of the wafer 20, or else can be "buried” in a lower layer of the wafer 20, so that only the area of the probe pad 24 appears in the street region.
  • the probe pads 24 associated with each of the bonding pads 14 for each chip 10 on a wafer 20 be used to accept the probe pins for pre-dicing testing of a selected chip 10.
  • the bonding pads 14 in the finished chip will not be damaged by the urging of probe pins thereon. Rather, all of the scratching and other damage caused by the probe pins will be directed to the probe pads 24. Because the probe pads 24 are located in the street region 22 and not within the chip area of a given chip 10, any damage to the probe pads 24 will have no effect on the chip 10 after the chip 10 is separated from the wafer 20 in the dicing process. As shown in FIG.
  • the dicing cut in street region 22 which is shown as the jagged removed area 30 as a rotating blade (not shown) progresses through the street region 22, obliterates the probe pads 24 in the dicing process.
  • the bonding pads 14 thereon remain untouched.
  • the chip 10 which has been selected for installation in a chip array or other structure is separated from the wafer 20, it must be installed in a larger apparatus and electrically connected to external circuitry through the bonding pads 14 thereof.
  • a typical technique for attaching a wire bond from external circuitry to a particular bonding pad 14 is to place a droplet of encapsulant, such as liquid silicone, on the area where the wire bond touches the bonding pad 14.
  • encapsulant such as liquid silicone
  • FIG. 4 is a cross-sectional view, through line 4--4 of FIG. 1, showing a typical chip 10 upon installation in a larger apparatus.
  • a wire bond 40 which is connected to some external circuitry, is placed in contact with the conductive surface of bonding pad 14, and further may be ultrasonically welded thereto.
  • the wire bond 40 is secured to the main surface of bonding pad 14 by a droplet of encapsulant 42.
  • the encapsulant 42 is placed on the wire bond 40 and bonding pad 14 while in a liquid state, and then caused to harden, such as by heat curing, as is known in the art.
  • a dam 44 which is disposed between the linear array of bonding pads 14 and the linear array of photosites 12. As seen in FIG. 4, the dam 44 restrains the droplet of encapsulant 42.
  • a preferred material for forming the dam 44 is a strip of polyimide which is attached to the main silicon surface of chip 10.
  • a typical height required for the polyimide dam is from 1.5 to 2 micrometers from the main surface of the chip 10.
  • a filter layer such as 46, formed of translucent polyimide which is deposited over one or more of the photosites 12 in the linear array.
  • This filter layer is used to filter out one or more colors to affect the recording of color images, or for other general purposes such as to filter out unwanted infrared light.
  • a filter layer such as 46 is placed on the surface of chip 10
  • the distribution of the filter polyimide of 46 is limited to only the photosite areas, that the polyimide 44 should attach directly to the bare silicon of the chip 10.
  • Extension of the polyimide filter layer 46 may also help in limiting encapsulant migration on the chip.
  • the portion of the filter layer 46 which extends to the left of dam 44 in the Figure may have some effect in causing the encapsulant 42 to bead, and thus slow down its migration, enhancing the effectiveness of dam 44.

Abstract

In dicing of semiconductor chips from a wafer and mounting of the chips in an apparatus, techniques ensure the integrity of bonding pads and wire bonds in the dicing of individual chips and the connection of wire bonds to the chips. The wire bonds in the undiced chips are each connected to a probe pad disposed in an inter-chip area on the wafer, and this probe pad is used to accept probe pins which may otherwise damage the bonding pads on the chips themselves. In the dicing step, the probe pads are obliterated by the cutting blade. A polyimide dam disposes adjacent the bonding pads restricts the migration of liquid encapsulant securing the wire bonds to the bonding pads.

Description

The present invention relates generally to semiconductor chips which are diced from a wafer and mounted on a substrate.
Image sensors for scanning document images, such as charge coupled devices (CCDs), typically have a row or linear array of photosites together with suitable supporting circuitry integrated onto a silicon chip. Usually, a sensor is used to scan line by line across the width of a document with the document being moved or stepped lengthwise in synchronism therewith. A typical architecture for such a sensor array is given, for example, in U.S. Pat. No. 5,153,421.
In a full-page-width image scanner, there is provided a linear array of small photosensors which extends the full width of an original document, such as 11 inches. These photosensors may be spaced as finely as 600 to the inch on each chip. When the original document moves past the linear array, each of the photosensors converts reflected light from the original image into electrical signals. The motion of the original image perpendicular to the linear array causes a sequence of signals to be output from each photosensor, which can be converted into digital data.
A currently-preferred design for creating such a long linear array of photosensors is to provide a set of relatively small semiconductor chips, each semiconductor chip defining thereon a linear array of photosensors along with ancillary circuit devices. These chips are typically approximately 3/4 inches in length; in order to create a practical full-page-width array, as many as twenty or more of these chips can be abutted end-to-end to form a single linear array of photosensors. The abutted chips are typically mounted on a support platform. This support platform also includes circuitry, such as on a printed wire board, which accesses the circuit devices on the individual chips for a practical system. The interconnections between the relatively large-scale conductors on the printed wire board and the relatively small contact pads on the semiconductor chips are preferably created by wire bonds which are ultrasonically welded to both the printed wire board conductors and to contact pads on the chips.
In the crucial steps of attaching wire bonds from external circuitry to bonding pads on the individual chips forming the chip array, and then encapsulating those wire bonds, two significant practical problems have been encountered. First, in an intermediate testing step between the creation of the chips and the attaching of wire bonds thereto, the individual chips are tested by probing the circuitry thereon through the bonding pads. In the testing step, temporary connections are made to the bonding pads with needle-like conductors which are touched to the bonding pads. However, it has been found that this "probing" in the testing step often scuffs or otherwise damages the bonding pads. It is preferable to be able to attach a wire bond in the finished chip array to a clean and unscratched bonding pad.
Another significant practical problem occurs when the wire bonds are secured to the appropriate bonding pads with an encapsulant such as silicone. Typically, the wire bond is ultrasonically welded against the appropriate bonding pad, and then a droplet of silicone encapsulant is deposited to encompass the bonding pad and the wire bond. The silicone is then caused to harden, such as by thermal curing. However, when the wire bonding technique is used with a chip having photosensors thereon, it is not uncommon that excess silicone encapsulant migrates from the bonding pad to the photosensors before the encapsulant hardens. Contamination of the photosensors by even a clear encapsulant will of course result in either damage to the photosensors or the disruption of light directed to the photosensors.
In the prior art, U.S. Pat. No. 4,737,208 discloses a method for laminating multilayer structures with nonplanar surfaces, such as cavities, formed thereon. Special conformal and release material are provided over the structure prior to lamination bonding. The materials fill the cavity during the bonding operation to prevent flow of adhesive from between the layers into the cavity.
U.S. Pat. No. 5,026,667 discloses wire-bonded chips which are coated with polyimide or acrylic and cured to a hardened state. The coating is applied over portions of the circuitry which are stress-sensitive, but spaced away from the wire-bond regions of the chip.
U.S. Pat. No. 5,037,779 discloses a capillary fill encapsulation technique, wherein a selected region of a semiconductor device is encapsulated while other regions of the device are left uncovered. The patent discloses, at FIG. 7 thereof, spacers 15 which are used as posts to prevent structures overlaying the chip to prevent bonding wires from being forced into contact with the chip by the overlaying structure.
U.S. Pat. No. 5,106,784 discloses producing a cavity pack around an assembled semiconductor device. The chip includes a chip attach pad having a plurality of straps, each strap extending outwardly from the chip attach pad, so that the chip may be suspended within the package.
U.S. Pat. No. 5,300,815 discloses a technique for increasing the density of bond pads on a chip, wherein non-square bond pads are shaped, sized, and oriented such that each bond pad closely conforms to the shape of the contact footprint made therewith by a bonding wire.
U.S. Pat. No. 5,328,870 discloses an integrated circuit package including a heat sink. The package incorporates a locking ring located around the heat sink to provide a better seal between the encapsulant and heat sink.
According to one aspect of the present invention, there is provided a semiconductor chip, comprising an imaging structure and a bonding pad, each disposed on a first surface of the chip. A dam is disposed on the first surface of the chip between the imaging structure and the bonding pad, adapted to prevent flow of fluid encapsulant from the bonding pad to the imaging structure.
According to another aspect of the present invention, there is provided a method of making a semiconductor device, a semiconductor wafer is made defining at least one chip area on a main surface of the wafer. The chip area includes a bonding pad. The wafer further includes a probe pad disposed outside of the chip area, electrically connected to the bonding pad. A portion of the wafer defined by the chip area is separated from the wafer, thereby creating a chip.
As used in the claims herein, the phrase "imaging structure" shall be defined as including any structure which is physically related to the creation or recording of a portion of an image. The definition includes, by way of example and not of limitation, photosites for the recording of an image; ejectors or portions of ejectors for ink-jet printing apparatus; or light-emitting diodes for the selective imagewise charging or discharging of a charge-retentive surface. All of these above-mentioned types of imaging structure can be formed in linear arrays on silicon semiconductor chips.
In the drawings:
FIG. 1 is a perspective view showing a typical chip for use with the present invention, in isolation;
FIG. 2 is a perspective view showing a silicon wafer relevant to the present invention;
FIG. 3 is a plan view of a portion of the main surface of a silicon wafer; and
FIG. 4 is a cross-sectional view through line 4--4 in FIG. 1, with the addition of elements specific to the present invention.
FIG. 1 is a perspective view showing, in isolation, one photosensitive chip 10 relevant to the claimed invention. The chip 10 is generally made of a silicon substrate, as is known in the art, in which circuitry and other elements are formed, such as by photolithographic etching. For purposes of the claimed invention, the most relevant structures are a linear array of photosites 12, each of which forms the photosensitive surface of photosensor circuitry within the chip, and a set of bonding pads 14. The photosites 12 are typically arranged in a linear array along one main dimension of the chip. As mentioned above, a plurality of such chips 10 are aligned so that the linear arrays of photosites 12 from the plurality of chips are arranged to form a single linear array of photosites which may extend, for example, over as many as 20 aligned chips to form a chip array. The bonding pads 14 are distinct clear surfaces on the main surface of the chip 10, and are intended to accept wire bonds attached thereto. The bonding pads 14 thus serve as the electronic interface between the chip 10 and any external circuitry. The circuitry for obtaining signals related to light directed to the photosites 12, and unloading image data from the chip 10 is generally indicated as 16, and is, in the illustrated embodiment, generally disposed between the linear array of photosites 12 and a substantially linear array of bonding pads 14.
Chips such as 10 are typically formed in batches on silicon wafers, which are subsequently cleaved, or "diced," to create individual chips. Thus, all of the photosites, bonding pads and circuitry for relatively large number of chips are etched simultaneously onto a single wafer. A typical silicon wafer which is five inches in diameter may be capable of yielding as many as three hundred chips.
FIG. 2 shows a typical silicon wafer, in isolation, wherein a relatively large number of chips 10 are created in the wafer 20 prior to dicing thereof. It will thus be seen that each individual chip 10 in the main surface of a wafer 20 comprehends a distinct chip area within the main surface of the wafer 20. As used in the claims herein, the phrase "chip area" will refer to a defined area within the main surface of a wafer which is intended to comprise a discrete chip 10 after the dicing step, when individual chips 10 are separated from the rest of the wafer 20.
FIG. 3 is a detailed plan view of the main surface of a wafer such as 20, generally near the intersection of four chip areas corresponding to chips which are indicated as 10a, 10b, 10c, and 10d. Because the chip areas are arrayed on the main surface of wafer 20 much like city blocks, the border sections between adjacent chip areas, which belong to no chip, are conveniently described as "street regions," such as indicated by 22. The dicing process by which individual chips are separated from a wafer is typically performed by a rotating circular diamond blade which is caused to cut between the adjacent chips through the street region 22. Because the diamond blade will have a significant thickness associated therewith, it is typically expected that the street region 22 between adjacent chip areas on a wafer 20 will be essentially obliterated in the dicing process.
In a production situation wherein a batch of chips from a single wafer must be tested before they are selected for use in, for example, a chip array, testing of the circuitry on individual chips 10 is preferably performed before the dicing process. In the pre-dicing testing process, probe pins (not shown) are touched or urged against the bonding pads 14 of a particular chip 10 being tested, and suitable test signals are then sent through the probe pin to one or more bonding pads 14, and the responses of chip circuitry are tested. However, the probe pins which are typically used to connect with the bonding pads of the pre-diced chip are known to scuff or otherwise scratch or damage the bonding pads 14. The scratching of the bonding pads 14 by the probe pin may result in a less satisfactory bond from a wire bond when the chip is installed in a larger apparatus.
In order to avoid damage to bonding pads 14 during a pre-dicing testing step, the present invention proposes providing bonding pads 14 with a "probe pad," here indicated as 24, which is electrically connected to an individual bonding pad 14, but which provides a contact area within the street region 22. The probe pad 24 may be connected to its associated bonding pad 14 by a conductor such as 26. The conductor 26 may be formed on the top surface of the wafer 20, or else can be "buried" in a lower layer of the wafer 20, so that only the area of the probe pad 24 appears in the street region.
It is the intention of the present invention that the probe pads 24 associated with each of the bonding pads 14 for each chip 10 on a wafer 20 be used to accept the probe pins for pre-dicing testing of a selected chip 10. By using the probe pads 24 instead of the bonding pads 14, the bonding pads 14 in the finished chip will not be damaged by the urging of probe pins thereon. Rather, all of the scratching and other damage caused by the probe pins will be directed to the probe pads 24. Because the probe pads 24 are located in the street region 22 and not within the chip area of a given chip 10, any damage to the probe pads 24 will have no effect on the chip 10 after the chip 10 is separated from the wafer 20 in the dicing process. As shown in FIG. 3, the dicing cut in street region 22, which is shown as the jagged removed area 30 as a rotating blade (not shown) progresses through the street region 22, obliterates the probe pads 24 in the dicing process. When the chip 10 is separated from the rest of wafer 20, the bonding pads 14 thereon remain untouched.
Once the chip 10 which has been selected for installation in a chip array or other structure is separated from the wafer 20, it must be installed in a larger apparatus and electrically connected to external circuitry through the bonding pads 14 thereof. A typical technique for attaching a wire bond from external circuitry to a particular bonding pad 14 is to place a droplet of encapsulant, such as liquid silicone, on the area where the wire bond touches the bonding pad 14. In the case of chips 10 with photosites 12 thereon, a practical problem occurs when the liquid encapsulant migrates along the main surface of the chip and covers the photosites. According to the present invention, there is provided a dam disposed between a bonding pad 14 and a photosite 12 on a chip 10, which acts to prevent the flow of the fluid encapsulant from the bonding pad to the photosite.
FIG. 4 is a cross-sectional view, through line 4--4 of FIG. 1, showing a typical chip 10 upon installation in a larger apparatus. A wire bond 40, which is connected to some external circuitry, is placed in contact with the conductive surface of bonding pad 14, and further may be ultrasonically welded thereto. The wire bond 40 is secured to the main surface of bonding pad 14 by a droplet of encapsulant 42. Typically, the encapsulant 42 is placed on the wire bond 40 and bonding pad 14 while in a liquid state, and then caused to harden, such as by heat curing, as is known in the art. In order to prevent migration of the encapsulant 42 before it hardens elsewhere on the chip, there is provided, according to the present invention, a dam 44, which is disposed between the linear array of bonding pads 14 and the linear array of photosites 12. As seen in FIG. 4, the dam 44 restrains the droplet of encapsulant 42.
A preferred material for forming the dam 44 is a strip of polyimide which is attached to the main silicon surface of chip 10. A typical height required for the polyimide dam is from 1.5 to 2 micrometers from the main surface of the chip 10.
In some versions of a photosensitive chip, there may also be provided a filter layer, such as 46, formed of translucent polyimide which is deposited over one or more of the photosites 12 in the linear array. This filter layer is used to filter out one or more colors to affect the recording of color images, or for other general purposes such as to filter out unwanted infrared light. When a filter layer such as 46 is placed on the surface of chip 10, it is typically preferred to place the dam 44 over the polyimide of the filter layer 46, as shown. However, it is certainly possible, if the distribution of the filter polyimide of 46 is limited to only the photosite areas, that the polyimide 44 should attach directly to the bare silicon of the chip 10.
Extension of the polyimide filter layer 46, as shown in FIG. 4, may also help in limiting encapsulant migration on the chip. In the particular embodiment shown in FIG. 4, the portion of the filter layer 46 which extends to the left of dam 44 in the Figure may have some effect in causing the encapsulant 42 to bead, and thus slow down its migration, enhancing the effectiveness of dam 44.
While this invention has been described in conjunction with a specific apparatus, it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications, and variations as fall within the spirit and broad scope of the appended claims.

Claims (6)

We claim:
1. A semiconductor chip, comprising:
an imaging structure, disposed on a first surface of the chip;
a bonding pad, disposed on the first surface of the chip;
a filter layer, in contact with the first surface of the chip; and
a dam in contact with the filter layer, disposed between the imaging structure and the bonding pad, adapted to prevent flow of fluid encapsulant from the bonding pad to the imaging structure;
a first portion of the filter layer covering the imaging structure of the chip and a second portion of the filter layer extending from the dam to the bonding pad.
2. The chip of claim 1, the imaging structure and the bonding pad being formed on a silicon substrate.
3. The chip of claim 1, the dam including polyimide.
4. The chip of claim 1, further comprising a wire bond contacting the bonding pad.
5. The chip of claim 4, further comprising an encapsulant, in the form of a hardened fluid, encapsulating the wire bond and the bonding pad.
6. The chip of claim 1, the semiconductor chip comprising a plurality of imaging structures arranged in a linear array, a plurality of bonding pads arranged in a linear array, and wherein the dam extends between the linear array of imaging structures and the linear array of bonding pads.
US08/427,518 1995-04-24 1995-04-24 Semiconductor chip having a dam to prevent contamination of photosensitive structures thereon Expired - Lifetime US5530278A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/427,518 US5530278A (en) 1995-04-24 1995-04-24 Semiconductor chip having a dam to prevent contamination of photosensitive structures thereon
JP09384696A JP3884100B2 (en) 1995-04-24 1996-04-16 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/427,518 US5530278A (en) 1995-04-24 1995-04-24 Semiconductor chip having a dam to prevent contamination of photosensitive structures thereon

Publications (1)

Publication Number Publication Date
US5530278A true US5530278A (en) 1996-06-25

Family

ID=23695215

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/427,518 Expired - Lifetime US5530278A (en) 1995-04-24 1995-04-24 Semiconductor chip having a dam to prevent contamination of photosensitive structures thereon

Country Status (2)

Country Link
US (1) US5530278A (en)
JP (1) JP3884100B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143588A (en) * 1997-09-09 2000-11-07 Amkor Technology, Inc. Method of making an integrated circuit package employing a transparent encapsulant
US6150175A (en) * 1998-12-15 2000-11-21 Lsi Logic Corporation Copper contamination control of in-line probe instruments
US6198093B1 (en) 1998-11-19 2001-03-06 Xerox Corporation Electro optical devices with reduced filter thinning on the edge pixel photosites and method of producing same
US6201293B1 (en) * 1998-11-19 2001-03-13 Xerox Corporation Electro optical devices with reduced filter thinning on the edge pixel photosites and method of producing same
US6252220B1 (en) 1999-04-26 2001-06-26 Xerox Corporation Sensor cover glass with infrared filter
US6316284B1 (en) 2000-09-07 2001-11-13 Xerox Corporation Infrared correction in color scanners
US6395998B1 (en) 2000-09-13 2002-05-28 International Business Machines Corporation Electronic package having an adhesive retaining cavity
US6426565B1 (en) 2000-03-22 2002-07-30 International Business Machines Corporation Electronic package and method of making same
DE10109327A1 (en) * 2001-02-27 2002-09-12 Infineon Technologies Ag Semiconductor chip and manufacturing method for a package
US20020135055A1 (en) * 2001-03-23 2002-09-26 Samsung Electronics Co., Ltd. Semiconductor device having a fuse connected to a pad and fabrication method thereof
US20030032263A1 (en) * 2001-08-08 2003-02-13 Matsushita Electric Industrial Co., Ltd. Semiconductor wafer, semiconductor device, and method for manufacturing the same
US6759307B1 (en) 2000-09-21 2004-07-06 Micron Technology, Inc. Method to prevent die attach adhesive contamination in stacked chips
US6768565B1 (en) 2000-09-07 2004-07-27 Xerox Corporation Infrared correction in color scanners
US6903451B1 (en) * 1998-08-28 2005-06-07 Samsung Electronics Co., Ltd. Chip scale packages manufactured at wafer level
US20060091535A1 (en) * 2004-11-02 2006-05-04 Taiwan Semiconductor Manufacturing Company, Ltd. Fine pitch bonding pad layout and method of manufacturing same
US20070063129A1 (en) * 2005-09-21 2007-03-22 Po-Hung Chen Packaging structure of a light-sensing device with a spacer wall
US20080100569A1 (en) * 2006-11-01 2008-05-01 Chee Foo Lum Optical jog wheel
US20090032972A1 (en) * 2007-03-30 2009-02-05 Kabushiki Kaisha Toshiba Semiconductor device
US20090081833A1 (en) * 2007-09-25 2009-03-26 Silverbrook Research Pty Ltd Wire bond encapsulant application control
US20090147490A1 (en) * 2007-12-10 2009-06-11 Panasonic Corporation Substrate for wiring, semiconductor device for stacking using the same, and stacked semiconductor module
US7802715B2 (en) 2007-09-25 2010-09-28 Silverbrook Research Pty Ltd Method of wire bonding an integrated circuit die and a printed circuit board
US8039974B2 (en) 2007-09-25 2011-10-18 Silverbrook Research Pty Ltd Assembly of electronic components
US8916463B2 (en) 2012-09-06 2014-12-23 International Business Machines Corporation Wire bond splash containment
US20150069631A1 (en) * 2013-09-09 2015-03-12 International Business Machines Corporation Alleviation of the corrosion pitting of chip pads
WO2019211070A1 (en) 2018-05-03 2019-11-07 Memjet Technology Limited Inkjet printhead with encapsulant-retaining features

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677260B2 (en) * 2005-03-23 2011-04-27 富士フイルム株式会社 Manufacturing method of solid-state imaging device
JP2007035856A (en) 2005-07-26 2007-02-08 Freescale Semiconductor Inc Manufacturing method of, measuring device for, and wafer for integrated circuit
JP5976055B2 (en) * 2014-08-21 2016-08-23 力晶科技股▲ふん▼有限公司 Semiconductor wafer, semiconductor chip, semiconductor device and manufacturing method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737208A (en) * 1986-09-29 1988-04-12 American Telephone And Telegraph Company, At&T Bell Laboratories Method of fabricating multilayer structures with nonplanar surfaces
JPH0319259A (en) * 1989-06-15 1991-01-28 Nec Corp Semiconductor device
US5026667A (en) * 1987-12-29 1991-06-25 Analog Devices, Incorporated Producing integrated circuit chips with reduced stress effects
US5037779A (en) * 1989-05-19 1991-08-06 Whalley Peter D Method of encapsulating a sensor device using capillary action and the device so encapsulated
US5106784A (en) * 1987-04-16 1992-04-21 Texas Instruments Incorporated Method of making a post molded cavity package with internal dam bar for integrated circuit
JPH04273476A (en) * 1991-02-28 1992-09-29 Kyocera Corp Image sensor
US5176971A (en) * 1985-02-05 1993-01-05 Kyodo Printing Co., Ltd. Color filter
JPH05226621A (en) * 1992-02-13 1993-09-03 Mitsubishi Electric Corp Solid-state image pick-up element and its manufacture
US5300815A (en) * 1992-07-17 1994-04-05 Lsi Logic Corporation Technique of increasing bond pad density on a semiconductor die
US5328870A (en) * 1992-01-17 1994-07-12 Amkor Electronics, Inc. Method for forming plastic molded package with heat sink for integrated circuit devices
US5422163A (en) * 1991-02-13 1995-06-06 Nippon Steel Corporation Flexible substrate with projections to block resin flow

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176971A (en) * 1985-02-05 1993-01-05 Kyodo Printing Co., Ltd. Color filter
US4737208A (en) * 1986-09-29 1988-04-12 American Telephone And Telegraph Company, At&T Bell Laboratories Method of fabricating multilayer structures with nonplanar surfaces
US5106784A (en) * 1987-04-16 1992-04-21 Texas Instruments Incorporated Method of making a post molded cavity package with internal dam bar for integrated circuit
US5026667A (en) * 1987-12-29 1991-06-25 Analog Devices, Incorporated Producing integrated circuit chips with reduced stress effects
US5037779A (en) * 1989-05-19 1991-08-06 Whalley Peter D Method of encapsulating a sensor device using capillary action and the device so encapsulated
JPH0319259A (en) * 1989-06-15 1991-01-28 Nec Corp Semiconductor device
US5422163A (en) * 1991-02-13 1995-06-06 Nippon Steel Corporation Flexible substrate with projections to block resin flow
JPH04273476A (en) * 1991-02-28 1992-09-29 Kyocera Corp Image sensor
US5328870A (en) * 1992-01-17 1994-07-12 Amkor Electronics, Inc. Method for forming plastic molded package with heat sink for integrated circuit devices
JPH05226621A (en) * 1992-02-13 1993-09-03 Mitsubishi Electric Corp Solid-state image pick-up element and its manufacture
US5300815A (en) * 1992-07-17 1994-04-05 Lsi Logic Corporation Technique of increasing bond pad density on a semiconductor die

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143588A (en) * 1997-09-09 2000-11-07 Amkor Technology, Inc. Method of making an integrated circuit package employing a transparent encapsulant
US6903451B1 (en) * 1998-08-28 2005-06-07 Samsung Electronics Co., Ltd. Chip scale packages manufactured at wafer level
US6198093B1 (en) 1998-11-19 2001-03-06 Xerox Corporation Electro optical devices with reduced filter thinning on the edge pixel photosites and method of producing same
US6201293B1 (en) * 1998-11-19 2001-03-13 Xerox Corporation Electro optical devices with reduced filter thinning on the edge pixel photosites and method of producing same
US6222180B1 (en) 1998-11-19 2001-04-24 Xerox Corporation Electro optical devices with reduced filter thinning on the edge pixel photosites and method of producing same
US6255133B1 (en) 1998-11-19 2001-07-03 Xerox Corporation Electro optical devices with reduced filter thinning on the edge pixel photosites and method of producing same
US6150175A (en) * 1998-12-15 2000-11-21 Lsi Logic Corporation Copper contamination control of in-line probe instruments
US6252220B1 (en) 1999-04-26 2001-06-26 Xerox Corporation Sensor cover glass with infrared filter
US6426565B1 (en) 2000-03-22 2002-07-30 International Business Machines Corporation Electronic package and method of making same
US6768565B1 (en) 2000-09-07 2004-07-27 Xerox Corporation Infrared correction in color scanners
US6316284B1 (en) 2000-09-07 2001-11-13 Xerox Corporation Infrared correction in color scanners
US6395998B1 (en) 2000-09-13 2002-05-28 International Business Machines Corporation Electronic package having an adhesive retaining cavity
US7224070B2 (en) 2000-09-21 2007-05-29 Micron Technology, Inc. Plurality of semiconductor die in an assembly
US6759307B1 (en) 2000-09-21 2004-07-06 Micron Technology, Inc. Method to prevent die attach adhesive contamination in stacked chips
US7078264B2 (en) 2000-09-21 2006-07-18 Micron Technology, Inc. Stacked semiconductor die
US20040212083A1 (en) * 2000-09-21 2004-10-28 Jicheng Yang Method to prevent die attach adhesive contamination in stacked chips
US20040212082A1 (en) * 2000-09-21 2004-10-28 Jicheng Yang Method to prevent die attach adhesive contamination in stacked chips
DE10109327A1 (en) * 2001-02-27 2002-09-12 Infineon Technologies Ag Semiconductor chip and manufacturing method for a package
US20040159961A1 (en) * 2001-02-27 2004-08-19 Hans-Georg Mensch Semiconductor chip and method for producing housing
US6876090B2 (en) 2001-02-27 2005-04-05 Infineon Technologies Ag Semiconductor chip and method for producing housing
US7105917B2 (en) * 2001-03-23 2006-09-12 Samsung Electronics Co., Ltd. Semiconductor device having a fuse connected to a pad and fabrication method thereof
US20020135055A1 (en) * 2001-03-23 2002-09-26 Samsung Electronics Co., Ltd. Semiconductor device having a fuse connected to a pad and fabrication method thereof
US6764879B2 (en) 2001-08-08 2004-07-20 Matsushita Electric Industrial Co., Ltd. Semiconductor wafer, semiconductor device, and method for manufacturing the same
US20030032263A1 (en) * 2001-08-08 2003-02-13 Matsushita Electric Industrial Co., Ltd. Semiconductor wafer, semiconductor device, and method for manufacturing the same
US20060091535A1 (en) * 2004-11-02 2006-05-04 Taiwan Semiconductor Manufacturing Company, Ltd. Fine pitch bonding pad layout and method of manufacturing same
US20070063129A1 (en) * 2005-09-21 2007-03-22 Po-Hung Chen Packaging structure of a light-sensing device with a spacer wall
US7323675B2 (en) * 2005-09-21 2008-01-29 Sigurd Microelectronics Corp. Packaging structure of a light-sensing device with a spacer wall
US20100127162A1 (en) * 2006-11-01 2010-05-27 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Optical jog wheel with spiral coding element
US20080100569A1 (en) * 2006-11-01 2008-05-01 Chee Foo Lum Optical jog wheel
US8247758B2 (en) 2006-11-01 2012-08-21 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Optical jog wheel with spiral coding element
US20080099669A1 (en) * 2006-11-01 2008-05-01 Chee Foo Lum Optical jog wheel with spiral coding element
US7732756B2 (en) 2006-11-01 2010-06-08 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. User navigation device with a code wheel and an encoder
US7675026B2 (en) * 2006-11-01 2010-03-09 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Optical jog wheel with spiral coding element
US20090032972A1 (en) * 2007-03-30 2009-02-05 Kabushiki Kaisha Toshiba Semiconductor device
US8039974B2 (en) 2007-09-25 2011-10-18 Silverbrook Research Pty Ltd Assembly of electronic components
US20090081833A1 (en) * 2007-09-25 2009-03-26 Silverbrook Research Pty Ltd Wire bond encapsulant application control
US7659141B2 (en) * 2007-09-25 2010-02-09 Silverbrook Research Pty Ltd Wire bond encapsulant application control
US7802715B2 (en) 2007-09-25 2010-09-28 Silverbrook Research Pty Ltd Method of wire bonding an integrated circuit die and a printed circuit board
US20100124803A1 (en) * 2007-09-25 2010-05-20 Silverbrook Research Pty Ltd Wire bond encapsulant control method
US8293589B2 (en) 2007-09-25 2012-10-23 Zamtec Limited Wire bond encapsulant control method
US20090147490A1 (en) * 2007-12-10 2009-06-11 Panasonic Corporation Substrate for wiring, semiconductor device for stacking using the same, and stacked semiconductor module
US8125792B2 (en) 2007-12-10 2012-02-28 Panasonic Corporation Substrate for wiring, semiconductor device for stacking using the same, and stacked semiconductor module
US8916463B2 (en) 2012-09-06 2014-12-23 International Business Machines Corporation Wire bond splash containment
US20150069631A1 (en) * 2013-09-09 2015-03-12 International Business Machines Corporation Alleviation of the corrosion pitting of chip pads
US9159556B2 (en) * 2013-09-09 2015-10-13 GlobalFoundries, Inc. Alleviation of the corrosion pitting of chip pads
WO2019211070A1 (en) 2018-05-03 2019-11-07 Memjet Technology Limited Inkjet printhead with encapsulant-retaining features
US20190337292A1 (en) * 2018-05-03 2019-11-07 Memjet Technology Limited Inkjet printhead with grout retaining features
US20190337291A1 (en) * 2018-05-03 2019-11-07 Memjet Technology Limited Inkjet printhead with encapsulant-retaining features
US10850517B2 (en) * 2018-05-03 2020-12-01 Memjet Technology Limited Inkjet printhead with grout retaining features
US10864733B2 (en) * 2018-05-03 2020-12-15 Memjet Technology Limited Inkjet printhead with encapsulant-retaining features

Also Published As

Publication number Publication date
JP3884100B2 (en) 2007-02-21
JPH08306751A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
US5530278A (en) Semiconductor chip having a dam to prevent contamination of photosensitive structures thereon
US6699735B2 (en) Semiconductor device and method for manufacturing the semiconductor device
US7667318B2 (en) Fan out type wafer level package structure and method of the same
US6399415B1 (en) Electrical isolation in panels of leadless IC packages
US9282261B2 (en) Method for producing image pickup apparatus and method for producing semiconductor apparatus
US6853089B2 (en) Semiconductor device and method of manufacturing the same
US6346432B2 (en) Semiconductor element having external connection terminals, method of manufacturing the semiconductor element, and semiconductor device equipped with the semiconductor element
US20080083980A1 (en) Cmos image sensor chip scale package with die receiving through-hole and method of the same
US20050242408A1 (en) Structure of image sensor module and a method for manufacturing of wafer level package
JP4064347B2 (en) Color image sensor with improved colorimetry and manufacturing method thereof
US20050095750A1 (en) Wafer level transparent packaging
US20080230922A1 (en) Semiconductor device and its manufacturing method
US20060152615A1 (en) Image sensor chip having plate, wafer assembly and manufacturing method for the same
JP2005158948A (en) Solid-state imaging device and method for manufacturing the same
CN103137632A (en) Interposer package for CMOS image sensor and method for making the same
US4720738A (en) Focal plane array structure including a signal processing system
CN101477956B (en) Encapsulation structure and method for tablet reconfiguration
JPH1032307A (en) Semiconductor device and its manufacturing method
US20070290377A1 (en) Three Dimensional Six Surface Conformal Die Coating
JP2004342862A (en) Semiconductor device and its manufacturing method, false wafer and its manufacturing method, and multi-chip module
US6541837B2 (en) Charge-coupled device wafer cover plate with compact interconnect wiring
JP2670832B2 (en) Semiconductor device and manufacturing method thereof
WO2022080248A1 (en) Semiconductor element, semiconductor device, and method for manufacturing semiconductor element
JP2004266026A (en) Method of manufacturing chip component, layout method of elements, and method of manufacturing image display device
JPH08279478A (en) Production of semiconductor chip

Legal Events

Date Code Title Description
AS Assignment

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JEDLICKA, JOSEF E.;ORMOND, BRIAN T.;REEL/FRAME:007474/0083

Effective date: 19950420

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: BANK ONE, NA, AS ADMINISTRATIVE AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:013153/0001

Effective date: 20020621

AS Assignment

Owner name: JPMORGAN CHASE BANK, AS COLLATERAL AGENT, TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:015134/0476

Effective date: 20030625

Owner name: JPMORGAN CHASE BANK, AS COLLATERAL AGENT,TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:015134/0476

Effective date: 20030625

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A. AS SUCCESSOR-IN-INTEREST ADMINISTRATIVE AGENT AND COLLATERAL AGENT TO JPMORGAN CHASE BANK;REEL/FRAME:066728/0193

Effective date: 20220822