US5592051A - Intelligent lamp or intelligent contact terminal for a lamp - Google Patents

Intelligent lamp or intelligent contact terminal for a lamp Download PDF

Info

Publication number
US5592051A
US5592051A US08/524,119 US52411995A US5592051A US 5592051 A US5592051 A US 5592051A US 52411995 A US52411995 A US 52411995A US 5592051 A US5592051 A US 5592051A
Authority
US
United States
Prior art keywords
lamp
intelligent
electronic control
control elements
contact terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/524,119
Inventor
Heikki Korkala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IWS International Oy
Original Assignee
Korkala; Heikki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korkala; Heikki filed Critical Korkala; Heikki
Priority to US08/524,119 priority Critical patent/US5592051A/en
Priority to US08/746,342 priority patent/US5742130A/en
Application granted granted Critical
Publication of US5592051A publication Critical patent/US5592051A/en
Assigned to IWS INTERNATIONAL INC. reassignment IWS INTERNATIONAL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KORKALA, HEIKKI
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/04Controlling
    • H05B39/041Controlling the light-intensity of the source
    • H05B39/044Controlling the light-intensity of the source continuously
    • H05B39/047Controlling the light-intensity of the source continuously with pulse width modulation from a DC power source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/185Controlling the light source by remote control via power line carrier transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/21Responsive to malfunctions or to light source life; for protection of two or more light sources connected in parallel
    • H05B47/22Responsive to malfunctions or to light source life; for protection of two or more light sources connected in parallel with communication between the lamps and a central unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Definitions

  • the present invention relates to an intelligent lamp or an intelligent contact terminal for a lamp for use is a lighting system, comprising a plurality of individually controlled lamps linked in one and the same power-supply circuit and an operation control device for transmitting a desired operation control signal to electronics control elements which are included in the lamp or the contact terminal and which selectively react or fail to react to various control signals.
  • An object of the invention is to provide a new type of intelligent lamp or an intelligent contact terminal for a lamp, comprising a replaceable standard component which nevertheless includes a sufficient amount of operational intelligence for bringing the entire system with its variety of differently operating lamps into a condition more standardized than before.
  • an intelligent lamp of the invention is characterized in that said electronic control elements and the lamp provide a single replaceable component fitted with means for identifying a predetermined message included in the control signal and with means for switching on the lamp upon the identification of said predetermined message.
  • the electronic control elements further include means for monitoring the operating condition of the lamp and means for producing a fault indication if a current passing through the lamp is higher or lower than a predetermined maximum or minimum value.
  • the object of the invention is also achieved by means of an intelligent contact terminal which is characterized in that said electronic control elements and the contact terminal provide a single replaceable component fitted with means for identifying a predetermined message included in the control signal, means for switching on the lamp upon the identification said predetermined message, means for monitoring the operating condition of the lamp and means for producing a fault indication if a current passing through the lamp is higher or lower than a predetermined maximum or minimum value.
  • FIG. 1 shows a block diagram as an example of an electric circuit for embodying an intelligent lamp or contact terminal
  • FIG. 2 illustrates various control and operating conditions A-D for an intelligent lamp or a contact terminal
  • FIG. 3 illustrates the principle of an intelligent lamp
  • FIG. 4 illustrates the principle of an intelligent contact terminal
  • FIGS. 5 and 6 show examples of various designs for an intelligent lamp
  • FIGS. 7 and 8 illustrate schematically the connection an intelligent lamp and contact terminal with the conductor series of a lighting system
  • FIG. 9 shows a circuit diagram for an automotive lighting system capable of applying intelligent lamps or intelligent contact terminals of the invention.
  • FIG. 1 shows an example of the electric circuit for an intelligent lamp or an intelligent terminal.
  • a lamp 1 is connected to a power-supply circuit provided between conductors 8 and 9.
  • a fuse 14 Connected in series with lamp 1 is a fuse 14 and a pulse-width modulator 12.
  • a logic circuit 11 effects the operation control, as described in more detail hereinafter.
  • the logic circuit 11 is provided with a data path 10' for giving operation control commands by means of an external control device (e.g. switches 21 and a control device 20 designed by the application of hybrid technique in FIG. 9).
  • an external control device e.g. switches 21 and a control device 20 designed by the application of hybrid technique in FIG. 9
  • a synchronizing clock 13 which identifies the clock frequency from a data path control command.
  • the logic circuit 11 monitors the data path messages, which in the present case are codes in the form of data. When the logic circuit 11 identifies a predetermined code, intended for switching on lamp 1, it delivers an instruction through a wire 15 to activate said pulse-width modulator 12.
  • a predetermined code intended for switching on lamp 1
  • the logic circuit 11 identifies lamp 1 to make the latter operate as an appropriate lamp and, if necessary, performs automatically e.g. the following actions: power control, flashing action, dusk switching etc.
  • the logic circuit measures a voltage difference ⁇ u across fuse 14. On the basis of this measured result, the logic circuit 11 has knowledge of a current I running through lamp 1.
  • the logic circuit measures a voltage Ux acting across lamp 1 and measures the power Ux•I.
  • said logic circuit 11 controls pulse-width modulator 12 so as to provide lamp 1 with a predetermined power, which corresponds to the action intended for this particular lamp.
  • a monitoring system for the cold condition of lamp 1 for this purpose, a very low test current passes by way of logic circuit 11 and a conductor 17 through lamp 1. If the test current is >0 or ⁇ a predetermined value, the lamp is in order. If the test current is zero or higher than a predetermined value, said logic circuit 11 delivers a fault indication e.g. through the same data path 10' that it uses for receiving an operation control command.
  • the lamp condition can also be monitored during the active period of a lamp: if a current I passing through the lamp is higher or lower than a predetermined maximum or minimum value, the logic circuit 11 produces a fault indication.
  • FIG. 1 illustrates the principle of an intelligent lamp, wherein lamp 1 and electronic control elements 2 make up a single component which can be designed as a module by using e.g. a sizing, soldering and/or filament-bonding technique.
  • Contacting the above-mentioned elements is preferably effected e.g. on a ceramic base or a pcb-card 3.
  • a part of the electronics, such as wiring and resistances, can be printed by a thick-film technique on ceramic base 3.
  • the resistances can be printed e.g. by a polymer-printing technique on a pcb-card.
  • the thick-film hybrid technique can be used for manufacturing a sufficiently small-size and inexpensive component, which is an entirely replaceable and disposable part.
  • FIGS. 5 and 6 illustrate exemplary designs for an intelligent lamp 1, 2, 3.
  • the electronic control elements 2 and lamp 1 are integrated as a single component on a card 3.
  • a tubular housing 18 having a square cross-section is provided with a card or a printed-circuit board 3 extending lengthwise of the housing.
  • a tubular housing 19 having a circular cross-section is provided with a circular printed-circuit board 3 extending transversely of the housing.
  • the printed-circuit board 3 carries a sufficient number of contact studs which provide data path 10' and connections to current conductors 8 and 9.
  • the transmission of operation control data is preferably effected by using a serial path, which only requires one signal conductor 10. As shown in FIG. 3, between conductor series 8, 9, 10 and intelligent lamp component 1, 2, 3 is then required a contact 4, which serves as a coder between serial path conduit 10 and parallel data path 10'. If the control is effected e.g. at an RF-frequency, no signal conductor 10 is required for the control.
  • An intelligent contact terminal shown in FIG. 4 corresponds in its operating principle to the above-described intelligent lamp.
  • Electronic control elements 6 are mounted on a ceramic base or a printed-circuit board 7.
  • a lamp 5 can be e.g. a conventional lamp currently used in an automobile and it can be attached to component 6, 7 in a manner similar to the current method of attachment. Thus, no modifications are required in the manufacturing technique of lamp 5 and its socket shell. In this sense, the only difference from a traditional system is that just a single type of lamps 5 are needed.
  • the coder of data received from serial path 10 is connected to electronic control elements 6.
  • An additional coding can be effected by linking one or more of the conductors of data path 10' to serial path conduit 10 or current-supply conductors 8 or 9.
  • FIGS. 7 and 8 illustrate in more detail the connection of an intelligent lamp or an intelligent terminal to a conductor series, including a current conductor 8 and a signal conductor 10.
  • the conductor series may also include a return-current conductor 9, which can nevertheless be replaced by the chassis of an automobile.
  • a desired number of components of the invention can be connected in parallel in this conductor series.
  • Connecting and simultaneously coding can be effected e.g. by means of a crimping technique by pressing connecting wires 8', 9' as well as an optional number of connecting wires 10' into the contact with conductors 8, 9 and 10 through a conductor insulation. Coding can be effected e.g.
  • each lamp 1, 5 can serve, according to its location, as a blinker, a parking light, a reverse light, a taillight etc.
  • this additional coding makes it easier for a component to identify itself so as to serve as an appropriate lamp on the basis of a received message.
  • the identification and operation control can be entirely included in a message to be included, whereby the additional coding is not necessary.
  • the lamp 1 can be an exposed component to be mounted on ceramic base 3.
  • the intelligent lamp 1, 3 is a standard component, which by virtue of contact terminal 4 has been coded to serve as an appropriate lamp.
  • the connecting wires of an intelligent terminal 7 can be fitted with a normal lamp 5, the same way as shown in FIG. 4.
  • FIG. 9 illustrates the use of intelligent lamps or intelligent terminals of the invention in an automotive lighting system.
  • a conductor series including current conductor 8 and signal conductor 10 is fitted at appropriate points with a necessary number of intelligent lamps 1, 2, 3 or intelligent terminals 6, 7 along with their lamps 5.
  • Messages from conventional switches 21 are converted in an electronic control device 20 into suitable serially formed control codes which can be identified by the appropriate intelligent lamp or intelligent terminal.
  • the control device 20 can also be designed by using a thick-film hybrid technique.
  • the automobile dashboard may also include one of a plurality of signal light devices 22 for giving a fault indication whenever any of the components 1, 2, 3 or 5, 6, 7 is out of order.
  • a fault indication can be produced by using a signal wire 10.
  • an essential feature in the invention is that the operation control electronics and the lamp provide a single component (intelligent lamp) or, alternatively, the electronics and the contact terminal provide a single component (intelligent terminal).
  • a component of the invention must satisfy the following requirements:
  • the component itself identifies an incoming message, which can be e.g.:
  • serial path RS 232, 12C- BUS or a serial path protocol intended for an automobile e.g. serial path RS 232, 12C- BUS or a serial path protocol intended for an automobile
  • the component On the basis of a received message, the component must identify itself to serve as a proper lamp, effecting automatically, if necessary, e.g. the following actions:
  • the component protects itself from external interferences and switches off of the circuit (fuse 14) before causing damage to exterior electronics.
  • the component also reports its out-of-order condition, using a message line which may be the same as or different from the one for receiving messages.
  • the number of the above factors, associated with the identification process of the component, its objectives or self-control, can be one or more depending on the intended application.
  • Mechanical dimensions of the component may vary within quite a wide range depending on the intended application. In practice, however, the purpose is to create a standard design for a particular application. For example, just one single design for automotive use etc.
  • control of a component of the invention can also be effected by using control units operating on prior known principles.
  • control units may include e.g.

Abstract

The invention relates to an intelligent lamp or an intelligent contact terminal for a lamp, which can be used in a lighting system comprising a plurality of individually controlled lamps linked in a common power-supply circuit and an operation control device for transmitting a desired operation control signal to electronic control elements, associated with the lamp or the contact terminal and reacting or failing to react selectively to various control signals. Together with the lamp or its contact terminal, said electronic control elements provide a single replaceable component which, on the basis of a message included in the operation control signal, identifies itself to serve as an appropriate lamp. In addition, the electronic control elements monitor the condition of itself and that of the lamp and, if necessary, produce a fault indication.

Description

This application is a continuation of application Ser. No. 08/244,059 filed Jul. 11, 1994, now abandoned.
BACKGROUND OF THE INVENTION
The present invention relates to an intelligent lamp or an intelligent contact terminal for a lamp for use is a lighting system, comprising a plurality of individually controlled lamps linked in one and the same power-supply circuit and an operation control device for transmitting a desired operation control signal to electronics control elements which are included in the lamp or the contact terminal and which selectively react or fail to react to various control signals.
The above type of lighting systems have been earlier proposed e.g. in European Patent publications EP-0 217 762 and EP-0 430 792. This type of lighting system is particularly suitable for use as an automotive lighting system, an essential benefit gained over the traditional systems being that all lamps can be connected in a conductor series, including e.g. two or three conductors. The system will be more simple and inexpensive as the number of conductors is substantially reduced. The number of connections is also reduced. In these prior known lighting control systems, however, the lamp or its contact terminal is not provided with electronics facilitating the independent "intelligent" operation thereof for fully exploiting the benefits of the system.
SUMMARY OF THE INVENTION
An object of the invention is to provide a new type of intelligent lamp or an intelligent contact terminal for a lamp, comprising a replaceable standard component which nevertheless includes a sufficient amount of operational intelligence for bringing the entire system with its variety of differently operating lamps into a condition more standardized than before.
In order to achieve this object, an intelligent lamp of the invention is characterized in that said electronic control elements and the lamp provide a single replaceable component fitted with means for identifying a predetermined message included in the control signal and with means for switching on the lamp upon the identification of said predetermined message.
In a preferred embodiment of the invention, the electronic control elements further include means for monitoring the operating condition of the lamp and means for producing a fault indication if a current passing through the lamp is higher or lower than a predetermined maximum or minimum value.
Alternatively, the object of the invention is also achieved by means of an intelligent contact terminal which is characterized in that said electronic control elements and the contact terminal provide a single replaceable component fitted with means for identifying a predetermined message included in the control signal, means for switching on the lamp upon the identification said predetermined message, means for monitoring the operating condition of the lamp and means for producing a fault indication if a current passing through the lamp is higher or lower than a predetermined maximum or minimum value.
BRIEF DESCRIPTION OF THE DRAWINGS
A few exemplary embodiments of the invention will now be described in more detail with reference made to the accompanying drawings, in which
FIG. 1 shows a block diagram as an example of an electric circuit for embodying an intelligent lamp or contact terminal;
FIG. 2 illustrates various control and operating conditions A-D for an intelligent lamp or a contact terminal;
FIG. 3 illustrates the principle of an intelligent lamp;
FIG. 4 illustrates the principle of an intelligent contact terminal;
FIGS. 5 and 6 show examples of various designs for an intelligent lamp;
FIGS. 7 and 8 illustrate schematically the connection an intelligent lamp and contact terminal with the conductor series of a lighting system; and
FIG. 9 shows a circuit diagram for an automotive lighting system capable of applying intelligent lamps or intelligent contact terminals of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 shows an example of the electric circuit for an intelligent lamp or an intelligent terminal. A lamp 1 is connected to a power-supply circuit provided between conductors 8 and 9. Connected in series with lamp 1 is a fuse 14 and a pulse-width modulator 12. A logic circuit 11 effects the operation control, as described in more detail hereinafter. The logic circuit 11 is provided with a data path 10' for giving operation control commands by means of an external control device (e.g. switches 21 and a control device 20 designed by the application of hybrid technique in FIG. 9). In addition, between data path 10' and logic circuit 11 is located a synchronizing clock 13, which identifies the clock frequency from a data path control command. The operation of circuit components shown in FIG. 1 is illustrated in more detail in FIG. 2. The logic circuit 11 monitors the data path messages, which in the present case are codes in the form of data. When the logic circuit 11 identifies a predetermined code, intended for switching on lamp 1, it delivers an instruction through a wire 15 to activate said pulse-width modulator 12. An essential feature is that, on the basis of a received message, the logic circuit 11 identifies lamp 1 to make the latter operate as an appropriate lamp and, if necessary, performs automatically e.g. the following actions: power control, flashing action, dusk switching etc. For power control, the logic circuit measures a voltage difference Δu across fuse 14. On the basis of this measured result, the logic circuit 11 has knowledge of a current I running through lamp 1. By means of a conductor 16 the logic circuit measures a voltage Ux acting across lamp 1 and measures the power Ux•I. On the basis of this measuring and calculating operation, said logic circuit 11 controls pulse-width modulator 12 so as to provide lamp 1 with a predetermined power, which corresponds to the action intended for this particular lamp.
There is also provided a monitoring system for the cold condition of lamp 1. For this purpose, a very low test current passes by way of logic circuit 11 and a conductor 17 through lamp 1. If the test current is >0 or <a predetermined value, the lamp is in order. If the test current is zero or higher than a predetermined value, said logic circuit 11 delivers a fault indication e.g. through the same data path 10' that it uses for receiving an operation control command.
The lamp condition can also be monitored during the active period of a lamp: if a current I passing through the lamp is higher or lower than a predetermined maximum or minimum value, the logic circuit 11 produces a fault indication.
In FIG. 1, the electronic control elements of lamp 1 are generally designated with reference numeral 2. FIG. 3 illustrates the principle of an intelligent lamp, wherein lamp 1 and electronic control elements 2 make up a single component which can be designed as a module by using e.g. a sizing, soldering and/or filament-bonding technique. Contacting the above-mentioned elements is preferably effected e.g. on a ceramic base or a pcb-card 3. A part of the electronics, such as wiring and resistances, can be printed by a thick-film technique on ceramic base 3. Alternatively, the resistances can be printed e.g. by a polymer-printing technique on a pcb-card. The thick-film hybrid technique can be used for manufacturing a sufficiently small-size and inexpensive component, which is an entirely replaceable and disposable part.
FIGS. 5 and 6 illustrate exemplary designs for an intelligent lamp 1, 2, 3. In both exemplary designs, the electronic control elements 2 and lamp 1 are integrated as a single component on a card 3. In the case of FIG. 5, a tubular housing 18 having a square cross-section is provided with a card or a printed-circuit board 3 extending lengthwise of the housing. In the case of FIG. 6, a tubular housing 19 having a circular cross-section is provided with a circular printed-circuit board 3 extending transversely of the housing. In each case, the printed-circuit board 3 carries a sufficient number of contact studs which provide data path 10' and connections to current conductors 8 and 9.
The transmission of operation control data is preferably effected by using a serial path, which only requires one signal conductor 10. As shown in FIG. 3, between conductor series 8, 9, 10 and intelligent lamp component 1, 2, 3 is then required a contact 4, which serves as a coder between serial path conduit 10 and parallel data path 10'. If the control is effected e.g. at an RF-frequency, no signal conductor 10 is required for the control.
An intelligent contact terminal shown in FIG. 4 corresponds in its operating principle to the above-described intelligent lamp. Electronic control elements 6 are mounted on a ceramic base or a printed-circuit board 7. A lamp 5 can be e.g. a conventional lamp currently used in an automobile and it can be attached to component 6, 7 in a manner similar to the current method of attachment. Thus, no modifications are required in the manufacturing technique of lamp 5 and its socket shell. In this sense, the only difference from a traditional system is that just a single type of lamps 5 are needed. In the case of FIG. 4, the coder of data received from serial path 10 is connected to electronic control elements 6. An additional coding can be effected by linking one or more of the conductors of data path 10' to serial path conduit 10 or current- supply conductors 8 or 9.
FIGS. 7 and 8 illustrate in more detail the connection of an intelligent lamp or an intelligent terminal to a conductor series, including a current conductor 8 and a signal conductor 10. The conductor series may also include a return-current conductor 9, which can nevertheless be replaced by the chassis of an automobile. A desired number of components of the invention can be connected in parallel in this conductor series. Connecting and simultaneously coding can be effected e.g. by means of a crimping technique by pressing connecting wires 8', 9' as well as an optional number of connecting wires 10' into the contact with conductors 8, 9 and 10 through a conductor insulation. Coding can be effected e.g. by contacting coding wires 10' with a signal conductor 10, an input current conductor 8 or an output current conductor 9. The coding associated with the selectability of connecting wires 10' can be used to define each lamp 1, 5 to serve, according to its location, as a blinker, a parking light, a reverse light, a taillight etc. Thus, this additional coding makes it easier for a component to identify itself so as to serve as an appropriate lamp on the basis of a received message. However, the identification and operation control can be entirely included in a message to be included, whereby the additional coding is not necessary. In the case of FIG. 7, even the lamp 1 can be an exposed component to be mounted on ceramic base 3. The intelligent lamp 1, 3 is a standard component, which by virtue of contact terminal 4 has been coded to serve as an appropriate lamp. In the case of FIG. 8, the connecting wires of an intelligent terminal 7 can be fitted with a normal lamp 5, the same way as shown in FIG. 4.
FIG. 9 illustrates the use of intelligent lamps or intelligent terminals of the invention in an automotive lighting system. A conductor series including current conductor 8 and signal conductor 10 is fitted at appropriate points with a necessary number of intelligent lamps 1, 2, 3 or intelligent terminals 6, 7 along with their lamps 5. Messages from conventional switches 21 are converted in an electronic control device 20 into suitable serially formed control codes which can be identified by the appropriate intelligent lamp or intelligent terminal. The control device 20 can also be designed by using a thick-film hybrid technique. The automobile dashboard may also include one of a plurality of signal light devices 22 for giving a fault indication whenever any of the components 1, 2, 3 or 5, 6, 7 is out of order. A fault indication can be produced by using a signal wire 10.
It is obvious that the invention is not limited to the above-described exemplary embodiment. An essential feature in the invention is that the operation control electronics and the lamp provide a single component (intelligent lamp) or, alternatively, the electronics and the contact terminal provide a single component (intelligent terminal).
A component of the invention must satisfy the following requirements:
1. Identifying
The component itself identifies an incoming message, which can be e.g.:
a code using e.g. serial path RS 232, 12C- BUS or a serial path protocol intended for an automobile)
tone frequency
RF-frequency
infrared radiation or light
2. Objectives
On the basis of a received message, the component must identify itself to serve as a proper lamp, effecting automatically, if necessary, e.g. the following actions:
power control
blinker action
dusk switching.
3. Self-control
The component protects itself from external interferences and switches off of the circuit (fuse 14) before causing damage to exterior electronics. The component also reports its out-of-order condition, using a message line which may be the same as or different from the one for receiving messages.
The number of the above factors, associated with the identification process of the component, its objectives or self-control, can be one or more depending on the intended application.
Mechanical dimensions of the component may vary within quite a wide range depending on the intended application. In practice, however, the purpose is to create a standard design for a particular application. For example, just one single design for automotive use etc.
The control of a component of the invention can also be effected by using control units operating on prior known principles. Such units may include e.g.
code transmitter
infrared transmitter
RF-transmitter.
Since such control units are prior known in various contexts and since they are not included within the scope of patent protection defined by this application, such units shall not be described here in more detail.

Claims (17)

I claim:
1. An intelligent filament lamp for use in a lighting system of a vehicle, comprising:
a plurality of individually controlled lamps linked in a common power-supply circuit, each of said lamps having their own associated electronic control elements;
a single common code conductor which is connected to each of said electronic control elements;
an operation control device for transmitting a desired operation control signal over said single common code conductor to the electronic control elements associated with each lamp, said elements selectively reacting or failing to react to various control signals;
wherein each lamp and electronic control element pair provides a single replaceable component which is fitted with means for identifying a predetermined message included in the control signal and with means for switching on the lamp upon identification of said predetermined message;
wherein said means for identifying comprises a logic circuit and a synchronizing clock;
wherein said means for switching comprises the logic circuit and a pulse-width modulator.
2. An intelligent lamp as set forth in claim 1, characterized in that said electronic control elements also include means for monitoring the operating condition of the lamp and means for giving a fault indication if the current passing through the lamp is higher or lower than a predetermined maximum or minimum value.
3. An intelligent lamp as set forth in claim 2, characterized in that said electronic control elements further include means for regulating the power passing through the lamp.
4. An intelligent lamp as set forth in claim 2, characterized in that the electronic components included in said electronic control elements are mounted by sizing, soldering and/or filament-bonding technique on a ceramic base, some of the electronics, such as wiring and resistances, being printed thereon by means of a thick-film technique, or on a pcb-board with resistances being printed thereon by a polymer-printing technique.
5. An intelligent lamp as set forth in claim 3, characterized in that said power-regulating means are adapted to receive their control on the basis of the measured values of a load current passing through the lamp and a voltage acting across the lamp.
6. An intelligent lamp as set forth in claim 2, characterized in that testing of the cold condition of the lamp is effected by conducting through the lamp a very low test current from an operation control logic, which delivers a fault indication if the test current is zero or higher than a predetermined value.
7. An intelligent lamp as set forth in claim 1, characterized in that said replaceable component or its separate contact terminal is connected with a conductor series including at least one current conductor by means of a crimping method through a conductor insulation.
8. An intelligent lamp as set forth in claim 1, characterized in that additional coding to the predetermined message is effected by means of optional contacts between said electronic control elements of said replaceable component and the common code conductor or a current conductor.
9. An intelligent contact terminal for a filament lamp for use in a lighting system of a vehicle, comprising:
a plurality of individually controlled replaceable lamps linked in a common power-supply circuit, each of said lamps having their own intelligent contact terminal and associated electronic control elements;
a single common code conductor which is connected to each of said electronic control elements;
an operation control device for transmitting a desired operation control signal over said single common code conductor to the electronic control elements associated with each contact terminal, said elements selectively reacting or failing to react to various control signals;
wherein each replaceable lamp has a single replaceable contact terminal with associated electronic control elements which are fitted with means for identifying a predetermined message included in the control signal, means for switching on the lamp upon identification of said predetermined message, means for monitoring the operating condition of the lamp and means for giving a fault indication if the current passing through the lamp is higher or lower than a predetermined maximum or minimum value;
wherein said means for identifying comprises a logic circuit and a synchronizing clock;
wherein said means for switching comprises the logic circuit and a pulse-width modulator.
10. An intelligent contact terminal for a filament lamp for use in a lighting system of a vehicle, comprising:
a plurality of individually controlled replaceable lamps linked in a common power-supply circuit, each of said lamps having their own intelligent contact terminal and associated electronic control elements;
a single common code conductor which is connected to each of said electronic control elements;
an operation control device for transmitting a desired operation control signal over said single common code conductor to the electronic control elements associated with each contact terminal, said elements selectively reacting or failing to react to various control signals;
wherein each replaceable lamp has a single replaceable contact terminal with associated electronic control elements which are fitted with means for identifying a predetermined message included in the control signal, means for switching on the lamp upon identification of said predetermined message and means for effecting optional contacts between said electronic control elements of said replaceable component and said common code conductor or a current conductor for coding different functions of the lamps according to their location;
wherein said means for identifying comprises a logic circuit and a synchronizing clock;
wherein said means for switching comprises the logic circuit and a pulse-width modulator.
11. An intelligent lamp as set forth in claim 9, characterized in that said electronic control elements further include means for regulating the power passing through the lamp.
12. An intelligent lamp as set forth in claim 9, characterized in that the electronic components included in said electronic control elements are mounted by sizing, soldering and/or filament-bonding technique on a ceramic base, some of the electronics, such as wiring and resistances, being printed thereon by means of a thick-film technique, or on a pcb-board with resistances being printed thereon by a polymer-printing technique.
13. An intelligent lamp as set forth in claim 11, characterized in that said power-regulating means are adapted to receive their control on the basis of the measured values of a load current passing through the lamp and a voltage acting across the lamp.
14. An intelligent lamp as set forth in claim 9, characterized in that testing of the cold condition of the lamp is effected by conducting through the lamp a very low test current from an operation control logic, which delivers a fault indication if the test current is zero or higher than a predetermined value.
15. An intelligent lamp as set forth in claim 9, characterized in that said replaceable lamp or its replacable contact terminal is connected with a conductor series including at least one current conductor by means of a crimping method through a conductor insulation.
16. An intelligent lamp as set forth in claim 9, characterized in that additional coding to the predetermined message is effected by means of optional contacts between said electronic control elements and the common code conductor or a current conductor.
17. An intelligent contact terminal for a filament lamp for use in a lighting system of a vehicle, comprising:
a plurality of individually controlled replaceable lamps linked in a common power-supply circuit having insulated conductors, each of said lamps being connected to an intelligent contact terminal and associated electronic control elements;
a single common code conductor which is connected to each of said electronic control elements;
an operation control device for transmitting a desired operation control signal over said single common code conductor to the electronic control elements associated with each contact terminal, said elements selectively reacting or failing to react to various control signals;
wherein each replaceable contact terminal has connecting wires pressed into contact with said conductors through the insulation thereof, said electronic control elements including means for identifying a predetermined message included in the control signal, means for switching on the lamp upon identification of said predetermined message, means for monitoring the operating condition of the lamp and means for giving a fault indication if the current passing through the lamp is higher or lower than a predetermined maximum or minimum value;
wherein said means for identifying comprises a logic circuit and a synchronizing clock;
wherein said means for switching comprises the logic circuit and a pulse-width modulator.
US08/524,119 1991-11-12 1995-08-24 Intelligent lamp or intelligent contact terminal for a lamp Expired - Lifetime US5592051A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/524,119 US5592051A (en) 1991-11-13 1995-08-24 Intelligent lamp or intelligent contact terminal for a lamp
US08/746,342 US5742130A (en) 1991-11-12 1996-11-08 Intelligent lamp or intelligent contact terminal for a lamp

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FI915346 1991-11-13
FI915346A FI95420C (en) 1991-11-13 1991-11-13 Intelligent lamp or intelligent lamp base for lamp
PCT/FI1992/000304 WO1993010591A1 (en) 1991-11-13 1992-11-10 Intelligent lamp or intelligent contact terminal for a lamp
US24405994A 1994-07-11 1994-07-11
US08/524,119 US5592051A (en) 1991-11-13 1995-08-24 Intelligent lamp or intelligent contact terminal for a lamp

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US24405994A Continuation 1991-11-12 1994-07-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/746,342 Continuation US5742130A (en) 1991-11-12 1996-11-08 Intelligent lamp or intelligent contact terminal for a lamp

Publications (1)

Publication Number Publication Date
US5592051A true US5592051A (en) 1997-01-07

Family

ID=8533485

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/524,119 Expired - Lifetime US5592051A (en) 1991-11-12 1995-08-24 Intelligent lamp or intelligent contact terminal for a lamp
US08/746,342 Expired - Fee Related US5742130A (en) 1991-11-12 1996-11-08 Intelligent lamp or intelligent contact terminal for a lamp

Family Applications After (1)

Application Number Title Priority Date Filing Date
US08/746,342 Expired - Fee Related US5742130A (en) 1991-11-12 1996-11-08 Intelligent lamp or intelligent contact terminal for a lamp

Country Status (12)

Country Link
US (2) US5592051A (en)
EP (1) EP0612445B1 (en)
JP (1) JPH07501174A (en)
KR (1) KR0144707B1 (en)
AU (1) AU664571B2 (en)
BR (1) BR9206932A (en)
CA (1) CA2122989C (en)
DE (1) DE69231446T2 (en)
ES (1) ES2149778T3 (en)
FI (2) FI95420C (en)
RU (1) RU2110164C1 (en)
WO (1) WO1993010591A1 (en)

Cited By (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742130A (en) * 1991-11-12 1998-04-21 Korkala; Heikki Intelligent lamp or intelligent contact terminal for a lamp
US6016038A (en) * 1997-08-26 2000-01-18 Color Kinetics, Inc. Multicolored LED lighting method and apparatus
US6211626B1 (en) 1997-08-26 2001-04-03 Color Kinetics, Incorporated Illumination components
US6292901B1 (en) 1997-08-26 2001-09-18 Color Kinetics Incorporated Power/data protocol
US20020044066A1 (en) * 2000-07-27 2002-04-18 Dowling Kevin J. Lighting control using speech recognition
US20020070688A1 (en) * 1997-08-26 2002-06-13 Dowling Kevin J. Light-emitting diode based products
US20020101197A1 (en) * 1997-08-26 2002-08-01 Lys Ihor A. Packaged information systems
US20020130627A1 (en) * 1997-08-26 2002-09-19 Morgan Frederick M. Light sources for illumination of liquids
US6459919B1 (en) 1997-08-26 2002-10-01 Color Kinetics, Incorporated Precision illumination methods and systems
US6528954B1 (en) 1997-08-26 2003-03-04 Color Kinetics Incorporated Smart light bulb
US20030057884A1 (en) * 1997-12-17 2003-03-27 Dowling Kevin J. Systems and methods for digital entertainment
US20030057890A1 (en) * 1997-08-26 2003-03-27 Lys Ihor A. Systems and methods for controlling illumination sources
US6548967B1 (en) 1997-08-26 2003-04-15 Color Kinetics, Inc. Universal lighting network methods and systems
US6577080B2 (en) 1997-08-26 2003-06-10 Color Kinetics Incorporated Lighting entertainment system
US20030137258A1 (en) * 1997-08-26 2003-07-24 Colin Piepgras Light emitting diode based products
US6608453B2 (en) 1997-08-26 2003-08-19 Color Kinetics Incorporated Methods and apparatus for controlling devices in a networked lighting system
US6624597B2 (en) 1997-08-26 2003-09-23 Color Kinetics, Inc. Systems and methods for providing illumination in machine vision systems
US20040052076A1 (en) * 1997-08-26 2004-03-18 Mueller George G. Controlled lighting methods and apparatus
US20040056774A1 (en) * 2002-07-04 2004-03-25 Patent-Treuhand-Gesellschaft Fur Elektrisch Gluhlampen Mbh Supply unit
US6717376B2 (en) 1997-08-26 2004-04-06 Color Kinetics, Incorporated Automotive information systems
US6720745B2 (en) 1997-08-26 2004-04-13 Color Kinetics, Incorporated Data delivery track
US20040113568A1 (en) * 2000-09-01 2004-06-17 Color Kinetics, Inc. Systems and methods for providing illumination in machine vision systems
US20040130909A1 (en) * 2002-10-03 2004-07-08 Color Kinetics Incorporated Methods and apparatus for illuminating environments
US20040141321A1 (en) * 2002-11-20 2004-07-22 Color Kinetics, Incorporated Lighting and other perceivable effects for toys and other consumer products
US6774584B2 (en) 1997-08-26 2004-08-10 Color Kinetics, Incorporated Methods and apparatus for sensor responsive illumination of liquids
US20040155609A1 (en) * 1997-12-17 2004-08-12 Color Kinetics, Incorporated Data delivery track
US6777891B2 (en) 1997-08-26 2004-08-17 Color Kinetics, Incorporated Methods and apparatus for controlling devices in a networked lighting system
US20040160199A1 (en) * 2001-05-30 2004-08-19 Color Kinetics, Inc. Controlled lighting methods and apparatus
US6781329B2 (en) 1997-08-26 2004-08-24 Color Kinetics Incorporated Methods and apparatus for illumination of liquids
US6788011B2 (en) 1997-08-26 2004-09-07 Color Kinetics, Incorporated Multicolored LED lighting method and apparatus
US6801003B2 (en) 2001-03-13 2004-10-05 Color Kinetics, Incorporated Systems and methods for synchronizing lighting effects
US20040207341A1 (en) * 2003-04-14 2004-10-21 Carpenter Decorating Co., Inc. Decorative lighting system and decorative illumination device
US20040212321A1 (en) * 2001-03-13 2004-10-28 Lys Ihor A Methods and apparatus for providing power to lighting devices
US20040212993A1 (en) * 1997-08-26 2004-10-28 Color Kinetics, Inc. Methods and apparatus for controlling illumination
US20040212320A1 (en) * 1997-08-26 2004-10-28 Dowling Kevin J. Systems and methods of generating control signals
US20050040774A1 (en) * 1999-11-18 2005-02-24 Color Kinetics, Inc. Methods and apparatus for generating and modulating white light illumination conditions
US20050047132A1 (en) * 1997-08-26 2005-03-03 Color Kinetics, Inc. Systems and methods for color changing device and enclosure
US20050044617A1 (en) * 1997-08-26 2005-03-03 Color Kinetics, Inc. Methods and apparatus for illumination of liquids
US20050063194A1 (en) * 1997-08-26 2005-03-24 Color Kinetics, Incorporated Vehicle lighting methods and apparatus
US20050128751A1 (en) * 2003-05-05 2005-06-16 Color Kinetics, Incorporated Lighting methods and systems
FR2863711A1 (en) * 2003-12-11 2005-06-17 Conti Temic Microelectronic Functionally testing lamp circuit involves measuring current and voltage and taking into account resistance defined as polynomial of at least the first order depending on voltage currently measured on lamp circuit
WO2005057231A1 (en) * 2003-12-11 2005-06-23 Conti Temic Microelectronic Gmbh Method for functional testing of a lamp circuit
US20050225757A1 (en) * 2002-08-01 2005-10-13 Cunningham David W Method for controlling the luminous flux spectrum of a lighting fixture
US20050236998A1 (en) * 1997-08-26 2005-10-27 Color Kinetics, Inc. Light emitting diode based products
US20050253533A1 (en) * 2002-05-09 2005-11-17 Color Kinetics Incorporated Dimmable LED-based MR16 lighting apparatus methods
US20060016960A1 (en) * 1999-09-29 2006-01-26 Color Kinetics, Incorporated Systems and methods for calibrating light output by light-emitting diodes
US20060104058A1 (en) * 2004-03-15 2006-05-18 Color Kinetics Incorporated Methods and apparatus for controlled lighting based on a reference gamut
US20060109649A1 (en) * 1997-12-17 2006-05-25 Color Kinetics Incorporated Methods and apparatus for controlling a color temperature of lighting conditions
US7113541B1 (en) 1997-08-26 2006-09-26 Color Kinetics Incorporated Method for software driven generation of multiple simultaneous high speed pulse width modulated signals
US20070040696A1 (en) * 2005-08-18 2007-02-22 Honeywell International Inc. Aerospace light-emitting diode (LED)-based lights life and operation monitor compensator
US20080130267A1 (en) * 2000-09-27 2008-06-05 Philips Solid-State Lighting Solutions Methods and systems for illuminating household products
US7926975B2 (en) 2007-12-21 2011-04-19 Altair Engineering, Inc. Light distribution using a light emitting diode assembly
US7938562B2 (en) 2008-10-24 2011-05-10 Altair Engineering, Inc. Lighting including integral communication apparatus
US7946729B2 (en) 2008-07-31 2011-05-24 Altair Engineering, Inc. Fluorescent tube replacement having longitudinally oriented LEDs
US7976196B2 (en) 2008-07-09 2011-07-12 Altair Engineering, Inc. Method of forming LED-based light and resulting LED-based light
US20110234076A1 (en) * 2010-03-26 2011-09-29 Altair Engineering, Inc. Inside-out led bulb
US8118447B2 (en) 2007-12-20 2012-02-21 Altair Engineering, Inc. LED lighting apparatus with swivel connection
US8214084B2 (en) 2008-10-24 2012-07-03 Ilumisys, Inc. Integration of LED lighting with building controls
US8256924B2 (en) 2008-09-15 2012-09-04 Ilumisys, Inc. LED-based light having rapidly oscillating LEDs
US8299695B2 (en) 2009-06-02 2012-10-30 Ilumisys, Inc. Screw-in LED bulb comprising a base having outwardly projecting nodes
US8324817B2 (en) 2008-10-24 2012-12-04 Ilumisys, Inc. Light and light sensor
US8330381B2 (en) 2009-05-14 2012-12-11 Ilumisys, Inc. Electronic circuit for DC conversion of fluorescent lighting ballast
US8360599B2 (en) 2008-05-23 2013-01-29 Ilumisys, Inc. Electric shock resistant L.E.D. based light
US8362700B2 (en) 2003-12-23 2013-01-29 Richmond Simon N Solar powered light assembly to produce light of varying colors
US8362710B2 (en) 2009-01-21 2013-01-29 Ilumisys, Inc. Direct AC-to-DC converter for passive component minimization and universal operation of LED arrays
US8421366B2 (en) 2009-06-23 2013-04-16 Ilumisys, Inc. Illumination device including LEDs and a switching power control system
TWI396465B (en) * 2008-08-14 2013-05-11 Nat Chi Nan Cuniversity Light color mixing control system for light emitting diodes
US8444292B2 (en) 2008-10-24 2013-05-21 Ilumisys, Inc. End cap substitute for LED-based tube replacement light
US8454193B2 (en) 2010-07-08 2013-06-04 Ilumisys, Inc. Independent modules for LED fluorescent light tube replacement
US8523394B2 (en) 2010-10-29 2013-09-03 Ilumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
US8541958B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED light with thermoelectric generator
US8556452B2 (en) 2009-01-15 2013-10-15 Ilumisys, Inc. LED lens
US8596813B2 (en) 2010-07-12 2013-12-03 Ilumisys, Inc. Circuit board mount for LED light tube
US8653984B2 (en) 2008-10-24 2014-02-18 Ilumisys, Inc. Integration of LED lighting control with emergency notification systems
US8664880B2 (en) 2009-01-21 2014-03-04 Ilumisys, Inc. Ballast/line detection circuit for fluorescent replacement lamps
US8674626B2 (en) 2008-09-02 2014-03-18 Ilumisys, Inc. LED lamp failure alerting system
US8866396B2 (en) 2000-02-11 2014-10-21 Ilumisys, Inc. Light tube and power supply circuit
US8870415B2 (en) 2010-12-09 2014-10-28 Ilumisys, Inc. LED fluorescent tube replacement light with reduced shock hazard
US8901823B2 (en) 2008-10-24 2014-12-02 Ilumisys, Inc. Light and light sensor
US9057493B2 (en) 2010-03-26 2015-06-16 Ilumisys, Inc. LED light tube with dual sided light distribution
US9072171B2 (en) 2011-08-24 2015-06-30 Ilumisys, Inc. Circuit board mount for LED light
US9163794B2 (en) 2012-07-06 2015-10-20 Ilumisys, Inc. Power supply assembly for LED-based light tube
US9184518B2 (en) 2012-03-02 2015-11-10 Ilumisys, Inc. Electrical connector header for an LED-based light
US9271367B2 (en) 2012-07-09 2016-02-23 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9267650B2 (en) 2013-10-09 2016-02-23 Ilumisys, Inc. Lens for an LED-based light
US9285084B2 (en) 2013-03-14 2016-03-15 Ilumisys, Inc. Diffusers for LED-based lights
US20160302266A1 (en) * 2013-11-28 2016-10-13 Tridonic Gmbh & Co Kg LED Module
US9510400B2 (en) 2014-05-13 2016-11-29 Ilumisys, Inc. User input systems for an LED-based light
US9574717B2 (en) 2014-01-22 2017-02-21 Ilumisys, Inc. LED-based light with addressed LEDs
US10161568B2 (en) 2015-06-01 2018-12-25 Ilumisys, Inc. LED-based light with canted outer walls
US10321528B2 (en) 2007-10-26 2019-06-11 Philips Lighting Holding B.V. Targeted content delivery using outdoor lighting networks (OLNs)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI935373A0 (en) * 1993-12-01 1993-12-01 Iws International Inc Kopplingsstycke eller koppling Foer ledning
FI935374A (en) * 1993-12-01 1995-06-02 Iws International Inc Indicator light, daytime running lamp or other lamp for access means and its connection socket
GB2286891B (en) * 1994-02-24 1997-12-17 Strand Lighting Ltd Dimmer fault reporting
GB2307321A (en) * 1995-11-15 1997-05-21 Delmatic Ltd Failed light detector
GB2322955B (en) * 1996-07-12 1999-07-21 Raymond Mew Improvements in and relating to remote monitoring and signalling
FI113420B (en) 1997-11-14 2004-04-15 Iws Internat Inc Oy Intelligent control device for vehicle power distribution
US6472770B1 (en) 1997-11-14 2002-10-29 Iws International, Inc. Intelligent current distribution system and method for manufacturing the same
WO2000016343A1 (en) * 1998-09-10 2000-03-23 Iws International Inc. Flat cable and its junction with an intelligent contact terminal
GB2345998A (en) * 1999-01-20 2000-07-26 Raymond Mew Remote monitoring and signalling, especially in tunnels
FR2792159B1 (en) * 1999-04-09 2001-05-04 Renault DEVICE AND METHOD FOR CONTROLLING THE LIGHTING OF A VEHICLE EQUIPPED WITH AN INCREASED VOLTAGE DISTRIBUTION NETWORK
US7729831B2 (en) 1999-07-30 2010-06-01 Oshkosh Corporation Concrete placement vehicle control system and method
US7024296B2 (en) 1999-07-30 2006-04-04 Oshkosh Truck Corporation Control system and method for an equipment service vehicle
US7277782B2 (en) 2001-01-31 2007-10-02 Oshkosh Truck Corporation Control system and method for electric vehicle
DE10108159A1 (en) * 2001-02-20 2002-08-29 Christian Schoeller System and process for controlling electricity outlet use and signal station link local signal points with a central control unit through a data bus
FR2825197B1 (en) * 2001-05-28 2003-07-25 Valeo Vision DEVICE FOR CONNECTING A LAMP IN A MOTOR VEHICLE
BR0214035A (en) * 2001-11-08 2005-04-26 Elan Pharm Inc Compound
GB2392326A (en) * 2002-08-20 2004-02-25 Christopher Laurie Malthouse System for monitoring street lighting
US8433426B2 (en) 2005-06-30 2013-04-30 Led Roadway Lighting Ltd Adaptive energy performance monitoring and control system
EP1899695B8 (en) 2005-06-30 2012-06-27 LED Roadway Lighting Ltd. Method and system for luminance characterization
EP1876389A1 (en) * 2006-07-05 2008-01-09 LiteCorp Europe B.V. Lighting system for a display apparatus
US8570190B2 (en) 2007-09-07 2013-10-29 Led Roadway Lighting Ltd. Centralized route calculation for a multi-hop streetlight network
US8290710B2 (en) 2007-09-07 2012-10-16 Led Roadway Lighting Ltd. Streetlight monitoring and control
JP2012045964A (en) * 2010-08-24 2012-03-08 Nec Access Technica Ltd Indoor-light control device
US9845191B2 (en) 2013-08-02 2017-12-19 Oshkosh Corporation Ejector track for refuse vehicle
CN103747564A (en) * 2013-12-19 2014-04-23 广西科技大学 Intelligent lighting control method based on CAN bus
CN103747566A (en) * 2013-12-19 2014-04-23 广西科技大学 Intelligent lighting system based on CAN bus
CN104748003A (en) * 2014-07-15 2015-07-01 卢满松 Intelligent safety down lamp
JP6616798B2 (en) * 2017-05-10 2019-12-04 矢崎総業株式会社 Connector and connector manufacturing method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156151A (en) * 1976-06-04 1979-05-22 Fiat Societa Per Azioni Electric apparatus for the distribution of energy particularly for vehicles
US4222047A (en) * 1978-11-06 1980-09-09 Finnegan George E Lamp failure detection apparatus
US4283636A (en) * 1977-11-22 1981-08-11 Lita Electronically controlled power supply rail
DE3041896A1 (en) * 1980-11-06 1982-06-09 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Domestic lighting remote control unit - has each consumer connected via control unit to supply line and to parallel, common data line
US4370600A (en) * 1980-11-26 1983-01-25 Honeywell Inc. Two-wire electronic dimming ballast for fluorescent lamps
US4396872A (en) * 1981-03-30 1983-08-02 General Mills, Inc. Ballast circuit and method for optimizing the operation of high intensity discharge lamps in the growing of plants
EP0217762A2 (en) * 1985-10-01 1987-04-08 CAVIS CAVETTI ISOLATI S.p.A. Decoder for the electrical supply of a vehicle
US4733138A (en) * 1985-12-05 1988-03-22 Lightolier Incorporated Programmable multicircuit wall-mounted controller
US4780620A (en) * 1987-05-07 1988-10-25 Telefonaktiebolaget L M Ericsson Time multiplex system for transmitting information between vehicle components
US4965492A (en) * 1988-11-18 1990-10-23 Energy Technology, Inc. Lighting control system and module
US4999547A (en) * 1986-09-25 1991-03-12 Innovative Controls, Incorporated Ballast for high pressure sodium lamps having constant line and lamp wattage
EP0430792A1 (en) * 1989-11-27 1991-06-05 Valeo Vision Improvement of multiplexed control devices for a unit of electrical elements in a motor vehicle
US5142203A (en) * 1989-06-02 1992-08-25 Koito Manufacturing Co., Ltd. Lighting circuit for high-pressure discharge lamp for vehicles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283634A (en) * 1971-06-23 1981-08-11 Westinghouse Electric Corp. System and method for monitoring and controlling operation of industrial gas turbine apparatus and gas turbine electric power plants preferably with a digital computer control system
JPH0811514B2 (en) * 1991-06-10 1996-02-07 日産自動車株式会社 Vehicle interior lighting
FI95420C (en) * 1991-11-13 1997-05-14 Heikki Korkala Intelligent lamp or intelligent lamp base for lamp
US5406171A (en) * 1992-04-14 1995-04-11 Motorola, Inc. Vehicle control module for courtesy light turn off when door lock is sensed no matter the state of the delay turn off circuit
DE4341058C1 (en) * 1993-12-02 1995-04-27 Daimler Benz Ag Light control device for a motor vehicle
US5614788A (en) * 1995-01-31 1997-03-25 Autosmart Light Switches, Inc. Automated ambient condition responsive daytime running light system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156151A (en) * 1976-06-04 1979-05-22 Fiat Societa Per Azioni Electric apparatus for the distribution of energy particularly for vehicles
US4283636A (en) * 1977-11-22 1981-08-11 Lita Electronically controlled power supply rail
US4222047A (en) * 1978-11-06 1980-09-09 Finnegan George E Lamp failure detection apparatus
DE3041896A1 (en) * 1980-11-06 1982-06-09 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Domestic lighting remote control unit - has each consumer connected via control unit to supply line and to parallel, common data line
US4370600A (en) * 1980-11-26 1983-01-25 Honeywell Inc. Two-wire electronic dimming ballast for fluorescent lamps
US4396872A (en) * 1981-03-30 1983-08-02 General Mills, Inc. Ballast circuit and method for optimizing the operation of high intensity discharge lamps in the growing of plants
EP0217762A2 (en) * 1985-10-01 1987-04-08 CAVIS CAVETTI ISOLATI S.p.A. Decoder for the electrical supply of a vehicle
US4733138A (en) * 1985-12-05 1988-03-22 Lightolier Incorporated Programmable multicircuit wall-mounted controller
US4999547A (en) * 1986-09-25 1991-03-12 Innovative Controls, Incorporated Ballast for high pressure sodium lamps having constant line and lamp wattage
US4780620A (en) * 1987-05-07 1988-10-25 Telefonaktiebolaget L M Ericsson Time multiplex system for transmitting information between vehicle components
US4965492A (en) * 1988-11-18 1990-10-23 Energy Technology, Inc. Lighting control system and module
US5142203A (en) * 1989-06-02 1992-08-25 Koito Manufacturing Co., Ltd. Lighting circuit for high-pressure discharge lamp for vehicles
EP0430792A1 (en) * 1989-11-27 1991-06-05 Valeo Vision Improvement of multiplexed control devices for a unit of electrical elements in a motor vehicle

Cited By (184)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742130A (en) * 1991-11-12 1998-04-21 Korkala; Heikki Intelligent lamp or intelligent contact terminal for a lamp
US7659674B2 (en) 1997-08-26 2010-02-09 Philips Solid-State Lighting Solutions, Inc. Wireless lighting control methods and apparatus
US6211626B1 (en) 1997-08-26 2001-04-03 Color Kinetics, Incorporated Illumination components
US6166496A (en) * 1997-08-26 2000-12-26 Color Kinetics Incorporated Lighting entertainment system
US20050047132A1 (en) * 1997-08-26 2005-03-03 Color Kinetics, Inc. Systems and methods for color changing device and enclosure
US6292901B1 (en) 1997-08-26 2001-09-18 Color Kinetics Incorporated Power/data protocol
US6340868B1 (en) 1997-08-26 2002-01-22 Color Kinetics Incorporated Illumination components
US6016038A (en) * 1997-08-26 2000-01-18 Color Kinetics, Inc. Multicolored LED lighting method and apparatus
US20020070688A1 (en) * 1997-08-26 2002-06-13 Dowling Kevin J. Light-emitting diode based products
US20020101197A1 (en) * 1997-08-26 2002-08-01 Lys Ihor A. Packaged information systems
US20020130627A1 (en) * 1997-08-26 2002-09-19 Morgan Frederick M. Light sources for illumination of liquids
US6459919B1 (en) 1997-08-26 2002-10-01 Color Kinetics, Incorporated Precision illumination methods and systems
US6528954B1 (en) 1997-08-26 2003-03-04 Color Kinetics Incorporated Smart light bulb
US7845823B2 (en) 1997-08-26 2010-12-07 Philips Solid-State Lighting Solutions, Inc. Controlled lighting methods and apparatus
US20030057890A1 (en) * 1997-08-26 2003-03-27 Lys Ihor A. Systems and methods for controlling illumination sources
US6548967B1 (en) 1997-08-26 2003-04-15 Color Kinetics, Inc. Universal lighting network methods and systems
US6717376B2 (en) 1997-08-26 2004-04-06 Color Kinetics, Incorporated Automotive information systems
US20030137258A1 (en) * 1997-08-26 2003-07-24 Colin Piepgras Light emitting diode based products
US6608453B2 (en) 1997-08-26 2003-08-19 Color Kinetics Incorporated Methods and apparatus for controlling devices in a networked lighting system
US6624597B2 (en) 1997-08-26 2003-09-23 Color Kinetics, Inc. Systems and methods for providing illumination in machine vision systems
US20030214259A9 (en) * 1997-08-26 2003-11-20 Dowling Kevin J. Light-emitting diode based products
US20050062440A1 (en) * 1997-08-26 2005-03-24 Color Kinetics, Inc. Systems and methods for controlling illumination sources
US6150774A (en) * 1997-08-26 2000-11-21 Color Kinetics, Incorporated Multicolored LED lighting method and apparatus
US6577080B2 (en) 1997-08-26 2003-06-10 Color Kinetics Incorporated Lighting entertainment system
US6720745B2 (en) 1997-08-26 2004-04-13 Color Kinetics, Incorporated Data delivery track
US20080183081A1 (en) * 1997-08-26 2008-07-31 Philips Solid-State Lighting Solutions Precision illumination methods and systems
US20070195526A1 (en) * 1997-08-26 2007-08-23 Color Kinetics Incorporated Wireless lighting control methods and apparatus
US7113541B1 (en) 1997-08-26 2006-09-26 Color Kinetics Incorporated Method for software driven generation of multiple simultaneous high speed pulse width modulated signals
US6774584B2 (en) 1997-08-26 2004-08-10 Color Kinetics, Incorporated Methods and apparatus for sensor responsive illumination of liquids
US7038398B1 (en) 1997-08-26 2006-05-02 Color Kinetics, Incorporated Kinetic illumination system and methods
US6777891B2 (en) 1997-08-26 2004-08-17 Color Kinetics, Incorporated Methods and apparatus for controlling devices in a networked lighting system
US20060050509A9 (en) * 1997-08-26 2006-03-09 Color Kinetics, Inc. Systems and methods for color changing device and enclosure
US6781329B2 (en) 1997-08-26 2004-08-24 Color Kinetics Incorporated Methods and apparatus for illumination of liquids
US6788011B2 (en) 1997-08-26 2004-09-07 Color Kinetics, Incorporated Multicolored LED lighting method and apparatus
US20040178751A1 (en) * 1997-08-26 2004-09-16 Color Kinetics, Incorporated Multicolored lighting method and apparatus
US20050236998A1 (en) * 1997-08-26 2005-10-27 Color Kinetics, Inc. Light emitting diode based products
US6806659B1 (en) 1997-08-26 2004-10-19 Color Kinetics, Incorporated Multicolored LED lighting method and apparatus
US20050151489A1 (en) * 1997-08-26 2005-07-14 Color Kinetics Incorporated Marketplace illumination methods and apparatus
US20050063194A1 (en) * 1997-08-26 2005-03-24 Color Kinetics, Incorporated Vehicle lighting methods and apparatus
US20040212993A1 (en) * 1997-08-26 2004-10-28 Color Kinetics, Inc. Methods and apparatus for controlling illumination
US20040212320A1 (en) * 1997-08-26 2004-10-28 Dowling Kevin J. Systems and methods of generating control signals
US20040240890A1 (en) * 1997-08-26 2004-12-02 Color Kinetics, Inc. Methods and apparatus for controlling devices in a networked lighting system
US20040052076A1 (en) * 1997-08-26 2004-03-18 Mueller George G. Controlled lighting methods and apparatus
US20050044617A1 (en) * 1997-08-26 2005-03-03 Color Kinetics, Inc. Methods and apparatus for illumination of liquids
US7520634B2 (en) 1997-12-17 2009-04-21 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for controlling a color temperature of lighting conditions
US20030057884A1 (en) * 1997-12-17 2003-03-27 Dowling Kevin J. Systems and methods for digital entertainment
US20060109649A1 (en) * 1997-12-17 2006-05-25 Color Kinetics Incorporated Methods and apparatus for controlling a color temperature of lighting conditions
US20060152172A9 (en) * 1997-12-17 2006-07-13 Color Kinetics, Inc. Methods and apparatus for generating and modulating white light illumination conditions
US20050041161A1 (en) * 1997-12-17 2005-02-24 Color Kinetics, Incorporated Systems and methods for digital entertainment
US7132804B2 (en) 1997-12-17 2006-11-07 Color Kinetics Incorporated Data delivery track
US7764026B2 (en) 1997-12-17 2010-07-27 Philips Solid-State Lighting Solutions, Inc. Systems and methods for digital entertainment
US20040155609A1 (en) * 1997-12-17 2004-08-12 Color Kinetics, Incorporated Data delivery track
US7482565B2 (en) 1999-09-29 2009-01-27 Philips Solid-State Lighting Solutions, Inc. Systems and methods for calibrating light output by light-emitting diodes
US20060016960A1 (en) * 1999-09-29 2006-01-26 Color Kinetics, Incorporated Systems and methods for calibrating light output by light-emitting diodes
US20070115665A1 (en) * 1999-11-18 2007-05-24 Color Kinetics Incorporated Methods and apparatus for generating and modulating white light illumination conditions
US20070115658A1 (en) * 1999-11-18 2007-05-24 Color Kinetics Incorporated Methods and apparatus for generating and modulating white light illumination conditions
US20060285325A1 (en) * 1999-11-18 2006-12-21 Color Kinetics Incorporated Conventionally-shaped light bulbs employing white leds
US7350936B2 (en) 1999-11-18 2008-04-01 Philips Solid-State Lighting Solutions, Inc. Conventionally-shaped light bulbs employing white LEDs
US20050040774A1 (en) * 1999-11-18 2005-02-24 Color Kinetics, Inc. Methods and apparatus for generating and modulating white light illumination conditions
US7959320B2 (en) 1999-11-18 2011-06-14 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for generating and modulating white light illumination conditions
US9746139B2 (en) 2000-02-11 2017-08-29 Ilumisys, Inc. Light tube and power supply circuit
US8866396B2 (en) 2000-02-11 2014-10-21 Ilumisys, Inc. Light tube and power supply circuit
US10557593B2 (en) 2000-02-11 2020-02-11 Ilumisys, Inc. Light tube and power supply circuit
US9739428B1 (en) 2000-02-11 2017-08-22 Ilumisys, Inc. Light tube and power supply circuit
US9759392B2 (en) 2000-02-11 2017-09-12 Ilumisys, Inc. Light tube and power supply circuit
US9752736B2 (en) 2000-02-11 2017-09-05 Ilumisys, Inc. Light tube and power supply circuit
US9777893B2 (en) 2000-02-11 2017-10-03 Ilumisys, Inc. Light tube and power supply circuit
US9416923B1 (en) 2000-02-11 2016-08-16 Ilumisys, Inc. Light tube and power supply circuit
US9222626B1 (en) 2000-02-11 2015-12-29 Ilumisys, Inc. Light tube and power supply circuit
US9803806B2 (en) 2000-02-11 2017-10-31 Ilumisys, Inc. Light tube and power supply circuit
US10054270B2 (en) 2000-02-11 2018-08-21 Ilumisys, Inc. Light tube and power supply circuit
US9970601B2 (en) 2000-02-11 2018-05-15 Ilumisys, Inc. Light tube and power supply circuit
US9006993B1 (en) 2000-02-11 2015-04-14 Ilumisys, Inc. Light tube and power supply circuit
US9006990B1 (en) 2000-02-11 2015-04-14 Ilumisys, Inc. Light tube and power supply circuit
US8870412B1 (en) 2000-02-11 2014-10-28 Ilumisys, Inc. Light tube and power supply circuit
US20020044066A1 (en) * 2000-07-27 2002-04-18 Dowling Kevin J. Lighting control using speech recognition
US20080215391A1 (en) * 2000-08-07 2008-09-04 Philips Solid-State Lighting Solutions Universal lighting network methods and systems
US9955541B2 (en) 2000-08-07 2018-04-24 Philips Lighting Holding B.V. Universal lighting network methods and systems
US20040113568A1 (en) * 2000-09-01 2004-06-17 Color Kinetics, Inc. Systems and methods for providing illumination in machine vision systems
US7652436B2 (en) 2000-09-27 2010-01-26 Philips Solid-State Lighting Solutions, Inc. Methods and systems for illuminating household products
US20080130267A1 (en) * 2000-09-27 2008-06-05 Philips Solid-State Lighting Solutions Methods and systems for illuminating household products
US20040212321A1 (en) * 2001-03-13 2004-10-28 Lys Ihor A Methods and apparatus for providing power to lighting devices
US20050035728A1 (en) * 2001-03-13 2005-02-17 Color Kinetics, Inc. Systems and methods for synchronizing lighting effects
US6801003B2 (en) 2001-03-13 2004-10-05 Color Kinetics, Incorporated Systems and methods for synchronizing lighting effects
US20040160199A1 (en) * 2001-05-30 2004-08-19 Color Kinetics, Inc. Controlled lighting methods and apparatus
US20070291483A1 (en) * 2001-05-30 2007-12-20 Color Kinetics Incorporated Controlled lighting methods and apparatus
US20050253533A1 (en) * 2002-05-09 2005-11-17 Color Kinetics Incorporated Dimmable LED-based MR16 lighting apparatus methods
US6975214B2 (en) * 2002-07-04 2005-12-13 Patent Treuhand Gesellschaft Fur Elektrische Gluhlampen Mbh Supply unit for identifying and powering a LED unit, and method therefor
US20040056774A1 (en) * 2002-07-04 2004-03-25 Patent-Treuhand-Gesellschaft Fur Elektrisch Gluhlampen Mbh Supply unit
US7227634B2 (en) 2002-08-01 2007-06-05 Cunningham David W Method for controlling the luminous flux spectrum of a lighting fixture
US20050225757A1 (en) * 2002-08-01 2005-10-13 Cunningham David W Method for controlling the luminous flux spectrum of a lighting fixture
US20040130909A1 (en) * 2002-10-03 2004-07-08 Color Kinetics Incorporated Methods and apparatus for illuminating environments
US20040141321A1 (en) * 2002-11-20 2004-07-22 Color Kinetics, Incorporated Lighting and other perceivable effects for toys and other consumer products
US20060109137A1 (en) * 2003-04-14 2006-05-25 Carpenter Decorating Co., Inc. Decorative illumination device
US7327337B2 (en) 2003-04-14 2008-02-05 Carpenter Decorating Co., Inc. Color tunable illumination device
US7015825B2 (en) 2003-04-14 2006-03-21 Carpenter Decorating Co., Inc. Decorative lighting system and decorative illumination device
US20080030149A1 (en) * 2003-04-14 2008-02-07 Carpenter Decorating Co., Inc. Controller for a decorative lighting system
US20080030441A1 (en) * 2003-04-14 2008-02-07 Carpenter Decorating Co., Inc. Driver for color tunable light emitting diodes
US20040207341A1 (en) * 2003-04-14 2004-10-21 Carpenter Decorating Co., Inc. Decorative lighting system and decorative illumination device
US20070145915A1 (en) * 2003-05-05 2007-06-28 Color Kinetics Incorporated Lighting methods and systems
US8207821B2 (en) 2003-05-05 2012-06-26 Philips Solid-State Lighting Solutions, Inc. Lighting methods and systems
US20050128751A1 (en) * 2003-05-05 2005-06-16 Color Kinetics, Incorporated Lighting methods and systems
US20080061791A1 (en) * 2003-12-11 2008-03-13 Conti Temic Microelectronic, Gmbh Procedure for Testing the Function of a Lamp Circuit
WO2005057231A1 (en) * 2003-12-11 2005-06-23 Conti Temic Microelectronic Gmbh Method for functional testing of a lamp circuit
FR2863711A1 (en) * 2003-12-11 2005-06-17 Conti Temic Microelectronic Functionally testing lamp circuit involves measuring current and voltage and taking into account resistance defined as polynomial of at least the first order depending on voltage currently measured on lamp circuit
US7924021B2 (en) 2003-12-11 2011-04-12 Conti Temic Microelectronic, Gmbh Procedure for testing the function of a lamp circuit
US10433397B2 (en) 2003-12-23 2019-10-01 Simon N. Richmond Solar powered light assembly to produce light of varying colors
US10779377B2 (en) 2003-12-23 2020-09-15 Simon N. Richmond Solar powered light assembly to produce light of varying colors
US8362700B2 (en) 2003-12-23 2013-01-29 Richmond Simon N Solar powered light assembly to produce light of varying colors
US20060104058A1 (en) * 2004-03-15 2006-05-18 Color Kinetics Incorporated Methods and apparatus for controlled lighting based on a reference gamut
US7354172B2 (en) 2004-03-15 2008-04-08 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for controlled lighting based on a reference gamut
US20070040696A1 (en) * 2005-08-18 2007-02-22 Honeywell International Inc. Aerospace light-emitting diode (LED)-based lights life and operation monitor compensator
US7391335B2 (en) * 2005-08-18 2008-06-24 Honeywell International, Inc. Aerospace light-emitting diode (LED)-based lights life and operation monitor compensator
US10321528B2 (en) 2007-10-26 2019-06-11 Philips Lighting Holding B.V. Targeted content delivery using outdoor lighting networks (OLNs)
US8118447B2 (en) 2007-12-20 2012-02-21 Altair Engineering, Inc. LED lighting apparatus with swivel connection
US8928025B2 (en) 2007-12-20 2015-01-06 Ilumisys, Inc. LED lighting apparatus with swivel connection
US7926975B2 (en) 2007-12-21 2011-04-19 Altair Engineering, Inc. Light distribution using a light emitting diode assembly
US8360599B2 (en) 2008-05-23 2013-01-29 Ilumisys, Inc. Electric shock resistant L.E.D. based light
US8807785B2 (en) 2008-05-23 2014-08-19 Ilumisys, Inc. Electric shock resistant L.E.D. based light
US7976196B2 (en) 2008-07-09 2011-07-12 Altair Engineering, Inc. Method of forming LED-based light and resulting LED-based light
US7946729B2 (en) 2008-07-31 2011-05-24 Altair Engineering, Inc. Fluorescent tube replacement having longitudinally oriented LEDs
TWI396465B (en) * 2008-08-14 2013-05-11 Nat Chi Nan Cuniversity Light color mixing control system for light emitting diodes
US8674626B2 (en) 2008-09-02 2014-03-18 Ilumisys, Inc. LED lamp failure alerting system
US8256924B2 (en) 2008-09-15 2012-09-04 Ilumisys, Inc. LED-based light having rapidly oscillating LEDs
US9101026B2 (en) 2008-10-24 2015-08-04 Ilumisys, Inc. Integration of LED lighting with building controls
US10176689B2 (en) 2008-10-24 2019-01-08 Ilumisys, Inc. Integration of led lighting control with emergency notification systems
US10932339B2 (en) 2008-10-24 2021-02-23 Ilumisys, Inc. Light and light sensor
US8901823B2 (en) 2008-10-24 2014-12-02 Ilumisys, Inc. Light and light sensor
US7938562B2 (en) 2008-10-24 2011-05-10 Altair Engineering, Inc. Lighting including integral communication apparatus
US8946996B2 (en) 2008-10-24 2015-02-03 Ilumisys, Inc. Light and light sensor
US10713915B2 (en) 2008-10-24 2020-07-14 Ilumisys, Inc. Integration of LED lighting control with emergency notification systems
US10571115B2 (en) 2008-10-24 2020-02-25 Ilumisys, Inc. Lighting including integral communication apparatus
US10560992B2 (en) 2008-10-24 2020-02-11 Ilumisys, Inc. Light and light sensor
US11073275B2 (en) 2008-10-24 2021-07-27 Ilumisys, Inc. Lighting including integral communication apparatus
US8653984B2 (en) 2008-10-24 2014-02-18 Ilumisys, Inc. Integration of LED lighting control with emergency notification systems
US9635727B2 (en) 2008-10-24 2017-04-25 Ilumisys, Inc. Light and light sensor
US10342086B2 (en) 2008-10-24 2019-07-02 Ilumisys, Inc. Integration of LED lighting with building controls
US10182480B2 (en) 2008-10-24 2019-01-15 Ilumisys, Inc. Light and light sensor
US8444292B2 (en) 2008-10-24 2013-05-21 Ilumisys, Inc. End cap substitute for LED-based tube replacement light
US10973094B2 (en) 2008-10-24 2021-04-06 Ilumisys, Inc. Integration of LED lighting with building controls
US8214084B2 (en) 2008-10-24 2012-07-03 Ilumisys, Inc. Integration of LED lighting with building controls
US10036549B2 (en) 2008-10-24 2018-07-31 Ilumisys, Inc. Lighting including integral communication apparatus
US9353939B2 (en) 2008-10-24 2016-05-31 iLumisys, Inc Lighting including integral communication apparatus
US9398661B2 (en) 2008-10-24 2016-07-19 Ilumisys, Inc. Light and light sensor
US8251544B2 (en) 2008-10-24 2012-08-28 Ilumisys, Inc. Lighting including integral communication apparatus
US11333308B2 (en) 2008-10-24 2022-05-17 Ilumisys, Inc. Light and light sensor
US9585216B2 (en) 2008-10-24 2017-02-28 Ilumisys, Inc. Integration of LED lighting with building controls
US8324817B2 (en) 2008-10-24 2012-12-04 Ilumisys, Inc. Light and light sensor
US8556452B2 (en) 2009-01-15 2013-10-15 Ilumisys, Inc. LED lens
US8664880B2 (en) 2009-01-21 2014-03-04 Ilumisys, Inc. Ballast/line detection circuit for fluorescent replacement lamps
US8362710B2 (en) 2009-01-21 2013-01-29 Ilumisys, Inc. Direct AC-to-DC converter for passive component minimization and universal operation of LED arrays
US8330381B2 (en) 2009-05-14 2012-12-11 Ilumisys, Inc. Electronic circuit for DC conversion of fluorescent lighting ballast
US8299695B2 (en) 2009-06-02 2012-10-30 Ilumisys, Inc. Screw-in LED bulb comprising a base having outwardly projecting nodes
US8421366B2 (en) 2009-06-23 2013-04-16 Ilumisys, Inc. Illumination device including LEDs and a switching power control system
US9057493B2 (en) 2010-03-26 2015-06-16 Ilumisys, Inc. LED light tube with dual sided light distribution
US8541958B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED light with thermoelectric generator
US8840282B2 (en) 2010-03-26 2014-09-23 Ilumisys, Inc. LED bulb with internal heat dissipating structures
US9395075B2 (en) 2010-03-26 2016-07-19 Ilumisys, Inc. LED bulb for incandescent bulb replacement with internal heat dissipating structures
US9013119B2 (en) 2010-03-26 2015-04-21 Ilumisys, Inc. LED light with thermoelectric generator
US8540401B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED bulb with internal heat dissipating structures
US20110234076A1 (en) * 2010-03-26 2011-09-29 Altair Engineering, Inc. Inside-out led bulb
US8454193B2 (en) 2010-07-08 2013-06-04 Ilumisys, Inc. Independent modules for LED fluorescent light tube replacement
US8596813B2 (en) 2010-07-12 2013-12-03 Ilumisys, Inc. Circuit board mount for LED light tube
US8523394B2 (en) 2010-10-29 2013-09-03 Ilumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
US8894430B2 (en) 2010-10-29 2014-11-25 Ilumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
US8870415B2 (en) 2010-12-09 2014-10-28 Ilumisys, Inc. LED fluorescent tube replacement light with reduced shock hazard
US9072171B2 (en) 2011-08-24 2015-06-30 Ilumisys, Inc. Circuit board mount for LED light
US9184518B2 (en) 2012-03-02 2015-11-10 Ilumisys, Inc. Electrical connector header for an LED-based light
US9163794B2 (en) 2012-07-06 2015-10-20 Ilumisys, Inc. Power supply assembly for LED-based light tube
US10966295B2 (en) 2012-07-09 2021-03-30 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US10278247B2 (en) 2012-07-09 2019-04-30 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9271367B2 (en) 2012-07-09 2016-02-23 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9807842B2 (en) 2012-07-09 2017-10-31 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9285084B2 (en) 2013-03-14 2016-03-15 Ilumisys, Inc. Diffusers for LED-based lights
US9267650B2 (en) 2013-10-09 2016-02-23 Ilumisys, Inc. Lens for an LED-based light
US10397993B2 (en) * 2013-11-28 2019-08-27 Tridonic Gmbh & Co Kg LED module
US20160302266A1 (en) * 2013-11-28 2016-10-13 Tridonic Gmbh & Co Kg LED Module
US9574717B2 (en) 2014-01-22 2017-02-21 Ilumisys, Inc. LED-based light with addressed LEDs
US10260686B2 (en) 2014-01-22 2019-04-16 Ilumisys, Inc. LED-based light with addressed LEDs
US9510400B2 (en) 2014-05-13 2016-11-29 Ilumisys, Inc. User input systems for an LED-based light
US10690296B2 (en) 2015-06-01 2020-06-23 Ilumisys, Inc. LED-based light with canted outer walls
US10161568B2 (en) 2015-06-01 2018-12-25 Ilumisys, Inc. LED-based light with canted outer walls
US11028972B2 (en) 2015-06-01 2021-06-08 Ilumisys, Inc. LED-based light with canted outer walls
US11428370B2 (en) 2015-06-01 2022-08-30 Ilumisys, Inc. LED-based light with canted outer walls

Also Published As

Publication number Publication date
CA2122989A1 (en) 1993-05-27
WO1993010591A1 (en) 1993-05-27
FI95420B (en) 1995-10-13
AU2910592A (en) 1993-06-15
FI96471C (en) 1996-06-25
FI944366A (en) 1994-09-21
US5742130A (en) 1998-04-21
BR9206932A (en) 1995-11-07
EP0612445A1 (en) 1994-08-31
DE69231446T2 (en) 2001-02-22
JPH07501174A (en) 1995-02-02
CA2122989C (en) 2002-03-26
ES2149778T3 (en) 2000-11-16
FI95420C (en) 1997-05-14
EP0612445B1 (en) 2000-09-13
FI915346A0 (en) 1991-11-13
KR0144707B1 (en) 1998-10-01
RU2110164C1 (en) 1998-04-27
FI96471B (en) 1996-03-15
FI944366A0 (en) 1994-09-21
AU664571B2 (en) 1995-11-23
FI915346A (en) 1993-05-14
DE69231446D1 (en) 2000-10-19

Similar Documents

Publication Publication Date Title
US5592051A (en) Intelligent lamp or intelligent contact terminal for a lamp
US4799126A (en) Overload protection for D.C. circuits
ES548120A0 (en) CENTRALIZED INSTALLATION OF ELECTRICAL CONNECTIONS FOR AN AUTOMOBILE
EP0352197B1 (en) Combination back-up light and sound emitting device for automotive vehicle
US5212469A (en) Trailer lamp controller
EP0901211A2 (en) Electrical distribution system
EP0810118B1 (en) Integrated circuit for direction indicator lamp flasher system
US7509176B2 (en) Circuit for reducing the wiring needed to control the functions of a vehicle
CA2066955A1 (en) Lamp for vehicle lighting system
CN1060121C (en) Intelligent lamp or intelligent contact terminal for a lamp
KR101360687B1 (en) Switch identification system for vehicle
EP3876674A1 (en) Light emitting diode assembly
KR0125279Y1 (en) Warning light circuit of airbag system
EP0408821A1 (en) Circuit for controlling the direction lights of motor vehicles
RU397U1 (en) Indicator interrupter with signal lamp burnout control
RU6377U1 (en) LAMP INTEGRITY CONTROL DEVICE
DE59814187D1 (en) Programmable interface device for building system technology
CA1300710C (en) Overload protection for d.c. circuits
KR20040049359A (en) Cluster module for network vehicles using lonworks
KR19980028436U (en) Taillight brake light lighting device of vehicle
ATE257639T1 (en) MONITORING DEVICE FOR LIGHTING SYSTEMS MADE OF SEVERAL LAMPS IN SERIES
KR19980074009A (en) Car relay disconnection alarm device
JPH04271389A (en) Control system for electrically decorative signboard
JPH09114561A (en) Output interface substrate
CS234791B1 (en) Electrical signalling system of directional lights

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: IWS INTERNATIONAL INC., FINLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KORKALA, HEIKKI;REEL/FRAME:010949/0753

Effective date: 20000414

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12