US5688286A - Safety trocar penetrating instrument with safety shield having resilient distal end - Google Patents

Safety trocar penetrating instrument with safety shield having resilient distal end Download PDF

Info

Publication number
US5688286A
US5688286A US08/760,232 US76023296A US5688286A US 5688286 A US5688286 A US 5688286A US 76023296 A US76023296 A US 76023296A US 5688286 A US5688286 A US 5688286A
Authority
US
United States
Prior art keywords
trocar
safety shield
distal end
safety
portal sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/760,232
Inventor
Inbae Yoon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US08/760,232 priority Critical patent/US5688286A/en
Application granted granted Critical
Publication of US5688286A publication Critical patent/US5688286A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/0233Pointed or sharp biopsy instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3494Trocars; Puncturing needles with safety means for protection against accidental cutting or pricking, e.g. limiting insertion depth, pressure sensors
    • A61B17/3496Protecting sleeves or inner probes; Retractable tips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B2017/3454Details of tips
    • A61B2017/3458Details of tips threaded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B2017/348Means for supporting the trocar against the body or retaining the trocar inside the body
    • A61B2017/3482Means for supporting the trocar against the body or retaining the trocar inside the body inside
    • A61B2017/349Trocar with thread on outside
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0801Prevention of accidental cutting or pricking
    • A61B2090/08021Prevention of accidental cutting or pricking of the patient or his organs

Definitions

  • the present invention pertains to surgical penetrating instruments for accessing cavities within the body and, more particularly, to such penetrating instruments formed of trocars having solid, tissue penetrating, sharp tips and safety shields surrounding the trocars for preventing tissue from contacting the sharp tips after entry into body cavities.
  • Trocars are commonly used for accessing cavities within the body and establishing an endoscopic portal for various procedures to be performed by least invasive surgery.
  • Portal sleeves or cannulas are normally disposed around the trocars to be positioned upon penetration into the cavity by the trocar.
  • Trocars include a sharp tissue penetrating pyramidal distal end or tip to pierce or penetrate tissue forming the cavity wall, and the force required to penetrate the cavity wall is dependent upon the type and thickness of the tissue of the wall.
  • Safety trocars having a spring-biased protective shield disposed between an outer portal sleeve and an inner trocar are marketed by Ethicon, Inc. as the Endopath and by United States Surgical Corporation as the Surgiport, and U.S. Pat. No. 4,535,773 to Yoon, No. 4,601,710 to Moll and No. 4,654,030 to Moll et al are exemplary of such safety trocars.
  • a disadvantage of prior art safety trocars is that the safety shields cannot be optionally locked in an extended position protecting the sharp trocar tips for safety in handling and use.
  • a further disadvantage of prior art safety trocars is that the safety shields cannot be selectively retracted to expose the sharp trocar tips without a force being applied to the safety shields with tissue contact. Accordingly, the sharp trocar tips in prior art safety trocars cannot be effectively used in further penetration or treatment of tissue after a cavity wall is initially penetrated; and, therefore, the types of surgical procedures that can be performed with prior art safety trocars are thusly limited.
  • Another object of the present invention is to optionally allow locking of a safety shield in an extended position from a solid, sharp distal end of a trocar of a safety trocar penetrating instrument.
  • the present invention has a further object in that a safety shield movable relative to a trocar within a portal sleeve is biased toward an extended position and can be selectively, releasably, locked in a retracted position exposing a solid, sharp, distal end of the trocar prior to or after penetration of a cavity wall.
  • a safety trocar penetrating instrument having a safety shield movable between an extended position protecting a solid, sharp distal end of a trocar and a retracted position exposing the sharp distal end, the safety shield being distally biased toward the extended position and wherein the safety shield can be optionally automatically locked in the extended position when returned to the extended position by the distal bias.
  • Yet another object of the present invention is to construct a safety trocar penetrating instrument such that a distally biased safety shield can be manually pulled proximally toward a retracted position to expose a solid, sharp distal end of a trocar without requiring a force applied to the safety shield from tissue contact.
  • a further object of the present invention is use of a pin and slot mechanism to provide selective locking of a safety shield distally biased relative to a trocar, the pin extending externally of a housing to form a handle graspable by a surgeon to selectively move the safety shield between extended and retracted positions when the pin is moved along a longitudinal portion of the slot and to releasably lock the safety shield in the extended or retracted position when the pin is positioned in transverse portions of the slot.
  • a still further object of the present invention is to provide a safety trocar penetrating instrument having a trocar received in a safety shield movable relative to the trocar and disposed in a portal sleeve having an end secured in a housing, the safety shield and trocar extending through an opening in the housing and wherein adapter plugs can be positioned in the opening to form a seal with instruments of various sizes inserted therethrough when the safety shield and trocar are withdrawn from the portal sleeve.
  • Another object of the present invention is to provide a trocar, a safety shield receiving the trocar and movable relative to the trocar between extended and retracted positions and a portal sleeve mounting the safety shield wherein the trocar, the safety shield and the portal sleeve form a smooth profile in the retracted position to facilitate insertion in tissue forming a cavity wall.
  • An additional object of the present invention is to provide a safety trocar penetrating instrument having a trocar and a safety shield movable relative to the trocar between extended and retracted positions and wherein distal ends of the trocar and safety shield are configured in the retracted position to permit penetration of tissue of a cavity wall with a rotational motion providing relatively slower insertion with relatively greater control of the depth of insertion of the distal ends in tissue of the cavity wall.
  • Yet another object of the present invention is to control locking of a safety shield relative to a trocar in response to hand squeezing pressure of an end cap relative to a hub of a safety trocar penetrating instrument.
  • anatomical cavities of various sizes can be safety penetrated with a trocar to establish a portal in communication therewith, safety in handling and use of a safety trocar penetrating instrument is enhanced, penetration into additional tissue, such as into a cystic cavity or soft organ structure (e.g.
  • ovarian cyst penetration or liver tissue biopsy after penetration of a cavity wall can be accomplished with a single instrument
  • the types of surgical procedures utilizing a trocar can be expanded
  • safety trocar penetrating instruments can feasibly be employed in thoracic and cranial surgery
  • second puncture endoscopic or least invasive procedures are facilitated
  • exposure of medical personnel to inadvertent contact with the sharp tip of the trocar is minimized
  • a single puncture can be used for both insufflation and forming an endoscopic portal thereby simplifying procedures such as laparoscopy, trauma and damage to tissue is minimized
  • tissue jamming and trapping is avoided and safety trocar penetrating instruments according to the present invention can be inexpensively manufactured to be reusable or disposable.
  • the present invention is generally characterized in a safety trocar penetrating instrument including a trocar having a solid, sharp distal end or tip, a safety shield disposed concentrically around the trocar and movable relative to the trocar between an extended position protecting the sharp trocar tip and a retracted position exposing the sharp trocar tip, a hub receiving proximal ends of the trocar and safety shield and a portal sleeve receiving the safety shield to establish communication with an anatomical cavity upon penetration of the cavity by the trocar.
  • the safety shield is distally biased toward the extended position, and a locking mechanism automatically locks the safety shield in the extended position after the safety shield is returned thereto by the distal bias after penetration of tissue forming the cavity wall or can optionally allow locking of the safety shield in the extended position with the safety shield being free to move toward the retracted position when the safety shield is not optionally locked in the extended position.
  • the locking mechanism also provides selective, releasable, locking of the safety shield in the retracted position or can allow automatic locking of the safety shield in the retracted position.
  • a housing securing a proximal end of the portal sleeve has an opening for passage of the safety shield and trocar therethrough and into the portal sleeve.
  • the safety shield and trocar can be withdrawn from the portal sleeve, and adapter plugs can be positioned in the opening to form a seal with instruments of various sizes inserted therethrough.
  • Various configurations for the distal ends of the trocar and the safety shield provide a smooth profile with the portal sleeve in the retracted position to facilitate penetration of tissue forming the cavity wall.
  • FIG. 1 is a broken side view, partly in section, of a safety trocar penetrating instrument according to the present invention.
  • FIG. 2 is a broken section of the hub and locking mechanism of the safety trocar penetrating instrument of FIG. 1.
  • FIG. 3 is a broken perspective view, partly in section, of an adapter plug for the safety trocar penetrating instrument of FIG. 1.
  • FIG. 4 is a broken view, partly in section, of the distal end of the safety trocar penetrating instrument of FIG. 1 with the safety shield in an extended position prior to penetrating tissue.
  • FIG. 5 is a broken view, partly in section, of the distal end of the safety trocar penetrating instrument of FIG. 1 with the safety shield in a retracted position during penetration of tissue.
  • FIG. 6 is a broken view, partly in section, of the distal end of the safety trocar penetrating instrument of FIG. 1 with the safety shield in an extended position after penetration of tissue.
  • FIG. 7 is a broken view, partly in section, of a modification of the distal end of a safety trocar penetrating instrument according to the present invention with the safety shield in the extended position.
  • FIG. 8 is a broken view, partly in section, of the distal end of the safety trocar penetrating instrument of FIG. 7 with the safety shield in the retracted position.
  • FIG. 9 is a broken view, partly in section, of a modification of a distal end of the safety trocar penetrating instrument according to the present invention with the safety shield in the extended position.
  • FIG. 10 is a broken view, partly in section, of the distal end of the safety trocar penetrating instrument of FIG. 9 with the safety shield in the retracted position.
  • FIG. 11 is a section taken along line 11--11 of FIG. 9.
  • FIG. 12 is a section taken along line 12--12 of FIG. 9.
  • FIG. 13 is a broken view, partly in section, of a modification of the distal end of a safety trocar penetrating instrument according to the present invention with the safety shield in the extended position.
  • FIG. 14 is a broken view, partly in section, of the distal end of a safety trocar penetrating instrument according to the present invention with the safety shield in the retracted position.
  • FIG. 15 is a broken view, partly in section, of a modification of the distal end of a safety trocar penetrating instrument according to the present invention with the safety shield in the extended position.
  • FIG. 16 is a broken view, partly in section, of the distal end of the safety trocar penetrating instrument of FIG. 15 with the safety shield in the retracted position.
  • FIG. 17 is a broken view, partly in section, of a modification of the distal end of a safety trocar penetrating instrument according to the present invention with the safety shield in the extended position.
  • FIG. 18 is a broken view, partly in section, of the distal end of the safety trocar penetrating instrument of FIG. 17 with the safety shield in the retracted position.
  • FIG. 19 is a broken view, partly in section, of a modification of the distal end of a safety trocar penetrating instrument according to the present invention with the safety shield in the extended position.
  • FIG. 20 is a broken view, partly in section, of the distal end of the safety trocar penetrating instrument of FIG. 19 with the safety shield in the retracted position.
  • FIG. 21 is a perspective view of a locking spring for the safety trocar penetrating instrument of the present invention.
  • FIG. 22 is a broken view, partly in section, of a modification of the hub and locking mechanism of the safety trocar penetrating instrument of the present invention.
  • FIGS. 23, 24, 25 and 26 are broken views, partly in section, illustrating stages of operation of the hub and locking mechanism of FIG. 22.
  • a safety trocar penetrating instrument 30 is illustrated in FIG. 1 and includes an elongate trocar 32, a safety shield 34 movably disposed concentrically around trocar 32, an elongate portal sleeve 36 concentrically disposed around safety shield 34, a hub 38 mounting trocar 32 and safety shield 34 and a housing 40 mounting portal sleeve 36.
  • the hub 38 can be latched to housing 40 with the use of any suitable releasable mechanism, such as ball detents 42, allowing the hub to be removed from the housing withdrawing the trocar and safety shield from the portal sleeve.
  • the safety trocar penetrating instrument 30 can be considered to be formed of a portal unit and a trocar unit, the portal unit including portal sleeve 36 and housing 40 and the trocar unit including trocar 32, safety shield 34 and hub 38.
  • Trocar 32 is preferably made of stainless steel with a cylindrical body having a diameter dependent upon the surgical procedure to be performed and the anatomical cavity to be penetrated.
  • the trocar has a solid distal end 44 terminating at a sharp tip 46 for penetrating anatomical tissue.
  • the distal end 44 can have various configurations; and, as shown in FIG. 1, the distal end 44 of the trocar has a pyramidal shape with three, equally spaced facets terminating proximally at a cylindrical neck 48 which, in turn, terminates proximally at a frusto-conical shoulder 50.
  • a cylindrical body 52 extends proximally from shoulder 50 and terminates at a proximal end 54 secured to an end wall 56 of hub 38 by any suitable means, such as cement or threads. While the distal end of the trocar 32 is solid, the cylindrical body 52 can be either solid or tubular dependent upon manufacturing techniques utilized.
  • Hub 38 is preferably made of plastic to reduce cost and has an external configuration to cooperate with housing 40 to be easily grasped with one hand for use in penetrating tissue.
  • Hub 38 is substantially rectangular in cross-section and includes, as best shown in FIGS. 1 and 2, four side walls extending from a front wall 58 to end wall 56 to provide a rearwardly flared outer profile with one side wall, indicated at 60, having a slot 62 therein.
  • Safety shield 34 is preferably made from a cylindrical length of a rigid or flexible material, such as stainless steel or plastic dependent upon use of the safety trocar penetrating instrument, and has a blunt distal end 64 with a configuration to extend beyond and protect sharp tip 46 of trocar 32 in an extended position. As best shown in FIG. 2, the safety shield 34 has a cylindrical tubular body 66 extending along the cylindrical body 52 of trocar 32 and through an opening 68 in front wall 58 of hub 38.
  • Tubular body 66 terminates at a proximal end 70 disposed within the hub and carrying spaced annular ribs 72 and 74 between which is rotatably mounted an annular member or plate 76 having a pin 78 threadedly secured thereto and extending through slot 62, the pin 78 having a spherical end or knob to be easily grasped.
  • a helical spring 80 is mounted in compression between plate 76 and end wall 56 of hub 38, and the spring 80 has longitudinally extending ends 82 received in apertures in plate 76 and end wall 56, respectively, such that the spring can be wound in torsion to bias the plate and the pin 78 carried thereby in a clockwise direction looking from the proximal end of the safety trocar penetrating instrument or upwardly looking at FIG. 1.
  • the hub 38 can be formed in any suitable manner to facilitate winding of spring 80, such as molding the hub in parts or providing a rotatable insert for receiving a proximal, longitudinally extending end 82 of spring 80.
  • the slot 62 formed in hub 38 has a longitudinal portion 84 aligned in parallel relation with a longitudinal axis of the trocar 32, a distal transverse portion 86 and a proximal transverse portion 88 having a recess 90 at the end thereof extending parallel with the longitudinal slot portion 84.
  • the proximal transverse slot portion can extend in the same direction as the distal transverse slot portion as shown in dashed lines at 92.
  • Portal sleeve 36 is preferably made of a cylindrical length of stainless steel or other suitable, medically acceptable, plastic or metal material and can be rigid or flexible and transparent or opaque.
  • the portal sleeve has a distal end 94 tapering to terminate at a peripheral edge 96 disposed in substantial alignment with a proximal edge of conical shoulder 50 such that the distal ends of the portal sleeve, the safety shield and the trocar present a substantially smooth profile to facilitate tissue penetration as shown in FIG. 5.
  • the portal sleeve 36 has a threaded proximal end 98 removably received in an internally threaded nipple 100 extending from a front wall 102 of housing 40.
  • Housing 40 is preferably made of plastic to reduce cost and has a rectangular configuration in cross-section corresponding to the cross-sectional configuration of hub 38 with a flared external profile adjacent front wall 102 to facilitate grasping during use.
  • Recesses 104 and 106 are formed on opposite sides of nipple 100 and have a size and configuration to receive ball-type stopcocks 108 and 110, respectively, in a position such that the stopcocks are protected from inadvertent contact which could cause breakage or malfunction.
  • a valve assembly 112 is mounted in housing 40 to control flow through the portal sleeve once the trocar unit is removed therefrom.
  • the valve assembly can have any acceptable configuration and, as shown, includes a flange 114 having an annular configuration with a threaded periphery to be threadedly secured in housing 40, a plurality of spaced, spreadable legs 116 extending distally from flange 114 to produce a normally conical configuration tapering to an apex as illustrated in dashed lines in FIG. 1 and a conical, stretchable sleeve or membrane 118, preferably made of a rubber-like material such as silicone, having a configuration to tightly fit over legs 116 such that the sleeve and legs are normally biased to the closed position at the apex to prevent passage of fluids through the valve assembly.
  • the legs 116 and flange 114 are preferably integrally made of unitary construction of a material, such as a plastic-like nylon, facilitating movement of medical instruments therethrough and allowing legs 116 to flex.
  • the legs 116 are concentrically disposed around a central opening 120 in flange 114 and are slightly spaced from each other by gaps which terminate at curved relief recesses.
  • a cylindrical tube 122 is secured in the central opening 120 through flange 114, and a distal end of the cylindrical tube 122 engages a proximal annular portion of the valve assembly 112 at proximal ends of the legs 116.
  • An adapter plug 124 is mounted on a proximal end of tube 122 and is integrally constructed of a flexible resilient material, such as Teflon, silicone rubber or plastic.
  • the adapter plug 124 has a thick flange portion 126 with an annular recess 128 therein for receiving the proximal end of tube 122 and a cylindrical inner wall 130 extending from an inner edge of a central aperture 132 in the flange 126 to be snugly received within tube 122.
  • the thickness of wall 130 is dependent upon the size of the instrument to be inserted through the portal sleeve 36 such that, if instruments smaller than the trocar unit are to be introduced into the body after the trocar unit is withdrawn from the portal sleeve, the adapter plug 124 is removed from the proximal end of tube 122 and another adapter plug is inserted therefor having an inner cylindrical wall of greater thickness to engage the smaller diameter instruments along the length of the inner cylindrical wall as shown in dashed lines at 134 in FIG. 3.
  • the thickness of the inner wall 130 and the diameter of the tubular passage defined thereby will vary dependent upon the diameter of instruments passed through the portal unit, and the diameter of the tubular passage will be substantially the same as or slightly less than the outer diameter of an instrument passed therethrough to produce a seal therearound extending along the length of the inner wall.
  • the proximal end 70 of the safety shield 34, the spring 80 and the pin 78 are assembled within hub 38 with the spring 80 torsionally wound to bias plate 76 upwardly looking at FIG. 1 as previously described.
  • plate 76 is rotatable in the annular groove between ribs 72 and 74 such that rotation of plate 76 does not cause rotation of the safety shield thereby assuring angular alignment of the distal ends of the trocar and the safety shield.
  • the pin 78 will be, accordingly, biased distally along longitudinal slot portion 84 to a position adjacent distal transverse slot portion 86 and will be biased into distal transverse slot portion 86 due to the torsional bias from spring 80 to releasably lock the safety shield in the extended position.
  • the trocar unit formed by the trocar 32, the safety shield 34 and the hub 38 is then combined with the portal unit by passing trocar 32 and safety shield 34 through the central aperture 132 in adapter plug 124 and through housing 40 and portal sleeve 36 simultaneously spreading legs 116 of valve assembly 112 to produce a second seal along the safety trocar penetrating instrument.
  • the conical sleeve 118 acts as a seal to prevent passage of fluids thereby and tightly engages the trocar or other surgical instrument.
  • a skirt 136 extending distally from the front wall 58 of hub 38 will be disposed within an open proximal end of the housing 40, and the detents 42 will hold the hub in position with respect to the housing.
  • the distal end 94 of the portal sleeve will be disposed substantially in alignment with the proximal edge of conical shoulder 50 of the trocar to facilitate penetration by the trocar.
  • the safety shield 34 cannot move proximally within portal sleeve 36 thereby assuring that the sharp tip 46 of the trocar is protected to prevent inadvertent contact during handling and use.
  • the blunt distal end 64 of the safety shield is positioned in abutment with the tissue T to be penetrated as illustrated in FIG. 4, and a finger is utilized to manually move pin 78 counter-clockwise against the torsional bias of spring 80 to be aligned with the longitudinal portion 84 of slot 62.
  • Pin 78 will not enter proximal transverse slot portion 88 when the pin is aligned therewith due to the torsional or rotational bias of spring 80 in the opposite direction; and, thus, once the anatomical wall has been completely penetrated such that the force of tissue against the distal end of the safety probe is removed, spring 80 will bias the safety shield distally such that the safety shield returns to the extended position as illustrated in FIG. 6 to protect the sharp tip 46 such that the sharp tip is exposed only during the tissue penetrating step. Once the safety shield has returned to the extended position, the pin 78 automatically enters distal transverse slot portion 86 due to the rotational bias of spring 80 to lock the safety shield in the extended position.
  • the spring 80 is not wound during assembly such that pin 78 is not rotationally biased. Accordingly, after spring 80 returns the safety shield 34 to the extended position when the force on the safety shield distal end from tissue resistance is removed, the pin will not enter distal transverse slot portion 86, and the safety shield will not be locked in the extended position. Thus, the surgeon has the option of locking the safety shield in the extended position by manually moving the pin 78 into distal transverse slot portion 86 or allowing the safety shield to be free to move proximally by not moving pin 78 into distal transverse slot portion 86.
  • the surgeon can selectively release the safety shield from the extended position by moving pin 78 counter-clockwise to be aligned with longitudinal slot portion 84. If the protection provided by the safety shield is not required or desired for further procedures, the pin 78 can be moved into recess 90 of proximal transverse slot portion 88 to releasably lock the safety shield in the retracted position or a position further withdrawn into portal sleeve 36 dependent upon the longitudinal position of proximal transverse slot portion 88.
  • proximal transverse slot portion 92 extending in the same direction as the distal transverse slot portion, is provided, the safety shield will automatically lock in the retracted position when pin 78 is aligned with proximal transverse slot portion 92 due to the rotational bias from spring 80. If slot portion 92 is positioned proximally of pin 78 when the safety shield is in the retracted position, the safety shield will not automatically lock during use but, rather, the pin will have to be manually pulled back to alignment with slot portion 92 to lock the safety shield in the retracted position.
  • safety shield 34 While plate 76 rotates within hub 38, safety shield 34 does not rotate therewith to maintain alignment with trocar 32.
  • Various index configurations to maintain rotational alignment between the safety shield and the trocar can be used, if desired; and, for example, the safety shield can be splined with the trocar.
  • the portal sleeve 36 can be left in place by withdrawing the trocar unit from the portal unit; and, once the trocar unit is withdrawn, valve assembly 112 will prevent fluid flow through the portal sleeve 36 and housing 40. If it is desired to then insert an instrument having a diameter less than the diameter of trocar 32, adapter plug 124 is removed from the proximal end of tube 122 and replaced with an adapter plug having a central aperture and tubular passage formed by the inner wall 130 of a diameter corresponding to, or less than, the smaller instrument to be inserted.
  • the portal sleeve can have a normal, non-linear configuration such that, once penetration is completed and the trocar unit is withdrawn from the portal unit, the portal sleeve will return to the non-linear configuration.
  • the portal sleeve is shown in dashed lines in FIG. 6 as having a curved configuration 138 to which the portal sleeve returns when the trocar and safety shield are withdrawn.
  • the safety trocar penetrating instrument can be employed in flexible endoscopy wherein, for example, the safety trocar penetrating instrument can be inserted in an operating channel of a flexible endoscope. Additionally, by forming the portal sleeve, the trocar and the safety shield from a flexible material, the safety trocar penetrating instrument can be inserted through non-linear anatomical passages.
  • the distal ends of the safety shield and the trocar are specifically configured to cooperate to form a smooth profile minimizing resistance during tissue penetration.
  • the distal end 44 of the trocar 32 has three, generally triangular, flat sides or facets 140 tapering distally to sharp, tissue penetrating tip 46 from cylindrical neck 48.
  • the junctions 142 of the flat sides 140 with the cylindrical neck 48 are curved to have a scalloped configuration, and the frusto-conical shoulder 50 tapers distally from a circular junction 144 with cylindrical trocar body 52 to a smaller circular junction 146 with neck 48.
  • the distal end 64 of the safety shield 34 is configured to mate with the distal end of the trocar when the safety shield is in the retracted position as best shown in FIG. 5. More particularly, the safety shield distal end has a tapering conical wall 148 having an inner surface 149 disposed at the same angle relative to the longitudinal axis of the trocar as the angle of the outer surface of shoulder 50 relative to the trocar longitudinal axis. Conical wall 148 joins cylindrical safety shield body 150 proximally and distally terminates at a cylindrical inner surface 152 having an axial length substantially equal to the axial length of trocar neck 48.
  • the peripheral distal edge 154 of the safety shield is shown as being circular, which is preferred if the trocar tip is conical rather than faceted; however, distal edge 154 can be scalloped or formed of curved segments 156, as shown in dashed lines in FIG. 4, corresponding in radius and arc of curvature to curved junctions 142 to provide exact mating of the safety shield and the trocar in the retracted position.
  • conical wall 148 is in contact with shoulder 50 along the length thereof while inner surface 152 is in contact with neck 48. Accordingly, the distal end of the safety trocar penetrating instrument has a smooth profile presenting minimal resistance to tissue as a cavity wall is penetrated.
  • the angle of the outer surface of conical wall 148 is the same as the angle of the trocar tip relative to the trocar longitudinal axis such that wall 148 forms a smooth continuation of the trocar tip leading to the distal end of portal sleeve 36.
  • the peripheral distal edge 154 of the safety shield 34 initially engages the tissue and then moves proximally as penetration continues until the safety shield is in the retracted position shown in FIG. 5, it being noted that the mating configurations of the safety shield and trocar distal ends produces a positive stop to limit proximal movement of the safety shield.
  • FIGS. 7 and 8 A modification of the safety shield distal end 64 is illustrated in FIGS. 7 and 8 at 158 with the primary difference being that, while the inner surface 159 of "conical" wall 148 has a configuration mating with neck 48 and shoulder 50 of the trocar tip, the outer surface of wall 148 has flat sides or facets 160 having configurations to form extensions of trocar tip facets 140 when the safety shield is in the retracted position shown in FIG. 8.
  • the number of safety shield facets 160 equals the number of trocar facets 140 and the angular or rotational orientation of the safety shield relative to the trocar is such that junction lines or edges 162 between the trocar facets 140 are aligned with junction lines or edges 164 between the safety shield facets 160.
  • each trocar facet 140 has a width substantially equal to the width of the distal end of each safety shield facet 160 aligned therewith, and the safety shield facets 160 continue at the same angle to the trocar longitudinal axis as the trocar facets 140 to terminate adjacent the distal peripheral edge 96 of portal sleeve 36.
  • the distal end of each safety shield facet 160 can be scalloped or formed of curved segments to conform in radius and arc of curvature to the junctions 142 at a proximal end of each aligned trocar facet 140 to reduce gaps therebetween and further minimize tissue resistance during penetration.
  • the trocar tip can have any number of facets arranged at regular or irregular positions; and, in accordance with the modification of the present invention of FIGS. 7 and 8, the safety shield will have a number of facets equal to and similarly arranged with the trocar facets to produce a continuous smooth profile during penetration.
  • FIGS. 9-12 Another modification of the distal end of the safety trocar penetrating instrument according to the present invention is illustrated in FIGS. 9-12 wherein the trocar tip has a plurality of flat facets 166 as described above; however, a depression in the form of a hole or recess 168 is formed in a proximal portion of each facet, as shown in FIGS. 9 and 11, and the facets 166 extend proximally to terminate adjacent the distal peripheral edge 96 of the portal sleeve 36.
  • the safety shield 34 has a distal end 64 formed of a plurality of fingers 170 equal to the number of trocar facets 166, and each finger 170 is aligned with a trocar facet 166.
  • each finger 170 carries a smoothly curved, inwardly protruding nub 174, as shown in FIG. 12, having a configuration to be received in depressions 168. Accordingly, when the safety shield is moved to the retracted position during penetration of tissue as shown in FIG. 10, nubs 174 will be received in depressions 168 such that the fingers 170 form extensions of the trocar tip facets 166 providing a smooth profile presenting minimal resistance to tissue when a cavity wall is penetrated, and the hubs 174 received in the depressions 168 serve as a positive stop to limit proximal movement of the safety shield.
  • FIGS. 13 and 14 Another modification of the distal end of the safety trocar penetrating instrument according to the present invention is illustrated in FIGS. 13 and 14 wherein the trocar tip has a plurality of flat facets 166 as described above extending proximally to terminate adjacent the peripheral distal edge 96 of the portal sleeve 36.
  • the safety shield 34 has a distal end 64 formed of a resilient, flexible material, preferably a rubber-like material such as silicone or latex, having a configuration to fit closely over the trocar tip.
  • the safety shield distal end 64 defines a plurality of legs 176 equal to the number of trocar facets 166 with each leg 176 being aligned with a trocar facet 166.
  • the legs 176 have lateral edges 177 joined at radiused ends 178 aligned with the distal peripheral edge 96 of the portal sleeve 36, as shown in FIG. 13, and tapering distally along the trocar facets 166 from the radiused ends 178 to an apex 180 forming a closed, blunt end disposed distally from the sharp trocar tip 46.
  • the lateral edges 177 extend along the longitudinal axis of the trocar; and, when the safety shield is moved to the retracted position during penetration of tissue as shown in FIG. 14, the legs 176 will flex or spread outwardly from the longitudinal axis of the trocar and form a smooth profile with the trocar facilitating insertion in tissue of a cavity wall.
  • the material itself can provide a bias for returning the safety shield to the extended position upon removal of force from tissue contact such that the structural arrangement at the proximal end of the safety trocar penetrating instrument can be simplified.
  • the material forming the safety shield distal end By selecting the material forming the safety shield distal end to provide a limited degree of outward expansion for the legs, a positive stop can be obtained limiting proximal movement of the safety shield.
  • FIGS. 15 and 16 Another modification of the distal end of the safety trocar penetrating instrument according to the present invention is shown in FIGS. 15 and 16 wherein the trocar tip tapers from the neck 48 to the sharp trocar tip 46 to define a conical distal end, and a helical thread 180 extends along the conical trocar tip from the neck to the sharp tip.
  • the safety shield distal end 64 includes tapering conical wall 148 having an inner surface disposed at the same angle relative to the longitudinal axis of the trocar 32 as the angle of the outer surface of shoulder 50 relative to the trocar longitudinal axis.
  • Conical wall 148 joins cylindrical safety shield body 150 proximally and distally terminates at cylindrical inner surface 152 having an axial length substantially equal to the axial length of trocar neck 48.
  • a helical thread 182 extends along the tapering conical wall 148 from cylindrical safety shield body 150 to a circular, peripheral distal edge 154 of the safety shield. Threads 180 and 182 are like handed extending in the same angular direction with the longitudinal axis of the trocar, and a proximal end of the thread 180 merges with a distal end of the thread 182 when the safety shield is in the retracted position shown in FIG. 16 with conical wall 148 in contact with shoulder 50 along the length thereof while inner surface 152 is in contact with neck 48.
  • the distal end of the safety trocar penetrating instrument forms a smooth profile as well as a continuous thread extending along the trocar tip and the conical wall 148 of the safety shield facilitating insertion of the distal end of the safety trocar penetrating instrument in tissue forming a cavity wall.
  • the distal end of the safety trocar penetrating instrument is inserted in tissue with a rotational motion providing relatively slower penetration with greater control of penetration depth and is particularly advantageous for thoracic and brain surgery.
  • FIGS. 15 and 16 can also be utilized for particular procedures with no threads such that the conical tip cooperates with the conical wall of the safety shield to produce a smooth, continuous conical configuration during penetration. That is, when inner surface 152 is moved proximally to contact neck 48, conical wall 148 will be an extension of the conical trocar tip.
  • FIGS. 17 and 18 Another modification of the distal end of the safety trocar penetrating instrument is illustrated in FIGS. 17 and 18 wherein the trocar tip is the same as that described for FIGS. 13 and 14, and the safety shield distal end 64 is formed of a resilient, flexible, compressible and expandable material that can fold or wrinkle, the material defining a curved wall 184 having a predetermined configuration in the extended position shown in FIG. 17.
  • the curved wall 184 gradually tapers distally toward the blunt, peripheral distal edge 154 of the safety shield 34 disposed distally from the sharp tip 46 of the trocar 32.
  • safety shield 34 will be compressed proximally in the retracted position, as shown in FIG. 18, exposing the sharp trocar tip 46.
  • the curved wall 184 By forming the curved wall 184 of minimal thickness, a smooth profile is maintained with the trocar facets 166 in the retracted position to minimize tissue resistance.
  • the safety shield distal end of a resilient material By forming the safety shield distal end of a resilient material, the material itself can provide a bias for returning the safety shield to the extended position upon removal of force from tissue contact, and the amount of material compressed in the retracted position can act as a positive stop limiting proximal movement of the safety shield.
  • FIGS. 19 and 20 Another modification of the distal end of the safety trocar penetrating instrument is illustrated in FIGS. 19 and 20 wherein the trocar tip is the same as that shown in FIGS. 7 and 8, and the safety shield distal end 64 is formed of a resilient, flexible, compressible and expandable material configured to fit closely over the trocar tip and capable of folding or collapsing along fold lines 186 disposed concentrically with the trocar tip.
  • the safety shield 34 In the retracted position shown in FIG. 20, the safety shield 34 is folded or collapsed along the fold lines 186 forming an accordion-like configuration with annular ribs 188.
  • the amount of material compressed or folded in the retracted position can be selected such that the distal edge 154 of the safety shield is disposed adjacent junction 142 in the retracted position with the ribs 188 defining gradually increasing diameters from the distal edge 154 to merge with the distal peripheral edge 96 of the portal sleeve along the same angle as the trocar facets 140 with the trocar longitudinal axis to form a smooth profile facilitating penetration in tissue of a cavity wall.
  • the safety shield distal end of a resilient material the material itself can provide a bias for returning the safety shield to the extended position upon removal of force from tissue contact, and the amount of material compressed in the retracted position can act as a positive stop limiting proximal movement of the safety shield.
  • FIG. 22 A modification of a locking mechanism for the safety trocar penetrating instrument of the present invention is shown in FIG. 22 wherein the trocar unit including trocar 32, safety shield 34 and hub 38 is illustrated.
  • the hub 38 is adapted to be coupled with housing 40 as described in connection with FIG. 1 and includes front wall 58 having opening 68 therein receiving the tubular body 66 of the safety shield 34.
  • Tubular body 66 terminates at proximal end 70 disposed within the hub and carrying an annular flange 190 which can be secured on proximal end 70 or formed as an integral part thereof.
  • a slot 192 is formed in tubular body 66 and extends longitudinally from flange 190 in a distal direction in parallel alignment with the trocar longitudinal axis.
  • Cylindrical body 52 of trocar 32 has an opening 196 formed therein adjacent a proximal face of flange 190. Cylindrical body 52 terminates at proximal end 54, and a lumen 197 is formed in cylindrical body 52. Proximal end 54 is secured in a central opening in an annular member 198 releasably received, for example via a threaded connection, in an open proximal end 200 of hub 38. While the trocar body 52 and member 198 are shown as being made as one piece, the body 52 and member 198 can be made as separate parts secured together in any desirable manner, such as by welding, cement or threads for example.
  • a positioning rod 199 has ends secured, respectively, to front wall 58 and member 198, the rod 199 passing through an aperture in flange 190.
  • a helical spring 202 is disposed over rod 199 and is mounted in compression between member 198 and flange 190 to bias the safety shield to the extended position with the rod 199 preventing relative rotational movement of the safety shield and trocar.
  • spring 202 and rod 199 may be replaced with a telescoping-type spring having ends secured, respectively, to wall 58 and member 198, or any other spring suitable for biasing the safety shield to the extended position.
  • An end cap 206 has a lip 208 extending around the periphery of member 198 such that the end cap can move longitudinally, axially relative to hub 38.
  • a hollow stem 210 extends centrally from end cap 206 to be slidably received in proximal end 54 of trocar 32, and a helical spring surrounds stem 210 and is mounted in compression between end cap 206 and member 198 to bias the end cap proximally relative to the hub.
  • a locking spring 212 illustrated in FIG. 21 has a curved end 214 secured within trocar 32 and joined to a body 216 bifurcated to form a proximally extending deactuating arm 218 and a substantially transversely extending abutment arm 220, the abutment arm passing through opening 196 in trocar 32 and having a curved head 222 terminating at a distally extending finger 224.
  • a deactuator or release arm 226 is mounted in stem 210 and has a protrusion 228 positioned to engage arm 220 of the locking spring.
  • the locking mechanism is normally in the condition shown in FIG. 22 with abutment arm 220 passing through opening 196 and finger 224 disposed above cylindrical body 52 at a position to engage the proximal face of flange 190 such that the safety shield 34 cannot move proximally and is, therefore, locked in the extended position protecting the sharp tip of the trocar 32.
  • the hub 38 and the housing 40 are gripped in one hand with the palm of the hand engaging end cap 206; and, when the hand is squeezed, end cap 206 is moved distally along hub 38 against the bias of spring 211 causing the protrusion 228 of deactuator 226 to move deactuating arm 218 distally buckling the locking spring 212 and causing the abutment arm 220 to move within the opening 196 in cylindrical body 52 and out of the path of movement of flange 190 as shown in FIG. 23. Accordingly, the safety shield is now in an unlocked state and able to move proximally from the extended position.
  • the safety shield When the safety trocar penetrating instrument is forced into the tissue, the safety shield will move proximally against the force of spring 202 and slide over the curved head 222 of the abutment arm of the locking spring causing the locking spring to move further into the opening 196 thereby freeing deactuating arm 218 from the protrusion 228 on the deactuator 226 as shown in FIG. 24.
  • the flange 190 will have passed proximally beyond the opening 196 and out of engagement with abutment arm 220, and the slot 192 will be vertically aligned with the opening 196 thereby allowing the abutment arm 220 to return to its normal position with deactuating arm 218 overlapping protrusion 228 as shown in FIG. 25.
  • the safety shield will return to the extended position under the biasing force from spring 202, camming over the curved head 222 of abutment arm 220 with the abutment arm then returning to the locking position as shown in FIG. 26.
  • the end cap 206 remains in the compressed state from gripping by the hand such that the deactuator 226 cannot release the locking spring, and the safety shield automatically locks in the extended position. If it is desired to release the safety shield for further use of the trocar, the end cap must be released to return to the position illustrated in FIG. 22 whereupon squeezing the end cap again will release the safety shield for further penetration of tissue if desired.

Abstract

A safety trocar penetrating instrument particularly useful in least invasive surgery includes a portal sleeve, a trocar disposed in the portal sleeve and having a sharp, solid, angled tissue penetrating distal end and a safety shield disposed in the portal sleeve and receiving the trocar, the safety shield being movable relative to the trocar between an extended position wherein a distal end of the safety shield protects the sharp tip and a retracted position exposing the sharp tip. The configuration of the distal ends of the trocar and the safety shield in the retracted position present a substantially continuous, angled surface for penetrating tissue. A hub receiving proximal ends of the trocar and safety shield includes a locking mechanism allowing the safety shield to be automatically or optionally locked in the extended position and permitting selective, releasable or automatic locking of the safety shield in the retracted position.

Description

This application is a division of pending patent application Ser. No. 08/313,655, filed Sep. 26, 1994 now U.S. Pat. No. 5,591,190 which is a continuation of Ser. No. 07/817,113, filed Jan. 6, 1992, now U.S. Pat. No. 5,350,393.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention pertains to surgical penetrating instruments for accessing cavities within the body and, more particularly, to such penetrating instruments formed of trocars having solid, tissue penetrating, sharp tips and safety shields surrounding the trocars for preventing tissue from contacting the sharp tips after entry into body cavities.
2. Discussion of the Prior Art
Trocars are commonly used for accessing cavities within the body and establishing an endoscopic portal for various procedures to be performed by least invasive surgery. Portal sleeves or cannulas are normally disposed around the trocars to be positioned upon penetration into the cavity by the trocar. Trocars include a sharp tissue penetrating pyramidal distal end or tip to pierce or penetrate tissue forming the cavity wall, and the force required to penetrate the cavity wall is dependent upon the type and thickness of the tissue of the wall. Once the wall is penetrated, it is desirable to prevent the sharp tip of the trocar from inadvertently contacting tissue in or forming the cavity, and a particular problem exists where substantial force is required to penetrate the cavity wall in that, once penetration is achieved, the lack of tissue resistance can result in the sharp trocar tip traveling too far into the cavity and injuring adjacent tissue. Safety trocars having a spring-biased protective shield disposed between an outer portal sleeve and an inner trocar are marketed by Ethicon, Inc. as the Endopath and by United States Surgical Corporation as the Surgiport, and U.S. Pat. No. 4,535,773 to Yoon, No. 4,601,710 to Moll and No. 4,654,030 to Moll et al are exemplary of such safety trocars.
A disadvantage of prior art safety trocars is that the safety shields cannot be optionally locked in an extended position protecting the sharp trocar tips for safety in handling and use. A further disadvantage of prior art safety trocars is that the safety shields cannot be selectively retracted to expose the sharp trocar tips without a force being applied to the safety shields with tissue contact. Accordingly, the sharp trocar tips in prior art safety trocars cannot be effectively used in further penetration or treatment of tissue after a cavity wall is initially penetrated; and, therefore, the types of surgical procedures that can be performed with prior art safety trocars are thusly limited. Another disadvantage of prior art safety trocars is that the protective shields form an irregular surface or profile with the trocars resulting in increased resistance from tissue during penetration of a cavity wall, greater trauma and damage to tissue and possible Jamming and trapping of tissue between the trocars and the safety shields.
SUMMARY OF THE INVENTION
Accordingly, it is a primary object of the present invention to overcome the above-mentioned disadvantages of prior art safety trocars.
Another object of the present invention is to optionally allow locking of a safety shield in an extended position from a solid, sharp distal end of a trocar of a safety trocar penetrating instrument.
The present invention has a further object in that a safety shield movable relative to a trocar within a portal sleeve is biased toward an extended position and can be selectively, releasably, locked in a retracted position exposing a solid, sharp, distal end of the trocar prior to or after penetration of a cavity wall.
Additionally, it is an object of the present invention to provide a safety trocar penetrating instrument having a safety shield movable between an extended position protecting a solid, sharp distal end of a trocar and a retracted position exposing the sharp distal end, the safety shield being distally biased toward the extended position and wherein the safety shield can be optionally automatically locked in the extended position when returned to the extended position by the distal bias.
Yet another object of the present invention is to construct a safety trocar penetrating instrument such that a distally biased safety shield can be manually pulled proximally toward a retracted position to expose a solid, sharp distal end of a trocar without requiring a force applied to the safety shield from tissue contact.
A further object of the present invention is use of a pin and slot mechanism to provide selective locking of a safety shield distally biased relative to a trocar, the pin extending externally of a housing to form a handle graspable by a surgeon to selectively move the safety shield between extended and retracted positions when the pin is moved along a longitudinal portion of the slot and to releasably lock the safety shield in the extended or retracted position when the pin is positioned in transverse portions of the slot.
A still further object of the present invention is to provide a safety trocar penetrating instrument having a trocar received in a safety shield movable relative to the trocar and disposed in a portal sleeve having an end secured in a housing, the safety shield and trocar extending through an opening in the housing and wherein adapter plugs can be positioned in the opening to form a seal with instruments of various sizes inserted therethrough when the safety shield and trocar are withdrawn from the portal sleeve.
Another object of the present invention is to provide a trocar, a safety shield receiving the trocar and movable relative to the trocar between extended and retracted positions and a portal sleeve mounting the safety shield wherein the trocar, the safety shield and the portal sleeve form a smooth profile in the retracted position to facilitate insertion in tissue forming a cavity wall.
An additional object of the present invention is to provide a safety trocar penetrating instrument having a trocar and a safety shield movable relative to the trocar between extended and retracted positions and wherein distal ends of the trocar and safety shield are configured in the retracted position to permit penetration of tissue of a cavity wall with a rotational motion providing relatively slower insertion with relatively greater control of the depth of insertion of the distal ends in tissue of the cavity wall.
Yet another object of the present invention is to control locking of a safety shield relative to a trocar in response to hand squeezing pressure of an end cap relative to a hub of a safety trocar penetrating instrument.
Some of the advantages of the present invention are that anatomical cavities of various sizes can be safety penetrated with a trocar to establish a portal in communication therewith, safety in handling and use of a safety trocar penetrating instrument is enhanced, penetration into additional tissue, such as into a cystic cavity or soft organ structure (e.g. ovarian cyst penetration or liver tissue biopsy), after penetration of a cavity wall can be accomplished with a single instrument, the types of surgical procedures utilizing a trocar can be expanded, safety trocar penetrating instruments can feasibly be employed in thoracic and cranial surgery, second puncture endoscopic or least invasive procedures are facilitated, exposure of medical personnel to inadvertent contact with the sharp tip of the trocar is minimized, a single puncture can be used for both insufflation and forming an endoscopic portal thereby simplifying procedures such as laparoscopy, trauma and damage to tissue is minimized, tissue jamming and trapping is avoided and safety trocar penetrating instruments according to the present invention can be inexpensively manufactured to be reusable or disposable.
The present invention is generally characterized in a safety trocar penetrating instrument including a trocar having a solid, sharp distal end or tip, a safety shield disposed concentrically around the trocar and movable relative to the trocar between an extended position protecting the sharp trocar tip and a retracted position exposing the sharp trocar tip, a hub receiving proximal ends of the trocar and safety shield and a portal sleeve receiving the safety shield to establish communication with an anatomical cavity upon penetration of the cavity by the trocar. The safety shield is distally biased toward the extended position, and a locking mechanism automatically locks the safety shield in the extended position after the safety shield is returned thereto by the distal bias after penetration of tissue forming the cavity wall or can optionally allow locking of the safety shield in the extended position with the safety shield being free to move toward the retracted position when the safety shield is not optionally locked in the extended position. The locking mechanism also provides selective, releasable, locking of the safety shield in the retracted position or can allow automatic locking of the safety shield in the retracted position. A housing securing a proximal end of the portal sleeve has an opening for passage of the safety shield and trocar therethrough and into the portal sleeve. The safety shield and trocar can be withdrawn from the portal sleeve, and adapter plugs can be positioned in the opening to form a seal with instruments of various sizes inserted therethrough. Various configurations for the distal ends of the trocar and the safety shield provide a smooth profile with the portal sleeve in the retracted position to facilitate penetration of tissue forming the cavity wall.
Other objects and advantages of the present invention will become apparent from the following description of the preferred embodiments taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a broken side view, partly in section, of a safety trocar penetrating instrument according to the present invention.
FIG. 2 is a broken section of the hub and locking mechanism of the safety trocar penetrating instrument of FIG. 1.
FIG. 3 is a broken perspective view, partly in section, of an adapter plug for the safety trocar penetrating instrument of FIG. 1.
FIG. 4 is a broken view, partly in section, of the distal end of the safety trocar penetrating instrument of FIG. 1 with the safety shield in an extended position prior to penetrating tissue.
FIG. 5 is a broken view, partly in section, of the distal end of the safety trocar penetrating instrument of FIG. 1 with the safety shield in a retracted position during penetration of tissue.
FIG. 6 is a broken view, partly in section, of the distal end of the safety trocar penetrating instrument of FIG. 1 with the safety shield in an extended position after penetration of tissue.
FIG. 7 is a broken view, partly in section, of a modification of the distal end of a safety trocar penetrating instrument according to the present invention with the safety shield in the extended position.
FIG. 8 is a broken view, partly in section, of the distal end of the safety trocar penetrating instrument of FIG. 7 with the safety shield in the retracted position.
FIG. 9 is a broken view, partly in section, of a modification of a distal end of the safety trocar penetrating instrument according to the present invention with the safety shield in the extended position.
FIG. 10 is a broken view, partly in section, of the distal end of the safety trocar penetrating instrument of FIG. 9 with the safety shield in the retracted position.
FIG. 11 is a section taken along line 11--11 of FIG. 9.
FIG. 12 is a section taken along line 12--12 of FIG. 9.
FIG. 13 is a broken view, partly in section, of a modification of the distal end of a safety trocar penetrating instrument according to the present invention with the safety shield in the extended position.
FIG. 14 is a broken view, partly in section, of the distal end of a safety trocar penetrating instrument according to the present invention with the safety shield in the retracted position.
FIG. 15 is a broken view, partly in section, of a modification of the distal end of a safety trocar penetrating instrument according to the present invention with the safety shield in the extended position.
FIG. 16 is a broken view, partly in section, of the distal end of the safety trocar penetrating instrument of FIG. 15 with the safety shield in the retracted position.
FIG. 17 is a broken view, partly in section, of a modification of the distal end of a safety trocar penetrating instrument according to the present invention with the safety shield in the extended position.
FIG. 18 is a broken view, partly in section, of the distal end of the safety trocar penetrating instrument of FIG. 17 with the safety shield in the retracted position.
FIG. 19 is a broken view, partly in section, of a modification of the distal end of a safety trocar penetrating instrument according to the present invention with the safety shield in the extended position.
FIG. 20 is a broken view, partly in section, of the distal end of the safety trocar penetrating instrument of FIG. 19 with the safety shield in the retracted position.
FIG. 21 is a perspective view of a locking spring for the safety trocar penetrating instrument of the present invention.
FIG. 22 is a broken view, partly in section, of a modification of the hub and locking mechanism of the safety trocar penetrating instrument of the present invention.
FIGS. 23, 24, 25 and 26 are broken views, partly in section, illustrating stages of operation of the hub and locking mechanism of FIG. 22.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
A safety trocar penetrating instrument 30 according to the present invention is illustrated in FIG. 1 and includes an elongate trocar 32, a safety shield 34 movably disposed concentrically around trocar 32, an elongate portal sleeve 36 concentrically disposed around safety shield 34, a hub 38 mounting trocar 32 and safety shield 34 and a housing 40 mounting portal sleeve 36. The hub 38 can be latched to housing 40 with the use of any suitable releasable mechanism, such as ball detents 42, allowing the hub to be removed from the housing withdrawing the trocar and safety shield from the portal sleeve. Accordingly, the safety trocar penetrating instrument 30 can be considered to be formed of a portal unit and a trocar unit, the portal unit including portal sleeve 36 and housing 40 and the trocar unit including trocar 32, safety shield 34 and hub 38.
Trocar 32 is preferably made of stainless steel with a cylindrical body having a diameter dependent upon the surgical procedure to be performed and the anatomical cavity to be penetrated. The trocar has a solid distal end 44 terminating at a sharp tip 46 for penetrating anatomical tissue. The distal end 44 can have various configurations; and, as shown in FIG. 1, the distal end 44 of the trocar has a pyramidal shape with three, equally spaced facets terminating proximally at a cylindrical neck 48 which, in turn, terminates proximally at a frusto-conical shoulder 50. A cylindrical body 52 extends proximally from shoulder 50 and terminates at a proximal end 54 secured to an end wall 56 of hub 38 by any suitable means, such as cement or threads. While the distal end of the trocar 32 is solid, the cylindrical body 52 can be either solid or tubular dependent upon manufacturing techniques utilized.
Hub 38 is preferably made of plastic to reduce cost and has an external configuration to cooperate with housing 40 to be easily grasped with one hand for use in penetrating tissue. Hub 38 is substantially rectangular in cross-section and includes, as best shown in FIGS. 1 and 2, four side walls extending from a front wall 58 to end wall 56 to provide a rearwardly flared outer profile with one side wall, indicated at 60, having a slot 62 therein.
Safety shield 34 is preferably made from a cylindrical length of a rigid or flexible material, such as stainless steel or plastic dependent upon use of the safety trocar penetrating instrument, and has a blunt distal end 64 with a configuration to extend beyond and protect sharp tip 46 of trocar 32 in an extended position. As best shown in FIG. 2, the safety shield 34 has a cylindrical tubular body 66 extending along the cylindrical body 52 of trocar 32 and through an opening 68 in front wall 58 of hub 38. Tubular body 66 terminates at a proximal end 70 disposed within the hub and carrying spaced annular ribs 72 and 74 between which is rotatably mounted an annular member or plate 76 having a pin 78 threadedly secured thereto and extending through slot 62, the pin 78 having a spherical end or knob to be easily grasped. A helical spring 80 is mounted in compression between plate 76 and end wall 56 of hub 38, and the spring 80 has longitudinally extending ends 82 received in apertures in plate 76 and end wall 56, respectively, such that the spring can be wound in torsion to bias the plate and the pin 78 carried thereby in a clockwise direction looking from the proximal end of the safety trocar penetrating instrument or upwardly looking at FIG. 1. The hub 38 can be formed in any suitable manner to facilitate winding of spring 80, such as molding the hub in parts or providing a rotatable insert for receiving a proximal, longitudinally extending end 82 of spring 80. The slot 62 formed in hub 38 has a longitudinal portion 84 aligned in parallel relation with a longitudinal axis of the trocar 32, a distal transverse portion 86 and a proximal transverse portion 88 having a recess 90 at the end thereof extending parallel with the longitudinal slot portion 84. If desired, for purposes to be explained hereinafter, the proximal transverse slot portion can extend in the same direction as the distal transverse slot portion as shown in dashed lines at 92.
Portal sleeve 36 is preferably made of a cylindrical length of stainless steel or other suitable, medically acceptable, plastic or metal material and can be rigid or flexible and transparent or opaque. The portal sleeve has a distal end 94 tapering to terminate at a peripheral edge 96 disposed in substantial alignment with a proximal edge of conical shoulder 50 such that the distal ends of the portal sleeve, the safety shield and the trocar present a substantially smooth profile to facilitate tissue penetration as shown in FIG. 5. The portal sleeve 36 has a threaded proximal end 98 removably received in an internally threaded nipple 100 extending from a front wall 102 of housing 40. Housing 40 is preferably made of plastic to reduce cost and has a rectangular configuration in cross-section corresponding to the cross-sectional configuration of hub 38 with a flared external profile adjacent front wall 102 to facilitate grasping during use. Recesses 104 and 106 are formed on opposite sides of nipple 100 and have a size and configuration to receive ball- type stopcocks 108 and 110, respectively, in a position such that the stopcocks are protected from inadvertent contact which could cause breakage or malfunction. A valve assembly 112 is mounted in housing 40 to control flow through the portal sleeve once the trocar unit is removed therefrom. The valve assembly can have any acceptable configuration and, as shown, includes a flange 114 having an annular configuration with a threaded periphery to be threadedly secured in housing 40, a plurality of spaced, spreadable legs 116 extending distally from flange 114 to produce a normally conical configuration tapering to an apex as illustrated in dashed lines in FIG. 1 and a conical, stretchable sleeve or membrane 118, preferably made of a rubber-like material such as silicone, having a configuration to tightly fit over legs 116 such that the sleeve and legs are normally biased to the closed position at the apex to prevent passage of fluids through the valve assembly. The legs 116 and flange 114 are preferably integrally made of unitary construction of a material, such as a plastic-like nylon, facilitating movement of medical instruments therethrough and allowing legs 116 to flex. The legs 116 are concentrically disposed around a central opening 120 in flange 114 and are slightly spaced from each other by gaps which terminate at curved relief recesses.
A cylindrical tube 122 is secured in the central opening 120 through flange 114, and a distal end of the cylindrical tube 122 engages a proximal annular portion of the valve assembly 112 at proximal ends of the legs 116. An adapter plug 124, as best shown in FIG. 3, is mounted on a proximal end of tube 122 and is integrally constructed of a flexible resilient material, such as Teflon, silicone rubber or plastic. The adapter plug 124 has a thick flange portion 126 with an annular recess 128 therein for receiving the proximal end of tube 122 and a cylindrical inner wall 130 extending from an inner edge of a central aperture 132 in the flange 126 to be snugly received within tube 122. The thickness of wall 130 is dependent upon the size of the instrument to be inserted through the portal sleeve 36 such that, if instruments smaller than the trocar unit are to be introduced into the body after the trocar unit is withdrawn from the portal sleeve, the adapter plug 124 is removed from the proximal end of tube 122 and another adapter plug is inserted therefor having an inner cylindrical wall of greater thickness to engage the smaller diameter instruments along the length of the inner cylindrical wall as shown in dashed lines at 134 in FIG. 3. That is, the thickness of the inner wall 130 and the diameter of the tubular passage defined thereby will vary dependent upon the diameter of instruments passed through the portal unit, and the diameter of the tubular passage will be substantially the same as or slightly less than the outer diameter of an instrument passed therethrough to produce a seal therearound extending along the length of the inner wall. By utilizing various size adapter plugs with inner sealing walls to accommodate various size instruments, an effective seal can be produced for instruments varying greatly in size, for example from 2 mm to 12 mm.
In order to assemble the safety trocar penetrating instrument 30 as generally described above, the proximal end 70 of the safety shield 34, the spring 80 and the pin 78 are assembled within hub 38 with the spring 80 torsionally wound to bias plate 76 upwardly looking at FIG. 1 as previously described. It will be appreciated that plate 76 is rotatable in the annular groove between ribs 72 and 74 such that rotation of plate 76 does not cause rotation of the safety shield thereby assuring angular alignment of the distal ends of the trocar and the safety shield. The pin 78 will be, accordingly, biased distally along longitudinal slot portion 84 to a position adjacent distal transverse slot portion 86 and will be biased into distal transverse slot portion 86 due to the torsional bias from spring 80 to releasably lock the safety shield in the extended position. The trocar unit formed by the trocar 32, the safety shield 34 and the hub 38 is then combined with the portal unit by passing trocar 32 and safety shield 34 through the central aperture 132 in adapter plug 124 and through housing 40 and portal sleeve 36 simultaneously spreading legs 116 of valve assembly 112 to produce a second seal along the safety trocar penetrating instrument. That is, the conical sleeve 118 acts as a seal to prevent passage of fluids thereby and tightly engages the trocar or other surgical instrument. With the hub 38 abutting the housing 40, a skirt 136 extending distally from the front wall 58 of hub 38 will be disposed within an open proximal end of the housing 40, and the detents 42 will hold the hub in position with respect to the housing. In this position, the distal end 94 of the portal sleeve will be disposed substantially in alignment with the proximal edge of conical shoulder 50 of the trocar to facilitate penetration by the trocar.
In use, it will be appreciated that with the pin 78 disposed in distal transverse slot portion 86, the safety shield 34 cannot move proximally within portal sleeve 36 thereby assuring that the sharp tip 46 of the trocar is protected to prevent inadvertent contact during handling and use. When it is desired to penetrate an anatomical cavity, the blunt distal end 64 of the safety shield is positioned in abutment with the tissue T to be penetrated as illustrated in FIG. 4, and a finger is utilized to manually move pin 78 counter-clockwise against the torsional bias of spring 80 to be aligned with the longitudinal portion 84 of slot 62. With the pin 78 in this position, when the distal end 64 of the safety shield is forced against the tissue to be penetrated, the safety shield 34 will move proximally against the bias of spring 80 to a retracted position as illustrated in FIG. 5. With the safety shield in the retracted position, penetration through the tissue with minimal tissue jamming and trapping is accomplished due to the smooth profile of the distal end of the safety trocar penetrating instrument. Pin 78 will not enter proximal transverse slot portion 88 when the pin is aligned therewith due to the torsional or rotational bias of spring 80 in the opposite direction; and, thus, once the anatomical wall has been completely penetrated such that the force of tissue against the distal end of the safety probe is removed, spring 80 will bias the safety shield distally such that the safety shield returns to the extended position as illustrated in FIG. 6 to protect the sharp tip 46 such that the sharp tip is exposed only during the tissue penetrating step. Once the safety shield has returned to the extended position, the pin 78 automatically enters distal transverse slot portion 86 due to the rotational bias of spring 80 to lock the safety shield in the extended position. If automatic locking of the safety shield 34 is not desired, the spring 80 is not wound during assembly such that pin 78 is not rotationally biased. Accordingly, after spring 80 returns the safety shield 34 to the extended position when the force on the safety shield distal end from tissue resistance is removed, the pin will not enter distal transverse slot portion 86, and the safety shield will not be locked in the extended position. Thus, the surgeon has the option of locking the safety shield in the extended position by manually moving the pin 78 into distal transverse slot portion 86 or allowing the safety shield to be free to move proximally by not moving pin 78 into distal transverse slot portion 86.
If, after penetration into the anatomical cavity, it is desired to penetrate additional tissue, the surgeon can selectively release the safety shield from the extended position by moving pin 78 counter-clockwise to be aligned with longitudinal slot portion 84. If the protection provided by the safety shield is not required or desired for further procedures, the pin 78 can be moved into recess 90 of proximal transverse slot portion 88 to releasably lock the safety shield in the retracted position or a position further withdrawn into portal sleeve 36 dependent upon the longitudinal position of proximal transverse slot portion 88. Where proximal transverse slot portion 92 extending in the same direction as the distal transverse slot portion, is provided, the safety shield will automatically lock in the retracted position when pin 78 is aligned with proximal transverse slot portion 92 due to the rotational bias from spring 80. If slot portion 92 is positioned proximally of pin 78 when the safety shield is in the retracted position, the safety shield will not automatically lock during use but, rather, the pin will have to be manually pulled back to alignment with slot portion 92 to lock the safety shield in the retracted position.
While plate 76 rotates within hub 38, safety shield 34 does not rotate therewith to maintain alignment with trocar 32. Various index configurations to maintain rotational alignment between the safety shield and the trocar can be used, if desired; and, for example, the safety shield can be splined with the trocar.
Once the trocar has been used to penetrate tissue to the extent desired by the surgeon, the portal sleeve 36 can be left in place by withdrawing the trocar unit from the portal unit; and, once the trocar unit is withdrawn, valve assembly 112 will prevent fluid flow through the portal sleeve 36 and housing 40. If it is desired to then insert an instrument having a diameter less than the diameter of trocar 32, adapter plug 124 is removed from the proximal end of tube 122 and replaced with an adapter plug having a central aperture and tubular passage formed by the inner wall 130 of a diameter corresponding to, or less than, the smaller instrument to be inserted.
For procedures where it is desired to gain access to an area of an anatomical cavity substantially offset from the longitudinal axis of the safety trocar penetrating instrument, the portal sleeve can have a normal, non-linear configuration such that, once penetration is completed and the trocar unit is withdrawn from the portal unit, the portal sleeve will return to the non-linear configuration. For example, the portal sleeve is shown in dashed lines in FIG. 6 as having a curved configuration 138 to which the portal sleeve returns when the trocar and safety shield are withdrawn. Where the portal sleeve, the trocar and the safety shield are made from a flexible material, the safety trocar penetrating instrument can be employed in flexible endoscopy wherein, for example, the safety trocar penetrating instrument can be inserted in an operating channel of a flexible endoscope. Additionally, by forming the portal sleeve, the trocar and the safety shield from a flexible material, the safety trocar penetrating instrument can be inserted through non-linear anatomical passages.
In accordance with the present invention, the distal ends of the safety shield and the trocar are specifically configured to cooperate to form a smooth profile minimizing resistance during tissue penetration. In the embodiment illustrated in FIGS. 1 and 4-6, the distal end 44 of the trocar 32 has three, generally triangular, flat sides or facets 140 tapering distally to sharp, tissue penetrating tip 46 from cylindrical neck 48. The junctions 142 of the flat sides 140 with the cylindrical neck 48 are curved to have a scalloped configuration, and the frusto-conical shoulder 50 tapers distally from a circular junction 144 with cylindrical trocar body 52 to a smaller circular junction 146 with neck 48. The distal end 64 of the safety shield 34 is configured to mate with the distal end of the trocar when the safety shield is in the retracted position as best shown in FIG. 5. More particularly, the safety shield distal end has a tapering conical wall 148 having an inner surface 149 disposed at the same angle relative to the longitudinal axis of the trocar as the angle of the outer surface of shoulder 50 relative to the trocar longitudinal axis. Conical wall 148 joins cylindrical safety shield body 150 proximally and distally terminates at a cylindrical inner surface 152 having an axial length substantially equal to the axial length of trocar neck 48. The peripheral distal edge 154 of the safety shield is shown as being circular, which is preferred if the trocar tip is conical rather than faceted; however, distal edge 154 can be scalloped or formed of curved segments 156, as shown in dashed lines in FIG. 4, corresponding in radius and arc of curvature to curved junctions 142 to provide exact mating of the safety shield and the trocar in the retracted position. As shown in FIG. 5, when the safety shield is in the retracted position, conical wall 148 is in contact with shoulder 50 along the length thereof while inner surface 152 is in contact with neck 48. Accordingly, the distal end of the safety trocar penetrating instrument has a smooth profile presenting minimal resistance to tissue as a cavity wall is penetrated. More particularly, the angle of the outer surface of conical wall 148 is the same as the angle of the trocar tip relative to the trocar longitudinal axis such that wall 148 forms a smooth continuation of the trocar tip leading to the distal end of portal sleeve 36. During penetration, the peripheral distal edge 154 of the safety shield 34 initially engages the tissue and then moves proximally as penetration continues until the safety shield is in the retracted position shown in FIG. 5, it being noted that the mating configurations of the safety shield and trocar distal ends produces a positive stop to limit proximal movement of the safety shield.
A modification of the safety shield distal end 64 is illustrated in FIGS. 7 and 8 at 158 with the primary difference being that, while the inner surface 159 of "conical" wall 148 has a configuration mating with neck 48 and shoulder 50 of the trocar tip, the outer surface of wall 148 has flat sides or facets 160 having configurations to form extensions of trocar tip facets 140 when the safety shield is in the retracted position shown in FIG. 8. To this end, the number of safety shield facets 160 equals the number of trocar facets 140 and the angular or rotational orientation of the safety shield relative to the trocar is such that junction lines or edges 162 between the trocar facets 140 are aligned with junction lines or edges 164 between the safety shield facets 160. The proximal end of each trocar facet 140 has a width substantially equal to the width of the distal end of each safety shield facet 160 aligned therewith, and the safety shield facets 160 continue at the same angle to the trocar longitudinal axis as the trocar facets 140 to terminate adjacent the distal peripheral edge 96 of portal sleeve 36. The distal end of each safety shield facet 160 can be scalloped or formed of curved segments to conform in radius and arc of curvature to the junctions 142 at a proximal end of each aligned trocar facet 140 to reduce gaps therebetween and further minimize tissue resistance during penetration. The trocar tip can have any number of facets arranged at regular or irregular positions; and, in accordance with the modification of the present invention of FIGS. 7 and 8, the safety shield will have a number of facets equal to and similarly arranged with the trocar facets to produce a continuous smooth profile during penetration.
Another modification of the distal end of the safety trocar penetrating instrument according to the present invention is illustrated in FIGS. 9-12 wherein the trocar tip has a plurality of flat facets 166 as described above; however, a depression in the form of a hole or recess 168 is formed in a proximal portion of each facet, as shown in FIGS. 9 and 11, and the facets 166 extend proximally to terminate adjacent the distal peripheral edge 96 of the portal sleeve 36. The safety shield 34 has a distal end 64 formed of a plurality of fingers 170 equal to the number of trocar facets 166, and each finger 170 is aligned with a trocar facet 166. The distal ends 172 of fingers 170 are rounded, and each finger 170 carries a smoothly curved, inwardly protruding nub 174, as shown in FIG. 12, having a configuration to be received in depressions 168. Accordingly, when the safety shield is moved to the retracted position during penetration of tissue as shown in FIG. 10, nubs 174 will be received in depressions 168 such that the fingers 170 form extensions of the trocar tip facets 166 providing a smooth profile presenting minimal resistance to tissue when a cavity wall is penetrated, and the hubs 174 received in the depressions 168 serve as a positive stop to limit proximal movement of the safety shield.
Another modification of the distal end of the safety trocar penetrating instrument according to the present invention is illustrated in FIGS. 13 and 14 wherein the trocar tip has a plurality of flat facets 166 as described above extending proximally to terminate adjacent the peripheral distal edge 96 of the portal sleeve 36. The safety shield 34 has a distal end 64 formed of a resilient, flexible material, preferably a rubber-like material such as silicone or latex, having a configuration to fit closely over the trocar tip. The safety shield distal end 64 defines a plurality of legs 176 equal to the number of trocar facets 166 with each leg 176 being aligned with a trocar facet 166. The legs 176 have lateral edges 177 joined at radiused ends 178 aligned with the distal peripheral edge 96 of the portal sleeve 36, as shown in FIG. 13, and tapering distally along the trocar facets 166 from the radiused ends 178 to an apex 180 forming a closed, blunt end disposed distally from the sharp trocar tip 46. In the extended position for the safety shield, the lateral edges 177 extend along the longitudinal axis of the trocar; and, when the safety shield is moved to the retracted position during penetration of tissue as shown in FIG. 14, the legs 176 will flex or spread outwardly from the longitudinal axis of the trocar and form a smooth profile with the trocar facilitating insertion in tissue of a cavity wall. By forming the safety shield distal end of a resilient material, the material itself can provide a bias for returning the safety shield to the extended position upon removal of force from tissue contact such that the structural arrangement at the proximal end of the safety trocar penetrating instrument can be simplified. By selecting the material forming the safety shield distal end to provide a limited degree of outward expansion for the legs, a positive stop can be obtained limiting proximal movement of the safety shield.
Another modification of the distal end of the safety trocar penetrating instrument according to the present invention is shown in FIGS. 15 and 16 wherein the trocar tip tapers from the neck 48 to the sharp trocar tip 46 to define a conical distal end, and a helical thread 180 extends along the conical trocar tip from the neck to the sharp tip. The safety shield distal end 64 includes tapering conical wall 148 having an inner surface disposed at the same angle relative to the longitudinal axis of the trocar 32 as the angle of the outer surface of shoulder 50 relative to the trocar longitudinal axis. Conical wall 148 joins cylindrical safety shield body 150 proximally and distally terminates at cylindrical inner surface 152 having an axial length substantially equal to the axial length of trocar neck 48. A helical thread 182 extends along the tapering conical wall 148 from cylindrical safety shield body 150 to a circular, peripheral distal edge 154 of the safety shield. Threads 180 and 182 are like handed extending in the same angular direction with the longitudinal axis of the trocar, and a proximal end of the thread 180 merges with a distal end of the thread 182 when the safety shield is in the retracted position shown in FIG. 16 with conical wall 148 in contact with shoulder 50 along the length thereof while inner surface 152 is in contact with neck 48. Accordingly, the distal end of the safety trocar penetrating instrument forms a smooth profile as well as a continuous thread extending along the trocar tip and the conical wall 148 of the safety shield facilitating insertion of the distal end of the safety trocar penetrating instrument in tissue forming a cavity wall. With the embodiment of FIGS. 15 and 16, the distal end of the safety trocar penetrating instrument is inserted in tissue with a rotational motion providing relatively slower penetration with greater control of penetration depth and is particularly advantageous for thoracic and brain surgery.
The modification of FIGS. 15 and 16 can also be utilized for particular procedures with no threads such that the conical tip cooperates with the conical wall of the safety shield to produce a smooth, continuous conical configuration during penetration. That is, when inner surface 152 is moved proximally to contact neck 48, conical wall 148 will be an extension of the conical trocar tip.
Another modification of the distal end of the safety trocar penetrating instrument is illustrated in FIGS. 17 and 18 wherein the trocar tip is the same as that described for FIGS. 13 and 14, and the safety shield distal end 64 is formed of a resilient, flexible, compressible and expandable material that can fold or wrinkle, the material defining a curved wall 184 having a predetermined configuration in the extended position shown in FIG. 17. The curved wall 184 gradually tapers distally toward the blunt, peripheral distal edge 154 of the safety shield 34 disposed distally from the sharp tip 46 of the trocar 32. During penetration of tissue of the cavity wall, safety shield 34 will be compressed proximally in the retracted position, as shown in FIG. 18, exposing the sharp trocar tip 46. By forming the curved wall 184 of minimal thickness, a smooth profile is maintained with the trocar facets 166 in the retracted position to minimize tissue resistance. By forming the safety shield distal end of a resilient material, the material itself can provide a bias for returning the safety shield to the extended position upon removal of force from tissue contact, and the amount of material compressed in the retracted position can act as a positive stop limiting proximal movement of the safety shield.
Another modification of the distal end of the safety trocar penetrating instrument is illustrated in FIGS. 19 and 20 wherein the trocar tip is the same as that shown in FIGS. 7 and 8, and the safety shield distal end 64 is formed of a resilient, flexible, compressible and expandable material configured to fit closely over the trocar tip and capable of folding or collapsing along fold lines 186 disposed concentrically with the trocar tip. In the retracted position shown in FIG. 20, the safety shield 34 is folded or collapsed along the fold lines 186 forming an accordion-like configuration with annular ribs 188. The amount of material compressed or folded in the retracted position can be selected such that the distal edge 154 of the safety shield is disposed adjacent junction 142 in the retracted position with the ribs 188 defining gradually increasing diameters from the distal edge 154 to merge with the distal peripheral edge 96 of the portal sleeve along the same angle as the trocar facets 140 with the trocar longitudinal axis to form a smooth profile facilitating penetration in tissue of a cavity wall. By forming the safety shield distal end of a resilient material, the material itself can provide a bias for returning the safety shield to the extended position upon removal of force from tissue contact, and the amount of material compressed in the retracted position can act as a positive stop limiting proximal movement of the safety shield.
A modification of a locking mechanism for the safety trocar penetrating instrument of the present invention is shown in FIG. 22 wherein the trocar unit including trocar 32, safety shield 34 and hub 38 is illustrated. The hub 38 is adapted to be coupled with housing 40 as described in connection with FIG. 1 and includes front wall 58 having opening 68 therein receiving the tubular body 66 of the safety shield 34. Tubular body 66 terminates at proximal end 70 disposed within the hub and carrying an annular flange 190 which can be secured on proximal end 70 or formed as an integral part thereof. A slot 192 is formed in tubular body 66 and extends longitudinally from flange 190 in a distal direction in parallel alignment with the trocar longitudinal axis. Cylindrical body 52 of trocar 32 has an opening 196 formed therein adjacent a proximal face of flange 190. Cylindrical body 52 terminates at proximal end 54, and a lumen 197 is formed in cylindrical body 52. Proximal end 54 is secured in a central opening in an annular member 198 releasably received, for example via a threaded connection, in an open proximal end 200 of hub 38. While the trocar body 52 and member 198 are shown as being made as one piece, the body 52 and member 198 can be made as separate parts secured together in any desirable manner, such as by welding, cement or threads for example. A positioning rod 199 has ends secured, respectively, to front wall 58 and member 198, the rod 199 passing through an aperture in flange 190. A helical spring 202 is disposed over rod 199 and is mounted in compression between member 198 and flange 190 to bias the safety shield to the extended position with the rod 199 preventing relative rotational movement of the safety shield and trocar. Alternatively, spring 202 and rod 199 may be replaced with a telescoping-type spring having ends secured, respectively, to wall 58 and member 198, or any other spring suitable for biasing the safety shield to the extended position. An end cap 206 has a lip 208 extending around the periphery of member 198 such that the end cap can move longitudinally, axially relative to hub 38. A hollow stem 210 extends centrally from end cap 206 to be slidably received in proximal end 54 of trocar 32, and a helical spring surrounds stem 210 and is mounted in compression between end cap 206 and member 198 to bias the end cap proximally relative to the hub. A locking spring 212 illustrated in FIG. 21 has a curved end 214 secured within trocar 32 and joined to a body 216 bifurcated to form a proximally extending deactuating arm 218 and a substantially transversely extending abutment arm 220, the abutment arm passing through opening 196 in trocar 32 and having a curved head 222 terminating at a distally extending finger 224. A deactuator or release arm 226 is mounted in stem 210 and has a protrusion 228 positioned to engage arm 220 of the locking spring.
In operation, the locking mechanism is normally in the condition shown in FIG. 22 with abutment arm 220 passing through opening 196 and finger 224 disposed above cylindrical body 52 at a position to engage the proximal face of flange 190 such that the safety shield 34 cannot move proximally and is, therefore, locked in the extended position protecting the sharp tip of the trocar 32. When tissue of an anatomical cavity wall is to be penetrated, the hub 38 and the housing 40 are gripped in one hand with the palm of the hand engaging end cap 206; and, when the hand is squeezed, end cap 206 is moved distally along hub 38 against the bias of spring 211 causing the protrusion 228 of deactuator 226 to move deactuating arm 218 distally buckling the locking spring 212 and causing the abutment arm 220 to move within the opening 196 in cylindrical body 52 and out of the path of movement of flange 190 as shown in FIG. 23. Accordingly, the safety shield is now in an unlocked state and able to move proximally from the extended position.
When the safety trocar penetrating instrument is forced into the tissue, the safety shield will move proximally against the force of spring 202 and slide over the curved head 222 of the abutment arm of the locking spring causing the locking spring to move further into the opening 196 thereby freeing deactuating arm 218 from the protrusion 228 on the deactuator 226 as shown in FIG. 24. Once the safety shield has moved to the retracted position, the flange 190 will have passed proximally beyond the opening 196 and out of engagement with abutment arm 220, and the slot 192 will be vertically aligned with the opening 196 thereby allowing the abutment arm 220 to return to its normal position with deactuating arm 218 overlapping protrusion 228 as shown in FIG. 25. When an anatomical cavity has been penetrated such that the force of tissue against the distal end of the safety shield is removed, the safety shield will return to the extended position under the biasing force from spring 202, camming over the curved head 222 of abutment arm 220 with the abutment arm then returning to the locking position as shown in FIG. 26. At this time, the end cap 206 remains in the compressed state from gripping by the hand such that the deactuator 226 cannot release the locking spring, and the safety shield automatically locks in the extended position. If it is desired to release the safety shield for further use of the trocar, the end cap must be released to return to the position illustrated in FIG. 22 whereupon squeezing the end cap again will release the safety shield for further penetration of tissue if desired.
Inasmuch as the present invention is subject to many variations, modifications and changes in detail, it is intended that the subject matter discussed above and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense.

Claims (4)

What is claimed is:
1. A safety trocar penetrating instrument comprising
an elongate, tubular portal sleeve having a distal end and a proximal end;
a housing coupled with said proximal end of said portal sleeve and having a valve therein for controlling fluid flow through said housing and said portal sleeve and for allowing passage of instruments therethrough;
a trocar disposed within said portal sleeve and having a longitudinal axis, a proximal end and a solid distal end terminating at a sharp tip beyond said distal end of said portal sleeve for penetrating tissue;
a safety shield disposed between said portal sleeve and said trocar and having a proximal end and a distal end and being movable between an extended position with said safety shield distal end protruding distally of said trocar tip and a retracted position with said safety shield distal end disposed proximally of said trocar tip to expose said trocar tip;
a hub abutting said housing for receiving said proximal end of said trocar said trocar passing through said valve in said housing;
bias means for biasing said safety shield toward said extended position and for permitting said safety shield to move proximally to said retracted position in response to a proximally directed force applied to said safety shield distal end, said bias means returning said safety shield to said extended position when the force applied to said safety shield distal end is removed; and
stop means for limiting proximal movement of said safety shield;
wherein said safety shield distal end is resilient to permit said safety shield distal end to be moved to said retracted position in response to forces from contact of said safety shield distal end with tissue and to permit said safety shield distal end to resiliently return to said extended position upon removal of the forces from tissue contact.
2. A safety trocar penetrating instrument as recited in claim 1 wherein said stop means includes a portion of said safety shield distal end configured to be compressed in said retracted position.
3. A safety trocar penetrating instrument as recited in claim 2 wherein said safety shield distal end has an accordion-like, folded configuration in said retracted position.
4. A safety trocar penetrating instrument comprising
an elongate, tubular portal sleeve having a distal end and a proximal end;
a housing coupled with said proximal end of said portal sleeve and having a valve therein for controlling fluid flow through said housing and said portal sleeve and for allowing passage of instruments therethrough;
a trocar disposed within said portal sleeve and having a longitudinal axis, a proximal end and a solid distal end terminating at a sharp tip beyond said distal end of said portal sleeve for penetrating tissue;
a hub abutting said housing for receiving said proximal end of said trocar, said trocar passing through said valve in said housing; and
a safety shield disposed between said portal sleeve and said trocar and being movable between an extended position with said safety shield distal end protruding distally of said trocar tip and a retracted position with said safety shield distal end disposed proximally of said trocar tip to expose said trocar tip, said safety shield being made of resilient material for permitting said safety shield to move proximally to said retracted position in response to a proximally directed force applied to said safety shield distal end and for returning said safety shield to said extended position when the force applied to said safety shield distal end is removed.
US08/760,232 1992-01-06 1996-12-04 Safety trocar penetrating instrument with safety shield having resilient distal end Expired - Fee Related US5688286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/760,232 US5688286A (en) 1992-01-06 1996-12-04 Safety trocar penetrating instrument with safety shield having resilient distal end

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/817,113 US5350393A (en) 1992-01-06 1992-01-06 Safety trocar penetrating instrument
US08/313,655 US5591190A (en) 1992-01-06 1994-09-26 Safety trocar penetrating instrument
US08/760,232 US5688286A (en) 1992-01-06 1996-12-04 Safety trocar penetrating instrument with safety shield having resilient distal end

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/313,655 Division US5591190A (en) 1992-01-06 1994-09-26 Safety trocar penetrating instrument

Publications (1)

Publication Number Publication Date
US5688286A true US5688286A (en) 1997-11-18

Family

ID=25222370

Family Applications (7)

Application Number Title Priority Date Filing Date
US07/817,113 Expired - Fee Related US5350393A (en) 1990-12-18 1992-01-06 Safety trocar penetrating instrument
US08/313,655 Expired - Fee Related US5591190A (en) 1992-01-06 1994-09-26 Safety trocar penetrating instrument
US08/760,232 Expired - Fee Related US5688286A (en) 1992-01-06 1996-12-04 Safety trocar penetrating instrument with safety shield having resilient distal end
US08/759,922 Expired - Fee Related US5730755A (en) 1992-01-06 1996-12-04 Safety trocar penetrating instrument with mating safety shield nub and trocar depression
US08/760,231 Expired - Fee Related US5676682A (en) 1992-01-06 1996-12-04 Safety trocar penetrating instrument with conical and/or threaded trocar and safety shield
US08/759,923 Expired - Fee Related US5676681A (en) 1992-01-06 1996-12-04 Safety trocar penetrating instrument with safety shield having resilient legs
US08/760,233 Expired - Fee Related US5676683A (en) 1992-01-06 1996-12-04 Safety trocar penetrating instrument with safety shield having faceted distal end

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US07/817,113 Expired - Fee Related US5350393A (en) 1990-12-18 1992-01-06 Safety trocar penetrating instrument
US08/313,655 Expired - Fee Related US5591190A (en) 1992-01-06 1994-09-26 Safety trocar penetrating instrument

Family Applications After (4)

Application Number Title Priority Date Filing Date
US08/759,922 Expired - Fee Related US5730755A (en) 1992-01-06 1996-12-04 Safety trocar penetrating instrument with mating safety shield nub and trocar depression
US08/760,231 Expired - Fee Related US5676682A (en) 1992-01-06 1996-12-04 Safety trocar penetrating instrument with conical and/or threaded trocar and safety shield
US08/759,923 Expired - Fee Related US5676681A (en) 1992-01-06 1996-12-04 Safety trocar penetrating instrument with safety shield having resilient legs
US08/760,233 Expired - Fee Related US5676683A (en) 1992-01-06 1996-12-04 Safety trocar penetrating instrument with safety shield having faceted distal end

Country Status (1)

Country Link
US (7) US5350393A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022367A (en) * 1997-06-18 2000-02-08 United States Surgical Surgical apparatus for forming a hole in a blood vessel
USD426635S (en) * 1998-08-18 2000-06-13 Genicon, Lc Combination trocar, cannula, and valve
US6106539A (en) * 1998-04-15 2000-08-22 Neosurg Technologies Trocar with removable, replaceable tip
USD443360S1 (en) 2000-03-22 2001-06-05 Dexterity Surgical Inc. Distal end of obturator for a trocar
USD449887S1 (en) 2000-01-26 2001-10-30 Genicon Lc Combined obturator, cannula and valve assembly
US6340358B1 (en) 1999-02-23 2002-01-22 Neosurg Technologies, Inc. Trocar
US20020198554A1 (en) * 2001-03-14 2002-12-26 Whitman Michael P. Trocar device
US20040097958A1 (en) * 2002-07-31 2004-05-20 Whitman Michael P. Orifice introducer device
US20040143281A1 (en) * 2001-05-11 2004-07-22 Hart Charles C. Traction trocar apparatus and method
US6814743B2 (en) 2001-12-26 2004-11-09 Origin Medsystems, Inc. Temporary seal and method for facilitating anastomosis
US20060015006A1 (en) * 2004-06-01 2006-01-19 Laurence Bernard H System and method for accessing a body cavity
US7338494B2 (en) 2003-08-19 2008-03-04 Synthes (U.S.A.) Spring-loaded awl
US7479150B2 (en) * 2003-09-19 2009-01-20 Tyco Healthcare Group Lp Trocar insertion apparatus
US7485092B1 (en) 1998-08-12 2009-02-03 Maquet Cardiovascular Llc Vessel harvesting apparatus and method
US7695470B1 (en) 1998-08-12 2010-04-13 Maquet Cardiovascular Llc Integrated vessel ligator and transector
US7938842B1 (en) 1998-08-12 2011-05-10 Maquet Cardiovascular Llc Tissue dissector apparatus
US20120265217A1 (en) * 2008-03-18 2012-10-18 Drews Michael J Biological unit removal tools with movable retention member
US8486024B2 (en) 2011-04-27 2013-07-16 Covidien Lp Safety IV catheter assemblies
US8628497B2 (en) 2011-09-26 2014-01-14 Covidien Lp Safety catheter
US8715250B2 (en) 2011-09-26 2014-05-06 Covidien Lp Safety catheter and needle assembly
US8834422B2 (en) 2011-10-14 2014-09-16 Covidien Lp Vascular access assembly and safety device
US8939938B2 (en) 2006-10-12 2015-01-27 Covidien Lp Needle tip protector
US9186177B2 (en) 2001-03-14 2015-11-17 Covidien Lp Trocar device
US10299770B2 (en) 2006-06-01 2019-05-28 Maquet Cardiovascular Llc Endoscopic vessel harvesting system components
US10507012B2 (en) 2000-11-17 2019-12-17 Maquet Cardiovascular Llc Vein harvesting system and method
CN111317887A (en) * 2020-02-14 2020-06-23 微泰医疗器械(杭州)有限公司 Remaining needle protection piece, medicine storage device needle head protection piece and needle head protection assembly

Families Citing this family (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120437A (en) * 1988-07-22 2000-09-19 Inbae Yoon Methods for creating spaces at obstructed sites endoscopically and methods therefor
US5395342A (en) 1990-07-26 1995-03-07 Yoon; Inbae Endoscopic portal
US5645557A (en) * 1990-12-18 1997-07-08 Yoon; Inbae Safety penetrating instrument with triggered penetrating member retraction and safety member protrusion
US5645556A (en) * 1990-12-18 1997-07-08 Yoon; Inbae Safety penetrating instrument with triggered penetrating member retraction and single or multiple safety member protrusion
US5573511A (en) * 1991-11-27 1996-11-12 Yoon; Inbae Retractable safety penetrating instrument with safety probe
US5665072A (en) * 1991-11-27 1997-09-09 Yoon; Inbae Safety needle instrument with movable cannula and needle
US5584849A (en) * 1991-11-27 1996-12-17 Yoon; Inbae Retractable safety penetrating instrument with safety shield and multiple triggering and/or moving components
US5779680A (en) * 1991-11-27 1998-07-14 Yoon; Inbae Retractable safety needle instrument with movable safety member
US5713870A (en) * 1991-11-27 1998-02-03 Yoon; Inbae Retractable safety penetrating instrument with laterally extendable spring strip
US5603719A (en) * 1991-11-27 1997-02-18 Yoon; Inbae Retractable safety trocar with multiple triggering and/or moving components
US6224619B1 (en) 1991-12-17 2001-05-01 Heartport, Inc. Blood vessel occlusion trocar having size and shape varying insertion body
US5993470A (en) * 1992-09-15 1999-11-30 Yoon; Inbae Universal handle for medical instruments
JPH06217988A (en) * 1993-01-26 1994-08-09 Terumo Corp Blood vessel sticking instrument
US5458640A (en) * 1993-01-29 1995-10-17 Gerrone; Carmen J. Cannula valve and seal system
US5571134A (en) * 1993-06-24 1996-11-05 Yoon; Inbae Safety penetrating instrument with penetrating member and safety member moving during penetration and triggered safety member protrusion
US5575804A (en) * 1993-06-24 1996-11-19 Yoon; Inbae Safety penetrating instrument with cannula moving during penetration and triggered safety member protrusion
US5573545A (en) * 1993-06-24 1996-11-12 Yoon; Inbae Safety penetrating instrument with safety member and cannula moving during penetration and triggered cannula and/or safety member protrusion
US5569289A (en) * 1993-06-24 1996-10-29 Yoon; Inbae Safety penetrating instrument with penetrating member and cannula moving during penetration and triggered safety member protusion
US5584848A (en) * 1993-06-24 1996-12-17 Yoon; Inbae Safety penetrating instrument with penetrating member, safety member and cannula moving during penetration and triggered safety member protrusion
US5607439A (en) * 1993-06-24 1997-03-04 Yoon; Inbae Safety penetrating instrument with penetrating member moving during penetration and triggered safety member protrusion
AU7727194A (en) * 1993-09-07 1995-03-27 Invamed, Inc. Safety shielded, reusable trocar
SE9304261D0 (en) * 1993-12-22 1993-12-22 Radi Medical Systems Biopsy sampling device
DE4401237C2 (en) * 1994-01-18 1997-06-05 Ruesch Willy Ag Trocar device
US5545150A (en) * 1994-05-06 1996-08-13 Endoscopic Concepts, Inc. Trocar
AU699844B2 (en) * 1994-08-25 1998-12-17 Ethicon Endo-Surgery, Inc. Safety trocar
JP3614943B2 (en) * 1994-09-29 2005-01-26 オリンパス株式会社 Endoscopic puncture needle
GB2295319A (en) * 1994-10-14 1996-05-29 Microsurgical Equipment Ltd Guarded cannula for a trocar system
GB2297488A (en) * 1995-02-02 1996-08-07 Microsurgical Equipment Ltd Trocar obturator guard
WO1996023536A1 (en) * 1995-02-03 1996-08-08 Inbae Yoon Cannula with distal end valve
US5643248A (en) * 1995-02-07 1997-07-01 Yoon; Inbae Medical instrument with force limiting mechanism
AT824U1 (en) * 1995-08-23 1996-06-25 Golser Karl Dr WORKING CANNULAS FOR ARTHROSCOPY
CA2184958A1 (en) * 1995-09-22 1997-03-23 John S. Gentelia Improved trocar-cannulla device
US5709671A (en) * 1995-10-16 1998-01-20 Ethicon Endo-Surgery, Inc. Trocar having an improved tip configuration
US5766220A (en) * 1996-02-29 1998-06-16 Moenning; Stephen P. Apparatus and method for protecting a port site opening in the wall of a body cavity
US5941898A (en) * 1996-02-29 1999-08-24 Stephen P. Moenning Apparatus and method for moving sealing members of a medical apparatus between a first orientation and a second orientation
US6451041B1 (en) 1996-02-29 2002-09-17 Stephen P. Moenning Apparatus for protecting a port site opening in the wall of a body cavity and reducing electrosurgical injuries
US5951588A (en) * 1996-02-29 1999-09-14 Moenning; Stephen P. Apparatus and method for protecting a port site opening in the wall of a body cavity
US5817062A (en) * 1996-03-12 1998-10-06 Heartport, Inc. Trocar
US5814026A (en) * 1996-03-19 1998-09-29 Yoon; Inbae Endoscopic portal having a universal seal and methods for introducing instruments therethrough
US6228058B1 (en) 1997-04-03 2001-05-08 Core Dynamics, Inc. Sleeve trocar with penetration indicator
US5906595A (en) * 1997-04-25 1999-05-25 Ethicon Endo-Surgery, Inc. Trocar having protector with flexible end and improved seal assembly
US6017356A (en) * 1997-09-19 2000-01-25 Ethicon Endo-Surgery Inc. Method for using a trocar for penetration and skin incision
US5904699A (en) * 1997-09-19 1999-05-18 Ethicon Endo-Surgery, Inc. Trocar for penetration and skin incision
EP0955070B1 (en) * 1997-10-01 2004-03-03 Dr. Japan Co. Ltd. Medical anesthetic needle
US5868667A (en) * 1998-03-27 1999-02-09 Ethicon, Inc. Pressure-equalizing cap
US6086543A (en) * 1998-06-24 2000-07-11 Rubicor Medical, Inc. Fine needle and core biopsy devices and methods
US6270472B1 (en) 1998-12-29 2001-08-07 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus and a method for automatically introducing implants into soft tissue with adjustable spacing
US6210397B1 (en) 1999-01-13 2001-04-03 A-Med Systems, Inc. Sealing cannula device
AU2315500A (en) * 1999-01-28 2000-08-18 Ansamed Limited Catheter with an expandable end portion
US6527704B1 (en) 1999-03-10 2003-03-04 Stryker Corporation Endoscopic camera system integrated with a trocar sleeve
IL128989A0 (en) * 1999-03-15 2000-02-17 Popov Sergey Safety trocar assembly
MXPA01013402A (en) 1999-06-22 2004-03-10 E Blanco Ernesto Safety trocar with progressive cutting tip guards and gas jet tissue deflector.
US6436119B1 (en) * 1999-09-30 2002-08-20 Raymedica, Inc. Adjustable surgical dilator
US6666846B1 (en) * 1999-11-12 2003-12-23 Edwards Lifesciences Corporation Medical device introducer and obturator and methods of use
US6669708B1 (en) * 1999-12-09 2003-12-30 Michael Nissenbaum Devices, systems and methods for creating sutureless on-demand vascular anastomoses and hollow organ communication channels
US6319266B1 (en) * 2000-03-16 2001-11-20 United States Surgical Corporation Trocar system and method of use
US6884253B1 (en) 2000-05-16 2005-04-26 Taut, Inc. Penetrating tip for trocar assembly
EP1284761B1 (en) 2000-05-16 2015-07-01 Teleflex Medical Incorporated Obturator comprising a tip end having an elliptical cross-section
US8398666B2 (en) * 2000-05-16 2013-03-19 Teleflex Medical Incorporated Penetrating tip for trocar assembly
DE10037421C2 (en) * 2000-07-21 2003-06-26 Leonid Sverdlov Device for minimally invasive access to the organs of the abdominal cavity
JP4860888B2 (en) * 2000-08-08 2012-01-25 タイコ ヘルスケア グループ リミテッド パートナーシップ Molded trocar latch
WO2002047562A1 (en) * 2000-12-12 2002-06-20 Olympus Optical Co., Ltd. Trocar and trocar system
US6835201B2 (en) * 2001-03-15 2004-12-28 Neosurg Technologies, Inc. Trocar
US6766799B2 (en) * 2001-04-16 2004-07-27 Advanced Inhalation Research, Inc. Inhalation device
US6989003B2 (en) * 2001-08-31 2006-01-24 Conmed Corporation Obturator and cannula for a trocar adapted for ease of insertion and removal
US6830578B2 (en) * 2001-11-26 2004-12-14 Neosurg Technologies, Inc. Trocar
AU2006201285B8 (en) * 2002-03-20 2008-05-29 Alkermes, Inc. Puncturing means for use in an inhalation device
GB0208667D0 (en) * 2002-04-16 2002-05-29 Atlantech Medical Devices Ltd A transverse suspension device
US7081123B2 (en) * 2002-06-18 2006-07-25 Musculoskeletal Transplant Foundation Bone marrow aspiration instrument
US20050159793A1 (en) * 2002-07-02 2005-07-21 Jackson Streeter Methods for treating macular degeneration
US20040093000A1 (en) * 2002-10-23 2004-05-13 Stephen Kerr Direct vision port site dissector
US7056329B2 (en) * 2002-10-23 2006-06-06 Intellimed Surgical Solutions, Llc Laparoscopic direct vision dissecting port
US7186249B1 (en) * 2003-01-16 2007-03-06 Alfiero Balzano Thermally conductive surgical probe
US20040143218A1 (en) * 2003-01-21 2004-07-22 Animas Corporation Needle having optimum grind for reduced insertion force
AU2003902258A0 (en) * 2003-05-09 2003-05-29 Daltray Pty Ltd Improved sigmoidoscope with integral obturator
US20050010178A1 (en) * 2003-07-07 2005-01-13 Victor Katz Expandable penetrating needle and method of use
US6960164B2 (en) * 2003-08-01 2005-11-01 Neosurg Technologies, Inc. Obturator tip for a trocar
US20050040065A1 (en) * 2003-08-22 2005-02-24 O'heeron Peter T. Medical procedure kit
WO2005037079A2 (en) * 2003-10-17 2005-04-28 Tyco Healthcare Group Lp Expandible surgical access device
US7331971B2 (en) 2003-10-31 2008-02-19 Olympus Corporation Living-body tissue removing apparatus
US20050149094A1 (en) * 2003-10-31 2005-07-07 Olympus Corporation Trocar
US7662164B2 (en) 2003-10-31 2010-02-16 Olympus Corporation Living-body tissue removing apparatus
US8105231B2 (en) * 2003-10-31 2012-01-31 Olympus Corporation Living-body tissue removing apparatus
EP1729649B1 (en) 2004-01-16 2014-06-25 Arthrocare Corporation Bone harvesting device and method
US7320694B2 (en) * 2004-03-11 2008-01-22 Coopersurgical, Inc. Obturator tip
US20050203467A1 (en) * 2004-03-15 2005-09-15 O'heeron Peter T. Trocar seal
US20050209608A1 (en) * 2004-03-22 2005-09-22 O'heeron Peter T Trocar seal
US20050209607A1 (en) * 2004-03-22 2005-09-22 John Lipchitz Medical cannula assembly
US20050251063A1 (en) * 2004-05-07 2005-11-10 Raghuveer Basude Safety device for sampling tissue
US20050288634A1 (en) * 2004-06-28 2005-12-29 O'heeron Peter T Universal seal
US7419496B2 (en) * 2004-08-03 2008-09-02 Staudner Rupert A Trocar with retractable cutting surface
JP4986987B2 (en) * 2005-03-08 2012-07-25 バイタリテック インターナショナル、インコーポレイテッド Puncture safety trocar
US7591850B2 (en) * 2005-04-01 2009-09-22 Arthrocare Corporation Surgical methods for anchoring and implanting tissues
US7842042B2 (en) * 2005-05-16 2010-11-30 Arthrocare Corporation Convergent tunnel guide apparatus and method
US20070005087A1 (en) * 2005-06-30 2007-01-04 Smith Robert C Thin bladed obturator with curved surfaces
US20070225659A1 (en) * 2006-03-21 2007-09-27 Cook Incorporated Introducer sheath having frangible tip
US8728037B2 (en) 2006-04-18 2014-05-20 Ethicon Endo-Surgery, Inc. Pleated trocar seal
US7789861B2 (en) * 2006-04-18 2010-09-07 Ethicon Endo-Surgery, Inc. Pleated trocar seal
US8801741B2 (en) * 2006-05-03 2014-08-12 Applied Medical Resources Corporation Flat blade shielded obturator
US8657843B2 (en) 2006-05-03 2014-02-25 Applied Medical Resources Corporation Shield lockout for bladed obturator and trocars
US9113953B2 (en) * 2006-07-06 2015-08-25 Covidien Lp Two-mode trocar assembly
US7686838B2 (en) 2006-11-09 2010-03-30 Arthrocare Corporation External bullet anchor apparatus and method for use in surgical repair of ligament or tendon
WO2008070588A2 (en) * 2006-12-01 2008-06-12 The Board Of Trustees Of The Leland Stanford Junior University Devices and methods for accessing the epidural space
CA2682696A1 (en) 2007-04-18 2008-10-30 Tyco Healthcare Group Lp Trocar assembly with obturator dissector
AU2008202266B2 (en) * 2007-06-01 2013-09-12 Covidien Lp Obturator tips
US20080319467A1 (en) * 2007-06-22 2008-12-25 Thomas Wenchell Thin bladed obturator
AU2008229774B2 (en) 2007-10-05 2013-05-16 Covidien Lp Two-mode bladeless trocar assembly
US20090216195A1 (en) * 2008-02-27 2009-08-27 Ralph Zipper Surgical Needle or Introducer with Precise Penetrator
DE102008024900B4 (en) * 2008-05-23 2010-06-10 Griesser-Aleksic, Aleksandar, Dr. Torax trocar
US8911463B2 (en) * 2008-06-10 2014-12-16 Covidien Lp Bladed/bladeless obturator for use in a surgical trocar assembly
US20100081994A1 (en) * 2008-10-01 2010-04-01 David Leslie Zisow Self Retaining Laparoscopic Trocar System-Zisow Trocar Sleeve System
US8628468B2 (en) 2008-10-01 2014-01-14 David L. Zisow Device for anchoring a trocar
US20100084453A1 (en) * 2008-10-03 2010-04-08 Changzhou Waston Medical Appliance Co., Ltd Circular stapler
JP5433227B2 (en) * 2008-12-26 2014-03-05 マニー株式会社 Medical knife
US20100256483A1 (en) * 2009-04-03 2010-10-07 Insite Medical Technologies, Inc. Devices and methods for tissue navigation
US8343035B2 (en) * 2009-04-20 2013-01-01 Spine View, Inc. Dilator with direct visualization
US20110118838A1 (en) * 2009-11-16 2011-05-19 George Delli-Santi Graft pulley and methods of use
US8449612B2 (en) * 2009-11-16 2013-05-28 Arthrocare Corporation Graft pulley and methods of use
US8979883B2 (en) 2009-12-17 2015-03-17 Covidien Lp Obturator tip
US9226774B2 (en) * 2009-12-17 2016-01-05 Covidien Lp Visual obturator with tip openings
US8602777B2 (en) * 2011-05-13 2013-12-10 Propel Orthodontics, Llc Method and device for causing tooth movement
KR101468007B1 (en) * 2011-07-14 2014-12-03 주식회사 모바수 Instrument for Minimally Invasive Surgery That Can Selectively Cover Its End Effector
US9131959B2 (en) 2011-08-22 2015-09-15 Cook Medical Technologies Llc Splittable dilator delivery system
KR20140109924A (en) 2011-12-03 2014-09-16 아우로보로스 메디컬, 아이엔씨 Safe cutting heads and systems for fast removal of a target tissue
EP2849656B1 (en) 2012-05-14 2017-10-04 Synthes GmbH Bone access instrument
US9687323B2 (en) 2012-06-07 2017-06-27 Propel Orthodontics, Llc Temporary anchorage device with external plate
EP2964292A4 (en) * 2013-03-05 2016-08-24 Ronny Kafiluddi Compound needle
WO2015009763A1 (en) 2013-07-19 2015-01-22 Ouroboros Medical, Inc. An anti-clogging device for a vacuum-assisted, tissue removal system
US10154904B2 (en) * 2014-04-28 2018-12-18 Edwards Lifesciences Corporation Intravascular introducer devices
USD761963S1 (en) 2014-07-29 2016-07-19 Propel Orthodontics, Llc Microperforation dental device
WO2016144834A1 (en) * 2015-03-06 2016-09-15 Transmed7, Llc Devices and methods for soft tissue and endovascular material removal
WO2017040264A1 (en) * 2015-08-28 2017-03-09 Heartware, Inc. Dilation delivery system for a medical device
US10555814B2 (en) 2015-11-17 2020-02-11 Edwards Lifesciences Corporation Ultrasound probe for cardiac treatment
US10335195B2 (en) 2015-11-19 2019-07-02 Summit Access, LLC Percutaneous access systems and methods
EP3376975B1 (en) * 2015-11-19 2022-04-20 Summit Access, LLC Percutaneous access systems
PL229774B1 (en) * 2015-12-17 2018-08-31 Innovations For Heart And Vessels Spolka Z Ograniczona Odpowiedzialnoscia Device for obtaining the intracardiac access
CN106419934B (en) * 2016-11-08 2023-12-12 苏州施莱医疗器械有限公司 Disposable hemostix for preventing secondary puncture
CN106510810B (en) * 2016-12-09 2023-05-26 成都五义医疗科技有限公司 Button-driven automatic rotation protection puncture needle
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
KR102617860B1 (en) * 2018-04-11 2023-12-27 보스톤 싸이엔티픽 싸이메드 인코포레이티드 Devices and methods for extending a working channel
WO2019212626A1 (en) 2018-04-30 2019-11-07 Boston Scientific Scimed, Inc. Ramped biopsy needle device
US11786271B2 (en) * 2019-12-29 2023-10-17 Biosense Webster (Israel) Ltd. Trocar with modular obturator head
CN113520549A (en) * 2021-07-30 2021-10-22 北京迈迪斯医疗技术有限公司 Puncture instrument
CN113456191A (en) * 2021-07-30 2021-10-01 北京迈迪斯医疗技术有限公司 Puncture instrument

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1248492A (en) * 1917-04-10 1917-12-04 A D Haskell Paracentesis needle or trocar.
US4331138A (en) * 1979-03-21 1982-05-25 Jessen John W Method of performing an emergency cricothyrotomy
US4535773A (en) * 1982-03-26 1985-08-20 Inbae Yoon Safety puncturing instrument and method
US4601710A (en) * 1983-08-24 1986-07-22 Endotherapeutics Corporation Trocar assembly
US4654030A (en) * 1986-02-24 1987-03-31 Endotherapeutics Trocar
US4902280A (en) * 1986-10-17 1990-02-20 United States Surgical Corporation Trocar
US4931042A (en) * 1987-10-26 1990-06-05 Endotherapeutics Trocar assembly with improved latch
US4943280A (en) * 1987-12-31 1990-07-24 United States Surgical Corporaiton Self-seating flapper valve for an insufflation cannula assembly
US5030206A (en) * 1986-10-17 1991-07-09 United States Surgical Corporation Trocar
US5053016A (en) * 1987-12-31 1991-10-01 United States Surgical Corporation Valve seat for an insufflation cannula assembly
US5066288A (en) * 1988-07-06 1991-11-19 Ethicon, Inc. Safety trocar
US5104382A (en) * 1991-01-15 1992-04-14 Ethicon, Inc. Trocar
US5112321A (en) * 1991-06-07 1992-05-12 Richard Wolf Gmbh Trocar sleeve having manual closure
US5330497A (en) * 1989-11-22 1994-07-19 Dexide, Inc. Locking trocar sleeve

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023559A (en) * 1975-01-28 1977-05-17 Smith & Nephew (Australia) Pty. Limited Sampling catheter device
US4191191A (en) * 1978-02-13 1980-03-04 Auburn Robert M Laproscopic trocar
IT1240639B (en) * 1990-05-04 1993-12-17 Francesco Pianetti TREQUARTI NEEDLE FOR THREADED-CONICAL POINTED LAPAROSCOPY
DE4035146A1 (en) * 1990-11-06 1992-05-07 Riek Siegfried INSTRUMENT FOR PENETRATING BODY TISSUE

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1248492A (en) * 1917-04-10 1917-12-04 A D Haskell Paracentesis needle or trocar.
US4331138A (en) * 1979-03-21 1982-05-25 Jessen John W Method of performing an emergency cricothyrotomy
US4535773A (en) * 1982-03-26 1985-08-20 Inbae Yoon Safety puncturing instrument and method
US4601710A (en) * 1983-08-24 1986-07-22 Endotherapeutics Corporation Trocar assembly
US4601710B1 (en) * 1983-08-24 1998-05-05 United States Surgical Corp Trocar assembly
US4654030A (en) * 1986-02-24 1987-03-31 Endotherapeutics Trocar
US5030206A (en) * 1986-10-17 1991-07-09 United States Surgical Corporation Trocar
US4902280A (en) * 1986-10-17 1990-02-20 United States Surgical Corporation Trocar
US4931042A (en) * 1987-10-26 1990-06-05 Endotherapeutics Trocar assembly with improved latch
US5053016A (en) * 1987-12-31 1991-10-01 United States Surgical Corporation Valve seat for an insufflation cannula assembly
US4943280A (en) * 1987-12-31 1990-07-24 United States Surgical Corporaiton Self-seating flapper valve for an insufflation cannula assembly
US5066288A (en) * 1988-07-06 1991-11-19 Ethicon, Inc. Safety trocar
US5330497A (en) * 1989-11-22 1994-07-19 Dexide, Inc. Locking trocar sleeve
US5104382A (en) * 1991-01-15 1992-04-14 Ethicon, Inc. Trocar
US5112321A (en) * 1991-06-07 1992-05-12 Richard Wolf Gmbh Trocar sleeve having manual closure

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022367A (en) * 1997-06-18 2000-02-08 United States Surgical Surgical apparatus for forming a hole in a blood vessel
US6544277B1 (en) 1998-04-15 2003-04-08 Neosurg Technologies, Inc. Obturator assembly
US6106539A (en) * 1998-04-15 2000-08-22 Neosurg Technologies Trocar with removable, replaceable tip
US8986335B2 (en) 1998-08-12 2015-03-24 Maquet Cardiovascular Llc Tissue dissector apparatus and method
US8460331B2 (en) 1998-08-12 2013-06-11 Maquet Cardiovascular, Llc Tissue dissector apparatus and method
US7485092B1 (en) 1998-08-12 2009-02-03 Maquet Cardiovascular Llc Vessel harvesting apparatus and method
US20110202082A1 (en) * 1998-08-12 2011-08-18 Maquet Cardiovascular, Llc Tissue dissector apparatus and method
US7938842B1 (en) 1998-08-12 2011-05-10 Maquet Cardiovascular Llc Tissue dissector apparatus
US7695470B1 (en) 1998-08-12 2010-04-13 Maquet Cardiovascular Llc Integrated vessel ligator and transector
US9730782B2 (en) 1998-08-12 2017-08-15 Maquet Cardiovascular Llc Vessel harvester
US9700398B2 (en) 1998-08-12 2017-07-11 Maquet Cardiovascular Llc Vessel harvester
US8075559B2 (en) 1998-08-12 2011-12-13 Maquet Cardiovascular, Llc Apparatus and method for integrated vessel ligator and transector
US20100234843A1 (en) * 1998-08-12 2010-09-16 Maquet Cardiovascular Llc Apparatus and method for integrated vessel ligator and transector
USD426635S (en) * 1998-08-18 2000-06-13 Genicon, Lc Combination trocar, cannula, and valve
US6340358B1 (en) 1999-02-23 2002-01-22 Neosurg Technologies, Inc. Trocar
USD449887S1 (en) 2000-01-26 2001-10-30 Genicon Lc Combined obturator, cannula and valve assembly
USD443360S1 (en) 2000-03-22 2001-06-05 Dexterity Surgical Inc. Distal end of obturator for a trocar
US10507012B2 (en) 2000-11-17 2019-12-17 Maquet Cardiovascular Llc Vein harvesting system and method
US9055971B2 (en) 2001-03-14 2015-06-16 Covidien Lp Trocar device
US9186177B2 (en) 2001-03-14 2015-11-17 Covidien Lp Trocar device
US9192410B2 (en) 2001-03-14 2015-11-24 Covidien Lp Trocar device
US7905897B2 (en) 2001-03-14 2011-03-15 Tyco Healthcare Group Lp Trocar device
US20020198554A1 (en) * 2001-03-14 2002-12-26 Whitman Michael P. Trocar device
US20070118167A1 (en) * 2001-05-11 2007-05-24 Applied Medical Resources Corporation Traction trocar apparatus and method
US7189249B2 (en) 2001-05-11 2007-03-13 Applied Medical Resources Corporation Traction trocar apparatus and method
US20040143281A1 (en) * 2001-05-11 2004-07-22 Hart Charles C. Traction trocar apparatus and method
US7947062B2 (en) 2001-12-26 2011-05-24 Maquet Cardiovascular Llc Temporary anastomotic seal and method
US9345461B2 (en) 2001-12-26 2016-05-24 Maquet Cardiovascular Llc Temporary anastomotic seal and method
US7544203B2 (en) 2001-12-26 2009-06-09 Maquet Cardiovascular Llc Temporary seal and method for facilitating anastomosis
US11123052B2 (en) 2001-12-26 2021-09-21 Maquet Cardiovascular Llc Temporary anastomotic seal and method
US6814743B2 (en) 2001-12-26 2004-11-09 Origin Medsystems, Inc. Temporary seal and method for facilitating anastomosis
US9554824B2 (en) 2002-07-31 2017-01-31 Covidien Lp Orifice introducer device
US7874981B2 (en) 2002-07-31 2011-01-25 Tyco Healthcare Group Lp Orifice introducer device
US8814785B2 (en) 2002-07-31 2014-08-26 Covidien Lp Orifice introducer device
US20040097958A1 (en) * 2002-07-31 2004-05-20 Whitman Michael P. Orifice introducer device
US20110082342A1 (en) * 2002-07-31 2011-04-07 Tyco Healthcare Group Lp Orifice introducer device
US7338494B2 (en) 2003-08-19 2008-03-04 Synthes (U.S.A.) Spring-loaded awl
US7479150B2 (en) * 2003-09-19 2009-01-20 Tyco Healthcare Group Lp Trocar insertion apparatus
US8475476B2 (en) 2004-06-01 2013-07-02 Cook Medical Technologies Llc System and method for accessing a body cavity
US20060015006A1 (en) * 2004-06-01 2006-01-19 Laurence Bernard H System and method for accessing a body cavity
US11134835B2 (en) 2006-06-01 2021-10-05 Maquet Cardiovascular Llc Endoscopic vessel harvesting system components
US11141055B2 (en) 2006-06-01 2021-10-12 Maquet Cardiovascular Llc Endoscopic vessel harvesting system components
US10299770B2 (en) 2006-06-01 2019-05-28 Maquet Cardiovascular Llc Endoscopic vessel harvesting system components
US8939938B2 (en) 2006-10-12 2015-01-27 Covidien Lp Needle tip protector
US9017343B2 (en) * 2008-03-18 2015-04-28 Restoration Robotics, Inc. Biological unit removal tools with movable retention member
US20140171827A1 (en) * 2008-03-18 2014-06-19 Restoration Robotics, Inc. Biological Unit Removal Tools with Movable Retention Member
US8696686B2 (en) * 2008-03-18 2014-04-15 Restoration Robotics, Inc. Biological unit removal tools with movable retention member
US20120265217A1 (en) * 2008-03-18 2012-10-18 Drews Michael J Biological unit removal tools with movable retention member
US8926563B2 (en) 2011-04-27 2015-01-06 Covidien Lp Safety IV catheter assemblies
US8486024B2 (en) 2011-04-27 2013-07-16 Covidien Lp Safety IV catheter assemblies
US8628497B2 (en) 2011-09-26 2014-01-14 Covidien Lp Safety catheter
US9375552B2 (en) 2011-09-26 2016-06-28 Covidien Lp Safety needle assembly
US8715250B2 (en) 2011-09-26 2014-05-06 Covidien Lp Safety catheter and needle assembly
US8834422B2 (en) 2011-10-14 2014-09-16 Covidien Lp Vascular access assembly and safety device
CN111317887A (en) * 2020-02-14 2020-06-23 微泰医疗器械(杭州)有限公司 Remaining needle protection piece, medicine storage device needle head protection piece and needle head protection assembly

Also Published As

Publication number Publication date
US5350393A (en) 1994-09-27
US5730755A (en) 1998-03-24
US5676682A (en) 1997-10-14
US5676683A (en) 1997-10-14
US5676681A (en) 1997-10-14
US5591190A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
US5688286A (en) Safety trocar penetrating instrument with safety shield having resilient distal end
US5226426A (en) Safety penetrating instrument
US5569288A (en) Safety penetrating instrument
US6056766A (en) Stabilized trocar, and method of using same
US5676156A (en) Automatic retractable safety penetrating instrument
US5292310A (en) Safety needle
CA2142359C (en) Automatic retractable safety penetrating instrument
US5405328A (en) Trocar with replaceable obturator
EP0615421B1 (en) Surgical instrument stabilizer
US5797888A (en) Cannula with universal seal and method of introducing instruments therethrough
US5137509A (en) Surgical insufflation instrument
US5562611A (en) Safety interposer for surgical instruments
CA2233029C (en) Trocar having protector with flexible end
CA2144428C (en) Automatic retractable safety penetrating instrument
CA2481967C (en) Trocar insertion apparatus

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20011118