Suche Bilder Maps Play YouTube News Gmail Drive Mehr »
Anmelden
Nutzer von Screenreadern: Klicke auf diesen Link, um die Bedienungshilfen zu aktivieren. Dieser Modus bietet die gleichen Grundfunktionen, funktioniert aber besser mit deinem Reader.

Patentsuche

  1. Erweiterte Patentsuche
VeröffentlichungsnummerUS5725493 A
PublikationstypErteilung
AnmeldenummerUS 08/353,804
Veröffentlichungsdatum10. März 1998
Eingetragen12. Dez. 1994
Prioritätsdatum12. Dez. 1994
GebührenstatusBezahlt
Auch veröffentlicht unterUS5830173, US6251090
Veröffentlichungsnummer08353804, 353804, US 5725493 A, US 5725493A, US-A-5725493, US5725493 A, US5725493A
ErfinderRobert Logan Avery, Jeffrey Kevin Luttrull
Ursprünglich BevollmächtigterAvery; Robert Logan, Luttrull; Jeffrey Kevin
Zitat exportierenBiBTeX, EndNote, RefMan
Externe Links: USPTO, USPTO-Zuordnung, Espacenet
Intravitreal medicine delivery
US 5725493 A
Zusammenfassung
An intravitreal medicine delivery device and method that includes an implant device through which a wide variety of beneficial medicines including drugs or other pharmacological agents can be introduced into the vitreous cavity over an extended period of time with only a single initial surgery to implant the device. The device and method minimize the surgical incision needed for implantation and avoid future or repeated invasive surgery or procedures. Additional amounts of the initial medicine can readily be introduced or the medication can be varied or changed, as required. Furthermore, the device and method allow the dosage delivered to the vitreous cavity to be controlled, and the device is constructed so as to filter medicines delivered to the cavity and also avoids damage to or interference with other parts of the eye during implantation or during use.
Bilder(5)
Previous page
Next page
Ansprüche(28)
What is claimed is:
1. An intravitreal medicine delivery device for delivering medicine to the vitreal cavity of an eye having an eyeball covered by conjunctiva, comprising reservoir means for holding a supply of medicine, means for enabling passage of medicine out of the reservoir means, and means for attaching both the reservoir means and the enabling means under the conjunctiva of an eye so that the entire device is under the conjunctiva, said enabling means being adapted to enable passage of medicine into the vitreal cavity of the eye.
2. The device of claim 1 wherein the reservoir means includes means for filling the reservoir means while the reservoir means and the enabling means both remain under the conjunctiva.
3. The device of claim 2 wherein the reservoir filling means is capable of being visible through the conjunctiva when implanted.
4. The device of claim 1 wherein the reservoir means includes means for pumping medicine into the vitreal cavity.
5. The device of claim 4 wherein the pumping means includes valve means which allows fluid-borne medicine to flow from the reservoir means into the vitreal cavity but restricts fluid flow from the vitreal cavity into the reservoir means, and wherein the pumping means also includes a compressible and expandable portion of the enabling means which upon expansion draws fluid-borne medicine from the reservoir means and upon compression, forces fluid-borne medicine into the vitreal cavity.
6. The device of claim 1 wherein the enabling means includes a fluid passageway having a proximate end in communication with the reservoir means and a distal end adapted for communication with the vitreal cavity, said passageway being resiliently compressible to constrict and expand the passageway thereby to draw fluid-borne medicine from the reservoir means into the passageway through said proximate end and to pump fluid-borne medicine from the passageway out of the distal end into the vitreal cavity, said enabling means further including means for allowing fluid flow out of the reservoir means but restricting flow into the reservoir means.
7. The device of claim 1 wherein the reservoir means includes an anteriorly facing injection port penetrable by an injection needle when the needle is forced into the port but fluid-impervious when the needle is withdrawn, and wherein the attaching means includes means for attaching the reservoir means adjacent to the vitreal cavity at a location anteriorly of the injection port so that said attaching means resists movement of the reservoir means when an injection needle applies force against the port.
8. A device for delivering medicine into the vitreous cavity of an eye including an eyelid and an eyeball, said eye also having conjunctiva and Tenon's capsule covering the eyeball, comprising a housing having a reservoir for holding a supply of medicine, a tube having one end connected to the housing in communication with the reservoir and an opposite end, and means for attaching the housing to an eyeball so that the housing and both ends of the tube are under the conjunctiva and Tenon's capsule whereby the housing and the tube are covered by the conjunctiva and Tenon's capsule, said opposite end of the tube being adapted to project through the eyeball into the vitreous cavity, the housing having wall portions surrounding the reservoir, one of said wall portions including a reservoir refilling means which faces anteriorly of the eye when the housing is attached to the eyeball and which is then accessible to a refilling instrument, said refilling means allowing a refilling instrument to introduce medicine through the conjunctiva and Tenon's capsule into the reservoir but preventing medicine from escaping from the reservoir.
9. The delivery device of claim 8 wherein said refilling means has a predetermined marking which after the housing is attached is capable of being visible through the conjunctiva and Tenon's capsule exteriorly of the eye when the eyelid is lifted, said marking distinguishing said refilling means to facilitate its location.
10. The delivery device of claim 9 wherein said marking is a color.
11. The delivery device of claim 8 wherein the reservoir refilling means is a port area of a material which is normally fluid-impervious but which can be penetrated by a sharp refilling instrument, and wherein wall portions of the housing are impenetrable to the injection instrument except for said port area.
12. The delivery device of claim 8 wherein said reservoir has an inside and an outside, wherein at least part of the wall portions of the housing is semi-permeable to minimize the pressure differential between the inside and the outside of said reservoir.
13. The device of claim 8 wherein the wall portions include a base wall and a top wall joined to the base wall, said base wall having a curvature generally complementary to the curvature of an eyeball, said top wall including a needle-penetrable and resealable port constituting said refilling means, and a remainder portion, the base wall and the remainder portion of the top wall being impenetrable by an injecting needle.
14. The device of claim 8 wherein the wall portions include a relatively hard base wall impenetrable by a sharp instrument and shaped to fit against an eyeball and a top wall in closely spaced relationship to the base wall to define a minimal height dimension of said reservoir, said reservoir having lateral dimensions relatively much greater than said height dimension, said lateral dimensions extending spherically of the eyeball when the base wall is positioned on the eyeball, and wherein the top wall includes an injection area constituting the refilling means and a medial roof area, said injection area being penetrable by a sharp injection instrument but being reseatable when the instrument is withdrawn, said medial roof area being soft and flexible enough to allow its compressibility toward and away from the base wall, and said top wall being otherwise relatively hard and impenetrable by a sharp injection instrument.
15. An intravitreal medicine delivery device for delivering medicine to the vitreal cavity of an eyeball covered by conjunctiva and within an eye socket, comprising reservoir means for holding a supply of medicine, means for attaching the reservoir means within an eye socket exteriorly of and closely adjacent to the eyeball, means for enabling passage of medicine from the reservoir means into said vitreal cavity, said reservoir means including a relatively low-profile housing having an eyeball-shaped, spherical curvature adapted to fit closely against the eyeball under the conjunctiva and Tenon's capsule, said housing including a reservoir having a minimal height dimension measured radially of said curvature and lateral dimensions measured spherically of the housing and being substantially greater than the height dimension, said enabling means including a tube projecting from the housing and having an angular extension for projecting into the vitreal cavity.
16. The device of claim 15 wherein the housing has a medicine injecting port facing outwardly from the housing in the same direction that the tube projects from the housing.
17. An intravitreal medicine delivery device for delivering medicine to the vitreal cavity within an eyeball in the socket of an eye in a living body, comprising a housing having a reservoir capable of containing medicine; means for attaching the housing within the socket of an eye adjacent to the vitreal cavity of the eyeball; means for conducting medicine in a fluid medium from the reservoir into the vitreal cavity; and valve means in the conducting means, actuatable exteriorly of the body in which the eye is located, and having a dosage chamber in communication with said reservoir adapted to communicate with the vitreal cavity through the conducting means, said valve means being actuatable to enable a predetermined dosage of medicine to be collected in the dosage chamber and to be forced therefrom through said conducting means into the vitreal cavity.
18. The device of claim 17 wherein said valve means includes a valve body having an inlet port communicating with the reservoir, an annular outlet port defining a valve seat and spaced from the inlet port, a conical seal having a base connected to the outlet port and a resiliently distendible apical mouth projecting away from the outlet port, said mouth being normally closed when relaxed but opening under internal fluid pressure, said dosage chamber being defined by the space between the closed mouth and the outlet port, a ball between the inlet and outlet ports and adapted to float in fluid in the valve, and a spring between the valve seat and the ball which normally prevents the ball from contacting the valve seat but yields under fluid pressure to cause the ball to contact the valve seat after a predetermined dose of fluid passes through the outlet port into the dosage chamber.
19. An intravitreal medicine delivery device for delivering medicine to the vitreal cavity of an eyeball covered by conjunctiva and within an eye socket, comprising reservoir means for holding a supply of medicine, means for attaching the reservoir means within an eye socket exteriorly of and closely adjacent to the eyeball, means for enabling passage of medicine from the reservoir means into said vitreal cavity, the medicine in the reservoir being incorporated in particulate matter from which it diffuses, said enabling means including means for controlling the diffusion of medicine from the reservoir means into the vitreal cavity while restricting passage of said particulate matter into said cavity.
20. The device of claim 19 wherein the enabling means has a proximate end connected to the reservoir means, and wherein the diffusion controlling means is a semi-permeable member positioned at the proximate end of the enabling means.
21. The device of claim 19 wherein the enabling means has a distal end adapted to project into the vitreal cavity, and wherein the diffusion controlling means is a semi-permeable member positioned at the distal end of the enabling means.
22. The device of claim 21 wherein said distal end is a perforate tubular extension, and wherein said semi-permeable member is positioned in the extension.
23. An intravitreal medicine delivery device for delivering medicine to the vitreal cavity of an eyeball covered by conjunctiva and within an eye socket, comprising reservoir means for holding a supply of medicine, means for attaching the reservoir means within an eye socket exteriorly of and closely adjacent to the eyeball, means for enabling passage of medicine from the reservoir means into said vitreal cavity, and means for restricting passage of materials from the vitreal cavity into the reservoir means and for preventing non-medicinal materials from moving into the vitreous cavity.
24. A device for delivering medication to the vitreous cavity of an eyeball comprising a housing having a plastic wall surrounding a reservoir for holding medication, said wall having a base of a first plastic material impenetrable to an injection instrument and adapted to fit complementarily against an eyeball, a top joined to the base having posterior and anterior portions and including an injection area in the anterior portion, said top being also of said first plastic material except for the injection area, said injection area being of a second plastic material which is penetrable by an injection instrument but which reseats after the instrument is withdrawn, and means connected to the housing in communication with the reservoir and projecting anteriorly away from the housing for insertion into the vitreous cavity of the eyeball for allowing movement of medicine from the reservoir into the vitreous cavity.
25. An intravitreal medicine delivery device for delivering medicine to the vitreal cavity of an eyeball covered by conjunctiva and within an eye socket, comprising reservoir means for holding a supply of medicine, means for attaching the reservoir means within an eye socket exteriorly of and closely adjacent to the eyeball, means for enabling passage of medicine from the reservoir means into said vitreal cavity, the medicine in the reservoir being incorporated in particulate matter, and means for preventing passage of particulate matter from the reservoir means into the vitreal cavity.
26. An intravitreal medicine delivery device for delivering medicine to the vitreal cavity in the eyeball of an eye, comprising a relatively rigid, pre-formed plastic housing substantially all of which is of fluid-impervious material for holding a supply of medicine, said housing having a peripheral edge including anterior and posterior portions joined by opposed lateral portions, an outwardly convex top wall, and an outwardly concave bottom wall adapted to fit against an eyeball, said opposed portions of the peripheral edge being spaced by a lateral distance substantially greater than a height dimension between said top and bottom walls whereby said housing has a flat profile so as to hug an eyeball against which the bottom wall is placed, an elongated tube of fluid-impervious material and of oval cross- section and being connected to the housing in fluid communication therewith, said tube having a major axis and a minor axis, and a fluid-conducting elbow connected to the tube and having a terminal end projecting angularly from the tube for extension into the vitreal cavity of said eyeball, said tube projecting anteriorly of the housing and with its major axis converging anteriorly between the housing and the elbow.
27. An intravitreal medicine delivery device for delivering medicine to the vitreal cavity of an eyeball covered by conjunctiva and within an eye socket, comprising reservoir means for holding a supply of medicine, means for enabling passage of medicine from the reservoir means into said vitreal cavity, means for attaching the reservoir means and the enabling means under the conjunctiva within an eye socket exteriorly of and closely adjacent to the eyeball so that the entire device is under the conjunctiva, the reservoir means having wall means for holding a supply of medicine, the enabling means having wall means providing a passageway through which medicine can pass from the reservoir means to the vitreal cavity, and at least one of said wall means including a resiliently movable portion for applying pressure to move medicine from the reservoir means into the cavity.
28. An intravitreal medicine delivery device for delivering medicine to the vitreal cavity of an eyeball covered by conjunctiva and within an eye socket, comprising reservoir means for holding a supply of medicine, means for attaching the reservoir means within an eye socket exteriorly of and closely adjacent to the eyeball, means for enabling passage of medicine from the reservoir means into said vitreal cavity, the enabling means being a resiliently compressible tube having upper and lower walls defining a passageway which contracts and expands in response to compression and release of the tube and including spaced upper and lower baffles mounted on the upper and lower walls respectively and projecting into the passageway toward the opposite wall to close the passageway when the passageway is contracted but to allow fluid flow when the passageway is expanded.
Beschreibung
FIELD OF THE INVENTION

This invention pertains to intravitreal medicine delivery and more particularly to an implant device for delivering medicine to the vitreal cavity of the eye, and to a method for introducing medicines into the vitreal cavity using the device.

BACKGROUND

Within the past several decades, great advances have been made in the diagnosis and treatment of vitreoretinal diseases. Advances in laser technology, and vitreoretinal surgical techniques, have significantly improved the prognosis of numerous retinal conditions including diabetic retinopathy, macular degeneration, and retinal detachment. As the pathophysiology of these and many other vitreoretinal diseases is also becoming more clearly understood, a host of potential pharmacological agents is currently under investigation.

In addition to the numerous antibiotic, antiviral, and antifungal agents currently used to treat infections of the retina and vitreous, many antiinflammatory and anticancer drugs have been shown to be useful in treating diseases such as proliferative vitreoretinopathy. As the role of growth factors involved in diabetic retinopathy, macular degeneration, and other retinal degenerations is elucidated, new classes of agents have been found to be of possible benefit, including growth factors themselves, blocking antibodies to growth factors, antisense oligonucleotides, and even gene therapy with growth factor inserts.

Unfortunately, the delivery of drugs to the retina is often problematic. Most agents given topically to the eye (in the form of eye drops) do not penetrate through the anterior segment of the eye well enough to reach the vitreous or retina in therapeutic concentrations. Medications can be given orally or intravenously, but the blood vessels within the retina (and other parts of the central nervous system) are relatively impermeable to many agents. Furthermore, these drugs may have significant systemic side effects on other organs of the body. Drugs can be directly injected into the vitreous cavity, via a needle passed through the pars plana, and this technique is currently employed to combat certain severe, sight-threatening infections. However, this procedure itself entails certain risks, such as infection, bleeding, cataract formation, and retinal detachment. Furthermore, the majority of the injected drug is often cleared from the vitreous cavity within several days, necessitating multiple injections for prolonged treatment.

Accordingly, devices have been developed for improving the introduction of drugs to the vitreal cavity. One such device is a biodegradable polymer designed to be injected into the vitreous cavity where it slowly releases drug as it dissolves. A similar drug-containing polymer has been developed which is made in the shape of a tack or plug to be surgically inserted into the eyewall at the pars plana so that it projects into the vitreous cavity. Liposomes containing pharmacological agents have been developed to slowly release the agent after injection into the vitreous cavity. Another device is a plastic pellet which contains a retinal drug (ganoclovir) and is sutured inside of the vitreous cavity where the drug slowly dissolves into the cavity.

Although such devices as those briefly referred to above are apparently effective in delivering drugs into the vitreous cavity, they have significant disadvantages. First, all of these devices contain a certain amount of drug which when expended cannot be replenished without repeating the surgical implantation or intravitreal injection. Although these different devices can release drugs for weeks to months (or in the case of the plastic pellet, almost one year), certain indications for intravitreal drug administration require extended or lifetime therapy. Therefore, multiple procedures are often required and are highly undesirable.

Secondly, the device with the longest release rate, the plastic pellet of ganiclovir, requires a very large eyewall incision (5 mm) to implant due to its large size. Although the other devices can be implanted or injected through a smaller incision (1 mm or less), those that are injected freely into the vitreous cavity instead of anchored to the eyewall can migrate within the eye and come in direct contact with the retina where they can block vision or release high local concentrations of drug which could potentially prove toxic to delicate retinal tissue.

Third, many pharmacological agents cannot easily and effectively be incorporated into biodegradable polymers. Furthermore, many potential pharmacological agents would not remain stable for extended periods of time in the vitreous cavity. Therefore, there is a significant limitation to what pharmacological agents can be administered via the slow release devices currently available.

Fourth, since the plug or pellet is in essence the drug itself, treatment is limited to this drug, so that another surgery or procedure is required to change it if administration of a different drug is desired.

SUMMARY

The present invention is directed to intravitreal medicine delivery involving an implant device and method wherein a wide variety of beneficial drugs or other pharmacological agents or medicines can be introduced into the vitreous cavity over an extended period of time, as much as the life of the patient, with only a single initial surgery to implant the device; wherein the surgical incision needed for implantation is minimized; wherein additional amounts of drugs over an initial supply can be introduced without further invasive surgery; wherein the type of medicine can be varied or changed depending on such factors as the disease being treated or drug availability; wherein the dosage of agent being administered is controllable; and wherein damage or interference by the implant to various parts of the eye is avoided.

It is an object of the present invention to provide for improved delivery of drugs and other pharmacological agents to the vitreous cavity of the eye, especially for treating vitreoretinal diseases.

It is another object to enable medicinal agents to be delivered to the vitreous cavity with a single initial surgery and without the need for repeated invasive surgeries or procedures.

It is yet another object of this invention to allow replenishment of the drug or other medicinal agent within an implant attached to the eyewall by injection into the implant through the conjunctivae and not through the eye wall.

It is further object to be able to change the pharmacological agent being dispensed from an eye implant device into the vitreal cavity, without surgery or other invasive procedure.

It is also an object to control the dosage of drugs or other pharmacological agents delivered to the vitreous cavity from an implant device.

It is still another object of the present invention to enable the patient to control delivery of dosages of medicines to the vitreous cavity with a delivery device implanted on the patient's eyeball.

It is a still farther object to implant an intravitreal medicine delivery device which dispenses medicine into the vitreous cavity without interference with or damage to various parts of the eye.

It is yet another object of the present invention to prevent inadvertent puncture of the eyeball by an injection needle used to replenish the supply of drugs or other agents in an eye implant device.

It is also an object of the subject invention to prevent an uncontrolled movement of medicines into the vitreous cavity from an intravitreal delivery implant when the supply of medicines in the implant is being replenished in situ.

It is another object of this invention to filter medicines being dispensed from an implant device before being admitted to the vitreous cavity thereby to prevent unwanted particulate matter, such as undissolved biodegradable polymer, from moving into the cavity, while allowing medicines to pass into the cavity.

It is a feature of the present invention to have a relatively large drug or other medicine-containing reservoir which is located outside the eyewall in the sub-conjunctival space and which is connected to the vitreous cavity by a smaller tube through the pars plana so that a substantial amount of medicine can be brought into the vitreous cavity with a minimum of eyewall incision.

It is a feature of this invention to provide an intravitreal medicine delivery device with a pump for moving predetermined doses of drugs or other agents into the vitreous cavity and which can be operated by the patient.

It is another feature to provide an intravitreal drug delivery device which has a low profile for closely-fitting implantation under the conjunctiva and Tenon's capsule of the eyeball.

It is another feature of this invention to provide an eye implant device with an injection port which can be readily identified through overlying tissue for injecting an additional supply of medicine into the implant device.

It is still another feature of this invention to suture a medication delivery implant device to the eyewall so that it facilitates subsequent injections of medication into it while maintaining its implanted position.

These and other objects, features, and advantages of the subject invention will become apparent upon reference to the accompanying drawings, the following description, and the appended claims.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a plan view of one embodiment of an intravitreal medicine delivery device according to the present invention shown implanted on a human eyeball, which is schematically shown, it being understood that both the device and the eyeball are enlarged from actual size.

FIG. 2 is a cross-section taken along line 2--2 of FIG. 1.

FIG. 3 is an isometric view of the subject intravitreal medicine delivery device, even further enlarged from the size in FIG. 1 and showing the three principle parts of the device, namely, a housing, a tube, and an elbow.

FIG. 4 is a plan view of the intravitreal medicine delivery device shown in FIG. 3.

FIG. 5 is a side elevation of the device shown in FIG. 4.

FIG. 6 is a cross-section along line 6--6 of FIG. 4.

FIG. 7 is a cross-section along line 7--7 of FIG. 4.

FIG. 8 is a greatly enlarged schematic view of an eye showing the subject intravitreal medicine delivery device implanted on the eyeball and representing the eyelid being lifted to expose the region of the eye where the implant is located.

FIG. 9 is similar to FIG. 8, still enlarged but on a smaller scale, and demonstrating how the injection port of the subject device can be readily identified through overlying tissue.

FIGS. 10 and 11 are both cutaway, sectional views of a portion of the intravitreal medicine delivery device of the present invention illustrating a valve in the elbow, with FIG. 11 showing the valve in a different position from FIG. 10.

FIGS. 12a, 12b, 12c, 12d and 12e are schematic views showing the sequence of positions of the valve of FIGS. 10 and 11.

FIG. 13 is a cutaway sectional view of a portion of the subject delivery device and showing an optional feature in the tube of the device.

FIG. 14 is a plan view of a portion of the subject medicine delivery device, but depicting another embodiment of the housing of the device.

FIG. 15 is a side elevation of the embodiment of FIG. 14.

FIG. 16 is a cross-section along line 16--16 of FIG. 14.

FIG. 17 is a plan view of a portion of the subject delivery device but depicting still another embodiment of the housing.

FIG. 18 is an isometric view of another embodiment of an elbow of the subject delivery device which differs from the elbow shown in FIG. 3.

FIG. 19 is also an isometric view of still another embodiment of the elbow.

DETAILED DESCRIPTION

Intravitreal Medicine Delivery Device-First Embodiment

The first embodiment of an intravitreal medicine delivery device of the present invention is identified in FIGS. 1-6 by the numeral 30 and is shown in FIGS. 1 and 2 as being implanted on a human eyeball or globe 34. The eyeball is shown schematically and in just enough detail to enable an understanding of the present invention. Certain parts of the eye are thus briefly identified with reference numerals. Schematically represented in either or both of FIGS. 1, 2, 8 and 9 are the cornea 36, the sclera 38, the conjunctiva and Tenon's capsule 44, the iris 46, the retina 50, the lens 56, the eyelid 60, eyelashes 62, the vitreous cavity 66, the pars plana 68, the superior rectus muscle 72, and the lateral rectus muscle 74.

The first embodiment of the intravitreal delivery device 30 is shown in detail in FIGS. 3-7 and is now described. The device includes a housing 80 most of which is preferably pre-formed of semi-rigid material to have a concavo-convex shape and a low profile so as during surgery to fit easily and closely against an eyeball, as 34. In plan view the housing preferably has a generally rectangular outline (FIG. 4) or a trapezoidal outline (FIG. 17) but this outline may be varied to facilitate implantation as will be understood by those skilled in the art.

The housing 80 (FIGS. 3-6) has a base or bottom wall 84 which has an outwardly, spherically concave shape or curvature generally complementary to the curvature of the eyeball 34. This bottom wall is made of a tough material impenetrable by an injection needle or syringe and is preferably of a plastic, such as nylon, Kevlar, or polymethyl methacrylate (PMMA), but may be made of metal, such as tantalum. The housing also has a top or upper wall 86 which has an outwardly spherically convex shape and is joined in a fluid-tight manner to the bottom wall along a peripheral edge 90. The top and bottom walls may be one-piece and integral along the edge or of two different pieces sealed along the edge. This edge has an anterior segment 92, a posterior segment 94, and lateral segments 96 and 97 which meet at four corners of the housing. Outer corner fixation tabs 98 project from the anterior comers of the housing and have suture-receiving eyelets 100. Spaced, inner anterior fixation tabs 102 project from the anterior segment 92 and also have suture-receiving eyelets 104.

The spaced top and bottom walls 86 and 84 (FIGS. 5 and 6) provide a fluid-tight storage reservoir or chamber 110 in the housing 80. This reservoir has a maximum height dimension indicated by the numeral 112 and measured radially of the curved top and bottom walls and where the spacing between the walls is the greatest. As an example but not limiting to the invention, this maximum height dimension is preferably about 3-4 mm. Of course, the height of the reservoir tapers downward toward all four segments 92, 94, 96 and 97 (FIGS. 3, 5 and 6) of the edge 90. It is also noted that the lateral dimensions of the reservoir, that is the length and width dimensions, measured generally spherically of the walls, are relatively much greater than the maximum height. For the embodiment shown in FIG. 4, but again not limiting to the invention, the width or distance between lateral edges 96 and 97 is approximately 1.5 cm and the length or distance between the anterior and posterior edges 92 and 94 is approximately 1 cm.

Of particular significance, however, is that the top wall 86 (FIGS. 3-6) of the housing 80 has a slightly uplifted, arcuate, anterior medicine-injection port or area 122 closely adjacent to the anterior edge 92 and having opposite ends 123 closely adjacent to the anterior corners of the housing. The top wall also has a main or remainder portion 124 of greater area than the injection port. This main portion is of the same material as the bottom wall 84 and is the part of the top wall which is joined to the bottom wall. Thus, this main portion is needle-impenetrable and fluid-impervious.

The injection port 122 (FIGS. 3-6), however, is of a material, such as silicone rubber, which is penetrable by a needle or syringe but which reseats itself when the needle is withdrawn so that the port is normally fluid-impervious. An important feature of the port is that the material thereof is colored, for example, blue, as indicated in the drawings. This coloration is important to provide a marker or identification mark which is visible exteriorly of the eye, especially through covering tissue or patches, to facilitate location of the port by attending medical personnel.

The reservoir 110 (FIGS. 5 and 6) has an anterior fluid outlet 130 located in the top wall 86 of the housing 80 between the anterior segment 92 and the injection port 122 and is thus between the inner tabs 102. A filter 134 is optionally mounted in the outlet to prevent particulate materials, such as biodegradable polymer, from passing out of the reservoir and into the vitreous cavity, while permitting medicines released from the dissolving polymers to pass out of the reservoir 110 and into the cavity. This filter may take various forms such as a semi-permeable, osmotic membrane or a porous cellulose filter such as a Millipore filter. Furthermore, it may be a thin capillary tube, or coil of capillary tube, designed to restrict the flow of drug-containing fluid from the reservoir 110 into the vitreous cavity 66.

The subject intravitreal medicine delivery device 30 also includes a tapered, elongated delivery tube 140 (FIGS. 3-7) of fluid-impervious compressible elastomeric material, such as a silicone elastomer, thus providing a fluid passageway or lumen 144. Preferably, the tube is of oval cross-section as illustrated, but is not limited to this cross-section. The tube has a low or flat profile, like the housing, and includes a base and upper walls 146 and 148 which are joined at lateral edges. The passageway has a relatively small minor axis or dimension, as best seen in FIG. 7, which is preferably less than the height maximum height dimension 112 of the reservoir 110. Again, although not limiting to the invention, this minor axis is preferably about the size of a 19-20 gauge lumen. The base wall may be outwardly convex, as shown, or concave to conform to the curvature of the eyeball. Significantly, the top wall is resiliently compressible toward the base wall by applying slight digital pressure against the wall to constrict the passageway. When the pressure is relieved, the top wall returns to its normally relaxed position with the passageway fully open.

The tube 140 (FIGS. 3-7) has a relatively wide proximate end 150 connected to the housing 80 around the outlet 130 so that the passageway 144 is in fluid communication with the reservoir 110. In effect, the passageway is an extension of the reservoir so that the reservoir and the passageway together constitute one large storage reservoir or chamber. The tube converges anteriorly from the housing to a relatively narrow distal end 152, it being noted that the major axis of the passageway thus varies from a maximum at the proximate end to a minimum at the distal end. As shown in FIGS. 5 and 6, the tube is preferably preformed with, and has sufficient rigidity to maintain, a longitudinal curvature complementary to the curvature of an eyeball, but is sufficiently flexible to allow limited flexing at the juncture of the tube and the housing.

The subject delivery device 30 (FIGS. 3-6) also includes a semi-rigid tubular elbow 160 having an in-line connector sleeve 162 attached to the distal end 152 of the tube 140 and an intravitreal extension 164 which projects from the sleeve at an angle to the in-line sleeve, preferably of about eighty to ninety degrees, and terminates in a tip 166. The sleeve is of about the same diameter as the minor axis or height of the tube, as best seen in FIG. 7, and although given by way of example only, is about 19-20 gauge. The elbow thus provides a lumen or fluid passageway 168 in fluid communication with the passageway in the tube and opening at the tip. Another pair of fixation tabs 172 project laterally from the sleeve 162 of the elbow 160 and have suture eyelets 174. The elbow may be made of the same material as the housing.

Once again, to provide an example of a preferred embodiment of the intravitreal delivery device 30 (FIG. 4) but not limiting to the invention, the length of the combined tube 140 and elbow 160, from the anterior segment 92 to the bend of the elbow, is about 7 mm, and the maximum transverse dimension of the tube at its proximate end is about 3 mm.

Intravitreal Medicine Delivery Method

The method of the present invention and use of the subject delivery device 30 are best described by reference to FIGS. 1, 2, 8 and 9. The delivery device is implanted within the socket of the eye on the episcleral surface of the globe (eye wall) 66 by placing the device under the conjunctiva 44 and Tenon's capsule. The device is located between the superior and lateral rectus muscles 72 and 74 with the base wall 84 fitted against the eyeball 34 and the anterior edge 92 located posteriorly of the muscle roots and slightly posteriorly of the equator of the eyeball, as best seen in FIG. 1. Thusly located, the injection port 122 faces anteriorly, and the tube 140 projects anteriorly with the tip 166 at the pars plana 68.

A hole 188 (FIG. 2) of about 1.0 mm is incised through the eyeball 34 at the pars plana 68 and into the vitreous cavity 66. The intravitreal extension 164 of the elbow 160 is inserted through the hole so that it projects into the cavity a distance of preferably approximately 4 mm. In this regard, it is to be noted that the rigidity of the elbow allows the position of the intravitreal extension 164 to be controlled as it is inserted into the cavity so as to avoid contact of the tube with the lens 56, cornea 36 or iris 46. The device 30 is then attached to the episclera 38 with sutures 184 (FIG. 1) in selected eyelets 100 (and/or 104) and eyelets 174 (FIG. 4). The tabs 98 and 102 are provided as alternates in case one location or the other is preferred for the sutures. After suturing the device in place, a sceral patch or graft 190 (FIG. 8) is sutured over the tube 140 for the purpose of preventing of erosion of the implant tube through the conjunctiva, which could lead to infection and require removal of the implant. The rigidity of the elbow and its attachment to the sclera (FIGS. 1 and 2) maintain the intravitreal extension of the implant tube in the position in which it is initially placed so that it does not move around in the cavity as the implant is worn and used by the patient.

A supply of medicine 194 (FIG. 2) is placed in the reservoir 110 before or after implantation. Examples of drugs that may be used are antivirals, antibiotics, steroids, growth factors or inhibitors, anti-sense oligonucleotides, mediators of gene therapy, and others. These may be in the form of fluids, solids, suspensions, emulsions, slow-release or time-release beads, capsules, liposomes, ion-exchange beads, biodegradable polymers, pellets, or other micro-particulate vehicles. As an example, the medicine 194 is shown as time-release beads in FIG. 2.

If drugs or other agents are injected after the implant surgery, the eyelid 60 remains lifted (FIG. 8) to expose the region where the device 30 is implanted. Because of its color, the injection port 122 is visible through the conjunctiva tissue 44 covering the device. The tube 140 may be depressed to block the passageway 144 (FIG. 6), and an injection needle 202 of a syringe 200 (FIG. 9) filled with the medicine 194 penetrates the port, and the medicine is injected.

If a large volume of medicine 194 is to be instilled into the reservoir 110 (FIG. 9), either initially or to refill the implant 30 at a later date, venting of the implant reservoir by a second needle, not shown but placed through the injection port 122 simultaneously with injection, may be required. Injection of small volumes of medicine into the reservoir, however, may not require venting.

After the injection is completed (FIG. 9), the needle 202 is withdrawn and the tube 140 is released to expand to normal size (FIG. 2). By blocking the passageway during filling of the reservoir, fluid flow or fluid pressure through the tube and elbow 160 and into the vitreous cavity 66 is precluded. When the needle is withdrawn, the port 122 reseats itself.

Following the implant surgery and as the patient wears the implanted device 30 (FIG. 2), the medicine 194 is thus exposed to the vitreous cavity 66 over an extended period of time. Whether the medicine is in the form of solid material from which the medicine diffuses or whether the medicine is fluid-borne, this exposure through the passageways 144 and 168, allows the medicine to diffuse, flow or otherwise move or pass from the reservoir 110 into the vitreal cavity.

The impetus for diffusion of the medicine 194 from the reservoir 110 into the vitreous cavity 66 occurs for several reasons. First, the concentration gradient between the medicine in the reservoir and vitreous fluid will set up its own diffusion gradient causing a movement of medicine into the cavity. Secondly, the patient can cause flank fluid flow by digitally pressing against the eyelid 60 and thereby against the top wall 148 of the tube 140 to force fluid-borne medicine into the vitreous cavity. Thus, the compressible top wall 148 in combination with the storage reservoir and passageways 144 and 168 may serve as a pump which is generally identified by numeral 210. Thirdly, injection of medicine via reservoir increases pressure in the reservoir driving a net flux of fluid through the tube into the vitreous cavity. Finally, normal physiologic forces, such as blinking, eye movements, and normal blood pressure pulses, will cause small pressure gradients to develop in the implant tube promoting passage of medicine into the vitreous cavity.

This movement of medicine 194 (FIG. 2) from the storage reservoir 110 into the vitreous cavity 66 will normally continue, or be forced to flow by the patient's pumping of the tube 140, for an extended period of time whereupon it may be necessary to replenish the original supply of the medicine. Also, because of the discovery of a new and better drug or the need for a different drug or other medicine, it may be desirable to change the medication. In any case, the patient returns to the physician's office for the following simple procedure. The eyelid 60 is lifted (FIGS. 8 and 9) and the patient looks down to expose the region of the implanted delivery device 30. The scleral patch 190, the conjunctiva and Tenon's capsule 44 and a fibrous capsule (not specifically shown in the drawings but believed to be well understood), which grows over the device under the conjunctiva obscures the device 30, except for the injection port 122, as illustrated in FIG. 9. The port is visible through the tissue because it is identified with a color which can be seen through the tissue.

While digitally compressing the tube 140 (FIGS. 8 and 9) to block the passageway 144, as previously described, the injection port 122 is penetrated with the syringe needle 202 and a new supply of medicine 194 is injected into the reservoir 110. As previously indicated, venting of the implant reservoir 110 may be required for injection of larger volumes of medicine. Pressure on the tube is released and the needle is withdrawn, the port sealing after the withdrawal. The intravitreal delivery device 30 is then capable of repeating its delivery of medicine to the vitreous cavity 66 over an extended period of time, as previously described. Of prime significance, a repeat surgery to re-introduce a new implant, or another invasive procedure to inject a supply of medicine, is avoided.

A significant relationship between the location of the suturing tabs 98, 102, and 172 and the injection port 122 is to be noted. With reference to FIG. 1, it will be seen that all the sutures 184 are located anteriorly of the port. Thus, when the injection needle 202 (FIG. 9) presses against the port to thrust the needle through the port, the sutured tabs resist posterior movement of the implant device, as 30, and maintain it in its implanted position.

Intravitreal Delivery Device-Second Embodiment

The second embodiment 30a (FIGS. 10-12) of the present invention is the same as the first embodiment except that a valve 250 is incorporated in the elbow 160 to enhance the pumping action previously described. The valve shown and described is a ball-check valve, but other valves having a similar function can be employed. The valve shown, however, includes a valve body 252 fitted in the connector sleeve 162. The valve body provides an outer chamber 254 having an annular inlet 256 opening into the passageway 144 of the tube 140, an annular outlet 258 opening toward the intravitreal extension 164, an annular valve seat 260 between the inlet and outlet, and a dosage chamber 264 between the valve seat and the outlet. The valve also includes a resiliently expandable, conical mouthpiece 268 of a suitable elastomeric material whose apex is normally closed in its relaxed condition but which opens when fluid pressure inside the valve body, in the direction of the apex, forces it open. Still further, the valve includes a resilient ball 270 in the outer chamber and a spring 272 between the ball and the valve seat.

In operation of the intravitreal delivery device 30a when it incorporates the valve 250 (FIGS. 10-12), the storage reservoir 110 is filled with fluid-borne medicine, as represented by the numeral 280, either during initial manufacture or by subsequent injection through the injection port 122. With reference to the flow diagrams of FIGS. 12a-12e, the condition of the valve in its resting state is shown in FIG. 12a wherein the ball 270 floats in the outer chamber 254 being held away from the seat 260 by the spring 272 (FIG. 10). Because of the pressure gradients previously described in regard to the first embodiment, fluid-borne medicine from the reservoir fills not only the passageway 144 but also the outer chamber 254 (FIG. 11) and the dosage chamber 264. Under these conditions, there is insufficient pressure to open the mouthpiece 268.

When a dose of medicine 280 is to be delivered to the vitreous cavity 66, the patient or attendant presses against the patient's eyelid 60 thereby pressing against the tube wall 148 (FIG. 11) compressing the tube 140 and constricting the passageway 144 and exerting a fluid pressure toward the vitreous cavity 66 (FIG. 12b). This pressure increase is sufficient to force the ball 270 against the spring 272 until the ball seals (FIG. 12c) against the seat 260 thereby temporarily blocking fluid flow through the valve. Such pumping action thus causes a limited quantity of fluid, essentially the amount in the dosage chamber 264, that is, the predetermined dose or aliquot, to flow into the vitreous cavity 66. Thus, the valve 250 and the tube 140, working in cooperative relationship with the reservoir 110 and the elbow 160, constitute a pump 210'.

When pressure on the eyelid 60 and thus the tube wall 148 is relieved (FIGS. 12d and 12e), a reverse pressure develops because of the lowering of pressure in the passageway 144, whereby the valve ball 270 unseats, and the mouthpiece 268 collapses to its closed position. Fluid pressure in the device then returns to an equilibrium state and the valve returns to its resting state, as shown in FIG. 12e.

Intravitreal Delivery Device-Third Embodiment

The third embodiment 30b of the present invention is the same as the first embodiment 30 except as follows. In FIG. 13, there is illustrated a tube 140' connected to the housing 80 and the elbow 160. A series of upper and lower baffles 300 and 302 are respectively attached to the top and base walls 148 and 146 of the tube and project into the passageway 144 in interdigitated, spaced relationship. Since the tube is oval, the baffles are semi-oval or semi-elliptical, but if a tube has a different cross-section, the shape of the baffles would be changed to conform. For example, if the tube is circular, the baffles would be semi-circular. The purpose of these baffles is to facilitate closure of the passageway when the walls of the tube are compressed during filling the storage reservoir 110, while allowing flow through the passageway at all other times when the tube is in normally fully expanded or open condition.

Intravitreal Delivery Device-Fourth Embodiment

The fourth embodiment of the delivery device is identified by the numeral 30c and relates to a different housing construction but is otherwise the same as the first embodiment 30. In FIG. 14, there is shown a housing 80' enclosing a reservoir 110' which is in communication with a tube, such as 140 or 141', which is only partially shown in FIGS. 14-16 since this embodiment does not involve a modification of the tube. The modified housing 80', however, has a base wall 84' like the base wall 84 (FIG. 6) and injection port 122' like the injection port 122 (FIGS. 3-6), but a top wall 86' different from the top wall 86 (FIG. 4). The top wall 86' (FIG. 14) has a main portion 124' including a peripheral section 326 and a medial section or roof 328 located posteriorly of the injection port 122'.

As best shown in FIGS. 14 and 15, the peripheral section 326 (excluding the injection port 122') is made of relatively rigid, impenetrable material, such as described for the base wall 84 and the main portion 124 of the first embodiment 30. The injection port 122' is constructed of the same penetrable, resealable material as the port 122. The medial section 328, however, is made of a softer, flexible and resilient material, such as silicone rubber, to allow the medial section or roof to be compressed and thereafter expand to its relaxed state. In addition, this medial section may be semi-permeable to preclude a vacuum from developing in the reservoir when the tube 140 or 140' is compressed while minimizing any appreciable loss of fluid-borne medicine.

Alternatively, the medial section 328 may be made of an elastomeric material which is distended by the injection of a large volume of medicine into the reservoir 110' via the injection port 122'. The distention of the medial section increases the pressure in the reservoir and forces drug-containing fluid into the tube 140 or 140' where egress into the vitreous is controlled by passage through a filter or capillary tube 134'. Still further, the entire housing 80' may be made of elastomeric material to provide such pressure by distention of the housing.

Intravitreal Delivery Device-Fifth Embodiment

The fifth embodiment (FIG. 17) involves a differently shaped housing 80", to which reference was previously made. Instead of the housings 80 or 80', each of which has a generally rectangular periphery, the housing of this embodiment has a generally trapezoidal outline in plan view. Such a trapezoidal shape may be preferred to facilitate implantation. The trapezoidal housing has an injection port 122", anterior tabs 98" with suture eyelets 100", and lateral tabs 340 with suture eyelets 342. Again, by way of example only, the preferred dimensions of the trapezoidal housing are similar to the rectangular housing except that the posterior edge is about 1.5 cm and the anterior edge is about 0.75 cm.

Intravitreal Delivery Device-Additional Feature

An additional feature which may be incorporated in the previously described embodiments of the present invention has two species as shown in FIGS. 18 and 19. In FIG. 18, there is illustrated a tubular elbow 160a having an intravitreal extension 164' in which is provided a plurality of holes or slits 350. A semi-permeable wick, insert, or filter 352 of very flaccid material, such as a silicone sponge, is positioned in the passageway of the extension.

In FIG. 19, a semi-permeable membrane or filter 360 in the shape of a relatively rigidly-formed cup is attached to the open tip 166' of a tubular elbow 160b and projects therefrom.

When either species shown in FIGS. 18 and 19 is incorporated in the intravitreal delivery device 30, 30a or 30c of the present invention, medicine passes from the reservoir 110 through the passageways 144 and 168 and through the wick 352, or the membrane 360, from which it diffuses into the vitreous cavity 66. The wick or membrane is optionally used to obviate the possibility of occlusion of the drug passage into the vitreous cavity by particulate matter from the reservoir.

From the foregoing description of the intravitreal medicine delivery device 30, 30a, 30c and method of the present invention, it will be understood how the device and method result in numerous advantages and provide solutions to various problems experienced by prior art devices and methods. The subject invention enables a wide variety of drugs and other pharmacological agents and medicines to be introduced into the vitreous cavity over the lifetime of the patient with only a single initial surgery and with minimum intraocular invasion to implant the device.

Thereafter, to resupply the device 30 with more medicine or to change the medicine, only a simple injection into reservoir 110 through the specially identifiable injection port 122, 122', or 122" of the device is necessary. No invasive surgery or procedure is needed.

As contrasted with biodegradable polymer pellets directly implanted into the eyeball and which do not lend themselves to many potential pharmacological agents, the subject device 30 is not so limited and can utilize the broad range of medicinal agents now available or becoming available. Moreover, the device 30 and method allow the dosage delivered to the vitreous cavity 66 to be controlled and furthermore, allows the patient to control the timing of the deliveries. Additional features incorporated into the device filter the medicine before it enters the vitreous cavity. Also, the device is designed to facilitate its implantation so that it fits closely and relatively comfortably against the eyeball and so that damage or interference with other parts of the eye are avoided.

Although preferred embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitation.

Patentzitate
Zitiertes PatentEingetragen Veröffentlichungsdatum Antragsteller Titel
US3916899 *7. Febr. 19744. Nov. 1975Alza CorpOsmotic dispensing device with maximum and minimum sizes for the passageway
US4543088 *7. Nov. 198324. Sept. 1985American Hospital Supply CorporationSelf-sealing subcutaneous injection site
US4553973 *1. Febr. 198519. Nov. 1985Alza CorporationProcess for preparing osmotic device
US4751926 *12. Sept. 198621. Juni 1988Dow Corning Wright CorporationInstrument for subcutaneous insertion of an injection reservoir
US4781675 *27. Aug. 19871. Nov. 1988White Thomas CInfusion cannula
US5171213 *14. Aug. 199115. Dez. 1992Price Jr Francis WTechnique for fistulization of the eye and an eye filtration prosthesis useful therefor
US5178604 *31. Mai 199012. Jan. 1993Iovision, Inc.Glaucoma implant
Nichtpatentzitate
Referenz
1 *Eliason et al; An Ocular Perfusion System; Invest. Opthalmol. Vis. Sci., Vol. 19, No. 1, Jan. 1980; pp. 102 105.
2Eliason et al; An Ocular Perfusion System; Invest. Opthalmol. Vis. Sci., Vol. 19, No. 1, Jan. 1980; pp. 102-105.
3 *Hashizoe et al; Scleral Plug of Biodegradable Polymers for Controlled Release in the Vitreous: Arch Ophthalmol/ vol. 112, Oct. 1994; pp. 1380 1384.
4Hashizoe et al; Scleral Plug of Biodegradable Polymers for Controlled Release in the Vitreous: Arch Ophthalmol/ vol. 112, Oct. 1994; pp. 1380-1384.
5 *Jabs; Treatment of Cytomegalovirus Retinitis 1992; Arch Ophthlmol vol. 110, Feb. 1992; pp. 185 187.
6Jabs; Treatment of Cytomegalovirus Retinitis-1992; Arch Ophthlmol-vol. 110, Feb. 1992; pp. 185-187.
7 *Kimura et al; A New Vitreal Drug Delivery System Using An Implantable Biodegradable Polymeric Device: Investigative Opthalmology & Visual Science, May, 1994, vol. 35, No. 6; pp. 2815 2819.
8Kimura et al; A New Vitreal Drug Delivery System Using An Implantable Biodegradable Polymeric Device: Investigative Opthalmology & Visual Science, May, 1994, vol. 35, No. 6; pp. 2815-2819.
9 *Krupin; Krupin Eye Valve; Hood Laboratories Catalogue F 079 Rev Nov. 1992 Four Pages Unnumbered.
10 *Michelson, et al; Experimental Endophthalmitis Treated With an Implantable Osmotic Minipump; Arch Opthalmol vol. 97, Jul. 1979; pp. 1345 1346.
11Michelson, et al; Experimental Endophthalmitis Treated With an Implantable Osmotic Minipump; Arch Opthalmol-vol. 97, Jul. 1979; pp. 1345-1346.
12 *Miki et al; A Method For Chronic Drug Infusion Into the Eye; Japanese Jornal of Ophthalmology, vol. 28: 140 146, 1984.
13Miki et al; A Method For Chronic Drug Infusion Into the Eye; Japanese Jornal of Ophthalmology, vol. 28: 140-146, 1984.
14 *Optimed ; The Optimed Advantage Glaucoma Pressure Regulator; Optimed Advertising Brochure, Seven Pages Unnumbered; Jour. Glaucoma, vol. 2 3, 1993.
15Optimed; The Optimed Advantage Glaucoma Pressure Regulator; Optimed Advertising Brochure, Seven Pages Unnumbered; Jour. Glaucoma, vol. 2 #3, 1993.
16 *Rubsamen et al; Prevention of Experimental Proliferative Vitreoretin Opathy With a Biodegradable Intravitreal Implant for the Sustained Release of Fluorouracil; Arch Ophthalmol/ vol. 112, Mar. 1994; pp. 407 413.
17Rubsamen et al; Prevention of Experimental Proliferative Vitreoretin-Opathy With a Biodegradable Intravitreal Implant for the Sustained Release of Fluorouracil; Arch Ophthalmol/ vol. 112, Mar. 1994; pp. 407-413.
18 *Sanborn et al: Sustained Release Ganciclovir Therapy for Treatment of Cytomegalovirus Retinitis; Arch Ophthmol Vol. 110, Feb. 1992; pp. 188 195.
19Sanborn et al: Sustained-Release Ganciclovir Therapy for Treatment of Cytomegalovirus Retinitis; Arch Ophthmol-Vol. 110, Feb. 1992; pp. 188-195.
20 *Smith et al; Intravitreal Sustained Release Ganiclovir; Arch Ophthlmol vol. 110,Feb. 1992; pp. 255 258.
21Smith et al; Intravitreal Sustained-Release Ganiclovir; Arch Ophthlmol-vol. 110,Feb. 1992; pp. 255-258.
Referenziert von
Zitiert von PatentEingetragen Veröffentlichungsdatum Antragsteller Titel
US5913852 *28. Okt. 199722. Juni 1999Nemours FoundationDrain cannula
US6024719 *6. Juli 199815. Febr. 2000Morris; Robert EMethod and apparatus for performing surgery inside the human retina using fluidic internal limiting membrane (ILM) seperation (FILMS)
US6050970 *8. Mai 199718. Apr. 2000Pharmacia & Upjohn CompanyMethod and apparatus for inserting a glaucoma implant in an anterior and posterior segment of the eye
US6196993 *19. Apr. 19996. März 2001Eyelab Group, LlcOphthalmic insert and method for sustained release of medication to the eye
US621035715. Juli 19993. Apr. 2001Robert E MorrisApparatus for performing surgery inside the human retina using fluidic internal limiting membrane (ILM) separation (films)
US6251090 *2. Nov. 199826. Juni 2001Robert Logan AveryIntravitreal medicine delivery
US64132454. Okt. 20002. Juli 2002Alcon Universal Ltd.Sub-tenon drug delivery
US641354012. Sept. 20002. Juli 2002Alcon Universal Ltd.Drug delivery device
US6416777 *19. Sept. 20009. Juli 2002Alcon Universal Ltd.Ophthalmic drug delivery device
US6595945 *9. Jan. 200122. Juli 2003J. David BrownGlaucoma treatment device and method
US66699501. Juli 200230. Dez. 2003Alcon, Inc.Ophthalmic drug delivery device
US671308115. März 200130. März 2004The United States Of America As Represented By The Department Of Health And Human ServicesOcular therapeutic agent delivery devices and methods for making and using such devices
US68087191. Juli 200226. Okt. 2004Alcon, Inc.Drug delivery device
US685268812. März 20018. Febr. 2005University Of FloridaCompositions for treating diabetic retinopathy and methods of using same
US688119816. Juni 200319. Apr. 2005J. David BrownGlaucoma treatment device and method
US69869005. Nov. 200317. Jan. 2006Alcon, Inc.Ophthalmic drug delivery device
US709422612. Nov. 200322. Aug. 2006Alcon, Inc.Ophthalmic drug delivery device
US7117870 *26. Juli 200410. Okt. 2006Clarity CorporationLacrimal insert having reservoir with controlled release of medication and method of manufacturing the same
US719577428. Aug. 200227. März 2007Carvalho Ricardo Azevedo PonteImplantable and sealable system for unidirectional delivery of therapeutic agents to tissues
US7556621 *17. Juni 20057. Juli 2009The Board Of Trustees Of The Leland Stanford Junior UniversityOptically controlled microfluidic chip
US7563255 *2. Mai 200221. Juli 2009Massachusetts Eye And Ear InfirmaryImplantable drug delivery device and use thereof
US758551720. Sept. 20048. Sept. 2009Macusight, Inc.Transscleral delivery
US758910722. Mai 200615. Sept. 2009Othera Holding, Inc.Amelioration of vitrectomy-induced cataracts
US765836414. März 20029. Febr. 2010The United States Of America As Represented By The Department Of Health And Human ServicesOcular therapeutic agent delivery devices and methods for making and using such devices
US774952815. März 20046. Juli 2010Ricardo Azevedo Pontes De CarvalhoImplantable and sealable medical device for unidirectional delivery of therapeutic agents to tissues
US7794437 *26. Jan. 200414. Sept. 2010Doheny Retina InstituteReservoirs with subretinal cannula for subretinal drug delivery
US782470415. Aug. 20052. Nov. 2010Surmodics, Inc.Controlled release bioactive agent delivery device
US788750814. März 200715. Febr. 2011The University Of Southern CaliforniaMEMS device and method for delivery of therapeutic agents
US79431627. Dez. 200617. Mai 2011Alcon, Inc.Drug delivery device
US797686215. Aug. 200512. Juli 2011Surmodics, Inc.Controlled release bioactive agent delivery device
US802168029. Apr. 200420. Sept. 2011Surmodics, Inc.Controlled release bioactive agent delivery device
US803436912. Sept. 200511. Okt. 2011Surmodics, Inc.Controlled release bioactive agent delivery device
US809042627. Okt. 20063. Jan. 2012Felder Robin AMicroelectronic biosensor plug
US809697219. Dez. 200317. Jan. 2012Johns Hopkins UniversityDevices for intraocular drug delivery
US817774730. Nov. 201015. Mai 2012Alcon Research, Ltd.Method and apparatus for drug delivery
US822227123. März 200717. Juli 2012Santen Pharmaceutical Co., Ltd.Formulations and methods for vascular permeability-related diseases or conditions
US82316088. Mai 200931. Juli 2012Minipumps, LlcDrug-delivery pumps and methods of manufacture
US82316098. Mai 200931. Juli 2012Minipumps, LlcDrug-delivery pumps and methods of manufacture
US82469748. Apr. 200521. Aug. 2012Surmodics, Inc.Medical devices and methods for producing the same
US82778304. Okt. 20112. Okt. 2012Forsight Vision4, Inc.Posterior segment drug delivery
US82985784. Okt. 201130. Okt. 2012Forsight Vision4, Inc.Posterior segment drug delivery
US830868628. Mai 201013. Nov. 2012The University Of Southern CaliforniaMEMS device and method for delivery of therapeutic agents
US83488978. Mai 20098. Jan. 2013Minipumps, LlcImplantable drug-delivery devices, and apparatus and methods for filling the devices
US83538565. Nov. 200815. Jan. 2013Abbott Medical Optics Inc.Glaucoma drainage shunts and methods of use
US836423228. Juli 201129. Jan. 2013Felder Robin AMicroelectronic biosensor plug
US836709712. Mai 20105. Febr. 2013Santen Pharmaceutical Co., Ltd.Liquid formulations for treatment of diseases or conditions
US83720365. Mai 201012. Febr. 2013Alcon Research, Ltd.Multi-layer heat assembly for a drug delivery device
US839900629. Jan. 201019. März 2013Forsight Vision4, Inc.Posterior segment drug delivery
US846993425. Jan. 201125. Juni 2013Alcon Research, Ltd.Pulsatile peri-corneal drug delivery device
US848605227. Dez. 201016. Juli 2013The Johns Hopkins University School Of MedicineReservoir device for intraocular drug delivery
US84862788. Mai 200916. Juli 2013Minipumps, LlcDrug-delivery pumps and methods of manufacture
US848696021. Juni 201216. Juli 2013Santen Pharmaceutical Co., Ltd.Formulations and methods for vascular permeability-related diseases or conditions
US84924009. Febr. 200723. Juli 2013Santen Pharmaceutical Co., Ltd.Stable formulations, and methods of their preparation and use
US85065159. Nov. 200713. Aug. 2013Glaukos CorporationUveoscleral shunt and methods for implanting same
US85295383. Juli 201210. Sept. 2013Minipumps, LlcDrug-delivery pumps and methods of manufacture
US86233955. Aug. 20117. Jan. 2014Forsight Vision4, Inc.Implantable therapeutic device
US86325115. Mai 201021. Jan. 2014Alcon Research, Ltd.Multiple thermal sensors in a multiple processor environment for temperature control in a drug delivery device
US86370709. Febr. 200628. Jan. 2014Santen Pharmaceutical Co., Ltd.Rapamycin formulations and methods of their use
US865866724. Juni 201325. Febr. 2014Santen Pharmaceutical Co., Ltd.Stable formulations, and methods of their preparation and use
US866363918. Aug. 20084. März 2014Santen Pharmaceutical Co., Ltd.Formulations for treating ocular diseases and conditions
US870263925. März 201022. Apr. 2014Abbott Medical Optics Inc.Glaucoma shunts with flow management and improved surgical performance
US876470811. Juni 20121. Juli 2014The University Of Southern CaliforniaMEMS device and method for delivery of therapeutic agents
US87957127. Mai 20135. Aug. 2014Forsight Vision4, Inc.Posterior segment drug delivery
US880872715. März 201319. Aug. 2014Forsight Vision4, Inc.Posterior segment drug delivery
US89059637. Mai 20139. Dez. 2014Forsight Vision4, Inc.Injector apparatus and method for drug delivery
US892035713. Dez. 201230. Dez. 2014Abbott Medical Optics Inc.Glaucoma drainage shunts and methods of use
US892700514. Jan. 20136. Jan. 2015Santen Pharmaceutical Co., Ltd.Liquid formulations for treatment of diseases or conditions
US90339115. Aug. 201119. Mai 2015Forsight Vision4, Inc.Injector apparatus and method for drug delivery
US905040710. Dez. 20129. Juni 2015Minipumps, LlcImplantable drug-delivery devices, and apparatus and methods for filling the devices
US90667793. Jan. 201430. Juni 2015Forsight Vision4, Inc.Implantable therapeutic device
US9107728 *23. Sept. 201318. Aug. 2015Mark Philip BreazzanoEyeball stabilizing apparatus and method of use
US91079957. Juni 201318. Aug. 2015Minipumps, LlcDrug-delivery pumps and methods of manufacture
US91620248. Mai 200920. Okt. 2015Minipumps, LlcDrug-delivery pumps and methods of manufacture
US918004615. Juli 201310. Nov. 2015The Johns Hopkins University School Of MedicineReservoir device for intraocular drug delivery
US918005019. Juni 201310. Nov. 2015California Institute Of TechnologyImplantable intraocular pressure drain
US919903518. Aug. 20101. Dez. 2015Minipumps, Llc.Drug-delivery pumps with dynamic, adaptive control
US927186628. Juni 20131. März 2016University Of Southern CaliforniaApparatus and methods for delivering therapeutic agents
US928332211. Juli 201315. März 2016Minipumps, LlcDrug-delivery pump with dynamic, adaptive control
US930812419. Dez. 200812. Apr. 2016University Of Southern CaliforniaApparatus and methods for delivering therapeutic agents
US930835531. Mai 201312. Apr. 2016Surmodies, Inc.Apparatus and methods for coating medical devices
US932064729. Sept. 201126. Apr. 2016Ocuject, LlcDevice and method for intraocular drug delivery
US933329724. Sept. 201310. Mai 2016Minipumps, LlcDrug-delivery pump with intelligent control
US938115325. Nov. 20145. Juli 2016Santen Pharmaceutical Co., Ltd.Liquid formulations for treatment of diseases or conditions
US93871659. Jan. 201412. Juli 2016Santen Pharmaceutical Co., Ltd.Rapamycin formulations and methods of their use
US940874631. März 20119. Aug. 2016Ocuject, LlcDevice and method for intraocular drug delivery
US941723814. Nov. 201316. Aug. 2016Forsight Vision4, Inc.Posterior segment drug delivery
US942112915. März 201323. Aug. 2016Ocuject, LlcIntraocular delivery devices and methods therefor
US945215630. Apr. 201327. Sept. 2016Santen Pharmaceutical Co., Ltd.Formulations and methods for vascular permeability-related diseases or conditions
US946855816. Dez. 201418. Okt. 2016Abbott Medical Optics Inc.Glaucoma drainage shunts and methods of use
US94747566. Aug. 201525. Okt. 2016Forsight Vision4, Inc.Stable and soluble formulations of receptor tyrosine kinase inhibitors, and methods of preparation thereof
US948635727. Apr. 20128. Nov. 2016Gholam A. PeymanOphthalmic drug delivery system and method
US94923155. Aug. 201115. Nov. 2016Forsight Vision4, Inc.Implantable therapeutic device
US95046037. Okt. 201329. Nov. 2016Ocuject, LlcIntraocular delivery devices and methods therefor
US95220823. März 201620. Dez. 2016The Johns Hopkins UniversityReservoir device for intraocular drug delivery
US952665427. März 201427. Dez. 2016Forsight Vision4, Inc.Ophthalmic implant for delivering therapeutic substances
US9561131 *19. Juni 20067. Febr. 2017Glaukos CorporationImplant delivery system and methods thereof for treating ocular disorders
US9597227 *15. März 201321. März 2017Abbott Medical Optics Inc.Trans-sclera portal for delivery of therapeutic agents
US960373928. Aug. 201528. März 2017Ocuject, LlcIntraocular delivery devices and methods therefor
US96039971. Okt. 201228. März 2017Minipumps, LlcImplantable drug pumps and refill devices therefor
US96231748. Mai 200918. Apr. 2017Minipumps, LlcImplantable pumps and cannulas therefor
US96232154. März 201618. Apr. 2017Surmodics, Inc.Apparatus and methods for coating medical devices
US96938943. Juni 20144. Juli 2017The University Of Southern CaliforniaMEMS device and method for delivery of therapeutic agents
US97142558. Sept. 201525. Juli 2017President And Fellows Of Harvard CollegeCortistatin analogues and syntheses thereof
US984923824. Sept. 201326. Dez. 2017Minipumps, LlcDrug-delivery pump with intelligent control
US985135117. Dez. 201526. Dez. 2017Forsight Vision4, Inc.Posterior segment drug delivery
US20030064088 *28. Aug. 20023. Apr. 2003Carvalho Ricardo Azevedo Pontes DeImplantable and sealable system for unidirectional delivery of therapeutic agents to tissues
US20030069560 *2. Mai 200210. Apr. 2003Massachusetts Eye And Ear InfirmaryImplantable drug delivery device and use thereof
US20040073156 *16. Juni 200315. Apr. 2004Brown J. DavidGlaucoma treatment device and method
US20040092911 *5. Nov. 200313. Mai 2004Yoseph YaacobiOphthalmic drug delivery device
US20040111050 *7. Aug. 200310. Juni 2004Gregory SmedleyImplantable ocular pump to reduce intraocular pressure
US20040131654 *30. Okt. 20038. Juli 2004Yoseph YaacobiOphthalmic drug delivery device
US20040131655 *30. Okt. 20038. Juli 2004Yoseph YaacobiOphthalmic drug delivery device
US20040133155 *19. Dez. 20038. Juli 2004Varner Sign EricksonDevices for intraocular drug delivery
US20040217153 *1. Juni 20044. Nov. 2004Jean-Paul FarroniMethod of integrated circuit assembly
US20040230183 *18. Febr. 200418. Nov. 2004Wisam BreegiDrug delivery device and syringe for filling the same
US20040254519 *14. Apr. 200416. Dez. 2004Hosheng TuGlaucoma treatment device
US20050019371 *29. Apr. 200427. Jan. 2005Anderson Aron B.Controlled release bioactive agent delivery device
US20050064010 *20. Sept. 200424. März 2005Cooper Eugene R.Transscleral delivery
US20050112175 *4. Okt. 200426. Mai 2005Yoseph YaacobiDrug delivery device
US20050113806 *15. März 200426. Mai 2005De Carvalho Ricardo A.P.Implantable and sealable medical device for unidirectional delivery of therapeutic agents to tissues
US20050130906 *22. Nov. 200416. Juni 2005Matier William L.Amelioration of macular degeneration and other ophthalmic diseases
US20050175708 *2. Nov. 200411. Aug. 2005Carrasquillo Karen G.Drug delivery systems and use thereof
US20050196424 *8. Apr. 20058. Sept. 2005Chappa Ralph A.Medical devices and methods for producing the same
US20050208103 *9. Mai 200522. Sept. 2005Adamis Anthony PTargeted transscleral controlled release drug delivery to the retina and choroid
US20050271703 *15. Aug. 20058. Dez. 2005Anderson Aron BControlled release bioactive agent delivery device
US20050271706 *15. Aug. 20058. Dez. 2005Anderson Aron BControlled release bioactive agent delivery device
US20050276837 *15. Aug. 200515. Dez. 2005Anderson Aron BControlled release bioactive agent delivery device
US20050281863 *15. Aug. 200522. Dez. 2005Anderson Aron BControlled release bioactive agent delivery device
US20050287188 *15. Aug. 200529. Dez. 2005Anderson Aron BControlled release bioactive agent delivery device
US20060013835 *12. Sept. 200519. Jan. 2006Anderson Aron BControlled release bioactive agent delivery device
US20060020248 *26. Juli 200426. Jan. 2006Prescott Anthony DLacrimal insert having reservoir with controlled release of medication and method of manufacturing the same
US20060024350 *24. Juni 20052. Febr. 2006Varner Signe EBiodegradable ocular devices, methods and systems
US20060039952 *12. Okt. 200523. Febr. 2006Yoseph YaacobiOphthalmic drug delivery device
US20060067980 *28. Sept. 200530. März 2006Bausch & Lomb IncorporatedCapsule for encasing tablets for surgical insertion into the human body
US20060079828 *18. Apr. 200513. Apr. 2006Brown J DGlaucoma treatment device and method
US20060116741 *17. Juni 20051. Juni 2006Palanker Daniel VOptically controlled microfluidic chip
US20060167435 *17. Febr. 200427. Juli 2006Adamis Anthony PTransscleral drug delivery device and related methods
US20060182771 *9. Febr. 200617. Aug. 2006Dor Philippe JFormulations for ocular treatment
US20060200097 *26. Jan. 20047. Sept. 2006Doheny Retina InstituteReservoirs with subretinal cannula for subretinal drug delivery
US20060241749 *19. Juni 200626. Okt. 2006Hosheng TuGlaucoma stent system
US20060258994 *1. Mai 200616. Nov. 2006Avery Robert LImplantable delivery device for administering pharmacological agents to an internal portion of a body
US20060264453 *9. Febr. 200623. Nov. 2006Macusight, Inc.Rapamycin formulations and methods of their use
US20060276739 *19. Dez. 20057. Dez. 2006Brown J DGlaucoma treatment device and method
US20060292190 *22. Mai 200628. Dez. 2006Othera Pharmaceuticals, Inc.Amelioration of vitrectomy-induced cataracts
US20070027537 *27. Sept. 20061. Febr. 2007David CastillejosMethod and intra-sclera implant for treatment of glaucoma and presbyopia
US20070092570 *7. Dez. 200626. Apr. 2007Missel Paul JDrug delivery device
US20070156079 *14. Sept. 20065. Juli 2007Bg Implant, Inc.Glaucoma Treatment Devices and Methods
US20070190111 *24. Apr. 200716. Aug. 2007Govemment Of The U.S.A, Represented By The Secretary, Department. Of Health And HumanOcular therapeutic agent delivery devices and methods for making and using such devices
US20070203190 *21. Febr. 200730. Aug. 2007Ghanshyam PatilHydroxylamines and derivatives for the inhibition of complement activation
US20070212397 *7. Sept. 200613. Sept. 2007Roth Daniel BPharmaceutical delivery device and method for providing ocular treatment
US20070265294 *23. März 200715. Nov. 2007Kleinman David MFormulations and methods for vascular permeability-related diseases or conditions
US20080039792 *14. März 200714. Febr. 2008Ellis MengMems device and method for delivery of therapeutic agents
US20080103376 *27. Okt. 20061. Mai 2008Felder Robin AMicroelectronic biosensor plug
US20080277332 *11. Mai 200713. Nov. 2008Becton, Dickinson And CompanyMicromachined membrane filter device for a glaucoma implant and method for making the same
US20080312283 *22. Mai 200618. Dez. 2008Othera Pharmaceuticals, Inc.Use of Hydroxylamine Derivates for Inhibiting Vitrectomy-Induced Cataracts
US20090074786 *18. Aug. 200819. März 2009Macusight, Inc.Formulations for treating ocular diseases and conditions
US20090192493 *2. Jan. 200930. Juli 2009University Of Southern CaliforniaImplantable drug-delivery devices, and apparatus and methods for refilling the devices
US20090240215 *19. Dez. 200824. Sept. 2009Mark HumayunApparatus and methods for delivering therapeutic agents
US20090306585 *8. Mai 200910. Dez. 2009Changlin PangImplantable pumps and cannulas therefor
US20090306594 *8. Mai 200910. Dez. 2009Changlin PangDrug-delivery pumps and methods of manufacture
US20090306595 *8. Mai 200910. Dez. 2009Jason ShihImplantable drug-delivery devices, and apparatus and methods for filling the devices
US20090311133 *8. Mai 200917. Dez. 2009Changlin PangDrug-delivery pumps and methods of manufacture
US20100004639 *8. Mai 20097. Jan. 2010Changlin PangDrug-delivery pumps and methods of manufacture
US20100056979 *13. Nov. 20094. März 2010Glaukos CorporationImplantable ocular pump to reduce intraocular pressure
US20100152646 *27. Febr. 200917. Juni 2010Reshma GirijavallabhanIntravitreal injection device and method
US20100168644 *23. Dez. 20091. Juli 2010Brown J DavidGlaucoma Treatment Device and Method
US20100174272 *18. Dez. 20098. Juli 2010Weiner Alan LIn-situ refillable ophthalmic implant
US20100189765 *25. Nov. 200929. Juli 2010Erickson Signe RImplantable ocular drug delivery device and methods
US20100227879 *12. Mai 20109. Sept. 2010Macusight, Inc.Liquid formulations for treatment of diseases or conditions
US20100249691 *25. März 201030. Sept. 2010Abbott Medical Optics Inc.Glaucoma shunts with flow management and improved surgical performance
US20100255061 *29. Jan. 20107. Okt. 2010Forsight Labs, LlcPosterior Segment Drug Delivery
US20100272777 *28. Dez. 200928. Okt. 2010The Government Of The United States Of America, As Represented By The Secretary,Ocular therapeutic agent delivery devices and methdos for making and using such devices
US20100286632 *5. Mai 201011. Nov. 2010Cesario Pereira Dos SantosMulti-Layer Heat Assembly For A Drug Delivery Device
US20100286654 *5. Mai 201011. Nov. 2010Cesario Pereira Dos SantosMultiple Thermal Sensors in a Multiple Processor Environment for Temperature Control in a Drug Delivery Device
US20100305550 *28. Mai 20102. Dez. 2010Ellis MengMems device and method for delivery of therapeutic agents
US20110098686 *27. Dez. 201028. Apr. 2011Johns Hopkins UniversityReservoir Device for Intraocular Drug Delivery
US20110125090 *6. Jan. 201126. Mai 2011Peyman Gholam AOphthalmic drug delivery system and method
US20110144617 *11. Febr. 201116. Juni 2011The University Of Southern CaliforniaMems device and method for delivery of therapeutic agents
US20110144619 *11. Febr. 201116. Juni 2011The University Of Southern CaliforniaMems device and method for delivery of therapeutic agents
US20110152767 *30. Nov. 201023. Juni 2011Pinedjian Raffi SMethod and Apparatus for Drug Delivery
US20110184358 *25. Jan. 201128. Juli 2011Weiner Alan LPulsatile peri-corneal drug delivery device
US20110190323 *28. Aug. 20094. Aug. 2011President And Fellows Of Harvard CollegeCortistatin analogues and syntheses thereof
US20110202032 *18. Aug. 201018. Aug. 2011Jason ShihDrug-delivery pumps with dynamic, adaptive control
US20120302972 *23. Mai 201129. Nov. 2012Higuchi John WIntrascleral Drug Delivery Device and Associated Methods
US20140114410 *23. Sept. 201324. Apr. 2014Mark Philip BreazzanoEyeball stabilizing apparatus and method of use
US20140276329 *15. März 201318. Sept. 2014Abbott Medical Optics Inc.Trans-sclera portal for delivery of therapeutic agents
CN104936563A *8. Okt. 201323. Sept. 2015莱比锡大学A device for a medical treatment of a sclera
EP1385452A1 *22. Juli 20024. Febr. 2004Alcon, Inc.Ophthalmic drug delivery device
EP1385452A4 *22. Juli 200218. Jan. 2006Alcon IncOphthalmic drug delivery device
EP1522289A2 *4. Okt. 200013. Apr. 2005Alcon, IncSub-tenon drug delivery
EP1522289A3 *4. Okt. 200023. Jan. 2008Alcon, IncSub-tenon drug delivery
EP1684669A1 *23. Juni 20042. Aug. 2006Alcon, IncOphthalmic drug delivery device
EP1684669A4 *23. Juni 20042. Jan. 2008Alcon IncOphthalmic drug delivery device
EP1891942A1 *7. Apr. 200027. Febr. 2008Eyelab Group, LLCOpthalmic insert and method for sustained release of medication to the eye
EP2052720A222. Nov. 200429. Apr. 2009Othera Holding, Inc.Use of at least one hydroxylamine compound for the treatment of eye disease
EP2218442A18. Nov. 200618. Aug. 2010CombinatoRx, Inc.Methods, compositions, and kits for the treatment of ophthalmic disorders
EP2316394A1 *12. Juni 20024. Mai 2011The Johns Hopkins University School Of MedicineReservoir device for intraocular drug delivery
EP2329821A129. Nov. 20068. Juni 2011GlaxoSmithKline LLCTreatment of ocular neovascular disorders such as macular degeneration, angiod streaks, uveitis and macular edema
EP2374451A227. Juli 200612. Okt. 2011University of Florida Research Foundation, Inc.Histone deacetylase inhibitors (HDAC) that correct protein misfolding and uses thereof
EP2383286A130. Apr. 20102. Nov. 2011INSERM (Institut National de la Santé et de la Recherche Medicale)Methods and compositions for treatment of retinal degenerative diseases
EP2600920A4 *4. Aug. 20114. Okt. 2017Forsight Vision4 IncSubconjunctival implant for posterior segment drug delivery
EP2691126A4 *29. Sept. 20119. Sept. 2015Ocuject LlcDevice and method for intraocular drug delivery
EP2755600A4 *13. Sept. 201216. Sept. 2015Forsight Vision4 IncFluid exchange apparatus and methods
EP2772225A114. März 20023. Sept. 2014THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICESOcular therapeutic agent delivery devices and methods for making and using such devices
EP2944628A127. Nov. 201218. Nov. 2015Bikam Pharmaceuticals, Inc.Opsin-binding ligands, compositions and methods of use
EP3100723A116. Juni 20107. Dez. 2016Bikam Pharmaceuticals, Inc.Opsin-binding ligands, compositions and methods of use
WO2000062760A1 *7. Apr. 200026. Okt. 2000Eyelab Group, LlcOphthalmic insert and method for sustained release of medication to the eye
WO2001028474A1 *12. Okt. 200026. Apr. 2001Alcon Inc.Ophthalmic drug delivery device
WO2004066871A2 *26. Jan. 200412. Aug. 2004Doheny Retina InstituteReservoirs with subretinal cannula for subretinal drug delivery
WO2004066871A3 *26. Jan. 200425. Nov. 2004Doheny Retina InstReservoirs with subretinal cannula for subretinal drug delivery
WO2010147653A116. Juni 201023. Dez. 2010Bikam Pharmaceuticals, Inc.Opsin-binding ligands, compositions and methods of use
WO2011039648A129. Sept. 20107. Apr. 2011Glaxo Wellcome Manufacturing Pte Ltd.Methods of administration and treatment
WO2011094170A125. Jan. 20114. Aug. 2011Alcon Research, Ltd.Pulsatile peri-corneal drug delivery device
WO2012025415A3 *15. Aug. 201110. Mai 2012Implandata Ophthalmic Products GmbhSensor for intraocular pressure
WO2012149452A127. Apr. 20121. Nov. 2012Regents Of The University Of MichiganCompounds, formulations, and methods of protein kinase c inhibition
WO2013058809A119. Okt. 201225. Apr. 2013Bikam Pharmaceuticals, Inc.Opsin-binding ligands, compositions and methods of use
WO2013081642A129. Nov. 20126. Juni 2013Bikam Pharmaceuticals, Inc.Opsin-binding ligands, compositions and methods of use
WO2013124477A125. Febr. 201329. Aug. 2013INSERM (Institut National de la Santé et de la Recherche Médicale)Methods and compositions for treatment of retinal degenerative diseases
WO2014056895A18. Okt. 201317. Apr. 2014Universität LeipzigA device for a medical treatment of a sclera
Klassifizierungen
US-Klassifikation604/9, 604/294
Internationale KlassifikationA61F9/00
UnternehmensklassifikationA61M2210/0612, A61F9/0017
Europäische KlassifikationA61F9/00B2
Juristische Ereignisse
DatumCodeEreignisBeschreibung
2. Okt. 2001REMIMaintenance fee reminder mailed
2. Jan. 2002SULPSurcharge for late payment
2. Jan. 2002FPAYFee payment
Year of fee payment: 4
23. März 2005FPAYFee payment
Year of fee payment: 8
5. Sept. 2007ASAssignment
Owner name: ROBERT L. AVERY, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LUTTRULL, JEFFERY KEVIN;REEL/FRAME:019805/0428
Effective date: 20070821
12. Okt. 2009REMIMaintenance fee reminder mailed
3. Dez. 2009SULPSurcharge for late payment
Year of fee payment: 11
3. Dez. 2009FPAYFee payment
Year of fee payment: 12